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Abstract: In this paper, a compact planar ultrawideband (UWB) antenna and an antenna array
setup for microwave breast imaging are presented. The proposed antenna is constructed with
a slotted semicircular-shaped patch and partial trapezoidal ground. It is compact in dimension:
0.30λ × 0.31λ × 0.011λ, where λ is the wavelength of the lowest operating frequency. For design
purposes, several parameters are assumed and optimized to achieve better performance. The prototype
is applied in the breast imaging scheme over the UWB frequency range 3.10–10.60 GHz. However,
the antenna achieves an operating bandwidth of 8.70 GHz (2.30–11.00 GHz) for the reflection
coefficient under–10 dB with decent impedance matching, 5.80 dBi of maximum gain with steady
radiation pattern. The antenna provides a fidelity factor (FF) of 82% and 81% for face-to-face and
side-by-side setups, respectively, which specifies the directionality and minor variation of the received
pulses. The antenna is fabricated and measured to evaluate the antenna characteristics. A 16-antenna
array-based configuration is considered to measure the backscattering signal of the breast phantom
where one antenna acts as transmitter, and 15 of them receive the scattered signals. The data is taken
in both the configuration of the phantom with and without the tumor inside. Later, the Iteratively
Corrected Delay and Sum (IC–DAS) image reconstructed algorithm was used to identify the tumor
in the breast phantom. Finally, the reconstructed images from the analysis and processing of the
backscattering signal by the algorithm are illustrated to verify the imaging performance.

Keywords: ultrawideband; semicircular-shaped; breast tumor; patch antenna; microwave imaging

1. Introduction

Globally, breast cancer is stated to be a foremost reason for women’s death. Each year, approximately
25% of new cases of breast cancer are identified [1]. Breast cancer begins by owing to the existence
of malignant cells in the breast tissues. Currently, this disease is considered a major women’s health
problem worldwide [2], and a reliable early stage diagnosis is seen as the key aspect in treating it.
If it is possible to detect breast cancer in early stages by using a reliable technique, then the treatment
may attain a survival percentage of up to 97% [3]. The standard technologies in medical imaging
such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and X-ray
mammography are usually used for detecting cancerous breast cells or tumors [4,5]. The main
advantages of CT scanning are (1) particularly suitable for identifying acute and chronic changes to
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the internal structure of the human body, (2) rapid acquisition of images, (3) excellence in diagnosing
diseases of the large vessels [6]. However, the main disadvantages of CT scanning are (1) exposure to
radiation, and (2) performance deprivation [6,7]. The prime benefits of MRI are (1) excellent in diagnosis
of disease of the large vessels, (2) more accurate information about scanning object, and (3) MRI
helps doctors to evaluate different parts of the human body, as well as to detect the presence of a
particular disease (e.g., breast tumor) [8]. However, the disadvantages of this technology are that
(1) it takes a long time for testing, (2) the cost is higher, and (3) the compression of body parts is
uncomfortable, and ionizing radiation poses a high risk [8,9]. The ultrasound technique is better for a
particular domain, and it has no ionizing radiation, but the main disadvantages are that (1) it produces
low-resolution images, (2) image perfection depends on the technicians, and (3) it is hard to identify
the deep-lying tumor [10]. The X-ray mammography technique has some advantages such as (1) it is a
simple technique and cheaper in terms of cost, (2) it produces lower radiation compared to a CT scan,
and (3) it helps to detect alien objects inside the bone. However, the main limitations are (1) it increases
high false-negative rates, (2) low-quality image with low sensitivity, as well as (3) due to short ionizing
radiation, it increases the cancer risk [11]. Finally, a well-known limitation of the X-ray is its associated
pain. It requires compression of the breast, and many women choose to not go in for screening for
this reason. Thus, at present, microwave imaging (MWI) is a promising technique for breast tumor
detection due to non-ionizing radiation upshot, efficient, low profile, low cost, and comfort in respect
to traditional medical identification technologies such as CT scan, MRI or X-ray. Due to the features
of MWI, the researchers are motivated to establish an MWI framework to identify the breast tumor.
The fundamental use of MWI is to distinguish the dielectric properties of tumorous and normal cells in
the breast tissues. With respect to breast tumors, there is a momentous difference between the dielectric
properties of normal breast tissue and a malignant cell (i.e., tumor cell). The malignant breast tumor
dielectric properties are higher than that of the normal breast tissue, which is a significant aspect for
using the microwave as breast imaging for the detection of malignant cells [12].

