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ABSTRACT

OTTAKATH, NAJMATH, SHARFIYA., Masters : January : 2023, Masters of Science

in Computing

Title: MULTI-ZONAL VEHICLE SURVEILLANCE SYSTEM ENABLED BY A PRI-

VATE PERMISSIONED BLOCKCHAIN.

Supervisor of Thesis: Prof. Dr. Sumaya Al Maadeed.

Privacy, security, accessibility, and reliability are the most essential characteristics

of a public security system. Existing surveillance systems provide monitoring and

surveillance-based security. However, their inference depends on manual monitoring

and action, which may result in a delay in response. Using computer vision techniques,

automated surveillance with monitoring through anomaly detection and tracking has

been made possible. Nevertheless, they require a centralized storage system, which

may result in a delay or security breach, provide a single point of failure, and render

the system unavailable and unreliable. Several states of the art have proposed the use

of blockchain, a decentralized ledger utilizing a private, permission-based network, to

improve the framework’s dependability. However, an analysis of its viability in relation

to the security standards of confidentiality, integrity, and dependability, as well as its

use in an enterprise-grade application such as public security, which may necessitate

a highly scalable network, is required. In this regard, the proposed framework is a

multi-surveillance system for vehicles that performs a privacy-protected image analysis

to re-identify vehicles through images captured by various cameras and analyzed using

computer vision techniques, which will be accessible to other nodes and/or surveil-

lance zones via the blockchain ledger. A private permissioned blockchain network,

Hyperledger Fabric, is evaluated for improved reliability and reduced latency using fast
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and lightweight image analysis tasks, such as combinations of feature extractors and

lightweight CNN (Convolutional Neural Network) models. With different approaches

in three domains, the accuracy and time required by an edge-based inference tool are

measured, resulting in a lightweight tool for surveillance via a permissioned private

blockchain network.
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CHAPTER 1: INTRODUCTION

Reliability, security, privacy, and availability are quintessential in surveillance

due to its prevalence of its use in current times. Surveillance and monitoring are

essential components of any community’s safety and security. In Qatar, every street

corner contains at least one or two cameras that continuously monitor the area. Cameras

provide different angles of view, live stream as well as capture videos that can be stored

for real time as well as long-term use. An automated intelligent system can enhance the

inference from the camera or sensors that are involved. Further, data generated from

these are critical to the privacy and security of the people and entities involved in the

surveillance system [1].

1.1 Background and issues.

A typical surveillance system is a collection of sensors and cameras that com-

municate with a control station. Cameras and sensors form a wireless or wired sensor

network which monitors, analyses, and stores the content. The sensors sometimes form

an edge or fog network for computational efficiency providing a real time advantage

[2]. Cloud storage is the most common storage location due to its scalability. This

leads to extended vulnerability in the form of advanced cloud-based attacks as it forms a

centralized storage system [3], [4]. Security enterprises conforming to the cloud based

centralized storage approach like that of Hikvision was easily left vulnerable to attack.

This does not just intrude the surveillance system and access the monitoring data but

can also modify the content within them. An approach to avoid the centralized cloud

server approach and to identify a system where modification is monitored was required

[5]. This led to research in blockchain for surveillance which is a decentralized and
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distributed system without a single point of vulnerability that can fail the whole system.

Blockchain provides access control, security and privacy of data generated

through this system where unauthorized access, tampering and modification of data

can be a matter of great concern. It has infiltrated many applications providing security

and trust. A typical blockchain system may require at least 50% or more nodes to be

compromised for an attack to take place. And so, strengthening against security risk,

protecting content and as it is time stamped, provides accountability to the surveillance

system [6]. Blockchain can be leveraged for protecting the transfer of images and video,

protecting the privacy, integrity of the information shares, as well as enabling authenti-

cation and authorization of access of the information generated through surveillance.

With this determined, our research problem entails that the framework enabled

for blockchain is efficient in terms of security, reliability, and privacy. For this we

model a surveillance application: a vehicle surveillance through blockchain network

and evaluate existing techniques with surveillance and blockchain.

To identify a reliable surveillance model for Vehicle Identification. The research

objective was to identify an accurate and reliable model that can be used for the purpose

of identification. Image processing and computer vision applications are reviewed and

an efficient technique for accurate recognition is identified. To evaluate a model for

recognition, we modify an existing dataset for instance segmentation where each unique

instance of the vehicle is identified with region of interest segmented. The segmentation

of the model is performed with well-known state of art method Mask RCNN (Mask

Region based Convolutional Neural Network) [7]and an ablation study is conducted to

identify the best performing model with the time taken evaluated. The imbalance in

existing modified dataset is noted and different types of augmentation techniques and of
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the significant mosaic tiled approach is performed to further enhance the generalization

of the model [8]. This can be an alternative of the whole pipeline as it performs

classification, segmentation as well as detection.

With the region of interest segmented, the objective for a private, reliable, and real

-time detection was to identify a lightweight algorithm for vehicle make identification

to uniquely identify and re-identify vehicles. Towards this objective, an evaluation of

the traditional re-identification approaches using image matching by feature descriptors

matching and computer vision-based classification approaches with light weight models

were accomplished. With the key point descriptors extracted the data is stored on the

chain and then matched with ledger to re-identify the vehicle. This enabled a more

private and reliable method for re-identification[9].

However, blockchain is a distributed network and the system scales with in-

creasing number of nodes in the network. With the participants in the node increasing

the ledger size, the transaction content increases. In addition, the information from

videos and/or images are of large size which adds to the increased computational time of

this framework [10]. Thus, the feature descriptor is utilized for re-identification which

adds lesser overhead to the network. This re-identification scheme is enabled on the

blockchain is evaluated for its real time use, its scalability in the context of a private

permissioned network, Hyperledger fabric. Hyperledger Fabric is a blockchain network

that enables access control and has an extensive consensus mechanism to validate the

transaction [11]. Thus, providing a private and secure network for high security applica-

tions. However, the sophisticated consensus mechanism and channel-based data control,

with the application of a large-scale surveillance system scaling multiple domains of use

such as multiple organizations is a matter of concern [12]. A trade-off in availability for
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a real time use case in terms of the number of transactions generated through a single

channel network as well as a multichannel network was determined.

Further, in this application we evaluate the writing and query of image and/or

its features as an asset in the ledger leading to improved privacy. Thus, leading to light

weight protocol for the purpose of vehicle re-identification enabled by Blockchain.

1.2 Research Purpose and questions

The main objective of this research can be thus defined based on the following

section.

• Identify an accurate and fast model for segmenting the region of interest for private

and reliable detection.

• Evaluate robust feature extraction techniques for the purpose of re-identification

and compare them with light-weight CNN (Convolutional Neural Network) based

classification models which can be deployed on the edge.

• Evaluate a private, permissioned blockchain network for performing a reliable,

private, and secure surveillance system in terms of its scalability and availability.

• State the trade-off in using a private permissioned blockchain system with tiered

access control and without access control.

The research question that arises from these objectives are a question of confidentiality,

integrity, and availability. How far is the confidentiality is preserved where confidential-

ity is enabled by a framework that has only the object of interest segmented protecting

the privacy.
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Furthermore, how reliable is the network in terms of the information shared,

which is measured by the accuracy of the classification and segmentation. An image

matching scheme is proposed using features for make classification and re-identification

as well as image classification approaches as an alternative for make identification.

Reliability of surveillance is thus enabled in this approach, and thus the integrity of the

approach is secured. Further, with a private permissioned network, access control is

enabled using a controlled sharing of the ledger. However, there arises a question of how

efficient it is for a real-time surveillance task, which requires an end-to-end analysis of

the whole framework with a single channel approach where the access control is equally

distributed for all and a multi-channel approach enabling cross-channel communication.

This thesis quantifies the reliability and integrity, through accuracy of detection and the

availability, through latency of the framework.

1.3 Key Contributions

The key contributions of this thesis are that a reliable, secure, and private

blockchain-enabled multi-surveillance framework is proposed. To preserve privacy

and improve the accuracy of detection, a pipeline of segmentation and classification was

employed. The region of interest segmentation was performed using instance segmen-

tation with mask-RCNN with Resnet-50 backbone, which produced a high accuracy of

detection and recognition of each unique instance of vehicle.

Then, several feature sharing approaches for re-identification and classification

are evaluated for accuracy and inference time with the segmented region of interest

from vehicle frontal images of state-of-the-art datasets. The BoW approaches using

feature clustering and matching achieved high accuracy. However, with a trade-off in
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time compared to the light-weight CNN approach, with a limited number of convolution

layers, produces lower accuracy with a low inference time of 1 ms. With a robust and

accurate feature extraction identified, a blockchain network was setup and evaluated for

blockchain-based inference. The setup included two scenarios, with the first being a

single-channel network with each node provided with the same ledger, and the second

being a multi-channel network where a set of nodes were part of a Super node network

sharing a ledger with information from other nodes in a private manner. This was

tested on the Hyperledger Fabric network, an open-source tool for private permissioned

blockchain network orchestration.

The thesis is thus structured based on the following where chapter 2, details

the overview of the existing blockchain applications in video surveillance system and

proposes a generalized framework for video surveillance on blockchain which enables

privacy and security. Further for a vehicle surveillance application, the existing litera-

ture of vehicle identification through make classification and re-identification schemes

are detailed with requirement for light weight models for the purpose of real time

surveillance proposed. Further in chapter 3, the framework discussed in chapter 2, is

methodized through vehicle region of interest segmentation for privacy and reliability.

Vehicle classification and similarity matching based on make is detailed by three tasks,

that is matching through a combination of key-point descriptors and feature matching

algorithms, a bag of words approach using feature clustering and a lightweight CNN

model. Further, a private permissioned blockchain setup with multichannel feature

sharing framework for re-identification. Chapter 4 presents the experimental results,

and the key findings are discussed in Chapter 5. Chapter 6 concludes the thesis .
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CHAPTER 2: LITERATURE REVIEW

Blockchain-enabled surveillance is a new field. To survey the existing literature,

the current state of the art in blockchain in video surveillance is charted. A framework

is proposed for common approaches. Vehicle re-identification being the task performed

through this framework, existing literature in computer vision for this approach is

presented and the problems stated. A solution is then proposed through blockchain in

the succeeding chapter based on this review. The following subsection reviews in detail

the existing literature and discusses the findings from it.

2.1 Blockchain in video surveillance systems

The aim of this study is to identify current state of art approaches in the domain of

vehicle surveillance coupled with blockchain. Research on most recent applications with

blockchain was performed by filtering out the most relevant studies to blockchain based

surveillance applications. It was noted that blockchain provides one or all the following:

privacy, security, and access control for surveillance systems. This is enabled by different

types of blockchain setup and the area where the distributed network is utilized. The

following section details the current state of art in blockchain based surveillance in terms

of privacy preservation, security adherence and access control.

2.1.1 Privacy

One of the most important requirements of any image or video data captured

from any device is privacy. Images contain identifying information as well as vulnerable

content. These images or video content generated may be restricted under privacy laws

for unauthorized access. Individual privacy is a required element of public security.

7



The current available devices cannot be selective and there’s need to monitor a wide

coverage area, a scheme to secure privacy is required. Several literatures have dealt with

this problem.

By taking limitations of scalability and storage capacity into consideration Fitwi

et al. in [13], used lightweight blockchain named (Lib-Pri) for privacy protection where

tasks like checking integrity of the videos, blurring keys management, feature sharing

and video access sanctioning were performed. Edge computing was performed for real

time video analytics where the video was split into frames and a reverse chaotic mask

was applied to images which is then stored in an off-blockchain storage. A person

of interest is then identified by facial features by applying computer vision techniques

on the frames to extract the features and identify a face. A suspected individual’s

facial features are compared with the original and pushed to the blockchain node to

identify the location and recognize the identity. A federated blockchain approach was

used in a private permissioned manner with smart contract modified for privacy and

confidentiality, with user access control authorized.

