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Abstract
In crop species, nutrient deficiency severely damages plant growth and developmental processes, leading to end-yield pen-
alties. Root architecture remodelling is considered a key factor underpinning nutrient-poor soil environments. Adequate 
nitrogen (N) supply can play a significant role in sustaining crop productivity on nutrient-deficient soils. However, excessive 
application of nitrogenous fertilizer may pollute the soil and increase the production cost for the growers. To tackle this 
problem, crop breeders have made tremendous efforts to improve the N-use efficiency of agricultural crops. This article sum-
marizes the recent progress in identifying QTLs/genes, regulatory pathways, and hormonal crosstalk involved in the growth 
and development of  legumes roots system. Moreover, we have described the progress in microbe–root symbiosis via QTLs/
genes regulations, which results in improved N acquisition. Understanding the molecular mechanisms that regulate the root 
architecture in response to N availability may help to strengthen the root system of legumes and promote environmental 
friendly and sustainable agriculture.

Keywords Legumes · Root system architecture · Nitrogen-use efficiency · Molecular mechanisms · Microbe–root 
symbiosis · Hormonal regulation

Introduction

Legumes play an essential role in contributing to food secu-
rity and environmental maintenance (Graham et al. 2003). 
They are usually intercrop with cereals to improve land pro-
ductivity through soil amelioration. In crop rotation, leg-
umes as  N2-fixing plant contribute to  diversify  the cropping 
system. Although legumes fix nitrogen; about 50% of soil-
nitrogen still needs to utilize efficiently by plants to improve 
and maintain crops yield at optimal levels. Nitrogen (N) is 
an essential mineral required in massive quantity by plants 
to produce sufficient energy for sustaining vegetative growth 
and achieving economic grain yield (Zörb et al. 2018; Wang 
et al. 2018).

The root is the primary organ modified in plants to 
acquire nutrients and water from the soil (Ramakrishna 
et al. 2019). The soil medium in which plant roots penetrate 
is highly heterogeneous in the distribution of minerals and 
water reservoirs. Plants have adopted various tactics to alter 
their root architecture in response to these heterogeneous 
distributions (Xu et al. 2022; Poitout et al. 2018). The root 
system architecture is affected by various abiotic and biotic 
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factors (Najeeb et al. 2015), including water starvation, N, 
potassium, and at phosphorus levels. Plants have evolved 
to survive under low N levels through long-term evolution, 
which might have involved the modifications in the root con-
figuration, such as the primary root (PR) length, lateral root 
(LR) system, and root hairs structure (Rao et al. 2016; Qin 
et al. 2021).

Untangling the molecular mechanism, including various 
regulatory networks, proteins, and genes responding to low 
N stress, significantly improve the low N stress tolerance 
crop. A large number of genes are involved in the modifi-
cation of root systems to enhance minerals acquisition in 
different plant species, such as maize (Li et al. 2011, 2019), 
arabidopsis (Yu et al. 2016), soybean (Kong et al. 2019), 
and rice (Sun et al. 2019; Kitomi et al. 2020). Furthermore, 
regulatory proteins (Araya et al. 2014), transcription factors 
(Devaiah et al. 2007; Architecture et al. 2012; Miura et al. 
2020), and miRNAs  also contribute to regulatory networks 
associated with the root system to improve nutrient-use effi-
ciency (Meng et al. 2010; Vidal et al. 2010). In addition, 
the identification of numerous root architecture QTLs for N 
starvation in different crops including bean/common bean 
(Cichy et al. 2009), rice (Shimizu et al. 2008; Li et al.2009), 
maize (Li et al. 2015), and soybean (Liang et al. 2010) 
highlights the potential to improve nutrient use efficiency 
via marker-assisted breeding. This review provides a com-
prehensive overview of root architectural alterations under 
N-deficit conditions. It will help to modulate N deficiency 
molecular mechanisms for developing N-use efficient varie-
ties (NUE) with superior root architecture.