However, microwave antennas played a prime role in this technology and are able to easily
distinguish the small pulse alterations from the variations of the electrical properties of human tissues.
In this imaging technique, the antenna transmits microwave pulses across the target object. On the
other hand, the receiver receives the scattered pulses in several directions. Owing to having dissimilar
dielectric characteristics of the different tissue, the received scattered pulse delivers significant data
about pulse propagation across the cells. Then, applying different algorithms on received scattered
signals, it is possible for the image of the specific object, such as a breast tumor, to be plotted. However,
the main objective of MWI is to design a trustworthy, low-cost, low-profile imaging system that can
be used for medical diagnosis purposes. At present, in MWI technology, the ultrawideband (UWB)
antenna is used to detect a tumor in the breast because of its extraordinary features such as high
data rate, high resolution, low complexity, low profile, lightweight, good efficiency, and radiation
directivity [13]. The wideband feature provides high-quality resolution images and precise localization
of a target object for imaging [14]. For attaining improved outcomes in the breast imaging platform,
UWB antennas are a suitable candidate [15,16]. Therefore, the design of the appropriate UWB antenna
is a requirement in the breast MWI system. However, a number of ultrawideband antennas have been
designed for ultrawideband applications, such as the planar inverted cone antenna [17], combinations
of the monopole and slot antenna [18], and the volcano smoke antenna [19] for ultrawideband
applications. In addition, several UWB antennas are proposed for MWI; for instance, parasitic
resonator-based UWB antennas [20–22], slotted UWB antennas [23], tunable UWB antennas [24],
sensor-based UWB antennas [13], different types of Vivaldi antennas [4,25–31], directional UWB
antennas [32–35], CPW UWB antennas [36], EBG-based UWB antennas [37,38], polarized-UWB antenna
arrays [39,40], and different types of patch antennas [13,41]. However, a parasitic resonator-based UWB
antenna was proposed for breast imaging in [21]. In this approach, antenna size is 30 × 29 × 1.6 mm3,
but its gain is comparatively low, with low imaging resolution. Different kinds of Vivaldi antennas
were designed in [4,25–31] with comparatively high resolution, but the size is large concerning the
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proposed antenna. A CPW-fed UWB antenna was proposed in [30] for breast imaging, with two
rotating antenna array platforms, but the gain is poor, the scanning image resolution is not high, and the
antenna size is very large. In [37,38], EBG-based UWB antennas were proposed for ultrawideband
applications. Due to the inefficient design of the antenna, the gain was relatively poor, and scanning
image resolution was not satisfactory.

In this paper, a compact planar UWB antenna for breast imaging is presented. Significantly,
a UWB antenna should have the ability to produce more than one resonance in MWI applications [20].
This feature is vital for producing a high-quality image and good penetration in the depth portion of
the object [27]. Besides, the antenna should also have a higher gain, wider bandwidth, high efficiency,
and directional radiation pattern than microstrip patch antennas. Hence, in this article, a new planar
ultrawideband antenna has been introduced and clarified its overall characteristics. The dimension
of the antenna is 0.30λ × 0.31λ × 0.011λ, where λ is the wavelength of the lowest operating
frequency. It attains an operational bandwidth of 2.30 GHz to 11.00 GHz, with a maximum gain of
5.80 dBi and directional radiation. The antenna produces multiple resonance frequencies, directional
radiation, and higher fidelity factor (>80%), which are prerequisites for microwave breast imaging.
The time-domain and frequency-domain features of the antenna have been investigated to evaluate
antenna performance. Sixteen antenna arrays are used and placed vertically and horizontally,
surrounding the imaging arrangement for the breast phantom imaging to detect the tumor inside
the breast. Finally, the simulation environment and the imaging outcomes are demonstrated in the
results section.