Camera identity was another approach used to preserve the privacy of an indi-

vidual in [14] where Blocksee, a video surveillance system in smart cities was designed

in situations where ambiguity of IoT devices posed a threat due to vulnerability of ma-

licious users manipulating the video content. Camera identity enabled validation and

immutability to camera settings stored which had camera ownership details enabling

privacy through blockchain. A private permissioned architecture was used where access

control through ownership was imposed.
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2.1.2 Security

A centralized system can be under threat under many circumstances. Blockchain

secures the data collected using its function of hashing data which provides data integrity

as well as secure storage. Video credibility was the main focus in [15] where they used

a blockchain based scheme named Video-Chain, where video integrity evidence was

saved on the blockchain. It follows a consortium blockchain, where the entities are

given tokens based on privilege of access. The application layer of the video chain

updates and verifies the evidence. A new data storage mechanism was built, Trusted

Video evidence storage (TVES), which stores both evidence and original data. A high

transaction rate protocol, VideoChain, was used for validation. In the video processing

part, the evidence was collected by cutting it 10 minutes apart and compressed. A hash

of the video was computed as evidence of video integrity. Reliability was improved by

adding backup to the original video. Analysis based on security and efficiency of the

video chain proved to be a suitable option for implementation.

Dam surveillance was an application which the authors in [16] devised a scheme

to secure an IoT solution. A distributed and long-term security solution was accom-

plished through blockchain technology by providing authentication, data storage, in-

tegrity, and traceability of data delivery through the UAV cloud. The performance was

measured based on the data delivery ratio.

A combination of convolutional neural network, Interplanetary file system (IPFS),

edge computing and permissioned blockchain were utilized for massive data storage,

real-time monitoring and large-scale information acquisition in [17]. Content oriented

surveillance was accomplished by identifying dangerous individuals with sensors and

tracking them. Passive imaging and detecting concealed objects were performed and
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secured where data integrity could be kept valid using blockchain.

Multilayered network is usually used with a private blockchain for secure surveil-

lance in addition to a secure storage. The term IBSS (independent blockchain surveil-

lance system) was introduced in [18] where high level layers were used to form the block

chain layer to hash and store the data in an IPFS (Inter planetary file storage) storage

which is a peer to peer distributed decentralized storage network. The sensors (cameras)

act as nodes to the blockchain where the video content is hashed and saved to the IPFS

validated through a consensus mechanism. With the IPFS system, a secure large data

storage was achieved with blockchain preserving privacy and security of the video data

captured from the sensors.

2.1.3 Access Control

Controlled access to the blockchain transaction secures privacy of the individuals

as well as restricts the access to unauthorized individuals or organizations for content

related to entities not involved in the surveillance incident. Several modes of access

control are identified in state of art where Jeong et al., in [19] and Deepak et al., in [20]

presents the state of art in management applications of blockchain with surveillance.

Hyperledger fabric, a private blockchain which uses IPFS (inter planetary file system)

and CDN (Content defined networking) for storage that are decentralized are detailed in

this review.

Access control in terms of content was another application where authorization of

access to the decentralized storage was accomplished by Balint in [8] where a blockchain

based system for storage of video footage was presented. In this system, data was stored

off-chain and a storage platform named storj platform, a decentralized storage system,
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was used for storage which has an elaborate encryption method that secures the data.

Several types of decentralized storage were also compared in this paper for its use as an

off-chain storage for blockchain.

Protecting the index of data stored off-chain was implemented by Nikouei et

al., in [21]. They identified the problem of collecting data at the edge along with

feature extraction. The closest nodes in the fog network were used to classify the

features. Misleading the surveillance system can be easily done at multiple layers where

tampering can happen in the cloud system. A blockchain enabled scheme was applied

to protect the index of the data at the edge, and fog was used to secure the data. Most

decentralized off-chain storage incur high cost in terms of smart contract execution or

operational costs and use computationally complex algorithms for encryption. An apt

solution for storage that involves better security, lower cost and improved computational

efficiency is required.

A lightweight mechanism was further identified on the context of restricted

access. It was accomplished by M. Singh et al. in [22] created a lightweight mechanism

named one drone one block (ODOB), which was used for surveillance with drones. A

modified blockchain structure was envisioned here. ODOB decouples the block ledger

from the block header to form a distributed architecture. Here each drone can only

access their own block. This makes it simple, trustworthy, and lightweight.

Another lightweight implementation of blockchain with surveillance was achieved

in [21], where video metadata was stored on the blockchain to support video integrity.

The video metadata such as Frame Rate, Video Position Sequence, Video Frame, and

Storage Address was stored as transaction. The video was stored in a distributed storage

system called IPFS. The setup of the device included a video camera module connected
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to a raspberry pi3 with IPFS storage running on a private instance. Resultant of latency

evaluation concluded that only 8 milliseconds was utilized for the whole process, from

capturing to storage in IPFS system, thus, achieving video integrity in surveillance.

Apart from the human aspect of suspicious behavior, [23] used surveillance

for autonomous detection of stolen car detection and inspections where a blockchain

based platform was used. Both remote and local processing of video feeds were done

to search for suspicious vehicles. Verification of the suspected vehicles was achieved

by blockchain validation system. An open-source license plate recognition model-

DeepANPR (Deep learning based Automatic number-plate recognition) using the SUN

database, was used for license plate detection. Car recognition was achieved using a

ResNet-152 architecture and trained using Cars dataset. Once an anomaly is detected

and verified, a local authority can be alerted and published in the blockchain. This

system ran at a fault free time of 40 secs producing fast results.

Chain codes or smart contracts were elaborately used for access control by

[24], [25] where Hyperledger fabric was adapted for public security. Machine learning

and blockchain were combined in this method where real time surveillance was used

to identify and track suspected faces. Here the latency was used as an evaluation

metric to identify its effectiveness in reporting a suspect. Surveillance events were

notified and embedded on to the permissioned blockchain, specifically Hyperledger

fabric, which further enabled access control through smart contracts or chain codes

in this application. Scalability was achieved due to the federated architecture. Real-

time suspect monitoring was achieved successfully with minimal delay. The key points

identified from the literature review state that latency is a prime measure of good

performance in blockchain based applications for surveillance, hence, this factor must

12



2.1. 2.1 BLOCKCHAIN IN VIDEO SURVEILLANCE SYSTEMS 13

Table 2.1. Applications of blockchain with surveillance

Method Appl. Type Sim.
Smart

Contract

[26] National security Consortium Hyperledger Yes

[16] UAV based Dam

surveillance

Public Modified Bit-

coin

No

[13] Suspicious activity

detection

Consortium Modified -

[27] Vehicle detection - Modified

block

No

[24]
Person identification and

recognition training
- - Yes

[17] Suspect identifica-

tion

Permissioned - Yes

[22] Video storage in

multi-surveillance

Permissioned - Yes

[28] Person surveillance

and forensics

Private - -

[14] Smart city monitor-

ing

Private Per-

missioned

- Yes.

[29] Suspicious person

surveillance

Private Per-

missioned

- -

[30] Indoor surveillance

IP camera

Public - -

[21] CCTV surveillance Private Modified

Hash

No

[31] Smart home surveil-

lance

Public Per-

missioned

lotex Yes



be measured in any blockchain based applications. Privacy is protected on the chain

with access control. However, with images and videos on the chain, the privacy remains

where participants of the network can still view them. With large scale networks,

the complexity of access control limitations increases, thus making a fast real time

surveillance a delayed process.

Existing state of art have solved this problem by introducing, artificial intelligence

methods such as deep learning and machine learning to extract key frames, or to detect

relevant object in a captured scene. However, the issue remains that the object or person

of interest is identified visually. A merger of automated surveillance approaches to

analyze the scene and detect anomalies to extract specific features, such as abnormal

vehicle surveillance and tracking using surveillance applications like dam surveillance,

face surveillance etc. have been mentioned in Table ??. The table details the type of

surveillance and the type of blockchain simulation used and if there was a smart contract

executed. Smart contracts are automated codes that enables interaction between clients

and blockchain network. The smart contracts can be utilized for the purpose of automated

surveillance reading, writing, and querying of data stored on the chain.

State of art emphasize on lightweight and fast operations since the applications

are real time and require very low latency. Scaling the network may further increase the

latency as consensus mechanisms are involved this being an assumption requires to be

evaluated for different configurations of private permissioned blockchain network where

the multi-channel consortium network such as that of the Hyperledger fabric providing

controlled access. A large organizational network was evaluated in [4] but an extension

of it was required for identifying the performance on multi-channel approach where

information was programmed to move from one channel to the other in a hierarchical
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fashion.

A blockchain based video surveillance framework is as shown in the Figure 1.

A consortium blockchain network with multiple parties having access control managed

through policies is shown in 2.1. The transaction data can be the image, information on

the image that is the image metadata, time of block creation and/or features of the image

etc. such as shown in 2.2 for person re-identification. For the purpose multi-surveillance,

the image features are stored on the chain and queried from the blocks.

Figure 2.1. Surveillance enabled by a consortium blockchain.

Figure 2.2. A typical video surveillance block structure where the object of interest
information is stored on the chain.

Further, fast, and light weight automated surveillance is required to be identified.

The research directions from this review details that there is a lack of standardized

metrics to quantify the performance of the blockchain based surveillance system. With
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the framework presented, the question arises on a real-time surveillance use case where

the quantity of latency is of high significance and so there is a need to evaluate the effect

of time on availability of resource for surveillance inference. The reliability of that

inference is also required to be quantified to evaluated the quality of the framework. The

trade-off if any interms of availability and reliability is a requirement to be identified.

In the context of vehicle surveillance, vehicle detection and identification are

a widely researched area where the detection accuracy and speed of detection provide

reliable inference of type of vehicle data. This adds to the reliability of the whole

blockchain based surveillance system.

Detection is a broad term used for multiple computer vision tasks that include

vehicle re-identification and vehicle recognition which further includes several pre-

processing tasks such as vehicle segmentation. For a private and reliable system, the

detection should be fast and accurate, leading to this requirement [32]. Although

machine learning and deep learning models are accurate while trained on a large dataset

of the same class, the amount of complexity of the model as well as the inference time

is a question. Current state of art in vehicle re-identification is presented in this section.

Figure 2.3. A Vehicle detection and identification pipeline.

A typical vehicle detection system is presented below in 2.3, a vehicle’s unique
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characteristic labels are its make and model. Each vehicle has a distinct structure and

logo which is utilized as a pattern for identification. In addition, license plate information

can improve the identification of the vehicle. Re-identification is another approach that

is required to be performed for tracking the vehicle through multiple cameras which

further utilized unique identifying features of a vehicle.

2.2 Vehicle Detection and Recognition

There are several techniques that can be performed in the pipeline using feature

matching, machine learning and deep learning. Furthermore, to improve the identifica-

tion and reduce the noise in them, background removal, region of interest segmentation

is performed [33]. Following the research objective to identify a reliable model to

identify and re-identify a vehicle for multi-surveillance, a unique representation of the

vehicle needs to be identified, and this unique representation is queried and re-identified.

This can be performed by classifying a vehicle as make and model and matching the

frontal images using key features.

For a unique representation of the vehicle which once detected, the region of

interest needs to be cropped for matching. Deep learning models have proven to perform

this accurately for the classes that the deep learning model is trained for. The recent

literature in this domain solves the challenges of diversity in dataset with multiple large-

scale datasets and large number of classes. Further enhancing security several datasets

focus on the parts and frontal area of the car enabling more fine-grained classification. In

addition, datasets are varied in terms of illumination, exposure, and even environment.