Importance of Legumes in Conservation 
Agriculture

Grain and forage legumes are grown on approximately 180 
million ha or 12% to 15% of the earth’s farmland (Graham 
et al. 2003). Legumes account for 27% of the total global pri-
mary crop production, contributing 33% to the human needs 
for dietary proteins (Graham et al. 2003). Further, legumes 
cultivation improve soil fertility and organic matter contents 
and enhance soil water retention and nutrients circulation 
(Rasheed et al. 2010; Graham et al. 2003). Therefore, sus-
tainable increase in legumes production is critical to feed 
the world’s growing population. Likewise, by adopting sus-
tainable agricultural production methods, we can minimize 
greenhouse gas emissions, food losses, and wastes, improve 
crop productivity and the global supply chain, and provide 
nutritional food to communities suffering from hunger and 
malnutrition. Therefore, introducing legumes in sustaina-
ble agriculture may offer a solid foundation for food safety, 
and security along with environmental quality (Vanlauwe 
et al. 2019).

The key advantages of legumes are; they fix atmospheric 
N,  high quality of organic matter released into the soil, and 
improve soil C/N ratio (carbon-to-nitrogen ratio). Addition-
ally, grain legumes have a robust and deep root system that 
encourages mycorrhizal mineral solubilization, recycling/
uptake, and water transport in deeper soil layers (Graham 
et al. 2003). Recently, some legumes such as faba bean, pea, 
chickpea, soybean, and lentil have widely been adopted in 
sustainable cropping systems and conservation agriculture 
in Turkey, Australia, Brazil, and North America (Stagnari 
et al. 2017).

Nitrogen (N) and Sustainable Crop 
Production

Sustainable agriculture refers to crop production which does 
not harm biodiversity, quality of crops, and the environment. 
Sustainable crop production relies on minimizing the pes-
ticide usage through integrated pest management. Thus, it 
protects biodiversity, improves soil health, and ensures food 
quality and safety. N is an essential constituent of a plant cell 
as a mineral element and directly promotes protein forma-
tion in grain seeds (Worku et al. 2007; Perchlik and Tegeder 
2020). It is also linked with crop yield and its accumulated 
amount in the plant is an essential factor for crop productiv-
ity (Khan et al. 2020). Considering this, NUE is a crucial 
parameter for crops yield,  unfortunately, its usage efficiency 
is relatively low, e.g. accounts for 30% in China, 50–60% 
in developed countries, and approximately 59% globally 
(Williamson 2011). This significant loss has been causing 
a worse impact on our natural environment in the form of 
acid rain, soil acidification, polluting freshwater streams, 
and even air pollution, which ultimately raises human health 
issues (Bouwman et al. 2013; Udvardi et al. 2015).

Recently, various new high-yielded cultivars have been 
developed and they are primarily dependent on high input 
of nitrogenous fertilizers. These cultivars have been intro-
duced into the cropping systems according to the preferences 
of breeders and farmers. However,  increased application 
of nitrogenous fertilizers led to several problems, such as 
decreased N-use efficiency, high input cost, environmental 
pollution, and N fertilizer loss (Zhang et al. 2016). Con-
sequently, it is now a consensus that it is necessary to bal-
ance the benefit of N usage to improve yield and reduce its 
adverse impacts by reducing the N fertilizer input and soil 
pollution. Hence, developing cultivars with tolerance to low 
N stress or improved NUE are critical aims for future crop 
breeding (Zhang et al. 2016). Achieving these goals will 
necessitate a comprehensive knowledge and understand-
ing of N metabolism under N deficiency. Root-related traits 
have considerable influence on N capturing from the soil. 
However, there are still discrepancies over the impact of the 
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N deficit on root growth, length, and LR. Therefore, new 
cultivars with improved root architecture that can be grown 
under low N are prerequisites for sustainable agriculture (Xu 
et al. 2012).

Root Architecture Remodelling for Better N 
Acquisition

Plants alter their root system to extract N from the soil (Lay-
Pruitt and Takahashi 2020). They can adjust to low N supply 
by directing root development towards N-rich patches and 
increasing the root absorptive surface area. Considering the 
low nitrate availability and high mobility within a given soil 
area, the definition of a more efficient root system may not 
be specific. It may differ and depends on soil type, plant spe-
cies, and other environmental factors (Postma et al. 2014). 
Modelling techniques proposed that an effective capturing 
of nitrate results from a trade-off between the total volume 
of soil explored and the speed of N acquisition (Dunbabin 
et al. 2003).