2. Design Methodology of the Proposed Antenna

Significantly, a UWB antenna should have the ability to produce more than one resonance in
MWI applications [20]. This feature is vital for producing high-quality images and good penetration
in the depth portion of the object [27]. The antenna should also have higher gain, wider bandwidth,
high efficiency, and a directional radiation pattern. Hence, in this article, a new planar ultrawideband
antenna has been introduced and its overall characteristics are clarified. The geometry and fabricated
prototype of the antenna are depicted in Figures 1 and 2, respectively. The antenna is designed on
the Rogers RT5880 dielectric substrate material. The thickness (Th), relative permittivity (εr), and loss
tangent (δ) of the substrate is 1.575 mm, 2.2 and 0.0009, respectively. The magenta and green colors
in the graphical design are considered copper with 0.035 thickness. The proposed antenna has a
slotted semicircle-shaped radiating patch along with a trapezoidal-shaped ground plane, which is
coupled to a 50 Ω tapered-shaped microstrip-fed line. The tapered-shaped feed line is designed for
impedance matching, and a small semicircle-shaped slot is cut out from the radiating patch to enhance
the radiation directivity. A partial trapezoidal ground plane is attached to the ground for increasing
the entire bandwidth. All design parameters of the prototype are shown in Table 1.
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Table 1. All optimized parameters of the proposed prototype.

Parameters Size (mm) Parameters Size (mm)

Sw 42 l1 17.72
SL 41 l2 30
d1 40 l3 18.38
d2 15 l4 42
Lf 17 h 17
Wf 5

3. Parametric Study of the Proposed Antenna

There are 11 parameters in the antenna design; those are used, and their values are optimized
for attaining the overall operating frequency band. In this work, the preliminary design has been
investigated in both HFSS and CST simulators to assess performance of the antenna. The two simulators
work on two different methods. Therefore, before fabricating the prototype, we checked the results
from both simulators for accuracy of the designed antenna. This matching between both the simulators
guarantees that the fabricated prototype will show expected performance while measuring. The various
modified structures of the antenna are depicted in Figure 3. The length and width of the antenna are
represented by SL and Sw, respectively. The value of the SL and Sw is considered 41 mm and 42 mm,
which is the optimized size for achieving the operating band from 2.26 GHz to 11.00 GHz. A partial
trapezoidal ground is attached to the backplane of the substrate material. The length of the trapezoidal
arms of the ground plane is represented by l1, l2, l3, and l4, and the height of the ground denoted by h.
The considered values are 17.72 mm, 30 mm, 18.38 mm, and 42 mm, and height is 17 mm, respectively,
which is the optimized size for achieving the operating band from 2.26 GHz–11.00 GHz. The dimension
of the main semicircle-shaped radiator is represented by d1. A 15 mm semicircle-shaped slot has been
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cut off from the central location of the patch to increase the radiation directivity. Figure 4a depicts the
reflection coefficient of different modification structures of the prototype. First investigated is that,
in normal patch design, the antenna produces four resonances in the frequency ranges from 2.26 GHz
to 10.00 GHz, but the reflection coefficient curve goes to upward from −10 dB in between the frequency
ranges from 3.00 GHz to 4.00 GHz. So, the operating frequency range is from 2.26 GHz to 3.00 GHz,
which does not cover ultrawideband. Second, in the slotted patch design, the antenna produces three
resonances at 3.00 GHz, 4.50 GHz, and 6.50 GHz under −15 dB in the frequency ranges of 2.30 GHz to
7.00 GHz. The highest resonance pick has produced under −30 dB at 4.50 GHz. However, the operating
frequency range is from 2.30 GHz to 7.00 GHz, and it does not cover an ultrawideband frequency
range. Finally, in the proposed design, the antenna produces three resonances at 3.50 GHz, 5.50 GHz,
and 10.00 GHz under −18 dB in the frequency range from 2.26 to 11.00 GHz. The highest resonance pick
has generated under −40 dB at 10.00 GHz. Therefore, in the proposed design, the antenna’s operating
band is from 2.26 GHz to 11.00 GHz, which covers the ultrawideband frequency. The simulated
maximum gain of different modification structures of the antenna is depicted in Figure 4b. It is seen
that the simulated maximum gain of different structures is 2.50 dBi, 4.50 dBi, and 5.48 dBi, respectively.
The overall assessment of the different structure designs is presented in Table 2. The significant effect
has been observed on the antenna characteristics such as S11 due to the variations of the length l2 and
height h of the trapezoidal ground plane. Further, the effect of the reflection coefficient is depicted in
Figure 5, when l2 and h are varied, while other parameters remain constant. It is examined that, when
length l2 is deceased 2 mm (i.e., l2 = 28 mm) and other parameters remain constant, then the lower
frequency has shifted to 2.23 GHz from 2.26 GHz, and the upper frequency has shifted to 8.00 GHz
from 11.00 GHz, operating frequency band is decreased to 8.00 GHz and generated one resonance
frequency at 3.00 GHz near to–25 dB. Furthermore, when length l2 is increased 2 mm (i.e., l2 = 32 mm)
and other parameters remain constant, the lower frequency shifts to 2.24 GHz from 2.26 GHz, and the
upper frequency shifts to 7.00 GHz from 11.00 GHz with two resonances close to −25 dB. However,
in these two scenarios, the antenna does not cover ultrawideband range. Therefore, it is noticeable
that the proposed length l2 = 30 mm is optimized to get ultrawideband frequency. On the other hand,
when ground plane height h is decreased 1 mm (i.e., h = 16 mm) and other parameters remain constant,
then the antenna’s operating frequency range is from 2.26 GHz to 6.00 GHz with single resonance at
4.00 GHz under −15 dB, which does not cover ultrawideband. In this scenario, the upper frequency has
shifted to 6.00 GHz from 11.00 GHz. In addition, when height h is increased 1 mm (i.e., h = 18 mm) and
other parameters remain constant, then the antenna generated multiple bands with lower reflection.
In this case, the operating frequency range is from 2.26 GHz to 3.00 GHz with single resonance at
2.50 GHz close to −15 dB, which does not cover ultrawideband. In this scenario, the upper frequency
has shifted to 3.00 GHz from 11.00 GHz. So, it is concluded that the proposed ground plane height
h = 17 mm is the optimized value to achieve the operating frequency band from 2.26 GHz to 11.00 GHz.
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Table 2. Different structure designs comparison table.