This leads to an open research domain for researchers in this field. One such dataset is

[25] which considers the vehicle ecosystem of the state of Qatar.
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Of the latest in frontal image dataset is a large-scale fine-grained dataset, with

diversity in scale from 103 classes [34]. The dataset was annotated for make, model

and year of manufacture providing a hierarchical representation of the vehicle. High

resolution images with high quality were presented. The dataset was trained on CNN

based methods. Several baseline methods have been utilized for vehicle classification

including large scale models like Resnet-50. Further baseline analysis with Alexnet,

VGG16 and VGG 19 were performed each producing and accuracy above 85% being

robust for classification [36]. Apart from CNN, based methods, traditional rule-based

approaches are dominant in this field due to the popularity of the problem. Local and

global cues were utilized for classification in several approaches. Structural and edge-

based features were also a common pick. Further, machine learning was performed with

these features to enhance classification. With the feature extraction techniques, edge-

based feature extractors like HOG (Histogram of Gradients) and Harris corner detectors

performed significantly well for detecting parts of the car like the logo, the grille and

the headlights [35]. Robust feature detectors from key points like that of SIFT (Scale

invariant Feature Transform) and SURF (Speeded up Robust Features) were employed

in several state of art. Adding to these features, corner detectors and line detectors like

Hessian matrix and DoG (Derivative of Gaussian ) were implemented in [6] producing

considerably higher accuracy for smaller number of classes.

With larger number of classes, they fail to produce similar accuracy as with

Database 4, Compcars dataset with colored dataset of large classes of cars with more

than 162 types of cars, where in the same experiment produced poor results. Adding

to the techniques, a bag of features or bag of words approach was implemented with

feature detectors for unsupervised clustering, producing a histogram of features for
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matching [36]. A typical feature detector algorithm accompanies a matching technique

like hamming distance, Euclidean distance, or cosine similarity for identifying similar

vehicles for recognition and classification [8]. This is further used for re-identification.

Naı̈ve bayes [37], SVM (Support Vector Machine) [38] , LBP (Local Binary

Patterns) [38], and KNN classifier (K- Nearest Neighbor) [37] were common machine

learning algorithms used for vehicle make and model classification. CNN (Convolu-

tional Neural Networks) models, where features are automatically engineered are used

for classification, were utilized for vehicle make and model classification. They involve

transfer learning on prominent pretrained models like that of Alexnet, VGG (Visual Ge-

ometry Group) that consists of 16-19 layers of convolutional layers like that of Resnet,

and Mobilenet [32], [33]. Adding to this modified CNN networks were introduced such

as residual Squeezenet [39] which produced a higher rank-5 accuracy of 99.38. Seg-

mentation was applied as a pre-processing step to remove the background. A compound

scaling approach was employed on Efficient net pretrained on ImageNet for classifica-

tion for the purpose of presenting an app for vehicle make and model classification.

Unsupervised deep learning techniques such as auto-encoders were also utilized for this

purpose [35]. With each model producing different features automatically generated

through CNN based approaches or engineered through edge and geometrical descrip-

tors, for a real time use case, the requirement identified for an efficient model is higher

accuracy and faster inference.

Although deep learning models conform to classifying vehicles of types like that

of the trained dataset. Challenging and diverse environments can contain vehicle types

that are not from the dataset as new types of vehicles are being manufactured every year.

Feature extraction and matching techniques without classification do serve the purpose
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of re-identification but with an image reference, and for that metric learning is proposed

in multiple literature.

Table 2.2. Latest Rei-dentification techniques.

Reference Year Re-id Method mAP% rank 1% CMC%

[40] 2021 SIFT+ORB-+HSV+S-T+HG 30.46 75.11

[35] 2021 Double channel symmetric-Resnct-50 49.55 74.36 -

[41] 2021 transformer+ VIT-B/16 79.0 96.5 -

[42] 2021 IPAD (vehicleID) 74.7 87.7

[43] 2021 DPLM+DTL (veri-wild small) 26.7 74.5 -

[44] 2021 deep V (Veri-Wild small) 75.1 92.1 -

[45] 2021 Angular triplet loss + SoftMax (vehicellD) 83.4 77.3 -

[46] 2021 Bascline+WCVL (veri-776) 80.4 - 95.3

The current state of art is summarized in Table 2.2. A typical re-identification

uses a trained model that given a query image identifies an object that is best match to the

given object in a gallery, that is an image database . Typical techniques include feature

matching, image search and image similarity algorithms. Of the latest, are deep learning

models like deep metric learning that create a representation of the image and train the

model to identify the same representation using positive images and negative images
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related to the model. This is employed using loss functions like triplet loss. CNN based

model, transformer-based models and attention-based methods are extensively studied

for this approach. Table 2.2, shows the latest and most significant results in vehicle

re-identification using images.

It is known that computationally complex unsupervised methods and multi-step

approaches produce comparable accuracy, but latency in a real time scenario is a question

as in [41], and [42]. Adding to this, the use of blockchain may further add to the delay

[20]. Hence, a robust feature extraction and matching methodology is required to be

identified that is fast and accurate. Vehicle identification can be further improved if

segmentation is performed with region of interest extracted. In this work the focus is on

the key identifying factor of the vehicle, the logo and bumper design with license plate

which infers the make of the vehicles. This inference can be achieved through a trained

classification model and image matching through handcrafted features.

Segmentation approaches are often used for removing the background and ex-

tracting the vehicle, later classifying the vehicle. In real time uses, the cropped images

should be generated from the detected vehicle to localize the frontal part of the car; this

requires an added step for vehicle detection which increases time complexity. Thus, re-

quired is a single step approach for vehicle make identification. License plate detection

also adds up to the vehicle unique features which is further added to the identification

system for re-identification for unique id tagging of a vehicle. Thus, a robust model that

can detect the region of interest and classify, identifying each instance of the vehicle

make is required. An instance segmentation approach for re-identification is an area of

interest for vehicle make identification through segmentation and classification. This

will be explored in this thesis accomplished by modifying an existing dataset through
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polygonal annotations for instance segmentation.

Further, algorithmic approaches for make identification and re-identification are

performed on the cropped region using its feature points and descriptors is compared

with light weight CNN models for the purpose stating the relevant of both for this

task. Thus, a robust, reliable, secure, and private surveillance enabled by a private

permissioned blockchain can be achieved. In the following section, the methodology

used for the approaches are detailed to evaluate the proposed framework.
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CHAPTER 3: METHODOLOGY

To evaluate each pipeline in this system and identify the optimum model for the

purpose of a multi-surveillance enabled by blockchain. The pipeline of the methodology

is as shown in the 3.1. This chapter follows the methodology used to accomplish the

tasks in each section of the pipeline, vehicle region of interest segmentation is performed

using CNN based methods explained in 3.1. Section 3.2, details the methodology used

to identify the most efficient method for vehicle representation on the chain. In 3.3,

the setup of the blockchain framework and the algorithmic approach used for vehicle

re-identification through the chain is detailed.

Figure 3.1. Base pipeline of blockhain enabled vehicle surveillance.

3.1 Vehicle ROI

Convolutional neural networks have been the key stone of computer vision ap-

plications. They are the most used types of artificial neural networks. Convolutional

operations applied to neural networks enable better feature extraction and classification.

Convolutional neural networks have evolved based on the requirements of accuracy,

generalization, and optimization problems. Requirement of generalization and domain

adaptation, lead to rise of several large-scale models trained on large scale data are

present. Large scale data is trained on these networks which can be further adapted to

other applications. Examples of convolutional neural networks being Alex net, Lenet,

Resnet, Google-net, Squeeze-net and so on. In this paper, we utilize Resnet which is

a deep residual network consisting of multiple CNN layers. It extracts deep features
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and with its residual skip connections, the network is efficient in solving the vanishing

gradient descent problem. The following section briefs on the core of the techniques

used for instance segmentation.

3.1.1 Convolutional Neural Networks

Convolutional neural networks comprise of four key features which include

weight sharing, local connection, pooling and a large number of layers. The layers

include the convolutional layer that perform the convolutional operation on small local

patches of the input where a given input x with a filter f will produce a feature map of

x. The convolution operation for the whole image is computed by Equation 3.1

Yn = ΣN−1
k=0 (xk)(f(n− k)) (3.1)

where x, f, and N are the input image, filter, and the number of elements in x

respectively. The output vector is represented by Y n.

This is followed by activation function such as tanh, sigmoid and ReLU. The

activation functions introduce non-linearity into the network. The subsampling layers

that are the pooling layers reduce the feature map resolution leading to reduced com-

plexity and neural network parameters. The extracted features are mapped to the labels

in the fully connected layer. All the neurons are transformed into 1D format. The output

of convolutional and sampling layers is mapped to each of the neurons producing a

fully connected layer. The fully connected layer is spatially aware extracting locational

features as well as producing high level complex features. The result of this is linked to

the output layer which produces output using a thresholding process. A final dense layer

is sometimes used having same number of neurons as classes in case of a multi-class
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classification. A SoftMax activation function maps all the dense layer outputs to a vector

producing a probability of each class [47]. Accuracy of this prediction is measured by

its loss function where the result is compared to that of the ground truth or labelled data.

A common loss function used is the categorical cross entropy loss where the following

equation describes the loss as L.

L = −ΣN
(i=1)yi · log(y î) (3.2)

As seen in 3.2, yi is the target prediction, which is the probability that class i

occurs,y î is the output prediction or the ith scalar value in the output, N is the output

size that is the number of classes to be classified or the number of scalar values in the

model output. The minus signifies that the loss gets smaller when distribution comes

closer to each other.

This setup is trained through a back-propagation technique. Hyper-parameters

such as learning rate, regularization and momentum parameters are set before training

process and adjusted according to greedy search. Evolutionary algorithms are further

used to automate hyper-parameter tuning such as in [48]. During the back propagation,

the biases and weights are updated based on the loss or error rate. The loss function

L as in Equation 3.2 is required to be minimum to produce an accurate model. For

this purpose, parameters such as kernel (filters), and biases are optimized to achieve the

minimum loss. The weights and biases are updated in each network and feed-forward

process is iterated with the updated weights. The model converges at the least loss.

Deep residual networks are utilized as the backbone for the framework used in

this thesis. Deep residual networks are large networks with skip connections that carry

knowledge [49]. In the context of this problem, Instance segmentation is performed
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using CNN. Instance segmentation performs detection and delineation of each object

in each image or video [50]. Each instance of an object is tagged with an ID enabling

unique detection of every object in the scene. Instance segmentation is performed

in different stages which include object detection, segmentation, and classification.

This is enabled by CNN models as backbones and feature networks with classification

heads. Several backbones are proposed for this approach. In this paper, we implement

Mask RCNN with a Resnet backbone and Feature pyramid network. The use of this

network is justified for its accuracy in object detection and segmentation where pretrained

networks trained on several large datasets have superior performance over other models.

However, complexity of the model causes the inference time to increase an providing an

evident trade-off. We further measure the trade-off of the accuracy vs the time enabling

evaluation of a real time use case.

Figure 3.2. Deformed offset filter applied during convolutional operation.

3.1.2 Deformable convolution neural network

With all its advantages of convolutional neural network, the geometric structures

of its building modules are fixed. Augmentation is used for transforming the images as a

pre-processing step in most convolutional neural networks. Thus, these transformations

such as rotation and orientation are fixed by modifying the training data. The structure

of the filters in the kernel are also a fixed rectangular window. Pooling mechanisms
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produce the same size of the kernels to reduce spatial resolution and thus the objects

in the same receptive field are convolved and presented to the activation function, thus

only identifying objects in that scale. Deformable convolution enhances geometric

transformation and scaling by introducing a 2D offset to the grid sampling locations

and thereby the convolution operation offsets from its fixed receptive location to a

deformed receptive field. Adding the offset thus augments the spatial sampling locations

automatically. The offsets are added after the convolutional operation [51].