A superior root architecture helps plants to explore soil 
and promote nutrients absorption. Therefore, the improve-
ment of root architecture has widely been  documented and 
considered an essential strategy to improve N uptake under 
N-deficient environments, which may accelerate the perfor-
mance of roots in low N soils. N is an integral component 
of organic compounds in plants comprising protein, chloro-
phyll, and nucleic acid (Amtmann and Armengaud 2009). 
Thus, N deficiency is the main factor inhibiting plant growth 
and development, resulting in a significant drop in crops 
yield and productivity. Plants use different N forms in the 
rhizosphere, including nitrate, organic compounds (soluble 
N-containing), and ammonium (Tegeder and Rentsch 2010). 
In arabidopsis, for instance, the roots are adapted to differ-
ent N supply levels and types, including stimulation of root 
branching, inhibition of LR initiation under a high C/N ratio, 
systemic/local regulation of LR growth, and inhibition of 
PR growth induced by exogenous L-glutamate (Zhang et al. 
2007). In response to low N supply, nutrient acquisition is 
mainly enhanced through root growth and the deeper root 
system to absorb nitrate, which is one of the most movable 
nutrient ions in the soil (Ju et al. 2015; Rasmussen et al. 
2015; Yu et al. 2015). Literature suggests that genotypes 
with deeper roots are more efficient in absorbing N from 
N-deficient soils (Saengwilai et al. 2014). Therefore, an 
ideotype of root architecture with strong LR, deeper roots, 
and robust nitrate response was proposed for effective N 
acquisition in intensive cropping systems (Zhang et  al. 
2007). A field trial-based study supported this by revealing 
that a broad and deep root system is a prerequisite for high 
N consumption in Zea mays (Mi et al. 2010). In legumes, 
modifications in root system architecture facilitate N and 

phosphorus acquisition and nodule formation (Egamber-
dieva et al. 2017). In a study, Egamberdieva et al. (2017) 
observed a significant positive relationship between the N 
content in plant tissue, the number of nodules, and the root 
system architecture of soybean.

Molecular Mechanisms of Root Architecture 
Remodelling in Response to N

Understanding the molecular mechanism of modifications 
in the root architecture of plants in response to specific 
nutrients would facilitate the genetic improvement of nutri-
tional efficiency. In past years, many experiments have been 
designed to identify multiple QTLs/genes in plants related 
to changes in root architecture to cope with nutrient supply 
(Table 1).

Plants absorb N from the soil in two forms: organic 
(amino acids) or inorganic (ammonium or nitrate) (Hao 
et al. 2020). In ammonium foam, root growth is controlled 
by ammonium transporters (ATMs), they are crucial to opti-
mize ammonium concentration in plants and regulate root 
responses to avoid ammonium toxicity (Hao et al. 2020). 
Legumes AMTs have functionally been characterized, and 
their transport properties are similar to those identified in 
arabidopsis (D’Apuzzo et al. 2004). In arabidopsis, two ATM 
families (ATM1 and ATM2) were identified (Yuan et al. 
2007) and ATM2 family is involved in regulatory mecha-
nisms. This is essential in recovering ammonium lost from 
nodule cells by efflux, whilst ATM1 regulates ammonium 
acquisition and transport. Two ATM2s and three ATM1s 
have been identified in Lotus japonicus (Salvemini et al. 
2001). Under N-deficit conditions, LjAMT1;1 and LjAMT1;2 
are up-regulated, LjAMT1;3 is down-regulated by higher 
ammonium concentrations and it regulates the root response 
to ammonium toxicity (Apuzzo et al. 2004; Rogato et al. 
2010). LjAMT2;1 controls ammonium loss from cellular 
efflux in nodules, whereas LjATM2;2 is required for N trans-
port and acquisition during AMF associations (Simon-rosin 
et al. 2003). Ammonium negatively influences the nodule 
formation by repressing the expression of NIN (NODULE 
INCEPTION), an essential gene for nodulation (Barbulova 
et al. 2007). When ammonium is the sole N source, primary 
and LR elongation suppression is a commonly observed 
indicator of ammonium toxicity (Araya et al. 2016).