Different Structure Designs Operating Band (GHz) Bandwidth (GHz) Gain (dBi)

Normal patch design 2.26–3.00 0.74 2.50
Slotted patch design 2.30–7.00 4.70 4.50

Proposed design 2.26–11.00 8.74 5.48
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4. Result and Discussion

In this section, we discuss the obtained performance results of the antenna during measurement
and simulation. The frequency-domain performance and time-domain performance are key factors
in evaluating the antenna’s performance. These performances have been examined and simulated
through the CST and HFSS simulator and measured by using different types of equipment. However,
the measured results of the fabricated prototype are compared with the simulation results to evaluate
the performance. The Agilent N5227 PNA network analyzer is used to measure the S11(reflection
coefficient). It operates within 10 MHz to 67 GHz. The UKM StarLab (Microwave Vision Group, Paris,
French) near field antenna measurement system is used to measure the efficiency, gain and radiation
pattern of the prototype. After that, primary data is collected in near-field and further converted to
far-field by using the SatEnv software (Microwave Vision Group, Paris, France). The measurement setup of
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the PNA network analyzer (Agilent technologies, Inc., Santa Clara, CA, USA; N5227A 10 MHz–67 GHz) is
demonstrated in Figure 6a, and the StarLab measurement setup is shown in Figure 6b.
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4.1. Performance Analysis in the Frequency Domain