3.1.3 FPN and Mask R-CNN

Further to enhance detection at lower levels, image pyramids are computed

building a feature pyramid network (FPN). The object or segmentation area is scaled

over different position levels in the pyramid. A proportionally sized feature maps at

multiple levels are generated from a single input. Cross scale correlation is generated at

each block to generate a fusion of these features. FPNs are used with CNNs as a generic

solution for building feature maps. A bottom-up approach or top-down approach is used

to produce a feature map. In terms of deep residual networks, the feature activation

outputs are produced at each stages’ last residual block. Figure 6 is a generalized setup

of mask RCNN with FPN 7a.

Mask R-CNN is a region-based CNN that performs object detection and classi-

fication with mask generation. The object detection is performed on a region of interest

and evaluation was based on this region of interest. A multi-task loss is sampled on

the region of interest as the total of classification loss, object detection loss that is the

bounding box loss and mask loss.

Complex hierarchical features are extracted from images. Regularization tech-
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niques are required to improve overfitting to the dataset. Augmentation techniques

are often applied to reduce this overfitting, that includes image transformation such as

scaling, translation, rotation and random flipping. It not only increases the data size

but also provides a diversity of representation. The augmentation techniques can be

divided into pixel level data augmentation, region-based augmentation, and geometric

data augmentation. Pixel based augmentation techniques include changes in pixel val-

ues[52]. Adding contrast, brightness, or color changes the pixel intensity of the image.

Regional augmentation includes that of creating masks of the required region. Motion

blur and cutout are common techniques used for region-based augmentation. Geometric

transformations are also applied to the data that include flipping, reflection, rotation,

cropping etc. In this work the data is setup to augment at different levels that include

geometric transformation and region-based transformation. This not only enhances the

dataset but also improves the diversity of the same. One approach used in this model

is mosaic tiling, where different training images, in this case 4, are taken in different

context and stitched into one image creating a mosaic tiled appearance.
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Figure 3.3. Instance segmentation model(mask RCNN + R50 + FPN).

Figure 3.4. Mosaic tiled image.
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3.1.4 Experimental Setup

The setup of this network involves three layers. The vehicle with the mask is fed

as training data. The data is augmented in three formats separately based on geometric

augmentation and pixel-based augmentation. The transformed data is taken as the

testing data and is then trained on a Mask RCNN-FPN network. Further, experiment

was performed on Mask RCNN- FPN by deforming the convolutional layers. Resnet-

101 and Resnet-50 are used as feature extractor backbones for performing baseline

assessment on the dataset. The data is further scaled and feature representation extracted

at each scale. The setup is as shown in ??. Instance segmentation model. The data is the

key to any good model, the following section will detail how the dataset was modified

for instance segmentation through new annotations and augmentations used.

Figure 3.5. Mosaic tiled image.

3.1.4.1 Dataset. Existing dataset was modified for instance segmentation by

creating polygonal bounding boxes of the frontal part of the vehicle to capture not

just the frontal part of the vehicle but also the curvature of the vehicle as shown in

Figure 8. The dataset contains 12 makes of vehicles taken in difference variations of

camera exposure during extremely sunny weather to that of evening sunset. Distribution

of the dataset is illustrated in Figure 9. The dataset is slightly imbalanced and so

augmentation was performed to improve the data count. In addition, license plate is

treated as a single class having a rectangular bounding box. A total of 225 images were
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split for training, testing and validation with the 157 images for training, 44 images for

validation and 24 images for testing with a 70-20-10 for the original format. The classes

are very imbalanced and require further augmentation. The image below displays class

distribution of the dataset. This dataset contains vehicles that belong to the middle east

region specifically Qatar.

Figure 3.6. Dataset Distribution per class.

Figure 3.7. Data Augmentation techniques utilized to balance the dataset.

The experiments were conducted by augmenting the dataset to mimic different
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camera orientations and noise parameters. An evaluation of both original dataset and

partly augmented dataset was performed. Augmentation parameters included in pixel

and geometric based include exposure and resizing with auto-orientation, noise, and

rotation. In addition, patch-based augmentation which is geometric augmentation was

performed where patches of the image were cut out with a certain given size. The third

type of augmentation was mosaic tiled approach mimicking a mosaic tiled image [29].

Further three types of augmentation were performed on the dataset as illustrated in 3.7 .

3.1.4.2 Performance Metrics. To calculate the average accuracy, precision and

recall must be computed for each image. TP (True positive), FP (False positive), FN

(False negative) and TN (True negative) are metrics used for precision and recall.

Accuracy is a ratio of all the true prediction to the total predictions showing the

correctness of classification into its respective make as shown in Equation 3.3

Accuracy =
Correctpredictions

Totalpredictions
=

TP + TN

TP + TN + FP + FN
(3.3)

mAP: Average Precision per class Average precision (AP) measures how well the model

classifies each class, while mean average precision(mAP) measures how well the model

classifies for all the given test dataset. It is a measure of accuracy of identification. It

evaluates the performance of the model by averaging the precision values under the IoU

(intersection over union) with a threshold of 0.50 to 0.95. AP is calculated in each point

with the given threshold [53].

Inference time: The inference time is measured by the time taken to classify and

generate a mask for a single input. In the context of this approach, it is the time taken to

classify and generate masks for a single frame of a video.
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3.2 Vehicle Feature extraction and matching.

Once, the segmentation is performed an image of the frontal part of the vehicle is

achieved. This alone can be saved on the blockchain. However, may be prone to privacy

issues. Thus, the framework has proposed a feature comparison approach where only

the unique feature set is stored on the chain. For this, examined here is feature extraction

techniques which are light weight and accurate.

Evaluating existing global and local feature descriptors show that they are time

consuming and variant towards scale, rotation, and contrast. Thus, there’s a require-

ment to identify a feature extraction and matching strategy that is relevant for these

applications.

The assumption in this stage is that the inference is performed on the blockchain

node itself as the stored features are extracted and matched with a given query. A trained

model is not required here proving to be light weight. To evaluate this framework a set

of key points of the given image and its descriptors were identified and matched. The

matching was performed using a Lowes ratio test filtering out the good matches and

providing a threshold for scoring the matching. Further the labelled dataset was used to

evaluate the matching score determining the accuracy of the model.

A typical methodology involves extracting the keypoints. A detection is suc-

ceeded by a description of a feature point which in invariant to illumination, translation,

scale and rotation in plane producing a descriptor vector for each feature point. Fea-

ture descriptors encapsulate important information into numbers and serve as a kind of

numerical ”fingerprint” that distinguishes one feature from the other. The descriptors

are matched to identify similar features. Common feature matching algorithms are

brute-force matcher and FLANN (fast library for approximate nearest neighbors) . A
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typical flow is shown in the following flow chart as shown in 3.8. Key point detectors

and descriptors used for this approach are as follows:

Figure 3.8. Local feature descriptor and matching.

3.2.1 SIFT

Scale invariant feature transform identified objects among clutter, and occlusion.

It is invariant to scaling, orientation and illumination changes. Further, it is partially

invariant to affine distortion thus suitable for image matching in different domains. A

scale space peak selection is performed and then blurred using a gaussian blur operator

which then generates a difference of Gaussian Kernel (DoG). Different octaves of the

image are represented in the image. Gaussian blur is performed on different octaves of

the image. A single pixel in an image is compared with its 8 neighbors as well as 9

pixels in consecutive scale as well as previous scale. A local extremum is considered as

a potential key point.

A Taylor series expansion of the scale space is used to get a local extrema and

intensity is deciding factor to exclude or include a keypoint. A Hessian matrix is used

to compute the principal curvature. With the legitimate keypoints identified the scale

orientation assignment is performed with a peak histogram of the neighborhood of the

keypoints identified. The orientation is calculated using this assignment with keypoints
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created with same location and scale with different directions. The local image region

about each keypoint is computed which is highly distinctive and invariant. These features

are used for matching between two images by their nearest neighbor. Ratio of the closet

distance to the second closest distance should be less than 0.8. Figure 3.9 and 3.10, are

the keypoints and features using SIFT local feature descriptor algorithm,

Figure 3.9. SIFT key points with size and without size.

Figure 3.10. 874 Matching key points between two makes with label 11 from
Compcars dataset.

3.2.2 ORB

Oriented FAST and Rotated BRIEF (ORB) builds on FAST keypoint detector

and BRIEF descriptor. Fast and accurate orientation components are added to FAST

with an efficient computation of oriented BRIEF features. The variance and correlation

are analyzed of the oriented BRIEF features.

FAST (Features from Accelerated and Segments Test), which computes the

brightness of a pixel p to surrounding pixels. A keypoint is chosen when 8 surrounding
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pixel is darker or brighter than the given p. Thus, edges of the image can be identified.

After the keypoints are identified, an orientation is assigned, and intensity centroid is

detected. Corners intensity is assumed to be offset from its center and is attributed as

its orientation. Figure 3.11 shows the keypoints extracted from a given vehicle.

Figure 3.11. ORB feature points

3.2.3 BRIEF

BRIEF (binary robust independent elementary feature) are used to convert the

keypoints to a binary feature vector that represents the object. The feature descriptor

is typically 128-512 bits string. Patches near the neighborhood are smoothed and its

sensitivity reduced which increases the stability of the descriptors. A value of 1 is

assigned to the bit of the brighter pixel. Otherwise, it is assigned 0. BRIEF is rotation

variant and thus ORB uses rBrief (Rotation-aware BRIEF). Figure 3.12, the matching

features between two images.

Figure 3.12. 107 matching features
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Here, the Euclidian distance between the descriptors is used to match images.

The Euclidian distance is calculated for each keypoint from a test picture between its

descriptor and all descriptors of the training images, with the best match being correlated

to the smallest distance. The barrier between the greatest match and the second-best

match is another factor that should be considered, according to Lowe. The match is

rejected if the ratio is not higher than the given threshold.

These feature descriptors were combined for the purpose of identifying the most

appropriate of them for re-identification in terms of compute time and accuracy of

detection. They were benchmarked on four state of art datasets described in the next

section.

3.2.4 Experimental setup

An edge node detection framework is also proposed in this framework where

the classification of the model is performed on the edge. For this purpose, light weight

CNN models are experimented on in the context of inference on the edge. The models

were trained on four different vehicle frontal image datasets. An ablation study was

conducted to evaluate the effect of number of layers and datasets for the purpose of

identifying a model that consumes less space and has low inference time. The datasets

used are as follows. The data samples are as shown in 3.13.

3.2.4.1 Datasets. Four state of art datasets are utilized for the purpose of

experimentation. Each dataset contains region of interest extracted images, two of

them are grayscale and two colored. The following is the detailed description of each.

Database1 consists of 200 images of 25 categories with the most eight cars from

same make and model. The resolution of the image is 140 by 70 pixels for all the images

37



72 images were used for testing and 120 images were used for training.

In Database2, the images were captured at a higher resolution of 150x66 and un-

der various lighting and blurring circumstances. The database includes 8 manufactures

and 17 models, some of which vary depending on the year of production. 154 photos

were used for training, while 96 images were used for testing.

Database3, consists of 262 frontal vehicle images with 21 car make and model

types are presented. 85 images are of 53 unusual vehicle classifications, which typically

have one or two samples. The image resolution is that of 2592x1944 pixels and are

colored images. Testing consists of 177 photographs and training consists of 85 images.

In order to compare with existing literature, image was resized to 128x128.

Database4,consists of 1716 different car models and 163 different car manufac-

tures. Vehicle attributes are extracted and divided into different parts as in headlights,

front bumper etc. Of these, 3407 photos of automobile components that correspond to

the frontal image are utilized for experimentation. In the experiments of the relevant

work, 1374 and 1146 photos are utilized for training and testing, respectively.

All the datasets were modified for size to enhance training parameters as well

data augmentation was performed for smaller datasets for better representation. Figure

3.13 are samples of the database.
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Figure 3.13. Dataset samples [54]

3.2.4.2 Evaluation Metrics. Evaluation of the model is performed using ranked

accuracy and matching score. For a single detection, the time consumed is measured

identifying the complexity of the approach. This enables availability and reliability

measure for the whole framework.

