
Research Article
Constraint Violations in Stochastically Generated Data:
Detection and Correction Strategies

Adam Fadlalla1 and Toshinori Munakata2

1 Department of Accounting and Information Systems, Qatar University, P.O. Box 2713, Doha, Qatar
2 Department of Computer and Information Science, Cleveland State University, Cleveland, OH 44114, USA

Correspondence should be addressed to Toshinori Munakata; t.munakata@csuohio.edu

Received 9 August 2013; Accepted 19 October 2013; Published 4 February 2014

Academic Editors: P. Bala and Y.-P. Huang

Copyright © 2014 A. Fadlalla and T. Munakata.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider the generation of stochastic data under constraints where the constraints can be expressed in terms of different
parameter sets. Obviously, the constraints and the generated data must remain the same over each parameter set. Otherwise,
the parameters and/or the generated data would be inconsistent. We consider how to avoid or detect and then correct such
inconsistencies under three proposed classifications: (1) data versus characteristic parameters, (2) macro- versus microconstraint
scopes, and (3) intra- versus intervariable relationships. We propose several strategies and a heuristic for generating consistent
stochastic data. Experimental results show that these strategies and heuristic generate more consistent data than the traditional
discard-and-replace methods. Since generating stochastic data under constraints is a very common practice in many areas, the
proposed strategies may have wide-ranging applicability.

1. Introduction

The use of stochastically (randomly) generated data is very
common in various domains and for various reasons includ-
ing:

(i) the Monte Carlo method where events (samples and
data) are simulated by random numbers,

(ii) verification of complex analytical solutions,
(iii) assessment of heuristic methods through randomly

generated test data,
(iv) the so-called guided random search techniques, such

as genetic algorithms and neural networks [1], which
are particularly suited for search and optimization
problems.

In these applications, certain probability distributions are
assumed when generating random data.The distribution can
be static or dynamic, depending on whether its associated
parameters are fixed or are changing over time. Usually the
generated data has to satisfy constraints in addition to the
probability distribution constraints. All these constraints can

be formulated in terms of different parameter sets. Each
parameter set formulation must equivalently represent the
same constraints.

We consider a problem where 𝑛 events are randomly
generated and each event is represented by 𝑘 variables,
𝑥
1
, . . . , 𝑥

𝑘
. For a simple queuing problem, 𝑛 can represent the

number of units to arrive at a service station, and 𝑥
1
and 𝑥

2

are service time and arrival time for each unit, respectively.
Generally, the 𝑛 samples can be represented by a 𝑘 × 𝑛 matrix
as follows: 𝑋 = [𝑥

𝑖𝑗
], 𝑖 = 1, 𝑘, 𝑗 = 1, 𝑛, where 𝑥

𝑖𝑗
represents

the value of variable 𝑥
𝑖
for the 𝑗th sample. We note that the

𝑖th row of matrix 𝑋 represents 𝑛 samples of variable 𝑥
𝑖
and

the 𝑗th column represents the values of 𝑘 variables, 𝑥
1
, . . . , 𝑥

𝑘

for the 𝑗th sample. In this paper each 𝑥
𝑖𝑗
is assumed as a

scalar, for example, a real number between 0 and 1, or an
integer in a certain range, say, between 0 and 10, depending on
problem specifics. We generate 𝑥

𝑖𝑗
randomly under a certain

probability distribution and certain constraints. When we
extend the assumption of each 𝑥

𝑖𝑗
being a scalar, for example,

to a vector, we would consider a scalar element of the vector.
Let the set of constraints to be imposed on 𝑋 be 𝐶(𝑋). A

constraint can be intravariable, meaning that it is imposed on

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 370656, 11 pages
http://dx.doi.org/10.1155/2014/370656

2 The Scientific World Journal

a single variable. For example, there may be lower and upper
bounds for each variable 𝑥

𝑖
as 𝑥
𝑖𝐿

≤ 𝑥
𝑖

≤ 𝑥
𝑖𝑈

, 𝑖 = 1, 𝑘.
The set of such constraints for all 𝑥

𝑖
, 𝑖 = 1, 𝑘, would then

represent a “hyperbox” in a 𝑘-dimensional space for 𝑥
𝑖
, 𝑖 =

1, 𝑘. A constraint can be intervariable, meaning it is imposed
between multiple variables; for example, for specific values of
𝑖 and 𝑖

󸀠, 𝑥
𝑖𝑗

≥ 𝑥
𝑖
󸀠
𝑗
, 𝑗 = 1, 𝑛. In a 𝑘-dimensional space for

𝑥
𝑖
, 𝑖 = 1, 𝑘, this constraint indicates that all sample points

must be in one side of the hyperplane of𝑥
𝑖𝑗

= 𝑥
𝑖
󸀠
𝑗
, 𝑗 = 1, 𝑛. All

the above-mentioned constraints can be elements of 𝐶(𝑋),
and they represent an ultimate set of constraints, such that
every constraint in 𝐶(𝑋) must be satisfied, and conversely, if
every constraint in 𝐶(𝑋) is satisfied, the generated random
data is 𝐶(𝑋) valid.

Let 𝑆
1

= (𝜋
11

, . . . , 𝜋
1𝜇

) and 𝑆
2

= (𝜋
21

, . . . , 𝜋
2]) be two

sets of parameters associated with a problem. Let the sets of
constraints to be imposed on 𝑆

1
and 𝑆

2
be 𝐶(𝑆

1
) and 𝐶(𝑆

2
),

respectively. Obviously the constraints 𝐶(𝑋), 𝐶(𝑆
1
), and

𝐶(𝑆
2
), or 𝑛 data samples generated under these constraints,

must be consistent with each other. For example, if 𝐶(𝑋)

says all variables must be nonnegative and some of randomly
generated variables under 𝐶(𝑆

2
) are negative, 𝐶(𝑋) and 𝐶(𝑆

2
)

are not consistent and the resulting data is not 𝐶(𝑋) valid.
We can consider multidimensional spaces defined on 𝑋,

𝑆
1
, and 𝑆

2
. For 𝑋, it is a 𝑘-dimensional space corresponding

to 𝑘 variables, 𝑥
1
, . . . , 𝑥

𝑘
. For 𝑆

1
and 𝑆

2
, they are 𝜇- and

]-dimensional spaces, respectively, corresponding to the
number of parameters. The set of constraints for each space
will specify a certain region (domain) within the space. For
example, for 𝑋, 𝐶(𝑋) will specify a certain domain in the
𝑘-dimensional space. Randomly generated 𝑛 events for a
specific run will be represented as scattered points within
the domain. For 𝑆

1
and 𝑆

2
, 𝐶(𝑆
1
) and 𝐶(𝑆

2
), respectively,

will specify their domains. For example, for 𝑆
1
, parameters

𝜋
11

, . . . , 𝜋
1𝜇
must be confined within the domain that satisfies

𝐶(𝑆
1
).
The major contributions of this article are to

(1) point out some potential inconsistencies of random
data generation,

(2) discuss methods of detecting such inconsistencies,

(3) propose techniques of avoiding or correcting such
inconsistencies.

We illustrate these concepts on three widely researched
problems: a queuing problem, fluid dynamics, and the total
tardiness problem. The total tardiness problem is an NP-
hard job scheduling problem [2] that “continues to attract
significant research interest from both a theoretical and a
practical perspective” [3].

We characterize two types of parameters called data
and characteristic parameters for easy reference. The former
are often naturally derived parameters directly associated
with the random data. The latter are additional parameters
introduced to better represent the characteristics of the
problem overall, such as the difficulty of the problem. These
parameter sets can be corresponded to 𝑆

1
and 𝑆

2
described

earlier.

Section 2 considers simple examples to show how con-
straint violations may occur among different parameter sets.
In Sections 3 and 4, details of the total tardiness problem are
discussed in the form of a case study. In particular, Section 3
reviews the total tardiness problem and Section 4 discusses
various types of constraints and how their violations can
occur. Sections 5–8 discuss various correction algorithms
for different types of constraint violations. Section 9 presents
results of a numerical experiment. Section 10 provides gen-
eral guidelines for generating stochastic data under con-
straints and recommends possible further studies. The basic
concepts discussed in the problems are applicable to any other
problems that employ random data involving parameter sets
and constraints.