On the other hand, nitrate is the primary N source and 
absorbs through roots by various nitrate transporters. Sev-
eral aspects of nitrate-dependent root architecture regulation 
have been discussed and reported in recent reviews (Imin 
et al. 2013; Forde 2014; Giehl et al. 2014). The modulation 
of root architecture in an N-deficit environment depends on 
the environmental conditions (day length and light intensity) 
and the strength of N limitation. The root development is 
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restricted under severe N stress, leading to a reduced number 
of LR and shorter PR, whereas LR and PR length increased 
under mild N stress (Araya et al. 2014; Gruber et al. 2020). 
In a past study, arabidopsis transcriptome data comprising 
about 100 root growth-related genes revealed that N stress 
triggers MDR4/PGP4 and WAK4 expression levels (Lally 
et al. 2001; Terasaka et al. 2005; Giehl et al. 2014). Both 
genes modulate PR growth and LR development and might 
be involved in response to mild N stress. Whilst, down-reg-
ulation of ACR4 and AXR5 reduced LR formation, it might 
depict that these two genes are constraints to LR forma-
tion under severe N stress (Fig. 1B; Yang et al. 2004; Smet 
et al. 2008). Two families of transporters genes (NRT1 and 
NRT2) participate in nitrate transport in root and shoot cells 
(Criscuolo et al. 2012). Nitrate transporters with sensing 
functions are involved in signalling pathways. For instance, 
NRT1.1 acts as a transceptor of  NO3

– have a dual-sensor/
transporter role in signalling pathways and could regulate 
LR formation under the low/absence of  NO3

–. While in N 
starvation, AtNRT2.1 acts as  NO3

– signalling component or 
sensor inhibiting LR initiation. Although the definite molec-
ular mechanism is yet uncertain, negative role of NRT2.1 and 

NRT1.1 in LR initiation and formation may represent a dis-
tinct systematic pathway under N starvation. Nitrate sensor/
transporter NRT1.1 is also involved in the auxin-mediated 
signalling pathway related to  root structure changes. In 
contrast, nitrate sensor/transporter NRT2.1 has dual func-
tions relevant to the coordination of nitrate availability in 
nitrate absorption and LR growth (Remans et al. 2006b). 
The NRT1/NRT2 families are also reported in the model 
legumes, including L. japonicus (Criscuolo et al. 2012). L. 
japonicus was found to have 92 NRT1 genes and four NRT2 
genes. The expression pattern of three NRT2-type transport-
ers in another model legume species, namely M. truncatula 
have also been reported (Pellizzaro et al. 2014). Some family 
members require a protein partner (NAR2 or NRT3) to func-
tion in legumes (Tong et al. 2005). Moreover, in soybean, 
overexpression of GmNRT1.2a and GmNRT1.2b in leaves 
induced by nitrate reported to increase the nodule numbers 
(Guo-ji et al. 2020).

Recent literature also suggests that beta-expansion pro-
tein gene  plays an important role in regulating nodulation 
and root architecture. For example, in soybean overexpres-
sion of GmEXPB2 resulted in a longer root, larger root hair 

Table 1  QTLs/genes associated with root architecture in legume crops

Legume crops QTLs/genes Role Reference

Soybean GmNRT1.2a, GmNTR1.2b Improve nodule numbers (Guo-ji et al. 2020)
GmEXPB2 Improve lateral root numbers (Li et al. 2020)
GmEXPB1 Improve  lateral root (Kong et al. 2019)
GmNAC109 Improve lateral root formation (Yang et al. 2019)
RR-Gm01, RR-Gm03, RR-Gm04, 

RR-Gm08, RR-Gm020
Increase fibrous root and surface area (Abdel-Haleem et al. 2011)

SA_Gm06, TRL_Gm06, RDL3_Gm07 Improve root growth and length (Prince et al. 2015)
TRL_Gm08, LRN_Gm08 Improve lateral root numbers (Manavalan et al. 2015)