Matching score:

A score is identified based on good matches between ORB features separate

and feature combination approaches. Classification accuracy is determined by the true

positive detections as image matching requires that the correct image and/or make be

re-identified. The distance threshold is engineered to identify the best matching score

based on the dataset.

3.3 Feature Clustering and classification.

Assuming the feature selection method has limitations that pertain to the image

size and feature availability in terms of keypoints on distorted images, an image clustering

and classification-based approach is experimented on to evaluate its performance and

its choice as a reliable tool for vehicle identification. Three common and scale invariant
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feature detectors are evaluated in this approach. A BoWs is created for the feature on the

keypoints, and the strongest feature is identified by measuring the variance. 80 percent

of the strongest features are taken from each category. The number of strongest features

is limited to the number of features of the image with least feature quantity. This enables

a balanced evaluation. Efficient and fair clustering is performed in this approach. The

feature sets experimented on are SURF, KAZE and MSER. The following is a brief

description of the methodology of each:

3.3.1 SURF

SURF include quicker interest point identification for real-time applications, a

decrease in descriptor dimensions, and invariance to changes in geometrical shape,

brightness, and size. The detector employs a further approximation of the DoG and is

based on the hessian matrix. Additionally, integral image is utilized for this approach.

Images that are integral are those in which the input picture at a certain point (x, y)

comprises the total number of pixels to the left and above of (x,y), inclusive.

A distribution of Haar wavelet responses relevant to the neighborhood serves as

the descriptor. Only 64 dimensions are present, and the new indexing step is dependent

on the Laplacian’s sign. A keypoint hessian descriptor is used for the purpose of

detection. Using integral images, the value of the Hessian Matrix’s determinant is

calculated for each individual pixel in constant time where the scale detection and

interest point localization is performed. A box filter of Gaussian second order derivative

was used for the purpose of identifying pixel intensities in the rectangular areas which

are multiplied by the representative coefficient and then the total sum is computed. The

existence of gaussian based derivatives improves the speed of SURF and thus speeded
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up robust features. SURF is invariant to scale and illumination allowing it to be used

for various applications that require fast feature description with high accuracy[55].

3.3.2 MSER

MSER extracts the covariant regions from an image, it is a stable connected

component of the images. The methodology of feature extraction is based on identifying

regions that do not change through multiple given thresholds. Given that the pixels

identified below threshold are considered as white and others are black. A set of

extremal regions are generated, which are a set of all connected components [56].

3.3.3 KAZE

KAZE is multiscale feature extractor from keypoints for nonlinear scale spaces

which used a non-linear diffusion filtering contrary to gaussian filtering. The KAZE

features reduce noise and keep the natural boundaries of the image. Nonlinear scale

space is built using the Additive operator splitting techniques and variable conductance

filtering [57].

3.3.4 Experimental Setup

To classify, the features are extracted for each image and a local feature set is

created. A visual dictionary is generated using a k-means clustering algorithm which is

represented by its histogram onto the dictionary using a hard assignment strategy.
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Figure 3.14. Bag of Visual Words Approach.

A Bag of words is created from the training set and indexed using k-means

clustering, it is then compared with the query image to identify the most appropriate

match for the query image. Evaluation is performed by identifying the matching score

and the accuracy of the classification. The matching score is determined by matching

the histogram of features with that of extracted features of the query image. Ranked

accuracy is determined by identifying the best score for the matches. The methodology

is described in Figure 3.14. The training parameters is as in Table 3.1. The smallest

features were used for less computational complexity.

3.4 Light weight CNN classification

Deep learning is popular in its accuracy in computer vision tasks using con-

volutional neural network. However, accuracy is traded with latency and memory

requirement. Nevertheless, there are light weight CNN models that can perform clas-

sification. The CNN layers are decreased and trained on the given four datasets which
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are labelled for make classification. The number of layers is modified, and the most

accurate model is identified, and the latency evaluated for real time light-weight deep

learning setup. A common baseline, Mobilenet [58] is used for transfer learning with a

pretrained model and is evaluated on for classification.

The setup of the CNN is evaluated on a simulated raspberry pi 3 device for in-

ference. The following table indicates the architecture setup. Augmentation approaches

are used to improve the imbalanced dataset. With learning rate set to 0.0005 and the

data is cross validated to identify the best setup achieving higher accuracy and lesser

latency with lower memory usage. Table 3.1 is the setup of each experiment conducted

based on number of layers and dataset cross validation with the training parameters.

The dataset used are the same as those used for vehicle feature extraction and matching.

3.5 Blockchain

As a cryptocurrency tool it removes the need for third party reducing cost and

enhancing mutual trust between two parties. It keeps a ledger of all transaction in

each peer-to-peer network thereby forming a decentralized secure ledger system. A

blockchain system consists of a set of blocks that contain, data of transactions, a private

key, a hash and a nonce secured with a public key. Each block is linked to the previous

block which contains the hash value of preceding block and a nonce. Time of trans-

action is registered in each block. A block is added by validation through a consensus

mechanism. A transaction in blockchain can have any kind of data stored, however with

limited capacity based on type of blockchain platform used. The fact that blockchain

hash cannot be modified or changed and that it is cryptographically secured, enables the

property of security and trust [46] . In addition to that, smart contracts can be deployed
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Table 3.1. Experimental Setup of CNN based model.

# Layers Splits Epochs

C13 1 90-10 10

C14 1 90-10 100

C2 1 60-40 100

C3 1 80-20 10

C4 1 70-30 100

C5 1 60-40 100

C6 1 50-50 100

C10 1 50-50 10

C11 1 60-40 10

C12 1 70-30 10

C18 2 90-10 10

C7 2 80-20 10

C8 2 60-40 10

C9 2 50-50 10

C1 3 60-40 100

C15 Mobilenet 80-20 20

C16 Mobilenet 80-20 10



to automate, control access, and execute a contract or agreement. These features can

be leveraged to protect content and activities in different applications. Surveillance

application is modelled in this thesis for wide scale scalable use with blockchain.

Various platforms are available that are employed to develop decentralized apps

that are capable of being used as a cryptocurrency transaction ledger but also for both

sharing and storing info on the ledger. It is enabled on both private and public platforms,

with and without authorization.

3.5.1 Smart contract

A crucial part of the blockchain network’s automated processes is played by smart

contracts. Smart contracts enable automation through the blockchain, which also boosts

processing speed, lowers costs, and creates a non-repudiated network that ensures data

integrity is protected. This makes it possible to enforce contracts and manage access,

lowers risks and associated costs from third parties, and improves process efficiency [6].

This attribute enables applications like safe and secure data exchange, enforcement of

automated contracts, etc. while also providing safety, security, and privacy for a variety

of applications [59].

According to its design and the method of access provided for validation,

a blockchain can be categorized into public and private, permissioned, and non-

permissioned. The public can create and validate blocks on a public blockchain. Data

modification is carried out using transactions. As a result, a framework for open access

and transparency is created, raising concerns about privacy [60] . On the other hand,

private blockchain is restricted, with only approved parties permitted to participate in

the blockchain’s activities. This can be used for computer vision use cases where it
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is important for security and privacy to adhered to especially where unauthorized par-

ties cannot view any transactions or activities that are performed during inference. A

consortium blockchain is a blockchain where a predetermined group of nodes oversees

the consensus procedure. A consortium or federated blockchain can be created by

combining multiple organizations [61].

Hyperledger fabric is a consortium setup enabled blockchain which provides

access control through prebuilt smart contracts called chaincodes. Further, chaincodes

can be written to interact with this network. The endorser peer and orderer peer, of

an organization in the fabric network, play huge role in validating and committing a

transaction. Hyperledger Fabric can commit to the ledger without using proof-of-work

or other kinds of trustless and hefty consensus, in contrast to permission-less blockchain

platforms. It however, takes several steps to approve the transaction proposal before

validating the actual transaction [11].

Each channel in the Hyperledger fabric has its own ledger. Furthermore, the

main channel was eliminated in Hyperledger Fabric 2.0 in favor of making sure that

each channel operated independently of the others. Additionally, each participating

node must occupy a distinct place inside the network. As a result, it guarantees that

the information in the channel ledger is only accessible to participating nodes. The

following is the setup of the Hyperledger fabric for testing the scalability of the network

to evaluate the availability of the blockchain network for the purpose of a real-time

information transfer for surveillance purposes.

The nodes of the network are considered as operation centers of the Hyperledger

fabric having a hierarchical configuration. There are 10 participating organizations in

the consortium. Five of the organizations are in the first channel sharing a single ledger.
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Node 5 is part of the second channel which constitutes organizations 5 to 10. Node

5 and 6 have their own channel. Evaluation of scalability and setup is performed to

analyze the latency involved in a proliferation of surveillance systems through a large

network. Figure 3.15 illustrates the organizational setup for the purpose of analyzing

the feasibility of blockchain framework for information transfer for real time vehicle re-

identification task. Raft consensus was used as consensus mechanism which produces

a majority voting scheme to commit a transaction to the ledger.

3.5.2 Experimental setup

The performance of this setup was evaluated using Docker Stats performance

measure where its process time and energy used were measured to identify the weight

of the process on the edge nodes. This was setup, as each node is simulated on a docker

container. Each node is an organization of the consortium, which is part of a traffic

zone that captures video feed from sensors. Considering org1, org2, org3, org4 and

org5 are part of one zone sharing the same ledger, with org5 being a super-node which

also shares a ledger with org6. Nodes org6, org7, org8, org9, and org10 are part of the

second zone. Modelled here is a surveillance network which connects several zones

of surveillance area with their own ledger, with one node in each network considered

as a super-node which shares a completely different ledger with super nodes of other

zones, sharing sensitive and required information for target tracking or re-identification.

Algorithm 1 is a proposed methodology for re-identification in real time.
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Figure 3.15. Blockchain network setup with two supernodes with access to two
channels.

This communication is performed on a condition when an anomalous vehicle is

not identified in the current zone and could have shifted to another zone. This, however,

requires to be evaluated for its efficiency in terms of latency and energy that may be

consumed during the process. Since the network is already established and secured by

extensive consensus mechanisms and a transaction flow that is controlled by endorsing,

committing, and validating peers in the network the throughput is guaranteed. We

assume two cases in this network that a vehicle of interest is identified, then the vehicle

region of interest is extracted using the instance segmentation model and the make and

model of the vehicle is stored as text transaction data with vehicle license plate data

in the ledger. The second setup is that the region of interest is cropped, converted to

image, and stored in the ledger. The third setup is that make is identified by classification

using light-weight CNN models and is stored with a vehicle license plate detection and

recognition model performed in [48] which produced 98.26% accuracy of detection.

The fourth setup is performed where the features are only shared on the ledger for a

more private transaction.
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The setup of the hyperledger fabric for evaluation contains a single orderer

performing raft consensus. All peers take part in endorsement. Each organisation has a

single peer and a single client for purpose of constraint evaluation of energy consumed.

Peers of org1, org5, org6 and org7 are anchor peers which are peer nodes where all

other peers can communicate with. Table 5 describes the peer roles in this network.

The Batch time out is set at 2s. The Maximum message count is 10 in a batch and the

absolute maximum bytes in that batch is set to 99MB considering the device constraints.

The execution time is measured for each transaction in the network scaling to a

10,000 transaction the most. The execution time can be defined by the total time the

algorithm, or the process runs in the system, irrespective of its wait time or if its queued

process. Hyperledger fabric was setup on an Ubuntu20.0 LTS OS, with dockerized

containers for each node, peer and certificate authority based on the configuration. Smart

contracts were written to test the cross-channel communication as well as multi-channel

communication setup. A whole end to end framework testing was performed assuming

simultaneouss read, writing and query of transactions take place on the configured

multi-zonal network. Experiments was performed using image as data which can be

used by feature clustering model and CNN model. Key-points and feature descriptors

were the other set of data stored on the chain for re-identification.

The following section states the experimental results on the methodology used.