2. Simple Illustrations of Multiple
Parameter Sets

We consider two relevant examples in this section—a simple
queuing problem [4] and fluid dynamics [5].

2.1. Queuing Problem. Customers arrive stochastically at a
service station of 𝑚 servers at rate 𝜆 and are served at rate
𝜇 for each server (𝑚𝜇 represents the service rate at the entire
station). These parameters 𝑚, 𝜆, and 𝜇 can be considered as
data parameters since they are directly associated with the
randomly generated data. In addition, the traffic intensity
𝜌 = 𝜆/(𝑚𝜇) is the steady-state fraction of the time in which
the server is busy, and characterizes the difficulty of the
problem—the higher the 𝜌 value, the harder the problem.
Thus, the parameter 𝜌 can be considered as a characteristic
parameter, since it is derived indirectly from data parameters
and it is for the purpose of characterizing the problem as a
whole.

When constraints are imposed on different parameter
sets, constraints on one parameter set must be consistent
with constraints on the other parameter set so that randomly
generated data are consistent under both parameter sets.
Common constraints on 𝜌 are 0 ≤ 𝜌 ≤ 1; the first
nonnegative condition must hold since all the parameters
involved are nonnegative. The second condition is assumed
since the queue grows infinitely otherwise. One can perform
simulation of the queuing problem selecting various values of
𝑚, 𝜆, and 𝜇, under certain types of probability distributions
(e.g., Poisson and exponential) for arrivals and services.
Suppose that we arbitrarily set the ranges of𝑚, 𝜆, and 𝜇 as, for
example, 𝑚 = [1, 𝑚max], 𝜆 = [0, 𝜆max], and 𝜇 = [0, 𝜇max], and
consider all discrete combinations of (𝑚, 𝜆, 𝜇) in these ranges.
Obviously some (𝑚, 𝜆, 𝜇) triplets can violate the 0 ≤ 𝜌 ≤ 1

constraints (e.g., triplets with 𝑚 = 1, 𝜆 > 𝜇 are violations).
Such constraint violations may be trivial in the above

queuing example since the number of parameters is small,
and the associated constraints are straightforward. When the
number of parameters becomes larger and the associated con-
straints are more complex or dynamic, however, violations
may not be so obvious.

The Scientific World Journal 3

2.2. Fluid Dynamics. Many fluid dynamics phenomena are
highly nonlinear and present challenging problems both
theoretically and experimentally. For example, in the year
2000 a US based mathematical society announced the seven
“Millennium Prize Problems.” These are considered some of
the world’s hardest unsolved problems and a $1 million prize
is posted for each question. One problem is in fluid dynamics
and is concerned with the Navier-Stokes equation.

Since solving the whole Navier-Stokes equation is very
difficult, usually researchers consider special cases under
certain assumptions or simplifications. For this purpose, a
characteristic parameter called the Reynolds number, 𝑅, is
commonly employed:

𝑅 =

𝑑V𝐿

𝜂

, (1)

where 𝑑 is the density, V the velocity, 𝐿 a characteristic
length scale, and 𝜂 the viscosity. 𝑅 characterizes the flow’s
likelihood of being turbulent or laminar; the higher the 𝑅 is,
the more likely there is to be turbulence. Suppose one wants
to study a hard fluid dynamics problem that involves random
noise. One would numerically experiment with the flow by
generating random data for the noise and by considering
various values of 𝑅 and the data parameters of the right-hand
side.

This is similar to the scenario discussed in the queuing
problem. For example, suppose we consider only discrete val-
ues of the parameters. Similar to the queuing problem, upper
and lower bounds can be set for each parameter. Constraints
on 𝑅, 𝑅min ≤ 𝑅 ≤ 𝑅max may indicate the study is to be
performed only for nonturbulent, laminar flows or certain
types of turbulent flows. If we consider all combinations of
𝑑, V, 𝐿, and 𝜂, some parameter value combinations may not
be consistent with the constraints for 𝑅 and the resulting
data may be flawed. The types of characteristic and data
parameters discussed in this section are common in many
disciplines; hence we should be cautious when random data
generation is considered.

3. The Total Tardiness Problem: A Case Study

We briefly describe the static total tardiness problem; that
is, parameter values do not change dynamically. At time
𝑡 = 0, 𝑛 jobs wait for processing. For the simplest, single
machine model, each job is processed by the single machine
one at a time. For each problem instance, the 𝑛 jobs have
processing times 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
and due dates 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
,

respectively. The objective of the total tardiness problem is
to determine the order of jobs to be processed to minimize
the total tardiness, that is, the total number of days past due
dates of tardy jobs (jobs whose completion times exceed their
due dates). (Note that although “days” are used here, any
other time units such as hours and minutes can be employed
depending on a specific application.)

We use the following notations: subscripts: 𝑠: “preset”
or assigned, 𝑒: “expected,” 𝑎: “actual,” 𝐿: lower bound, 𝑈:
upper bound; parameters: 𝑛: number of jobs in each problem
instance; (note: in job scheduling research including tardiness

it is customary to call “a problem instance” simply “a problem”
and we follow this practice hereafter. A problem is specific
values of 𝑛 jobs with associated values of 𝑝

𝑖
s and 𝑑

𝑖
s)

𝑝: processing time: processing time for each job is
denoted by 𝑝

𝑖
, 1 ≤ 𝑖 ≤ 𝑛;

𝑝
𝐿
, 𝑝
𝑈
: pre-set lower and upper bounds of processing

time;
𝑝: average processing time: in most research works, a
uniform distribution between 𝑝

𝐿
and 𝑝

𝑈
is assumed

for processing time 𝑝
𝑖
; in this case, the pre-set average

processing time 𝑝
𝑠
is (𝑝
𝐿

+ 𝑝
𝑈

)/2; this value may
or may not be the same as the expected average
processing time 𝑝

𝑒
for a specific random data gen-

eration method and is typically different from the
actual average processing time 𝑝

𝑎
for a specific run

for a specific random data generation method; the
“expected average” of any variable 𝑥

𝑖
, 1 ≤ 𝑖 ≤ 𝑛, is

computed by ∑
𝑛

𝑖=1
𝑃
𝑖
𝑥
𝑖
, where 𝑃

𝑖
is the probability of

𝑥
𝑖
.

𝑑: due date: due date for each job is denoted by 𝑑
𝑖
,

1 ≤ 𝑖 ≤ 𝑛; other notations for processing time,
such as lower and upper bounds, and average for pre-
set, expected and actual, also apply for due date; in
particular, a uniform distribution between 𝑑

𝐿
and 𝑑

𝑈

is commonly assumed for due date 𝑑
𝑖
; in this case, the

pre-set average due date 𝑑
𝑠
is (𝑑
𝐿

+ 𝑑
𝑈

)/2.

Two common parameters, 𝜏 and 𝛿, called the tardi-
ness factor and relative range of due dates, respectively, are
employed to characterize a specific tardiness problem. Their
definitions and meanings are as follows:

𝜏 =1 −

𝑑
𝑠

(𝑛 ⋅ 𝑝
𝑠
)

= 1 −

(𝑑
𝐿

+ 𝑑
𝑈

)

(2𝑛 ⋅ 𝑝
𝑠
)

,

0 ≤ 𝜏 ≤ 1,

(2)

𝛿 =

(𝑑
𝑈

− 𝑑
𝐿
)

(𝑛 ⋅ 𝑝
𝑠
)

, 0 ≤ 𝛿 ≤ 1. (3)

The tardiness factor 𝜏 represents the average ratio of the
number of jobs that do not finish on time over the total
number of jobs.The relative range of due dates, 𝛿, is ameasure
for the due date span (𝑑

𝑈
− 𝑑
𝐿
) over the total processing time

(𝑛 ⋅ 𝑝
𝑠
). In practice, 𝜏 and 𝛿 may be pre-set to specific values

(e.g., 𝜏 = 0.8 and 𝛿 = 0.2) first, and then 𝑑
𝑈
and 𝑑

𝐿
may

be subsequently determined. This can be achieved by solving
the above two equations for 𝑑

𝐿
and 𝑑

𝑈
in terms of 𝜏 and 𝛿 as

follows:

𝑑
𝐿

=

(𝑛 ⋅ 𝑝
𝑠
) {2 (1 − 𝜏) − 𝛿}

2

, (4)

𝑑
𝑈

=

(𝑛 ⋅ 𝑝
𝑠
) {2 (1 − 𝜏) − 𝛿}

2

. (5)

Note that 𝑑
𝐿
and 𝑑

𝑈
differ only for the sign of 𝛿.