To evaluate the antenna performance in the frequency domain, the simulated surface current
distribution, simulated and measured reflection coefficient, gain and radiation pattern characteristics
are illustrated in this section. The circulation of the surface current of the prototype for three different
resonances of 3.50 GHz, 5.50 GHz, and 10.00 GHz is displayed in Figure 7. It is determined that the
highest predominant surface current zone of the prototype is the lowermost edge of the semicircle
radiating patch, around the feeding line, as well as the top and side edges of the trapezoidal ground
plane. It is also seen that at 5.50 GHz and 10.00 GHz frequencies, the moderate current conduction
area is in the top semicircle-shaped slot of the patch. Moreover, there exists a slight number of nulls
on the radiating patch at higher frequency (i.e., at 10.00 GHz) due to the higher-order current mode.
Figure 8a represents the measured and simulated S11(reflection coefficient) of the proposed prototype.
The simulated results were obtained from both CST and HFSS. The proposed structure attained a
−10 dB reflection coefficient of 8.74 GHz (2.26–11.00 GHz) impedance bandwidth. The lower-frequency
bandwidth is sensitively affected due to use of the semicircle-shaped slot in the radiating patch and
trapezoidal ground plane. However, the measured S11 (reflection coefficient) has slightly shifted
toward from 2.26 GHz to 2.30 GHz (i.e., 40 MHz) concerning the simulated result. So, the measured
operating frequency range is from 2.30 GHz to 11.00 GHz (i.e., Bandwidth is 8.70 GHz). From the
measurement outcomes, it is observed that resonance frequencies have produced at 3.60 GHz, 4.90 GHz,
and 8.50 GHz. The slight mismatch between the simulated and measured results may be due to
fabrication and soldering tolerance. Otherwise, the simulated and measured outcomes exhibited
good agreements through the entire bandwidth. Figure 8b presents the measured and simulated gain
curve. The measured maximum gain is achieved as 5.80 dBi at 8.26 GHz. However, the measured and
simulated 2D radiation patterns, together with co-polar and cross-polar of E-plane when phi(ϕ) = 0,
is shown in Figure 9 for three resonances of 3.50 GHz, 5.50 GHz, and 10.00 GHz. It is determined that
the simulation and measured outcomes show good agreement. Moreover, the proposed prototype
illustrates stable directional radiation. It is also determined that at higher frequencies, antenna
radiation shows the omnidirectional characteristics with some side lobes because at upper frequencies,
many nulls may increase in current circulation that produces few side lobes.



Materials 2020, 13, 4918 8 of 16

Materials 2020, 13, x FOR PEER REVIEW 8 of 17 

 

    

(a) (b) (c) (d) 

Figure 7. The surface current distribution at: (a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz and (d) scale 

 
 

(a) (b) 

Figure 8. The measured and simulated: (a) Reflection coefficient (S11) and (b) Maximum gain of the 

prototype. 

   

(a) (b) (c) 

Figure 9. Simulated and measured 2D radiation pattern of E plane (φ = 0) of the proposed antenna at: 

(a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz. 

4.2. Performance Analysis in the Time Domain  

It is noticeable that frequency-domain analysis alone may not ensure the antenna's performance. 

Therefore, for the assessment of the accurateness of the proposed antenna in the MWI system, it is 

essential to investigate the time-domain performance, including the input-output pulse waveform 

and fidelity factor. To investigate input-output pulse characteristics, two types of setups, such as face-

Figure 7. The surface current distribution at: (a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz and (d) scale

Materials 2020, 13, x FOR PEER REVIEW 8 of 17 

 

    

(a) (b) (c) (d) 

Figure 7. The surface current distribution at: (a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz and (d) scale 

 
 

(a) (b) 

Figure 8. The measured and simulated: (a) Reflection coefficient (S11) and (b) Maximum gain of the 

prototype. 

   

(a) (b) (c) 

Figure 9. Simulated and measured 2D radiation pattern of E plane (φ = 0) of the proposed antenna at: 

(a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz. 

4.2. Performance Analysis in the Time Domain  

It is noticeable that frequency-domain analysis alone may not ensure the antenna's performance. 

Therefore, for the assessment of the accurateness of the proposed antenna in the MWI system, it is 

essential to investigate the time-domain performance, including the input-output pulse waveform 

and fidelity factor. To investigate input-output pulse characteristics, two types of setups, such as face-

Figure 8. The measured and simulated: (a) Reflection coefficient (S11) and (b) Maximum gain of
the prototype.

Materials 2020, 13, x FOR PEER REVIEW 8 of 17 

 

    

(a) (b) (c) (d) 

Figure 7. The surface current distribution at: (a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz and (d) scale 

 
 

(a) (b) 

Figure 8. The measured and simulated: (a) Reflection coefficient (S11) and (b) Maximum gain of the 

prototype. 

   

(a) (b) (c) 

Figure 9. Simulated and measured 2D radiation pattern of E plane (φ = 0) of the proposed antenna at: 

(a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz. 