The segmentation model is trained and tested on the newly annotated dataset for instance

segmentation. Four datasets are utilized to test the feature descriptors to identify the

prominent feature description technique with low latency and high accuracy. Further,

the blockchain network is simulated on Hyperledger fabric framework where access

control is automated and evaluated in two formats where first the data is shared between
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all organizations in the network and the second the data is shared in a hierarchical

setup where two consortium frameworks relate to two super-nodes which has access

to each consortium. All the defined setup is analyzed for accuracy and the real time

performance is evaluated using latency analysis which determines the reliability and

availability of the information for surveillance. With each setup evaluated the following

is the experimental results elaborated in terms of accuracy of instance segmentation for

cropping the region of interest and detection. Classification accuracy of the approaches

were utilized for evaluating the make identification through image similarity matching

and classification for re-identification. The blockchain setup is evaluated for single

channel communication as well as multi-channel communication.
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Algorithm 1 Blockchain enabled re-identification using key-point descriptors
1: Input : Scene

2: f← Img[Key-points, descriptors] refer: Section 3.0.2 t← current time

3: function Query(Channel name, f(D), F(t-10...t))

4: match score←Match (f(D), F(t-10...t)) refer: Section 3.0.2

5: return match score, node, time

6: end function

7: function Write(Channel name, data)

8: Write to Channel name the data

9: end function

10: Assume vehicle is detected in channeln (D)

11: D←1

12: key1← kp1(D), des1(D)

13: while D do

14: Query(channeln, f(D), F(t-10...t))

15: if Match score> threshold then

16: nodef← node,time

17: Write((channel3, nodef)) match score< threshold

18: Write((Channel3, key))

19: Write((Channeln+1, key))

20: Query(channeln+1, (f(D), F(t-10...t))

21: nodef← node, time

22: Write((channel3, nodef))

23: n← n+1

24: end if



CHAPTER 4: EXPERIMENTAL RESULT

4.1 Vehicle frontal image segmentation and detection

To evaluate the setup Several experiments were conducted on different augmenta-

tion methods on the dataset. Resnet-50 backbone was used for the deformable receptive

field-based Mask RCNN. With a batch size of 2, the experiments ran for 1000 iterations

and used a pretrained Resnet backbone on COCO dataset. Evaluation was performed

using the COCO trainer module. Table 6 is the classification accuracy and segmentation

accuracy achieved with the time taken for inference on one image. Table ?? is the

average precision in terms of the different thresholds set for IoU.

For a varied analysis, different baselines were experimented on for the purpose

of evaluation and identifying the trade-off in reliability and accuracy while performing

Table 4.1. Classification accuracy and detection accuracy using mAP with latency

Model Lr threshold fast rcnn/cls acc. mAP Time

Mask RCNN+R-50 +FPN 3x 0.992 98.772 136 ms

Mask RCNN+R-101 3x 0.996 99.670 310 ms

Mask RCNN+R-50 1x 0.992 99.670 316 ms

Mask RCNN +R-50+FPN (DCONV) 1x 0.984375 90.747 161.81 ms

Table 4.2. Ablation study with different backbones and deformable convolution

Model Backbone AP AP50 AP75

Mask RCNN-DCONV RESNET-50 + FPN 79.648 96.337 94.350

Mask RCNN-DCONV RESNET-50 + FPN 74.185 90.747 89.121

Mask RCNN RESNET-50 + FPN 80.213 98.772 95.950

Mask RCNN RESNET-101 73.621 88.219 86.265

Mask RCNN RESNET-50 80.206 99.670 98.730
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instance segmentation for the purpose of vehicle recognition. Mask RCNN was used

as baseline with a Resnet-50 backbone with Feature pyramid network further modelled

with a Resnet-101 backbone with Feature Pyramid Network. The original dataset was

augmented in multiple methods to improve the dataset description. The results of the

experimentation with original dataset are displayed in Table 4.1. The table describes

the classification accuracy of mask RCNN with that of instance segmentation accuracy

with the mean average precision metric. The execution time for inference of a single

image from the test set is also presented.

The test data is either over-represented or under-represented and thus needs to

be balanced for a reliable result. Thus, multiple augmentation techniques are performed

to improve data representation. Three types of augmentation approaches are utilized

for this task. A large network and smaller network were tested to evaluate the impact

of augmentation on data size and the accuracy of the model. The Table 4.3, describes

the results of each augmentation type on baseline models ad 4.2, the backbone based

ablation study. The inference from the table is clear that mosaic augmentation performs

considerably better than any other augmentation type. However, it fails to surpass

images with same resolution. The patch-based augmentation has very low inference

than expected even though the number of images increases. This could be because of

class empty patches in the dataset as each class is represented once in the original image.

4.2 Vehicle ROI and feature descriptor.

Four datasets of varied classes and image distributions are employed for re-

identification through image matching. The image matching is performed using key

point descriptors mentioned in the methodology section. The following table evaluates
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Table 4.3. Ablation study based on data augmentation

Augmentation Splits# Model Backbone AP AP50 AP75

(140x70)+exp.+ rot. 471-44-24 MaskRCNN-

DCONV

R-50 + FPN 65.748 81.708 77.517

MaskRCNN R-101 70.989 88.633 85.148

MaskRCNN R-50 59.502 85.189 67.677

Full Augmentation 460-44-24 MaskRCNN-

DCONV

R-50 + FPN 66.780 83.101 75.029

MaskRCNN R-101 49.585 66.776 58.586

MaskRCNN R-50 60.163 77.906 73.954

Patch input 628-176-96 MaskRCNN-

DCONV

R-50 + FPN 52.475 74.535 64.246

MaskRCNN R-101 71.569 88.176 84.842

MaskRCNN R-50 52.186 74.393 59.095

Mosaic Based 471-44-24 MaskRCNN-

DCONV

R-50 + FPN 87.698 99.406 98.900

MaskRCNN R-101 83.933 99.568 99.103

MaskRCNN R-50 82.463 99.637 98.121

each image matching feature descriptor for its classification accuracy, true positive rate,

false positive rate of identification. Table 4.4 are the experimental results of the feature

matching algorithms, the time taken was measured for each indicating the complexity

of the approaches. Matching based on Euclidean distance was used with two as k value

for a fair comparison. The same parameters were used for all the datasets. For Dataset2

the whole image set did not produce feature points for orb detector, and thus evaluation

was performed for images that produced those features. True positive rate was used

to identify detection accuracy which is most relevant for finding a matching vehicle.
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Table 4.4. Feature Matching

Database Feature Detectors Success rate (%) Time taken/image(ms)

Database1 ORB 82.3 39.6

ORB(KP)+BRIEF(desc) 75.2 25.3

SIFT (KP)+ BRIEF(Desc) 81.6 48.2

Database2 ORB (KP,DESC) 79.44 3.89

ORB(KP)+BRIEF (desc)/BRIEF 80.627 2.67

SIFT (KP)+ BRIEF(Desc) 87.023 8.37

Database3 ORB (KP, DESC) 79.67 148

ORB(KP)+BRIEF (desc)/BRIEF 85.70 492

SIFT(KP)+ BRIEF(Desc) 85.65 117.9

Database4 ORB (KP, DESC) - -

ORB(KP)+BRIEF (desc)/BRIEF - -

SIFT(KP)+ BRIEF(Desc) - -

Classification accuracy was separately measured identifying true positive rate and true

negative rate.

4.3 Feature clustering and classification approach

The bag of feature approach was evaluated on the datasets mentioned in chapter

3. Ranked results were measured with matching score and accuracy of matching or

classification. The Table 4.5, are experimental results of each database mentioned

in chapter3. Top-1 produced high accuracy and so further experimentation was not

performed. Matching score was also measured with average time taken for the whole

dataset.
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Table 4.5. Feature Clustering and matching

Database Feature Detectors Top1(%)-score/match Acc. Time taken in msec

Database1 SURF + Kmeans 99.96 (100%) 282.3

MSERF + Kmeans 99.96 (100% ) 106.41

KAZE + Kmeans 99.96 (100% ) 255.5

Database2 SURF + Kmeans 100 (100% ) 394.8

MSER + Kmeans 100 (100% ) 102.69

KAZE + Kmeans 99.26 (100% ) 382.13

Database3 SURF + Kmeans 99.3 (100%) 822.2

MSER + Kmeans 100 (100%) 102.69

KAZE + Kmeans 96.9 (100%) 614

Database4 SURF + Kmeans 97.2 (100%) 163.001

MSER + Kmeans 98.8 (100%) 482.2

KAZE + Kmeans 92.65 (100%) 576.95

4.4 Light weight CNN based approach.

Reducing the number of layers of the CNN network can considerably improve the

inference time. For the objective to identify a lightweight model for vehicle classification.

An ablation study was performed to identify models with lesser convolutional layers.

The setup as described in Table 3.1 was implemented and the results are as shown in

Appendix . The most significant results are presented in Table 16. Database 3 and

Database 4 did not perform well in the existing setup. As the aim is to deploy on a

raspberry pi3 sensor network, the ram usage was also measured.
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Table 4.6. CNN based approaches

# Dataset Accuracy (%) Loss Time(ms) RAM usage(k)

C3 Database1 90.6 0.43 1 252.0

C14 Database2 81.8 0.55 1187 767.5

C1 Databse3 57.1 1.58 78 386

Mobilenet Database3 55.4 3.17 9 733.6

Mobilenet Database4 38.9 4.84 5 670.3

4.5 Blockchain framework

With Hyperledger fabric network, the following configuration was setup to eval-

uate the performance in terms of a single channel approach and multi-channel with

cross-channel communication. The setup evaluated for maximum scalability for read-

ing and writing on to the blockchain. Appendix 3 is the overall running statistics of the

Hyperledger setup for 5 organization network all part of single channel. The NET input,

block input and output with memory and CPU usage were measured using the docker

status report. The same parameters were evaluated for the multichannel with cross chan-

nel communication for reading and writing large transaction through super-nodes such

as a surveillance approach where multiple events may occur in an existing scene. The

detail graphs are presented in Appendix . The latency is evaluated for the whole trans-

action process. Further Algorithm 1, is the protocol used for vehicle-based surveillance,

where a complete transaction occurs where reading and writing is performed between

three channels. Image based blockchain enabled surveillance results are shown in Table

4.7, where the image is encoded using base64 encoding and stored as single entity on
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Table 4.7. Evaluating an image stored on the ledger.

Image parameters Value

Image size 8.18kb

Encoded 10.90kb

height X width 128x128

Time in sec (Single read) 0.165s

Time in sec (multi-channel) 0.920s

Time in sec (multi-channel)

10,000 transactions
1543.855s

the chain. An image of ‘Audi.png’ from database 3 was used for testing which had a

cropped frontal image of an AUDI vehicle of size 128x128px.

The following Figures 4.1-4.7 are resource consumption graphs of the hyper-

ledger fabric based on the docker container statistics. Docker statistics are charted for

memory consumption, CPU usage and block input and output. In this thesis, resource

consumption is taken into consideration for energy usage, execution time and cost anal-

ysis. The figures charted are represented by line graphs where each line indicates the

peak usage of CPU and memory at that particular time of protocol usage. In this con-

text, the each line is a docker container consisting of hyperledger fabric nodes, peers

in each organization of the network. Further, the chaincodes, cli and the orderer are

also containerized in hyperledger fabric. The activity level of each is color coded and

represented as a line graph.

Figure 4.1 and Figure 4.2 are CPU resource usage statistics for a single channel

network setup. They indicate that the peer0.org5 in orange line is actively using its
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CPU resources to commit and validate transaction. Figure 21 is the CPU resource

consumption of the multi-channel network setup reading querying and writing data

simultaneously. The green line in this figure corresponds to the chaincode for cross-

channel transaction initiated by peer0.org5. The active green line indicates the chaincode

is processed as well as all other peers are participating in the transaction process. The

peak CPU usage was 14% for writing a transaction and 12% for reading from the chain.