In the total tardiness problem, 𝑑
𝐿
and 𝑑

𝑈
are data param-

eters, while 𝜏 and 𝛿 are characteristic parameters [6]. It is

4 The Scientific World Journal

common that stochastic data is generated under constraints
that are expressed in terms of different parameter sets. In the
illustration here, {𝑑

𝐿
, 𝑑
𝑈

} is the set of data parameters, and
{𝜏, 𝛿} is the set of characteristic parameters. Each parameter
set (e.g., {𝜏, 𝛿}) should satisfy the same constraints imposed
by the other parameter set (e.g., {𝑑

𝐿
, 𝑑
𝑈

}); otherwise, the
constraints are violated, resulting in inappropriate data.

Extensive research on solution methods for the tardiness
problem has been undertaken. One category of these meth-
ods is heuristic approaches which include [7–14].

4. Common Data Generation Method for
the Total Tardiness Problem

Previous works [12–18] studied the performance of their
heuristic algorithms by randomly generating test data. Typ-
ically, the test data were generated as follows.

For each job 𝑖, 1 ≤ 𝑖 ≤ 𝑛, an integer processing time
𝑝
𝑖
is generated from the uniform distribution (𝑝

𝐿
, 𝑝
𝑈

); for
example, 𝑝

𝐿
= 1, 𝑝

𝑈
= 100. Then 𝑛 ⋅ 𝑝

𝑎
= ∑
𝑛

𝑖=1
𝑝
𝑖

is computed, and the 𝜏 and 𝛿 values are selected from the
{0.2, 0.4, 0.6, 0.8, 1.0} set.That is, there will be 5 × 5 = 25 pairs
of (𝜏, 𝛿) as (0.2, 0.2), (0.2, 0.4), . . . , (1.0, 1.0). Then for each
job 𝑖, an integer due date 𝑑

𝑖
is generated from the uniform

distribution [𝑑
𝐿
, 𝑑
𝑈

], where 𝑑
𝐿

= (𝑛 ⋅ 𝑝
𝑎
){2(1 − 𝜏) − 𝛿}/2 and

𝑑
𝑈

= (𝑛 ⋅ 𝑝
𝑎
){2(1 − 𝜏) + 𝛿}/2. Five problems are generated for

each pair of 𝜏 and 𝛿 values, yielding a total of 5 × 25 = 125

problems.
There are two obvious data constraints in the total

tardiness problem.

(1) Nonnegative due date.Thedue date for every jobmust
be non-negative; that is, 𝑑

𝑖
≥ 0, for 1 ≤ 𝑖 ≤ 𝑛.

(2) Due date ≥ processing time for every job. It is
reasonable to assume that, no one will accept a job
that takes more time to process than its due date. We
would be penalized even if we start such a job first.
That is, 𝑑

𝑖
≥ 𝑝
𝑖
must hold for 1 ≤ 𝑖 ≤ 𝑛.

We note that the first constraint is imposed on individual
variable 𝑑

𝑖
; hence we call it intravariable constraint. The

second constraint is between two variables (𝑑
𝑖
, 𝑝
𝑖
); hence

we call it intervariable constraint. As discussed later, inter-
variable constraints are typically harder to deal with than
intra-variable constraints. We also note that data param-
eters {𝑑

𝐿
, 𝑑
𝑈

} and characteristic parameters {𝜏, 𝛿} provide
macro- (i.e., problem-level) characterization of the problem.
On the other hand, the intra- and intervariable constraints
(𝑑
𝑖

≥ 0 and 𝑑
𝑖

≥ 𝑝, resp.) provide micro- (i.e., job-
level) characterization of the problem. These basic concepts
of intra- versus inter-variable constraints and macro- versus
microparameters help to better define the nature of the
problem.

The above data generation procedure will yield violations
of both intra- and intervariable constraints [19], depending
on the values of 𝜏, 𝛿, 𝑛, 𝑝

𝐿
, and 𝑝

𝑈
. Why this procedure yields

violations can be best understood by examining Figures 1
and 2. Figure 1 explains why some of the 25 pairs of (𝜏, 𝛿)

described above lead to intravariable constraint violations

(negative due dates). The basic reason is that these (𝜏, 𝛿)

combinations (in the shaded area of the triangular sub-
domain BCD in Figure 1(a)) correspond to negative 𝑑

𝐿

values (in the shaded area of the triangular sub-domain
B󸀠C󸀠D󸀠 in Figure 1(b)). The negative 𝑑

𝐿
values lead to some

of the randomly generated 𝑑
𝑖
values becoming negative.

Figure 2 illustrates a situation where inter-variable constraint
violations occur.

Whenwe compare the shaded/dotted areas of Figures 1(a)
and 1(b), we see that there is one-to-one correspondence
between every point in Figure 1(a) and every point in
Figure 1(b). For example, this is true for the trapezoid ABDE
in Figure 1(a) and the trapezoid A󸀠B󸀠D󸀠E󸀠 in Figure 1(b).
When two domains (e.g., ABDE and A󸀠B󸀠D󸀠E󸀠) in two dif-
ferent parameter spaces have this one-to-one correspondence
property, we say the two domains are constraint isomorphic
(or simply isomorphic). When two domains are isomorphic
and constraint violations are identified in one domain, this
will help to easily determine constraint violations in the other
domain [6]. Similar constraint violation problems are also
considered in [20, 21]. We consider correction algorithms for
intravariable constraint violations in Section 5 and correction
algorithms for intervariable constraint violations in the suc-
ceeding sections.

5. Correction Algorithms for Intravariable
Constraint Violations

We consider various algorithms to avoid or correct intravari-
able constraint violations.

Safe-Zone Algorithm. Use only (𝜏, 𝛿) combinations that yield
no violations, that is, those in the trapezoid ABDE in
Figure 1(a). This is the simplest and easiest approach. When
we adopt this algorithm, out of the 25 pairs of (𝜏, 𝛿) that were
used in the previous work cited earlier, nine combinations
would not be considered as they will lead to intravariable
constraint violations. These are (𝜏, 𝛿) = (0.6, 1.0), (0.8, 0.6),
(0.8, 0.8), (0.8, 1.0), (1.0, 0.2), (1.0, 0.4), (1.0, 0.6), (1.0, 0.8),
and (1.0, 1.0).

We note that although this approach is the best for
its simplicity and was used by many researchers (e.g., [22,
23]), whether it can be legitimately employed is another
issue. The problem characteristics, rather than the simplicity
of constraint satisfaction, should dictate the selection of
parameters. If the problem requires combinations outside the
safe zone, we may have to give up this algorithm and rely on
other approaches.