4.2. Performance Analysis in the Time Domain  

It is noticeable that frequency-domain analysis alone may not ensure the antenna's performance. 

Therefore, for the assessment of the accurateness of the proposed antenna in the MWI system, it is 

essential to investigate the time-domain performance, including the input-output pulse waveform 

and fidelity factor. To investigate input-output pulse characteristics, two types of setups, such as face-

Figure 9. Simulated and measured 2D radiation pattern of E plane (ϕ = 0) of the proposed antenna at:
(a) 3.50 GHz; (b) 5.50 GHz; (c) 10.00 GHz.

4.2. Performance Analysis in the Time Domain

It is noticeable that frequency-domain analysis alone may not ensure the antenna’s performance.
Therefore, for the assessment of the accurateness of the proposed antenna in the MWI system, it is
essential to investigate the time-domain performance, including the input-output pulse waveform
and fidelity factor. To investigate input-output pulse characteristics, two types of setups, such as
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face-to-face and side-by-side, are considered to evaluate the time-domain performance of the proposed
prototype. In both cases, the distance of the two antennas is assumed to be 250 mm. Overall, it is
determined that, in both setups, the waveforms are nearly identical for transmitted and received
signals, although it spread slightly.

Consequently, it is decided that, with a slight alteration, the prototype can emit a small pulse.
The normalized magnitude scenario of the face-to-face and side-by-side setups is illustrated in
Figure 10a,b. However, it is seen that, in a face-to-face scenario, the received pulses are nearly
equal to the transmitted pulses in respect to the side-by-side setup, for the highly directive radiation.
So, this setup is used in the breast imaging system. Another parameter of the antenna fidelity factor
(FF) is expressed by the following formula [42]:

FF = max

+∞∫
−∞

T(t)R(t− τ)dt√
+∞∫
−∞

∣∣∣T(t)2
∣∣∣dt

+∞∫
−∞

∣∣∣R(t)2
∣∣∣dt

(1)
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Here, T(t) and R(t) denote the transmitted and received pulses, respectively. The FF is calculated by
the MATLAB programming language, and the values are 82% and 81% for face-to-face and side-by-side
setups, correspondingly. These values indicate that the proposed system has minor alteration of the
pulse while transmitting UWB impulse signals.

5. Imaging Setup and Result Discussion

In this section, the imaging setup and imaging results are investigated. The performance is
investigated based on different parameters together with analyzing the backscattering signal, far-field
directivity, near field directivity (NFD), and S-parameters. The proposed imaging setup is presented in
Figure 11a,c. To investigate the 16-antenna array performance, a breast phantom is used for identifying
breast tumors. A 16-antenna array consists of 16 proposed antennas, which are placed horizontally
and vertically around the breast phantom. In the 16-antenna array imaging scenario, an eight-antenna
array is positioned horizontally, and the other eight-antenna array is positioned vertically, neighboring
the breast phantom with the same distance from each other. In this scanning procedure, a single
antenna acts as a transmitter, which is transmitting microwave pulses, and the remaining 15 antennas
act as receivers, which are receiving the backscattered signal. The procedure is repetitive for every
16 antennas acting as a transmitter.
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The heterogeneous phantom has three layers: the skin layer, the fat layer, and the tumor.
The phantom properties are selected based on the normal human breast tissue obtained from reduction
surgeries [43]. Reference values are obtained from the literature [43,44]. However, the considered
relative permittivity, conductivity, and width of the skin layer are 39, 1.5 S/m, and 2.50 mm, respectively.
The radius of the breast phantom is 45 mm. The fat layer has the relative permittivity and conductivity
of 15 and 0.14 S/m, respectively. In this breast scanning, the tumor tissue radius is 2.50 mm with a
relative permittivity of 57 and 5 S/m of conductivity, and it has been placed at 25 mm depth inside the
phantom. The dielectric properties of the breast tissues with tumor are presented in Table 3. The stated
properties of different tissue layers are in a single frequency of 3.00 GHz. The skin, fat, and tumor
relative permittivity versus frequency is presented in Figure 11d. The total of 16 × 15 = 240 scanned
location has been assessed for a whole scanning. The microwave signals are propagated through the
breast phantom. Figure 12a demonstrated the far-field directivity of the antenna. It is observed that
the radiation is propagating, covering the whole phantom.
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(b) Right side view of 16-antenna array imaging setup; (c) Top view of 16-antenna array imaging setup;
(d) The relative permittivity of different tissue layers of the phantom.