The peak CPU usage for a multichannel network was 12% consumed by both peer0.org5

ad peer0.org6 both the anchor peers of channel3, the consortium channel.

Figure 4.4, represents the graph during channel-to-channel data transfer between

org5 and org6. The orange line for peer0.org5 and the golden line for peer0.org6 with the

chain-code as green line. The peak CPU consumption is 15% for peer0.org5. Peer0.org6

uses 6% of CPU resources at its peak. The orderer is committing the transaction as the

purple line but do not consume as much CPU processing power as org5 which is an

anchor peer as well as endorsing peer and is part of the consortium channel.

Figure 4.1. Writing 10,000 transactions on single channel network.
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Figure 4.2. Reading 10,000 transaction on single channel

Figure 4.3. Querying, reading, and writing multichannel.

Figure 4.4. Read and writing cross channel (reading from channel 1 and writing to
channel2)

Memory usage of the node which is encapsulated in the docker container for a

single channel network is graphed in Figure 4.5 and Figure 4.6. Peer0,org8 seems to

peak in memory usage which is an anomaly and could be due to other processes in the

system. However, it is evident that single channel approach shown in Figure 4.5 and 4.6,

has a maximum usage of around 80- 140MB and the peers in channels 2 and 3 are below

80. Further for the multi-channel approach, Figure 4.8 depicts an active process which
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involves reading, query and writing through multiple channels, mimicking multiple

surveillance zones with restricted access. The memory consumption is steady at 100

MB for the cross-channel peer (dev.peer0.org5) and all other participating peers are

at range 45 -100MB in all channels. The active lines indicates that the chaincode is

actively used for cross channel transfer. Figure 5.2 identifies the bottleneck zone the

cross-channel data transfer nodes that is channel 1 to channel 2 from peer0.org5 in

channel1 to peer0.org5 in channel2 ledger. The memory consumption is steady at 80. In

the following section, the key findings from the results are discussed and presented with

an analysis of each module used for experimentation in this chapter. The relevance of

the techniques will be justified by how each phase contributes to the reliability, privacy

and integrity of vehicle surveillance using a private permissioned blockchain network.

Figure 4.5. Memory usage for 10,000 writes from a single node to a single channel

Figure 4.6. Memory usage for querying on a single node to single channel.
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Figure 4.7. Reading/Querying and writing cross channel.

Figure 4.8. Querying and writing multi-channel approach.
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CHAPTER 5: DISCUSSION

With the proposed and evaluated framework, this section discusses the parame-

ters that validate or invalidate blockchain enabled surveillance. A private, secure, and

reliable surveillance can be achieved through blockchain with some cost. The privacy

aspect is accomplished using reliable algorithms that segment the region of interest and

the keypoints and descriptors that are shared in the decentralized blockchain ledger that

is accessible to restricted parties through access control schemes. A private permis-

sioned ledger can be used for the purpose of security and further the privacy of the

framework. To quantify these parameters and elaborate the results, following are the

key findings of the approaches used and its significance compared to state of art.

5.1 Vehicle instance segmentation

Mask RCNN is certainly an efficient and reliable method for not just region of

interest segmentation but also make recognition with license plate detection. The model

presents high accuracy of detection for each class except that of license plate detection

which can be due to the varied placement of license plate on some of the vehicle models.

The resent-50 back bone without FPN with base RCNN produces a high mAP

of 99.670. Although Resnet-50 backbone with FPN is hypothesized to produce higher

accuracy, it lags 1% but produces faster inference with 174ms faster than base-RCNN.

With further experimentation on the CNN module with a deformed convolutional op-

eration the accuracy dropped to 90% which is significantly lesser than expected. This

could be due to the added complexity and generalization of the network. It can be noted

that the models are inferred on a test set with imbalanced data and thus not reliable for

certain classes. With class wise precision, the largest class, the license plate has the least
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Table 5.1. Comparison with existing literature.

Method Model Classification accuracy

[25] SIFT + DoG t 74.63%

Ours MaskRCNN+ FPN + Resnet-50 99.2%

accuracy, license plate covers a smaller area and is similar in geometry to rectangular

shapes which can be a reason for the poor performance that is scale variation may affect

the performance such as license plate location in a LEXUS car which is at the side of

the bumper of the car.

Figure 5.1. Class-wise accuracy.

Compared with existing literature, the existing study with the same dataset

produced only 74.63% accuracy with traditional approaches. The classification module

in maskRCNN with feature pyramid network and resnet-50 backbone produced higher

accuracy, thus achieving higher accuracy of inference compared as seen in Table 5.1.

However, this is a complex architecture compared to SIFT and DoG which takes higher

time for inference.

Thus, a trade-off in accuracy and time complexity. Light weight modules without
64



residual architecture like that of Centermask [62] is required to be evaluated for the

instance segmentation as future work. The vehicle and license plate classification

results based on class are shown in Figure 5.1.

Figure 5.2. mAP vs Accuracy vs Inference time per model

The inference time is independent of the complexity of the model. However,

larger learning rate took longer time for inference. It is noted that the same image was

used for inference for each model. Mask RCNN with Resent-50 backbone and feature

pyramidal network inferred in the least time as illustrated in 5.2.

5.2 Vehicle make identification.

Vehicle make identification was performed using three methods. Feature match-

ing, feature clustering and light weight CNN models. Dataset 1 and Dataset2 produced

considerably better results.

5.2.1 Comparison of the results with state of art

Comparing the data with state of art, the dataset performed well using BoW

approach and classification. Light weight models on the other hand produced 10% less

65



results than the traditional approach. Adding to that colored dataset, database 3 and

database 4 produced poor results. Database 3 has a very imbalanced dataset as it was

designed for common and uncommon car recognition and so the low accuracy. In case

of database 4, large number of images underfit the models. Therefore, it requires a large

model for improved performance. However, the trade-off would be large memory usage

and high latency. Comparing with existing literature, the Table 5.2, Table 5.3, Table

5.4, and Table 5.5, are results with respect to best performing techniques for accuracy.

In Database 1, the C3 with two-layer CNN trained for 100 iterations performed the

best. However, Feature classification using bag of words approach produced perfect

accuracy, where vehicles with same model were identified accurately. The downfall

however would be that the model is trained on a specific dataset and the classification

conforms to that datasets vehicle types only.

5.3 Blockchain network

The blockchain network was evaluated on different configurations that included

a single channel communication network that mimics a private permissioned blockchain

with all organizations having access to the same ledger. The single channel commu-

nication are measured in graphs per transaction in Figure 4.2, Figure 4.6, Figure 4.5,

and Figure 4.1, show a stark increase in memory usage and CPU for that instance when

the transactions are committed. The query organization and the write organization had

expectedly increased use of resources. The query process took less time. However, the

write process had considerable amount of time due to the validation. Further the lines

indicate an active use of cross channel chaincode in dev.peer0.org5, the common node in

channel 1 and channel2. The maximum memory consumption of any process was less
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5.2. 5.3 BLOCKCHAIN NETWORK 67

Table 5.2. Database1 accuracy comparison

Reference Method Classification accuracy

[37] KNN 96

Nearest Neighbor 78

[36] SIFT + Multiscale Harris 93.78

Lightweight CNN C3 90.6

KP + feature ORB 82.3

Feature + Kmeans All 100

Table 5.3. Database2 accuracy comparison

Reference Method Classification accuracy

[36] SIFT + Multi-scale Hessian 98.96

Lightweight CNN C2 81.8

KP + feature SIFT + BRIEF 87.023

Feature + Kmeans All 100



Table 5.4. Database3 accuracy comparison

Reference Method Classification accuracy

[36] SIFT + DoG 98.87

Lightweight CNN Mobilenet (TL) 55.4

KP, feature SIFT + BRIEF 85.56

Feature + Kmeans All 100

Table 5.5. Database4 accuracy comparison

Reference Method Classification accuracy

[36] SIFT + Multi-scale Harris 49.48

CNN 48.4

Lightweight CNN Mobilenet 38.9

Feature + KNN - -

Feature + Kmeans All 100%

than 140MB and the CPU usage was less than 14%. This indicates that cost of running

a single node in a hyperledger is less in terms of CPU usage and memory consumption

in the long run. However, storage requirement is more than 10GB which may add to the

cost of the infrastructure.

In terms of the multi-channel approach where multi-zones communicate with

each other through the super nodes have higher activity due to cross channel commu-

nication in org5 and org6. Scalability of the network through multi-zone approach

can confirm that it requires high memory usage and CPU resources. There was also
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significant difference in time for a multi-channel and single channel transaction with an

image transfer in base 64 code had a difference of 755 ms. Thus, scalability introduces

the cost of time.

Figure 5.3. Time taken in cross channel data transfer.

Figure 5.4. Read and write through a complete multi-channel setup.
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The time taken with respect to large transactions is illustrate in Figure 29 and

Figure 30. It shows a steep rise in time taken with respect to the number of transactions.

To identify the effect of the presumed bottleneck the cross-channel communication,

represents a similar pattern with respect to multi-zone /multi-channel analysis which

confirms that cross channel data transfer produces an evident bottleneck to the private

permissioned network. The data analyzed, we can confirm that there’s a trade-off in

terms of scalability, privacy and availability detailed in the section below.

5.4 Evaluation of end-to-end framework

The evaluation of the proposed framework was expected to be reliable, accurate

and private. The indicators of each were quantified by accuracy of detection which

supports reliability, the latency of the system that enabled availability in real time.

The privacy was enabled by an accurate region of interest segmentation with key point

extractors. The following is the detail on how each were accomplished.

5.4.1 Reliability of detection.

The reliability of detection was measured based on the accuracy of information

shared and stored on the chain. Accuracy is measured throughout the pipeline, measured

by accuracy of segmentation and detection. The following section will discuss key

findings in terms of reliability.

5.4.1.1 Accuracy of detection

Accuracy of detection was evaluated on three frameworks, traditional approaches,

clustering-based approach and light weight deep learning based approach. Four datasets

were evaluated on these and each displayed varied results indication of the quality of the
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dataset. The following were inferred for the approaches used.

5.4.1.2 Feature matching

Three feature extractors were used, and matching was performed on a query set.

The results indicated that each method performed differently with different dataset. The

advantage of this approach is that the algorithms do not require long processing time

and the images produce acceptable accuracy. As the algorithms need not be trained,

it’s a generalized model and does not require continual learning. For the blockchain

requirement. Keypoint indicators and descriptors are only required to be stored on the

chain and this enables privacy of the information stored. The limitation of this approach

is evident in testing that it requires quality images. To enhance accuracy the region of

interest needs to be identified. However, this adds to the complexity of the end-to-end

framework. The process of feature engineering performed must be based on the dataset

and so cannot generalize easily.

5.4.1.3 Feature Clustering and matching

The BoW approach produced the best results in terms of accuracy. However, it

takes more time and is more complex than feature matching approach. Positive reliability

is confirmed in the perfect accuracy gained for this method.

Exact match is obtained through this process. The time taken for classification is

in ms. However, the classification is based on matching the code book. The code book

is constructed for this approach is based on the current database. Larger the code book

larger the matching time as it must query through all the indexes to find the matching

make.
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5.4.2 Blockchain security

Blockchain is a decentralized network and provides security through pre-built

consensus mechanisms and validation schemes. In this framework, Hyperledger fabric

consists of orderers, endorsers and committer peers to validate a transaction. This setup

enables a secure network where the participant read/write or query transactions. Each

peer in the organizational network is certified by a certificate authority. Encryption

mechanisms, hashing of the content and forming a chained network ensures the im-

mutability. Further, the channel wise ledger access controls access to information for

those outside the channel. This federated, consortium network strengthens the security

of the information stored and thus the reliability of the information retrieved.

However, the limitation comes in the complexity of the model as seen in the

results in the previous chapter, the elaborate security mechanisms may add to the delay

in the network.