Chickpea Ca-AFP Improve root growth and biomass (Kumar et al. 2019)
RLD4, RLD6, RDWR4 Improve root length and surface area (Jaganathan et al. 2015)

Common bean SIN1 Improve lateral root growth (Battaglia et al. 2020)
Brg1.1, Brg5.1, Brg5.2 Basal root angle (Liao et al. 2004)

Cowpea Brg10, RD1, MW6, WA10 Improve root diameter and basal root angle (Burridge et al. 2016a, b)
Lotus japonicus LjHAR1 Improve root structure (Buzas and Ã 2007)

LjNPF2.9 Improve root growth and biomass (Sol et al. 2019)
MAMI Improve root growth and development (Volpe et al. 2013)

Alfalfa Micro-RNA166 Improve root development (Boualem et al. 2008)
SUNN Improve root elongation and growth (Schnabel et al. 2005)
LATD Improve root growth and development (Bright et al. 2005)
Micro-RNA160 Involve in root growth (Bustos-sanmamed et al. 2012)
NIP/LATD Improve root architecture (Harris and Dickstein 2010), 

(Yendrek et al. 2010)
CEP1 Improve lateral root growth (Imin et al. 2013)
CDC16 Improve lateral root growth (Kuppusamy et al. 2009)
NOOT/COCH Improve root growth and development (Couzigou et al. 2012)
CRA2 Involve in root growth (Huault et al. 2014)
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Fig. 1  Improved root architecture for better N acquisition. A Dia-
grammatic representation of modified root architecture for enhanced 
N uptake and symbiotic host–microbe interactions in response to 
N availability. B Signalling pathways control LR initiation, emer-

gence, and elongation in response to low NO-3 or N-deficit response. 
Blunted lines and arrows represent interactions that are either nega-
tive or positive
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area, and dense root hair and significantly improved the fre-
quency of root hairs attachment of rhizobia (Li et al. 2020).

The auxin biosynthesis TAR2 gene  regulates low N-medi-
ated reprogramming of root architecture in arabidopsis (Ma 
et al. 2014), supporting the vital role of auxin in regulat-
ing root architecture in response to N accessibility. Despite 
the evidence from the literature that several signalling path-
ways link soil N accessibility and plant N status to root 
structure (Fig. 1B; Walch-liu et al. 2005; Zhang et al. 2007), 
only a few genes were observed to play a role in this pro-
cess. For example, in arabidopsis, plasma membrane proton 
pump along with CLE peptide, AHA2 and CLV1 regulate the 
response of root growth to N availability (Araya et al. 2014). 
Besides these mechanisms, NRT1.1 also signals to activate 
gene expression of a MADS-box transcription factor ANR1 
to promote LR elongation in response to local  NO3

– supply 
(Remans et al. 2006a). The induction of NRT2.1 and poten-
tially ANR1 gene expression occurs downstream of  NO3

– and 
NRT1.1-induced  Ca2+ signalling, promoting the nuclear 
localization of the transcription factor NLP7 (Fig. 1B; Krapp 
et al. 2014; Zhang et al. 2020). In Lotus japonicus, MAMI 
gene is evolutionarily relevant to GARP transcription factor 
aided in root development (Volpe et al. 2013). Large number 
of genes have been identified which are involved in regulat-
ing legume nodulation and root architecture remodelling. 
For example, LjHAR1 in Lotus japonicas and SIN1 in com-
mon bean play an essential role in root and nodule devel-
opment (Battaglia et al. 2020). Furthermore, many genes, 
including LATD (Bright et al. 2005), SUNN (Schnabel et al. 
2005), LATD/NIP (Harris and Dickstein 2010; Yendrek et al. 
2010), NOOT/COCH (Couzigou et al. 2012), microRNAs 
(miRNA160/166) (Boualem et al. 2008; Bustos-sanmamed 
et al. 2012), and genes encoding cell cycle proteins (cell 
division cycle 16/CEP1/CRA2) were identified, which 
affect the growth and development of roots and nodules in 
Medicago truncatula (Kuppusamy et al. 2009; Huault et al. 
2014). Imin et al. (2013) reported that MtCEP1 expression 
was up-regulated under N-deficit conditions and MtCEP1 
overexpression causes the inhibition of LR development in 
Medicago truncatula, showing that MtCEP1 could nega-
tively regulate LR development under N starvation. Moreo-
ver, RNA sequencing results revealed that MYB, bZIP, and 
WRKY transcription factors and SUPERROOT2 and LOB29 
homologs may act downstream of MtCEP1.