Discard-and-Replace Algorithm. Whenever negative 𝑑
𝑖
is

generated, either replace it with a constant [24] or simply
discard it and continue data generation until the next non-
negative 𝑑

𝑖
is generated [25]. This is a widely used approach

for stochastic data generation in general.Wemust be cautious
though, since this discard-and-replace process in generalmay
alter our original data intentions. Here we address three
problematic issues relating to (1) the data constraints, (2) the
data distribution (uniform, normal, etc.) characteristics, and

The Scientific World Journal 5

DE C

0
A B

1

1

𝛿

DL ≥ 0

DU ≥ DL

DU ≥ 0

(a) The square ABCDE represents 0 ≤ 𝜏 ≤ 1 and 0 ≤ 𝛿 ≤ 1, where
5 × 5 = 25 pairs of (𝜏, 𝛿) as (0.2, 0.2), (0.2, 0.4), . . . , (1.0, 1.0) being
previously taken for simulation.The triangular subdomain BCD shows
the invalid area where constraint𝐷𝐿 ≥ 0 is violated as shown in (b)

2

0

3

1 2

1

DU ≥ 0

C󳰀

A󳰀

D󳰀

B󳰀

E󳰀

DU

DL

𝛿 ≥ 0

𝜏 ≥ 0

𝛿 ≤ 1

𝜏 ≤ 1

DL ≥ 0

(b) The rectangle A󸀠B󸀠C󸀠D󸀠E󸀠 corresponds to the square
ABCDE in (a).The shaded triangle B󸀠C󸀠D󸀠 is an invalid sub-
domain where𝐷𝐿 < 0

Figure 1: Two-dimensional spaces illustrating invalid subdomains where 𝐷
𝐿

< 0.

0 100 200

100

di

p
i

pi = di
pi > di (intervariable
constraint violation)

pi < di
(no intervariable constraint violation)

Figure 2: Sample space (𝑑
𝑖
, 𝑝
𝑖
) for Example 1. Two dots above the 𝑝

𝑖
= 𝑑
𝑖
line are inter-variable constraint violations.

(3) the characteristic constraints (e.g., (𝜏, 𝛿) values). When
we employ the discard-and-replace method, obviously (1)
the data constraints are satisfied, but (2) the distribution
properties and (3) the characteristic values may or may not
remain the same. As to the data distribution, if the original
distribution is uniform, it is likely that this is preserved
(because every 𝑑

𝑖
is equally likely to be picked over the range

[0, 𝑑
𝑈

]). But if the original distribution is nonuniform, by
chopping off portion of the range of the random variable (as,
for, e.g., 𝑑

𝑖
< 0) it is likely to change the distribution. In case

of the normal distribution, the leftmost portion may be cut
off, resulting in a nonsymmetric distribution; that is, it is no
longer a normal distribution in the new range.

When we apply the discard-and-replace method to our
intravariable constraint violations, the above discussion of
data distribution holds. If we assume a uniform distribution
as most literature in the total tardiness problem has, the new
distribution will remain uniform (again because every 𝑑

𝑖
is

equally likely to be picked over the range [0, 𝑑
𝑈

]). The (𝜏, 𝛿)

values, however, change because the new 𝑑
𝐿

= 0. This is a
change to a macrocharacterization of the problem. The new
(𝜏, 𝛿) values can be determined by substituting 𝑑

𝐿
= 0 into

(2) and (3), yielding

𝜏
󸀠

= 1 −

𝑑
𝑈

(2𝑛 ⋅ 𝑝
𝑠
)

, 0 ≤ 𝜏 ≤ 1,

𝛿
󸀠

=

𝑑
𝑈

(𝑛 ⋅ 𝑝
𝑠
)

, 0 ≤ 𝛿 ≤ 1.

(6)

Incidentally, substituting these 𝜏
󸀠 and 𝛿

󸀠 into (4) gives 𝑑
𝐿

≡ 0;
that is, (6) and (4) are consistent.

One may wonder about the significance of the discard-
and-replace approach in this context. We start with (𝜏, 𝛿)

value combinations that can cause intra-variable constraint
violations and go through the computational process, ending
up with the random data with the new (𝜏

󸀠
, 𝛿
󸀠
) values given in

(6). Why not start with the (𝜏
󸀠
, 𝛿
󸀠
) values from the beginning

6 The Scientific World Journal

without discard-and-replace? Yes, this approach should give
the same result with much more efficient computing time!
In our case, this means using the safe-zone algorithm rather
than the discard-and-replace algorithm. We can extend this
idea to some other applications. Summarizing, we propose
the following.

Tip. Avoid the discard-and-replace method in general. More
specifically, consider a two-step process.

Step 1. Whenever the discard-and-replace method is
employed for random data generation, consider if there are
any side effects on the problem characterizations such as (1)
the data constraints, (2) the data distribution characteristics,
and (3) the associated characteristic constraints. If any side
effects exist, then move to Step 2.

Step 2. Determine which characterizations need to be pre-
served or changed. Consider whether the same data can be
generated by adjusting some of the characterizations without
employing the discard-and-replace method.This approach is
likely much more efficient computationally than the discard-
and-replace one.

6. Analysis of Intervariable
Constraint Violations

For any 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑑
𝑖

< 𝑝
𝑖
is an intervariable constraint

violation. This is a microaspect concerned with individual
jobs. We first address a macroaspect by considering feasible
orderings of the four data parameters, 𝑝

𝐿
, 𝑝
𝑈
, 𝑑
𝐿
, and 𝑑

𝑈

[6]. The number of all permutations of the four parameters
is 4! = 24, but since 𝑝

𝐿
≤ 𝑝
𝑈
and 𝑑

𝐿
≤ 𝑑
𝑈
, we are left with six

possible permutations. Furthermore, we can assume 𝑝
𝐿

≤ 𝑑
𝐿

and 𝑝
𝑈

≤ 𝑑
𝑈
. If 𝑝
𝐿

> 𝑑
𝐿
, then the shortest due date will be

smaller than the shortest processing time, which violates the
assumption and constraints. Similarly, 𝑝

𝑈
> 𝑑
𝑈
violates the

assumption and constraints. These two additional conditions
reduce the feasible orderings to the following two:

𝑝
𝐿

≤ 𝑝
𝑈

≤ 𝑑
𝐿

≤ 𝑑
𝑈

, (7)

𝑝
𝐿

≤ 𝑑
𝐿

≤ 𝑝
𝑈

≤ 𝑑
𝑈

. (8)

Case 1 (𝑝
𝐿

≤ 𝑝
𝑈

≤ 𝑑
𝐿

≤ 𝑑
𝑈
). In this case, 𝑑

𝑖
≥ 𝑝
𝑖
for every

𝑖; hence, inter-variable constraint violations never occur. The
condition for which relation (7) holds in terms of 𝜏 and 𝛿 can
be determined as follows:

𝑝
𝑈

≤ 𝑑
𝐿

= 𝑛 (𝑝
𝐿

+ 𝑝
𝑈

)

2 (1 − 𝜏) − 𝛿

4

. (9)

Hence, we have a condition for which an inter-variable
constraint violation never occurs as

2 (1 − 𝜏) − 𝛿 ≥

4𝑝
𝑈

𝑛 (𝑝
𝐿

+ 𝑝
𝑈

)

. (10)

Case 2 (𝑝
𝐿

≤ 𝑑
𝐿

≤ 𝑝
𝑈

≤ 𝑑
𝑈
). We see that inter-variable con-

straint violations can occur in this case because the relation
𝑑
𝐿

≤ 𝑝
𝑈
can cause 𝑑

𝑖
< 𝑝
𝑖
for some jobs. The following is

a simple example, randomly generated following the typical
procedure described in Section 4 (Figure 2).

Example 1. 𝑛 = 10; 𝑝
𝐿
= 1, 𝑝
𝑈
= 100; hence 𝑝

𝑠
= 50.5; 𝜏 = 0.8,

𝛿 = 0.3; hence 𝑑
𝐿

= 25.2, 𝑑
𝑈

= 176.8, and 𝑑
𝑠

= 101 (see
Table 1).

In this specific example, two jobs violate the inter-variable
constraint. As we see below (13), for this particular parameter
value combination, the probability of the violation is 0.187;
that is, on average 1.87 jobs will have 𝑑

𝑖
< 𝑝
𝑖
.