5.4.3 Privacy

Privacy is one of the key factors in a reliable and secure framework. To ensure

privacy, the following techniques were evaluated: Their accuracy strengthened their

reliability and availability. First, privacy was ensured through region of interest seg-

mentation, in which the driver’s face was removed and the background was excluded,

so that bystanders or passengers were not included in the identification data shared in

the ledger. With a 99.67 percent mean average precision in recognition, the reliability

of region of interest segmentation ensured privacy.

Secondly, the cropped or segmented regions’ features were extracted at given key-

points using state-of-the-art key point detectors, as well as a bag of relevant features,
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which further improved privacy. The features, rather than the image itself, are stored on

the chain.

The third case is the CNN-based light weight classification, which requires the

image to be stored. However, the image is in base64-encoded format. This process

reduces the privacy score. The CNN-based approach can be further separated, where

the classification layer is separated from the feature extractor layer, ensuring better

privacy.

5.4.3.1 Blockchain

Privacy on the blockchain is established and pre-built due to its secure consen-

sus mechanism as well as the data representation proposed in this framework. Three

solutions for privacy preservation are exercised and evaluated in this framework. The

cropped image was converted to base 64 code and stored on the chain. With the cropped

region only saved, the privacy is preserved.

With the classification-based approaches the make and model of the vehicle are

identified, and metadata stored. This requires just the information to be stored and

not the image itself. This leads to an enhanced privacy scheme but requires further

processing to identify unique indicators such as the location, which further adds to the

complexity. In addition, duplication of the vehicles can cause confusion. License plate

information extracted can improve the re-identification in this case.

Feature sharing is evaluated in this framework as it enables privacy. With features

shared, the information is not directly accessible to ledger holders however, the features

are matched to re-identify or recognize similar models and are thus private. In addition,

the whole feature set is not shared, the significant key points and their features are
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Table 5.6. End to End latency analysis

# Segmentation (ROI) Vehicle re-id Blockchain Total time

1
Mask RCNN + R50 + FPN

(136ms)

Feature matching

(2.67ms)

Single channel (5 org)

(0.4 ms)
139.7

2
Mask RCNN + R 50 + FPN

(136ms)

BoW

Classification

(102.69ms)

Single channel

(5 org)

(0.4 ms)

239.3

3
Mask RCNN + R50 + FPN

(136ms)

Light weight CNN

(1ms)

Single channel

(5 org)

(0.4 ms)

137.4

4
Mask RCNN + R50 + FPN

(136ms)

Feature matching

(2.67ms)

Multi-channel

(5 org - 5 org)

(2.5ms)

141.17

5
Mask RCNN + R50 + FPN

(136ms)

BoW

Matching

(102.69ms)

Multi-channel

(5 org - 5 org)

(2.5ms)

241.19

6
Mask RCNN + R50 + FPN

(136ms)

Light weight CNN

(1ms)

Multi-channel

(5 org - 5 org)

(2.5ms)

139.5

extracted and shared on the blockchain network. Thus, privacy is established in every

step of the framework.

5.4.4 Availability

The availability of the approach is analyzed based on the real time re-identification

capability. The latency is evaluated as follows for each module. The following table

lists the least latency approach and most time-consuming approaches.
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It is evident from Table 5.6 and Figure 5.5, that the configuration that is most

preferable for a real end to end system is the lightweight CNN method through a

single channel network. Apart from Database1, the light-weight CNN has less accuracy

compared to other approaches. The model with higher accuracy is that of BoW approach

but latency is high compared, and thus real time detection may be comparatively delayed

with respect to the CNN approach. Availability of the network thus is measured with real

time usage. Although the lightweight CNN produces faster inference, the classification

is limited to that dataset. And so, the availability for inference on other classes is not

possible or may produce false positive re-identification. Feature matching approaches

provide a generalized inference however, quality of the data is a concern. Likewise,

Bag of features approach produces higher accuracy with feature set of learned class.

However, a new vehicle make cannot be matched or classified as its feature set is not

included in the code book. Thus, a trade off in terms of accuracy and availability is

evident.

Figure 5.5. End to end latency analysis, The legend represents the configurations set in
Table 5.6 for end to end blockchain enabled surveillance.

75



5.4.5 Cost

As hypothesized, the cost increases in terms of resource consumption and mem-

ory usage due to the high information processing rate in a multi-channel setup compared

to a single channel setup confirmed from graphs plotted for resource consumption and

memory. The spike is evident in a cross-channel data transfer evaluation illustrated in

Figure 4.4. It can be established that scaling the network in terms of multi-zone-based

approach has a cost in terms of the memory and CPU usage. However, the setup is

secure and controlled by super-nodes.

This end-to-end framework is comparable to another similar approach that em-

ploys blockchain for anomalous vehicle identification through a cooperative multi-

surveillance system [27]. The car recognition accuracy is 87% and takes 40s for

the blockchain network to commit a transaction to the ledger. Compared to ours, the

reliability is higher as accuracy is higher and the time taken for a single inference is in

ms which is comparatively faster than the state of art. Thus, a new framework is pro-

posed and evaluated for robust image feature representation of detected and segmented

anomalous vehicles enabled through a secure and access controlled blockchain network,

scaling many surveillance zones in shorter time.

5.5 Key findings, limitations, and future works

Within this thesis an accurate and fast model for segmenting the region of interest

for private and reliable detection was identified using instance segmentation which

accomplishes privacy and reliability as well as blockchain network. The accuracy of

the segmentation through classification and detection was presented with comparison

to existing literature on the same dataset. Instance segmentation approach presented
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in one-of-a-kind approach used here which extracts the region of interest accurately.

Existing dataset was annotated and modified for this approach. However, the limitation

to this approach is complex architecture and thus increased inference time. As future

work dataset requires to be expanded as well as light weight segmentation models

evaluated on such as in [62].

Robust feature extraction techniques for the purpose of re-identification through

matching and compare them with light-weight CNN based classification models which

can be deployed on the edge was identified by evaluating three types of methods: BoW

approach, Feature matching approaches and light weight CNN. A clear trade-off between

time taken and accuracy was presented. In addition, the problem of generalization

in machine learning and deep learning methods were a matter of concern solved by

traditional approaches.

The limitation of the approach lies in the dataset used for the purpose of experi-

mentation. The dataset is apt for feature matching approaches however requires increase

in image and/or class quantity for deep learning models. Generalization is difficult for

a small dataset as new vehicles makes, and models are manufactured every year.

A private, permissioned blockchain network for performing a reliable, private,

and secure surveillance system in terms of its scalability and availability is utilized for

surveillance. Two frameworks of blockchain were evaluated for which the surveillance

scenario was modelled where all the nodes of the network or surveillance centers are part

of a single channel that share the same distributed ledger modelling a private network

with no centralized node but no access control. In the second setup a cross channel

communication model where multiple surveillance zones are modelled is evaluated.

This enables cross channel private communication between two channels through super
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nodes enabling access control enhancing privacy. Both the frameworks were evaluated

for latency and resource usage. The access-controlled network produced larger latency

and resource constraints as expected and the bottleneck was at the cross-channel com-

munication side. However, the second setup enhances privacy and improves the network

reliability. The time difference in between two networks is in milliseconds.

Images were stored on the chain. Its latency and cost in terms of energy consump-

tion were measured. The approach to safeguarding privacy, where key-point descriptors

and feature sets were written, queried, and read for re-identification on the blockchain,

was evaluated. Latency and energy consumption in terms of CPU usage and memory

usage were measured for 10,000 transactions, showing an increased bottleneck on the

cross-channel communication side. Using light-weight CNN and a multi-channel net-

work, the end-to-end framework for a faster blockchain network was identified to be 139

ms in total. For a generalized model using feature matching, the latency was found to

be 141.7 ms. Although the highest accuracy was with the BoW approach, the delay was

241 ms. Thus, a trade-off is identified in accuracy with latency, although the difference

between each is significantly low.

The application of this approach is in high security surveillance systems where

confidentiality and availability are required such as vehicle chase, vehicle anomaly

detection and vehicle capture and re-identification. Further this can be used for other

domains such as person re-identification or a general re-identification approach. Future

work will be to create a single step approach rather than a pipeline as performed now.

This would include modifying the existing smart contract. Further, limiting the method

for image query in the blockchain network through further constraints. Hyperledger

Fabric was modelled here due to its private permissioned setup for availability and
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reliability. The setup however was not tested for security which is assumed to be pre-

built feature; there is a necessity to verify this as future work. The following chapter

concludes the thesis with the most significant contributions highlighted.
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CHAPTER 6: CONCLUSION

The key question of this thesis was whether blockchain-based vehicle surveillance

was feasible in terms of privacy, availability, latency, and reliability when inferential

surveillance was performed using computer vision techniques, in this case vehicle re-

identification. A framework was charted based on the literature review, that secured

and privatized the vehicle surveillance system using computer vision techniques and a

private, permissioned blockchain setup through a multi-zone surveillance representation.

This research established a trade-off that was expected in terms of latency and accuracy

for this end-to-end system. For a real-time blockchain-based surveillance system, a

lightweight vehicle re-identification model through different approaches was evaluated to

ensure reliability and privacy in terms of the information stored. In this regard, instance

segmentation was performed by modifying an existing dataset. Vehicle re-identification

through image matching and make classification was evaluated on four databases using

traditional approaches as well as lightweight deep learning approaches. The opportunity

to infer at the edge was evaluated concluding that light-weight approaches can be

accurate. Lastly, an end-to-end system was evaluated in terms of the accuracy of vehicle

surveillance and the overall time taken. The approaches used were comparable to state-

of-the-art with lower latency and higher accuracy, with the least time of 137ms and

the highest accuracy of detection was 100% for the top-1% rank in the BoW approach.

Thus, a multi-vehicle surveillance system is enabled by blockchain with its constraints

in a reliable, private, and secure manner.
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APPENDIX : A

Ablation study of CNN.

Table .1. Ablation study of CNN, layerwise analysis.

# Dataset Image size Ac-
cu-

racy(%)

Loss Infer-
ence

time(ms)

RAM
usage(k)

C1 Database1 140x70 22.9 2.32 4 388.9
C2 Database1 140X70 75.4 3.36 2 768.1
C3 Database1 160x160 90.6 0.43 1 252.0
C4 Database1 160x160 87.2 1.18 1 252.0
C5 Database1 160x160 88.9 0.62 2 252.2
C6 Database1 160x160 88.5 0.85 1 252.0
C7 Database2 128x128 65.1 1.65 15 368.8
C8 Database2 128x128 68.6 1.31 15 368.8
C9 Database2 128x128 61.7 1.45 15 368.8

C10 Database2 128x128 61.7 1.29 1187 193.4
C11 Database2 128x128 66.3 1.19 1187 193.4
C12 Database2 128x128 71.9 0.98 1187 767.5
C3 Database2 128x128 67.4 1.04 1187 767.5

C13 Database2 128x128 72.7 0.97 1187 193.4
C14 Database2 128x128 81.8 0.55 1187 767.5
C4 Database2 128x128 79.7 1.57 1187 193.4
C2 Database2 128x128 77.9 2.20 1187 193.4
C6 Database2 128x128 72.9 1.99 1187 193.4
C6 Database2 160x160 73.8 1.02 1 4

C13 Database2 160x160 77.3 2.28 240 502.0
1 layer Database3 160x160 57.1 1.58 78 386
2 layers Database3 160x160 32.1 4.37 887 1004

Mobilenet Database3 160x160 55.4 3.17 9 733.6
1 Database4 160x160 18.8 5,6 50 502

Mobilenet Database4 160x160 38.9 4.84 5 670.3
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APPENDIX : B

Overall Docker statistic graphs

Figure .1. Docker statistics graphs of a single channel read activity.
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Figure .2. Docker statistics graphs of a single channel write activity.

Figure .3. Docker statistics graphs of a cross channel write activity.
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