Table 3. The dielectric properties of the human breast tissues with tumor at 3.00 GHz frequency.

Name of the Tissues Relative Permittivity ( εr) Conductivity ( σ)

Skin 39 1.5
Fat 15 0.14

Tumor 57 5
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The NFD is the ratio of emitted power by the transmitting antenna, and the emitted power
received over the surface, which can be expressed by the following formula [45]:

NFD =
P f

PT
(2)

where Pf denotes the power emitted inside the phantom, and PT denotes the emitted power over the
surface of the phantom. Figure 12b demonstrates the NFD of the antenna with the proposed imaging
setup with a tumor. It is found that NFD intended for the offered imaging setup is approximately
56% when antenna setup is as face orientation. Besides, it also observed that NFD is about 49% when
antenna setup is as side orientation. This means that for the proposed imaging setup, about 56% power
is emitted through the breast tissue. Figure 13 represents the S-parameters (S1,1 to S16,1) response of
the healthy breast (i.e., without tumor) and unhealthy breast (i.e., with a tumor) when antenna one
is excited and the remaining 15 antennas are receiving the scattered signals. S-parameters means
scattering parameters of the antenna. The digit associated with S represents the antenna number
(i.e., 1 means antenna no. 1, 2 means antenna no. 2, 3 means antenna no. 3, . . . 16 means antenna
no. 16, and so on). However, S2,1 represents backscattering signals from antenna 1; received by
antenna 2, S3,1 represents backscattering signals from antenna 1; received by antenna 3, S12,1 represents
backscattering signals from antenna 1; received by antenna 12, and so on.
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The reflection response of the transmitter antenna is comparatively unchanged in the imaging
setup. There is a significant distortion of the backscattering signal of the two graphs in Figure 13a,b.
Due to the absence of the tumor, the highest peak resonance frequency is recorded about −62 dB.
In contrast, in the presence of the tumor, the peak resonance is approximately −82 dB in the operating
frequency band. The scattered signals are different due to the higher dielectric properties of the tumor
compared to the normal breast tissues. Thus, this indicates that the antenna array system setup with the
proposed antenna can be a suitable candidate for breast imaging to identify the tumor by investigating
backscattering signals proficiently. Then, the backscattered signal data are collected from the imaging
setup and analyzed, processed by using the IC-DAS image reconstruction algorithm [1] using the
MATLAB platform. After processing the data by the algorithm, the target imaging result is illustrated in
Figure 14. The reconstructed images of the breast phantom without tumor are presented in Figure 14a
and the phantom with the tumor is presented in Figure 14b. It is examined that the target tumor has
been visibly detected with a red color. However, it is noticeable that our proposed system can be a
decent candidate for microwave breast imaging to identify the tumor by examining the backscattering
signals proficiently. A comparative study of the stated antennas with the proposed antenna is listed
in Table 4. However, the comparison parameters are antenna type, dimension, operating frequency
range, fractional bandwidth (FBW), gain, scanning position, application, etc. Lastly, the proposed
antenna is better than other reported antennas in terms of wider bandwidth, higher FBW, and stable
gain with respect to dimension. The proposed system has a 16-antenna elements array, which covers
16 × 15 scanned points that help to get substantial imaging data points and produces high-resolution
imaging compared to other systems reported in the literature.
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Figure 14. Reconstructed Images of the breast phantom: (a) Phantom without tumor; (b) Phantom
with tumor.
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Table 4. Performance comparison outcomes among the reported antennas and the proposed antenna.