In addition, microRNAs also have role in response to 
nutrient deficiency stress. In arabidopsis, two microRNAs, 
miR393, and miR167, were reported to regulate AFB3 
(miR393) and ARF8 (miR167)  adjust the changes in root 
architecture to cope with the changes in N supply (Vidal 
et al. 2010). In soybean, miR172 regulates root nodula-
tion (Yan et al. 2013). Furthermore, an exogenous appli-
cation of synthetic miPEP172c has been proven to stimu-
late actual miR172c expression, increases the number of 

formed nodules (Couzigou et al. 2016). Though role of 
miRNAs in the regulation of nodulation has been examined 
in previous studies; however, a link between nodulation and 
N status in legumes has yet to be defined. This is a novel 
area of research, and the detailed function of miRNAs in 
regulating root structure remains to be explored.

Improvement of Root Architecture 
Remodelling Associated with Symbiosis

Globally, more than 80% of plants including agricultural 
crops  colonized through arbuscular mycorrhizal fungi 
(AMF) (Gianinazzi-Pearson et al. 1995). They expand the 
ability of roots to excavate necessary micro- and macro-
nutrients from the soil and establish a symbiotic relationship 
that can significantly promote plant growth. In symbiosis, 
hyphae pass through the root’s cortical cells to form well-dif-
ferentiated arbuscules and exchanges minerals with the host 
root and AMF (Fig. 1A; Parniske 2008). Another crucial step 
in the symbiotic relationship is to promote the acquisition of 
N and  formation of legume nodules, where rhizobia fix N 
and provides plants with N-containing organic compounds. 
The first symbiosis event is just an interaction of chemi-
cal signals between bacteria and roots. Afterwards, bacteria 
attach to the roots, potentially cause hairs to curl, and thus 
produce colonies and form N-fixing nodules (Fig. 1A) (Old-
royd and Downie 2008). Studies show that AMF coloniza-
tion of deep root soybean genotypes were more significant 
under low phosphorus, and the nodulation effect was better 
than that of shallow root genotypes under high phosphorus 
conditions (Wang et al. 2011). These results may suggest 
that the root architecture is linked in forming a symbiotic 
relationship between root rhizobia and AMF.

Under low nutrient supply, there are two types of root 
architecture modifications associated with rhizobia or AMF 
(Fig. 1A). In type I, AMF promotes root growth, improves 
density and length of LR, and increases the dry weight of 
roots (Berta et al. 1995; Yu et al. 2015). In type II, root-
rhizobium symbiotic association, like in soybean infected 
by AMF, inhibits root growth with reduced total root length, 
surface area, and root volume (Wang et al. 2011). This 
growth inhibition may be due to the carbon cost of nodule 
formation, maintaining  N2 fixation and the effect of AMF 
on the plant- or fungal species-dependent root architecture 
remodelling.

Further, the effect of AMF on plants  probably fluctuates 
by the changes in root architecture. For example, in rice, 
larger rather than thinner LR were mainly colonized through 
AMF (Gutjahr et al. 2009), and the mycorrhizal coloniza-
tion rate of taproots were higher than fibrous roots (Yang 
et al. 2015). These findings indicate that the taproots may be 
more suitable for mycorrhizal colonization than the fibrous 
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roots. Also, rhizobia-inoculated legumes could change their 
root architecture, producing smaller roots than un-inoculated 
plants (Yang et al. 2015). One possible explanation is that 
nodules compete with host roots for carbohydrates because 
nodules and N fixation consume more carbohydrates and 
nutrients (Aleman et al. 2009; Reich et al. 2013). There-
fore, in the nodulation process, better root growth and suf-
ficient supply of mineral nutrients may contribute to develop 
healthy nodules and, thus, improve final crops yield.