When there are values with fractions (e.g., 𝑑
𝐿
= −25.2),

for practical purposes they can be rounded to the nearest
integer (e.g., 𝑑

𝐿
= −25). In the following, we first discuss

theoretical analysis of violations and heuristic procedures
for how to avoid them [6]. We will primarily use uniform
distributions which are employed by most researchers in the
tardiness problem.

Wemust satisfy 𝑝
𝑖

≤ 𝑑
𝑖
for every 𝑖, but 𝑝

𝑖
> 𝑑
𝑗
is perfectly

fine for different 𝑖 and 𝑗. We can show that 𝜏 and 𝛿 must
satisfy the following three conditions (two conditions in (8))
in terms of 𝑛, 𝑝

𝐿
, and 𝑝

𝑈
, to have the relation 𝑝

𝐿
≤ 𝑑
𝐿

≤ 𝑝
𝑈

≤

𝑑
𝑈
:

4𝑝
𝑈

{𝑛 ⋅ (𝑝
𝐿

+ 𝑝
𝑈

)}

≥ 2 (1 − 𝜏) − 𝛿 ≥

4𝑝
𝐿

{𝑛 ⋅ (𝑝
𝐿

+ 𝑝
𝑈

)}

,

2 (1 − 𝜏) + 𝛿 ≥

4𝑝
𝑈

{𝑛 ⋅ (𝑝
𝐿

+ 𝑝
𝑈

)}

.

(11)

By adding the last two relations, we also have

𝜏 ≤ 1 −

1

𝑛

. (12)

For example, if 𝑛 = 10, then 𝜏 needs to be ≤0.9 to satisfy the
last two relations.

Let 𝑃(𝑑
𝑖

< 𝑝
𝑖
) be the probability of 𝑑

𝑖
< 𝑝
𝑖
for a specific

job 𝑖. This probability is given by the following formula:

𝑃 (𝑑
𝑖

< 𝑝
𝑖
) =

(𝑝
𝑈

− 𝑑
𝐿
)
3

2 (𝑝
𝑈

− 𝑝
𝐿
) (𝑑
𝑈

− 𝑑
𝐿
) (𝑝
𝑈

− 𝑑
𝐿

+ 1)

(13)

≈

(𝑝
𝑈

− 𝑑
𝐿
)
2

2 (𝑝
𝑈

− 𝑝
𝐿
) (𝑑
𝑈

− 𝑑
𝐿
)

(when 𝑝
𝑈

− 𝑑
𝐿

≫ 1) .

(14)

The expected number of jobs for which 𝑑
𝑖

< 𝑝
𝑖
for a problem

of 𝑛 jobs can be determined by 𝑛 × 𝑃(𝑑
𝑖

< 𝑝
𝑖
).

We can use 𝑃(𝑑
𝑖

< 𝑝
𝑖
) to compute other related

probabilities. Let 𝑞 = 𝑃(𝑑
𝑖

< 𝑝
𝑖
), for simplicity. The

probability of not 𝑑
𝑖

< 𝑝
𝑖
, that is, 𝑃(𝑑

𝑖
≥ 𝑝
𝑖
), is 1 − 𝑞. Out of

the total 𝑛 jobs, the probability that exactly 𝑚 jobs are 𝑑
𝑖

< 𝑝
𝑖

is

𝑃 (𝑚 out of 𝑛 jobs are 𝑑
𝑖

< 𝑝
𝑖
) =
𝑛
𝐶
𝑚

𝑞
𝑚

(1 − 𝑞)
𝑛−𝑚

,

(15)

where 𝑞 = 𝑃(𝑑
𝑖

< 𝑝
𝑖
) and

𝑛
𝐶
𝑚
is the number of combi-

nations for selecting 𝑚 objects out of 𝑛 objects at a time.

The Scientific World Journal 7

Table 1

Job no., 𝑖 1 2 3 4 5 6 7 8 9 10
Proc. time, 𝑝

𝑖
92 41 10 21 37 86 85 66 25 37

Due date, 𝑑
𝑖

90 95 116 64 151 171 66 97 49 93
Is 𝑑
𝑖

< 𝑝
𝑖
? y y

Table 2

Job no., 𝑖 1 2 3 4 5 6 7 8 9 10
Proc. time, 𝑝

𝑖
92 41 10 21 37 86 85 66 25 37

Due date, 𝑑
𝑖

95 116 64 151 171 97 93 69 131 58

This probability distribution for 𝑚 = 0 to 𝑛 is the binomial
distribution. In particular, the probability that at least one job
has a violation is 1−𝑃 (𝑚 = 0 jobs are 𝑑

𝑖
< 𝑝
𝑖
) = 1−(1 − 𝑞)

𝑛
.

7. Removing Intervariable Constraint
Violations by Simple Approaches

Without loss of generality, let us assume that we generate
𝑝
𝑖
’s first, followed by 𝑑

𝑖
’s, as suggested by previous research.

Suppose that 𝑝
1

= 15 and 𝑝
2

= 95. If 𝑑
1

= 45 and 𝑑
2

=

125, there are no violations, but if these 𝑑
𝑖
’s are swapped, a

violation occurs. That is, we must satisfy 𝑝
𝑖

≤ 𝑑
𝑖
for every

𝑖, but we do not know the specific values of 𝑝
𝑖
’s and 𝑑

𝑖
’s

until they are randomly generated.How to efficiently generate
stochastic data that does not violate intervariable constraints
is a challenging problem.

7.1. Discard-and-Replace Methods. There can be different
versions of this classic approach depending on how one picks
a new data element.

Discard-and-Replace with Next Random Valid Values. This is
themost common version of discard-and-replacemethods in
general. For the tardiness problem, “if a negative processing
time value is generated during the simulations, it is simply
ignored and generated again” [25]. When 𝑑

𝑖
< 𝑝
𝑖
we would

continue to generate the next random 𝑑
𝑖
, until it satisfies

𝑑
𝑖

≥ 𝑝
𝑖
. A side effect of this approach is that it will skew the

due date distribution to a higher range. The resulting (𝑝
𝑖
, 𝑑
𝑖
)

distribution will remain stochastic (even though 𝑑
𝑖
’s skewed

upward). The following is an illustrative example.

Example 2 (same as Example 1, except here we discard and
replace with random valid values). 𝑛 = 10; 𝑝

𝐿
= 1, 𝑝

𝑈
= 100;

hence 𝑝
𝑠

= 50.5; 𝜏 = 0.8, 𝛿 = 0.3; hence 𝑑
𝐿

= 25.2, 𝑑
𝑈

=

176.8, and 𝑑
𝑠

= 101.
Actual values are 𝑑

𝐿,𝑎
= 58, 𝑝

𝑎
= 104.5, 𝜏

𝑎
= 0.79, and

𝛿
𝑎

= 0.23 (see Table 2).
This example is exactly the same as Example 1 except that

𝑑
𝑖
is replaced with the next 𝑑

𝑖
whenever a violation 𝑑

𝑖
< 𝑝
𝑖

occurs. The pre-set due date average 𝑑
𝑠
is 101. The actual due

date average 𝑑
𝑎
for Example 1 is 99.2, while that of Example 2

is 104.5, showing, expectedly, an overall increase of 𝑑
𝑖
’s.

We can show that the overall expected 𝑑
𝐿,𝑒

is as follows:

𝑑
𝐿,𝑒

=

{𝑝
𝑈

(𝑝
𝑈

+ 1) + (𝑑
𝐿

− 2𝑝
𝐿

+ 1)}

2 (𝑝
𝑈

− 𝑝
𝐿

+ 1)

. (16)

We note that 𝑑
𝐿,𝑒

is the expected value, not the actual value;
the actual value is bounded from below by 𝑑

𝐿
. Similarly, the

overall expected average due date, 𝑑
𝑒
, is given by

𝑑
𝑒

= {𝑝
𝑈

(𝑝
𝑈

+ 1) + 𝑑
𝐿

(𝑑
𝐿

− 2𝑝
𝐿

+ 1)

+ 2𝑑
𝑈

(𝑝
𝑈

− 𝑝
𝐿

+ 1)}

× (4 (𝑝
𝑈

− 𝑝
𝐿

+ 1))
−1

.