Ref. No Antenna Type Dimension 1(λ3)
Operating
Frequency

(GHz)
FBW (%) Gain (dBi) Elements /Positions Frequency/Time

Domain
Phantom and
Tumor Object Applications

[17] Planar inverted cone
antenna 0.26 × 0.27 × 0.002 1.00–10.00 163.63 8.00 Not available Frequency

domain Not available Ultrawide-band

[18] Combinat-ions of
Monopole antenna 0.78 × 0.78 × 0.005 3.10–10.60 109.48 10.00 Not available Time domain Not available Ultrawide-band

[19] Volcano smoke
antenna Not available 2.00–15.00 152.94 Not reported Not available Frequency

domain Not available Ultrawide-band

[1] Side slotted Vivaldi
antenna 0.47 × 0.39 × 0.015 2.80–7.00 85.71 6.50 9 element antennas array,

8 × 50 scanned position
Frequency and
Time domain

Heteroge-nous
phantom and 2
tumors object

Microwave breast
imaging

[4] CPW feed EBG
structure antenna 0.78 × 0.45 × 0.016 3.10–7.60 84.11 9.50 2 element antennas array,

2 × 120 scanned position
Frequency

domain
Commercial phantom
and one tumor object

Microwave breast
imaging

[13] Rectangular slotted
patch antenna 0.25 × 0.27 × 0.018 3.49–12.00 109.87 5.76 7 element antennas array

scanning
Frequency

domain
Simulated phantom

and one tumor object
Microwave breast

imaging

[14] Antipodal Vivaldi
antenna 0.40 × 0.40 × 0.016 2.50–8.00 104.76 7.20 9 element antennas array,

50 × 8 scanned position
Frequency

domain

Laboratory based
phantom and 2 tumor

objects

Microwave breast
imaging

[16] Slotted planar patch
antenna 0.51 × 0.61 × 0.018 3.50–15.00 124.32 5.50 4 × 4 single element Frequency

domain
Simulated phantom

and one tumor object
Microwave breast

imaging

[27] Slotted antipodal
Vivaldi antenna 0.33 × 0.33 × 0.013 3.01–11.00 125.92 7.20 2 element antennas array,

2 × 50 scanned position Time domain Simulated phantom,
one tumor object

Microwave breast
imaging

[30] antipodal Vivaldi
antenna 0.33 × 0.33 × 0.013 2.50–11.00 125.92 7.20

16 element antennas
array,

16 × 15 scanned position

Frequency
domain and
time domain

Simulated phantom,
one tumor object

Microwave breast
imaging

[32] Side slotted Vivaldi
antenna 0.45 × 0.38 × 0.008 1.54–7.00 127.86 8.50 2 element antennas array

scanning
Frequency

domain
Commercial phantom
and one tumor object

Microwave breast
imaging

[34] CPW feed monopole
antenna 0.53 × 0.5 × 0.01 2.00–4.00 66.67 5.20 16 elements array, 16 × 15

scanned position Time domain Simulated phantom,
one tumor object

Microwave breast
imaging

[40]
Tapered and

transmiss-ion loaded
antenna

0.33 × 0.27 × 0.016 2.00–8.00 120.00 4.89
16 element antennas

array, 16 × 15 scanned
position

Time domain
Lab based phantom

and single tumor
object

Microwave breast
imaging

Pro-
posed

Semi-circle shaped
planar antenna 0.30 × 0.31 × 0.011 2.30–11.00 130.82 5.80

16 element antennas
array, 16 × 15 scanned

position

Frequency and
time domain

Simulated phantom,
one tumor object

Microwave breast
imaging

1 λ is the wavelength of the lowest operating frequency.
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6. Conclusions

In this article, a compact planar UWB antenna is designed, fabricated, and inspected for breast tumor
imaging to detect tumors in the breast. The antenna is compact in dimension: 0.30λ× 0.31λ× 0.011λ, where
λ is the wavelength of the lowest operating frequency, and it has attained an operating bandwidth of
8.70 GHz (2.30–11.00 GHz, 130.82% fractional bandwidth) with a maximum of 5.80 dBi gain, as well as
stable radiation characteristics. The simulated and experimental outcomes are evaluated to validate
the performance of a single antenna with UWB features. The antenna demonstrates outstanding
performance in frequency-domain and time-domain performance for the face-to-face setup with a
higher fidelity factor and shows good near-field directivity (NFD). A breast imaging platform with
16 antennas is designed. A breast phantom with a tumor is investigated, analyzed, and processed by
using the IC-DAS algorithm for evaluating the imaging performance, and tumor is detected. Finally,
it is observed that the proposed antenna is a good candidate for initial breast tumor identification
through microwave imaging.
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