(17)

Since the new distributions are skewed, we are not precisely
dealing with 𝜏 and 𝛿 as they were specified originally. But,
it is most reasonable to define the effective 𝜏

𝑒
and 𝛿

𝑒
by

substituting 𝑑
𝑠
and 𝑑

𝐿
in the original definitions of 𝜏 and 𝛿

in (2) and (3) with their effective counterparts 𝜏
𝑒
and 𝛿
𝑒
. That

is,

𝜏
𝑒

= 1 −

𝑑
𝑒

(𝑛 ⋅ 𝑝
𝑠
)

= 1 −

(𝑑
𝐿,𝑒

+ 𝑑
𝑈

)

(2𝑛 ⋅ 𝑝
𝑠
)

,

𝛿
𝑒

=

(𝑑
𝑈

− 𝑑
𝐿,𝑒

)

(𝑛 ⋅ 𝑝
𝑠
)

.

(18)

In Example 2, these effective values are 𝑑
𝐿,𝑒

= 53.6, 𝑑
𝑒

=

115.2, 𝜏
𝑒

= 0.772, and 𝛿
𝑒

= 0.244. We note that (16)–(18)
can also be expressed in terms of 𝑛, 𝑝

𝐿
, 𝑝
𝑈
, 𝜏, and 𝛿, by using

(4) and (5).
As an alternative version of discard-and-replace, one can

set 𝑑
𝑖

= 𝑝
𝑖
when the generated values are such that 𝑑

𝑖
< 𝑝
𝑖
.

This version of replacing 𝑑
𝑖

< 𝑝
𝑖
with 𝑑

𝑖
= 𝑝
𝑖
will have

two shortcomings. First, the resulting due date distribution
will be skewed toward a higher range, as in the previous
version, since due dates with 𝑑

𝑖
< 𝑝
𝑖
are replaced with higher

values of 𝑝
𝑖
. Second, the resulting (𝑝

𝑖
, 𝑑
𝑖
) distribution will

be less stochastic than the previous version since all the jobs
with replaced 𝑑

𝑖
will have exactly the same due dates as their

processing times.

7.2. Augmented Probability Distributions. In the discard-and-
replace method discussed in the previous subsection, we

8 The Scientific World Journal

encountered violations of 𝑑
𝑖

< 𝑝
𝑖
, and replacing 𝑑

𝑖
with

a larger 𝑑
𝑖
caused distortion of the underlying distribution.

Here, we ask whether there are any guaranteed methods in
which violations never occur. We can, for example, employ a
𝑑
𝑖
-generation function as follows:

𝑑
𝑖

= 𝑝
𝑖

+ ℎ
𝑖
, (19)

where ℎ
𝑖
is some random function which is ℎ

𝑖
≥ 0. In this

way, not only 𝑑
𝑖
is guaranteed to be ≥𝑝

𝑖
, but also lower 𝑑

𝑖

tends to be assigned to lower 𝑝
𝑖
and higher 𝑑

𝑖
to higher 𝑝

𝑖

[26]. Variations of (19) include 𝑑
𝑖

= 𝛼
𝑖
𝑝
𝑖
, where 𝛼

𝑖
≥ 1, and a

combination of (19) and 𝑑
𝑖

= 𝛼
𝑖
𝑝
𝑖
as 𝑑
𝑖

= 𝛼
𝑖
𝑝
𝑖

+ ℎ
𝑖
.

We must, however, be cautious in employing such meth-
ods. For example, if we select uniform distributions for𝑝

𝑖
and

ℎ
𝑖
in (19), 𝑑

𝑖
will not be uniform any more (its probability

density function will be trapezoidal). How to reasonably
define 𝜏 and 𝛿 in such a situation is another question. In
short, we need careful consideration before employing these
methods.

8. A Neighborhood Expanding
Data-Interchanging Heuristic

8.1. General Description. The method discussed in this sec-
tion is a heuristic for reducing the impact of constraint
violations on the generated data. The basic idea of this
method should be applicable to many types of problems.

General Idea. We study randomly generating values of vari-
able 𝑥

𝑖
. A set of these values may contain 𝑛 values for 𝑥

𝑖
,

𝑖 = 1, 𝑛. Further, we can extend the size of the data as a group
of multiple sets and a group of groups of sets and so forth.
We consider the neighborhood of these data. The most local
neighborhood of 𝑥

𝑖
can be the neighboring data elements

of 𝑥
𝑖
as, for example, 𝑥

𝑖−1
, 𝑥
𝑖
, 𝑥
𝑖+1

. When the neighborhood
coverage of data elements is extended to the entire set or a
group of sets and so forth, the scope of the neighborhood
will bemore “global.”We perform data interchanging starting
from the most local neighborhood level to resolve violations.
If they are not resolved, we extend the neighborhood toward
amore global level, until all violations are resolved (Figure 3).
Hence, we use the following steps.

(i) Item-by-item swapping at themost local level: when a
violation is found for a specific data item, find another
data item such that when these two data items are
swapped the violation is resolved.

(ii) Intraset swapping: when the above item-by-item
swapping does not work, consider the entire data set
in which the data item is an element. Swap any data
items (elements) within the set so that violations can
be removed.

(iii) Interset swapping: when the above intra-set swapping
does not work, include neighboring data sets to the
above data set, and try to resolve violations by taking
into account all of the data items in all the data sets
under consideration. Start with an adjacent data set,
expanding toward the entire collection of data sets
until violations are resolved.

(iv) If either the inter-set swapping does not work or
there are no other data sets to include, discard and
replace some data item(s) or data set(s). Hopefully,
the chances of performing this last step are very small.

8.2. An Illustration Using the Total Tardiness Problem

8.2.1. Preliminaries. The heuristic here is a special case of
the above basic idea of the neighborhood expanding data-
interchanging method, where “data item” and “data set”
are replaced by “job” and “problem,” respectively. In the
implementation of the heuristic, we skip themost local, item-
by-item swapping, described in the above general outline of
the method, since it does not appear particularly effective for
the inter-variable violation problem. For some other types
of violations, this step may be useful. Before describing the
heuristic, we introduce a term and a theorem.

Definition 3. Processing times and due dates of a problem
are pairable if there is at least one permutation of 𝑝

𝑖
’s and at

least one permutation of 𝑑
𝑖
’s that satisfy 𝑝

𝑖
≤ 𝑑
𝑖
for every

𝑖 = 1 to 𝑛; in this case, we say that the problem is pairable.
In other words, if a problem is pairable, we can make an
invalid problem internally valid by rearranging 𝑝

𝑖
’s and 𝑑

𝑖
’s;

otherwise, it is impossible to make the problem internally
valid, no matter how we shuffle 𝑝

𝑖
’s and 𝑑

𝑖
’s.

Theorem 4. Sort all 𝑝
𝑖
’s and 𝑑

𝑖
’s in a problem, so that 𝑝

1
≤

𝑝
2

≤ ⋅ ⋅ ⋅ and 𝑑
1

≤ 𝑑
2

≤ ⋅ ⋅ ⋅ . A necessary and sufficient
condition for a problem to be pairable is 𝑝

𝑖
≤ 𝑑
𝑖
for every 𝑖 = 1

to 𝑛.

Proof. If 𝑝
𝑖

≤ 𝑑
𝑖
for every 𝑖 = 1 to 𝑛 for sorted sequences of

𝑝
𝑖
’s and 𝑑

𝑖
’s, the set of the sorted sequences is an internally

valid problem. Therefore, we can make at least one (and
possibly many more) internally valid problem(s). Hence, the
condition is sufficient. Conversely, suppose that 𝑝

𝑖
> 𝑑
𝑖
for

some 𝑖. Then this 𝑝
𝑖
must be paired with another 𝑑

𝑗
, 𝑗 > 𝑖.

This leaves fewer 𝑑’s than 𝑝’s for pairing (the pigeon-hole
principle), whichmeans that pairing all the remaining𝑝’s and
𝑑’s is impossible. Thus, the condition is necessary.

Data-Interchanging Heuristic

Step 1 (intraproblem swapping)
Sort all 𝑝

𝑖
’s and 𝑑

𝑖
’s (i.e., 𝑝

1
≤ 𝑝
2

≤ ⋅ ⋅ ⋅ and 𝑑
1

≤ 𝑑
2

≤

⋅ ⋅ ⋅).
For 𝑖 = 𝑛 step −1 down to 1 do

For𝑝
𝑖
, find the smallest𝑑min such that𝑑min ≥ 𝑝

𝑖
.

Randomly select 𝑑
𝑗
in 𝑑min to 𝑑

𝑖
.

Pair (𝑝
𝑖
, 𝑑
𝑗
) and output it as a valid pair.

Rearrange 𝑑
𝑘
by 𝑑
𝑘

← 𝑑
𝑘+1

for 𝑘 = 𝑗 to 𝑖 − 1.
Enddo.

Restore the original (presorting) order of 𝑝
𝑖
’s for the

generated 𝑛 pairs of (𝑝
𝑖
, 𝑑
𝑖
); that is, 𝑝

𝑖
’s in new pairs

of (𝑝
𝑖
, 𝑑
𝑖
) appear in the same order as originally

The Scientific World Journal 9

Item-by-item
swapping

Intraset
swapping

Interset
swapping

Figure 3: A schematic representation of the neighborhood expanding data-interchanging heuristic. As the neighborhood expands, the
probability of finding pairable swaps increases (indicated by the thickness of the arrow).

generated at random. (so that 𝑝
𝑖
’s are not in any

particular sequence such as being sorted).

Step 2 (interproblem swapping). When Step 1 does
not work, include gradually increasing number of
neighboring problems to the above problem. We
may start with combining two problems, the above
problem and the succeeding problem, having a total
of 2𝑛 jobs, and apply Step 1 to this 2𝑛-jobs problem.
When 2𝑛 jobs are successfully paired, restore the
original (pre-sorting) orders of 𝑝

𝑖
’s in each problem.

If this does not work, include three problems and so
on, until the entire problem set is used. Apply Step 1
to each 𝑘𝑛-jobs problem, where 𝑘 = 2 to number of
problems.

Step 3. If Step 2 does not work, or there is no other
problem in Step 2, discard and replace some 𝑑

𝑖
’s, jobs,

or problems. Of course, such discard-and-replace
process will distort the original data characteristics,
like other methods, as discussed previously. Our
experiments, as discussed in Section 10, show that the
chances of performing Step 3 are extremely small.

8.2.2. Additional Notes on the Data-Interchanging Heuristic

Item-by-Item Interchanging. In the above algorithm, although
we skipped themost local data interchanging described in the
general method, we briefly discuss it here to illustrate how the
concept can be applied.

Job-by-Job Swapping for the Total Tardiness Problem. When a
violation is found for a specific job 𝑖, find another job 𝑗 such
that 𝑑

𝑖
≥ 𝑝
𝑗
and 𝑑

𝑗
≥ 𝑝
𝑖
, and swap 𝑑

𝑖
and 𝑑

𝑗
(or 𝑝
𝑖
and 𝑝

𝑗
). A

choice of swapping (𝑑
𝑖
and𝑑
𝑗
) or (𝑝

𝑖
and𝑝
𝑗
) can also bemade

Table 3

Job no., 𝑖 1 2 3
Processing time, 𝑝

𝑖
10 8 5

Due date, 𝑑
𝑖

7 11 9

randomly to avoid, for example, larger 𝑑
𝑖
tending to appear

earlier.
We note that this procedure does not accomplish the

same result as Step 1 in the heuristic. Consider the following
example.

Example 5. (see Table 3) Since job 1 is a violation, we search
for 𝑑
𝑖

≥ 𝑝
𝑗
and 𝑑

𝑗
≥ 𝑝
𝑖
, but this search fails even though the

problem is pairable.Wemay call such a situation a “three-way
deadlock.” There can be extensions of this, as four-way, . . ., 𝑛-
way deadlocks.

Effect of Step 2 on Data Characteristics. In Step 2 of the
heuristic, we combine two, three, and more problems as
needed to come up with valid sequences of 𝑝

𝑖
’s and 𝑑

𝑖
’s.

We might wonder whether in effect this process changes the
problem size from 𝑛 to 2𝑛, 3𝑛, and so on. If so, the process
would affect the values of 𝜏 and 𝛿, since they depend on
the problem size. However, this is not the case. For pairing
purposes, we scramble 𝑝

𝑖
’s and 𝑑

𝑖
’s of multiple problems. But

after pairing is complete, the original order of 𝑝
𝑖
’s in each

problem is restored and the problem size remains the same
as 𝑛.

9. Experimental Results

The data-interchanging heuristic was implemented and
tested with 𝑛 = 8, 16, 32, 64, and 128; 𝑝

𝐿
= 1, 𝑝

𝑈
= 100;

10 The Scientific World Journal

Table 4: Number of violations in generated data and after each of
the steps of the proposed heuristic.

𝑛 In generated data After Step 1 After Step 2 After Step 3

8 365 91 25 0
16 131 86 0 0
32 14 14 0 0
64 0 0 0 0
128 0 0 0 0

hence 𝑝
𝑠

= 50.5; 𝜏 = 0.8 and 𝛿 = 0.3. 𝑑
𝐿
and 𝑑

𝑈
can

be determined by using (4) and (5), respectively, as 𝑑
𝐿

=

2.5𝑛 and 𝑑
𝑈

= 17.7𝑛. For each problem size 𝑛, data for
𝑤 = 100 problems of the given size were generated and
the violations in the generated data as well as after each
of the three steps of the proposed algorithm were recorded
(see Table 4). For example, generating 100 problems of size 8
each, the generated data had a total of 365 violations. Using
Step 1 of the proposed heuristic, 91 violations remained—a
75% reduction in the number of violations in the generated
data. When Step 2 of the heuristic is used, only 25 violations
remained—an impressive 93% reduction in the number of
violations in the generated data.When Step 3 of the algorithm
is used, there was a 100% reduction in the violations in the
generated data. Similar performance is observed for other
values of 𝑛. For example, for 𝑛 = 16 and 32, a 100% reduction
in the violations was achieved after Step 2 and no further
steps were required. While there is no guarantee that such
a reduction is expected for every data in general, the result
is indicative for effectiveness of the algorithm. Notice that as
𝑛 increases, the probability of having a violation decreases,
because 𝑝

𝐿
and 𝑝

𝑈
remain constant while 𝑑

𝐿
and 𝑑

𝑈
increase

with 𝑛. This is why no violations were encountered for 𝑛 = 64

and 132.

10. Conclusions

In this paper, we discussed how implicit constraints were
overlooked in some previous practices for generating data
to simulate the total tardiness problem. This may not
be an isolated case and may extend to other practical
approaches involving generation of random data under con-
straints. When there are possible data violations, analytical
approaches such as the one demonstrated in this paper
(e.g., Section 4) should be helpful. Heuristics, such as the
local-and-global data-interchanging heuristic discussed in
this paper, may be used, depending on the nature of the
application problems and the types of data violations.

The following are some general guidelines for generating
stochastic data under constraints.

(1) Carefully examine the problem to see whether there
are certain constraints that must be satisfied (e.g., due
datesmust be non-negative and each due datemust be
not less than the processing time in the total tardiness
problem).

(2) Check the procedure of generating stochastic data
to determine whether it possibly yields invalid data

which is in violation of a constraint. (In the total
tardiness problem, by glancing at (3), we see that
𝑑
𝐿
can be negative for certain values of 𝜏 and 𝛿,

thus possibly yielding negative due dates. Also, by
looking at (4), we see that 𝑑

𝑈
can be less than 𝑝

𝐿
, thus

possibly generating a job whose due date is less than
its processing time.)
We need to pay special attention when “characteristic
parameters” (e.g., 𝜏 and 𝛿) are introduced.These char-
acteristic parameters are important metrics for the
problem to be solved, but they are often abstract and
only indirectly represent the original characteristics
of the data. This may lead to a common error of
focusing primarily on the characteristic parameters
and forgetting the nature of the original data.

(3) If there may be possible violations, we can theo-
retically analyze the conditions for which the vio-
lations occur. For certain cases, this analysis may
lead to a simple revised procedure that guarantees
no violations, or a set of parameter values that avoid
violations.

(4) Whenever the discard-and-replace method is
employed, we must consider the resulting effect
in terms of the problem characterizations such as
(1) the constraints, (2) the data distribution, and
(3) the associated characteristics. Determine which
characterizations need to be preserved or changed.
Consider whether the same data can be generated
by adjusting some of the characterizations without
employing the time-consuming discard-and-replace
method. This approach is likely much more efficient
computationally than discard-and-replace.

(5) For certain problems, Steps (3) and (4) above may
not result in a sufficient method. That is, there is
no simple procedure that guarantees no violations,
or a set of parameter values that completely avoids
violations. In such cases, one may attempt to develop
a new data generation procedure that satisfies validity
criteria such as the following.

(a) No invalid data has been generated.
(b) The associated characteristics of data generated

are as close as possible to the intended original
data (e.g., average and expected values of cer-
tain entities), unless the original characteristics
themselves are violations.

(c) The procedure is computationally simple and
efficient.

Developing such a procedure satisfying all the above
criteria, however, may not be trivial. Often we may
find conflicting trade-offs among the various criteria.
Usually criterion (a) is the highest priority. Unless we
produce massive data, criteria (c) may not be a high
priority in comparison with the other criteria, due to
the high speed of today’s computers. In certain cases,
heuristics that are not perfect but practically good
enough methods may be used.

The Scientific World Journal 11

Further studies can include the following.

(1) Other problems: we employed the total tardiness
problem and the two simple examples of Section 2
to illustrate the core of this article, that is, constraint
consistency among different parameter sets. Other
problems in different domains for various application
types can be considered.

(2) Nonuniform distributions of random variables: in
this article, we primarily focused on uniform dis-
tributions since they have been most commonly
employed in the total tardiness problem. However,
other distributions can also be considered, especially
for other problems.

(3) Higher number of data and characteristic parameters:
for the total tardiness problem, the number of data
parameters is two and the number of characteristic
parameters is also two. For the two simple examples
discussed in Section 2, the number of characteristic
parameter is one, and there are several data parame-
ters. We can consider higher number (e.g., three and
three, or generally 𝑀 and 𝑁) for these parameters.

(4) More general mapping between data and character-
istic parameters: for the total tardiness problem, the
mapping is one to one. Other cases, such as many to
one, may be considered.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank their graduate student Todd
Posius for his help on the numerical experiment.

References

[1] T. Munakata, Fundamentals of the New Artificial Intelligence:
Neural, Evolutionary, Fuzzy and More, Springer, London, UK,
2nd edition, 2008.

[2] J. Du and J. Leung, “Minimizing total tardiness on one process is
NP-hard,” Mathematics of Operations Research, vol. 3, pp. 483–
495, 1990.

[3] C. Koulamas, “The single-machine total tardiness scheduling
problem: review and extensions,” European Journal of Opera-
tional Research, vol. 202, no. 1, pp. 1–7, 2010.

[4] F. S. Hillier and G. J. Lieberman, Introduction to Operations
Research, McGraw-Hill, New York, NY, USA, 8th edition, 2004.

[5] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, vol. 6 of
Course ofTheoretical Physics, Butterworth-Heinemann, Oxford,
UK, 2nd edition, 1987.

[6] T. Munakata and A. Fadlalla, “Constraint isomorphism and the
generation of stochastic data,” IIE Transactions, vol. 38, no. 5,
pp. 437–444, 2006.

[7] L.Wilkerson and J. Irwin, “An improvedmethod for scheduling
independent tasks,” AIIETransactions, vol. 3, no. 3, pp. 239–245,
1971.

[8] V. Srinivasan, “A hybrid algorithm for the one machine
sequencing problem to minimize total tardiness,” Naval
Research Logistics Quarterly, vol. 18, pp. 317–327, 1971.

[9] A. H. G. Rinnooy Kan, B. J. Lageweg, and J. K. Lenstra,
“Minimizing total costs in onemachine scheduling,”Operations
Research, vol. 23, no. 5, pp. 908–927, 1975.

[10] M. L. Fisher, “A dual algorithm for the one-machine scheduling
problem,”Mathematical Programming, vol. 11, no. 1, pp. 229–251,
1976.

[11] C. L. Potts and L. N. Van Wassenhove, “Single machine
sequencing heuristics,” IIE Transactions, vol. 23, pp. 346–354,
1991.

[12] H. A. J. Crauwels, C. N. Potts, and L. N. VanWassenhove, “Local
search heuristics for the singlemachine total weighted tardiness
scheduling problem,” INFORMS Journal on Computing, vol. 10,
no. 3, pp. 341–350, 1998.

[13] R. Congram, C. N. Potts, and S. L. van de Velde, “An iterated
dynasearch algorithm for the single-machine total weighted tar-
diness scheduling problem,” INFORMS Journal on Computing,
vol. 14, pp. 52–67, 2002.

[14] L.-P. Bigras, M. Gamache, and G. Savard, “Time-indexed for-
mulations and the total weighted tardiness problem,” INFORMS
Journal on Computing, vol. 20, no. 1, pp. 133–142, 2008.

[15] C. N. Potts and L. N. Van Wassenhove, “A decomposition
algorithm for the single machine total tardiness problem,”
Operations Research Letters, vol. 1, no. 5, pp. 177–181, 1982.

[16] C. Koulamas, “The total tardiness problem: review and exten-
sions,” Operations Research, vol. 42, no. 6, pp. 1025–1041, 1994.

[17] Y.-D. Kim, “Minimizing total tardiness in permutation flow-
shops,” European Journal of Operational Research, vol. 85, no.
3, pp. 541–555, 1995.

[18] W. Szwarc and S. K. Mukhopadhyay, “Decomposition of the
single machine total tardiness problem,” Operations Research
Letters, vol. 19, no. 5, pp. 243–250, 1996.

[19] K. C. Tan andR.Narasimhan, “Minimizing tardiness on a single
processor with sequence-dependent setup times: a simulated
annealing approach,” Omega, vol. 25, no. 6, pp. 619–634, 1997.

[20] N. G. Hall and M. E. Posner, “Generating experimental data for
computational testing with machine scheduling applications,”
Operations Research, vol. 49, no. 6, pp. 854–865, 2001.

[21] T. Munakata and A. Fadlalla, “Constraint isomorphism and
correction algorithms for violations,” PAMM, vol. 7, no. 1, pp.
2010031–2010032, 2007.

[22] D. P. Ronconi and L. R. S. Henriques, “Some heuristic algo-
rithms for total tardiness minimization in a flowshop with
blocking,” Omega, vol. 37, no. 2, pp. 272–281, 2009.

[23] W.-J. Chen, “Minimizing number of tardy jobs on a single
machine subject to periodic maintenance,” Omega, vol. 37, no.
3, pp. 591–599, 2009.

[24] C. Koulamas, “Single-machine scheduling with time windows
and earliness/tardiness penalties,” European Journal of Opera-
tional Research, vol. 91, no. 1, pp. 190–202, 1996.

[25] S. Goren, “Sabuncuoglu. Generating robust and stable sched-
ules for a single machine environment under random ma-
chine breakdowns and processing time variability,” http://www
.ie.bilkent.edu.tr/technicalpapers/Goren Sabuncuoglu.pdf.

[26] A. Agnetis, A. Alfieri, andG. Nicosia, “Single-machine schedul-
ing problems with generalized preemption,” INFORMS Journal
on Computing, vol. 21, no. 1, pp. 1–12, 2009.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