Hormonal Remodelling of Root Architecture 
in Legumes in Response to N

Plant endogenous hormones perform a decisive role in regu-
lating root growth and LR formation (Fig. 2; Vissenberg 
et al. 2020; Ubeda-Toma’s et al. 2020). Auxin and cytokinin 
were found to crosstalk antagonistically or synergistically 
during plant growth and development. For instance, auxin 
and cytokinin have a positive role in root/stem growth 
(Schaller et al. 2015; Liu et al. 2017). Contrastingly, both 
hormones have a hostile function during LR development.

Auxin is an important hormone that plays a noteable 
role in nitrogen-mediated root growth and regulates devel-
opmental processes in plants. A high N level is assumed 
to decrease the local auxin accumulation, suggesting that 
auxin is a central element in the shoot-root signal of N avail-
ability (Okushima et al. 2011). Higher shoot N levels are 
believed to inhibit shoot-root auxin transport, resulting in 
lower LR numbers in arabidopsis (Reed et al. 1998; Forde 
2002). However, studies on Medicago truncatula show that 
higher N levels in the shoot have improved the auxin shoot-
root transport (Jin et al. 2020). This response was further 
emphasized by the sunn-1 Medicago mutant, which has 
insensitive auxin shoot-to-root transport regardless of N con-
centration. In sunn-1, no correlation was observed between 
LR regulation and N-mediated auxin transport. However, 
SUNN-mediated auxin shoot-root movement only applies 
to nitrate-dependent LR remodelling but not in nodulation, 
indicating that auxin-mediated N regulation of nodule acts 
locally in the root (Jin et al. 2020). Auxin-mediated root 
growth also includes interaction with other hormones, such 
as ethylene.

Ethylene, a gaseous phytohormone, is a positive regu-
lator of roots and engages in local nitrate-mediated root 
development. In many plant species, a higher nitrate level 
promotes root-ethylene  progression (Caba et  al. 1998; 
Tian et al. 2009). On the other hand, high ethylene limits 
LR development and nodule formation, whilst low ethyl-
ene level improves the LR growth and nodulation (Fig. 2; 
Nukui et al. 2000; Oldroyd et al. 2001). Many rhizobia spe-
cies limit localized ethylene by producing ethylene precur-
sor or creating aminocyclopropane deaminase, which breaks 

down aminocyclopropane to promote nodulation response 
(Ma et al. 2002). Additionally, ethylene imparts positional 
control of nodulation because nodule formation is favoured 
by higher ethylene levels in the opposing phloem poles 
(Heidstra et al. 1997). The regulation of nodules and LR 
by ethylene, most likely to occur through the regulation of 
cell cycle pathways (Dan et al. 2003; Spadafora et al. 2012). 
Ethylene influences the cell cycle by interacting with cyto-
kinin, which is also involved in nitrate-mediated root devel-
opment (Spadafora et al. 2012). Cytokinin, another crucial 
plant hormone that regulates the cell cycle and mediates N 
status between roots and shoots via the phosphorelay path-
way (Sakakibara et al. 2000). The cytokinin synthesis in 
N-starved roots is improved by nitrate supply, which goes 
into the shoots and signals the N status in roots. Cytokinin is 
moved back to  roots to signalling the low N level in shoots 
as shoots N supply decrease (Sakakibara et al. 2000; Ruffel 
et al. 2011). Cytokinin acts directly on LR founder cells to 
inhibit LR initiation (Fig. 2; Li et al. 2006; Laplaze et al. 
2007). However, higher cytokinin levels stimulate LR elon-
gation once LR differentiation occurs (Li et al. 2006). Elon-
gation of LR is also triggered via higher nitrate; it could be 
fascinating to study further nitrate-cytokinin crosstalk during 
LR formation. In legumes, exogenous cytokinin application 
triggers several genes related to nodulation, as cytokinin acts 
as an upstream component of the nodule formation pathway 
(Fang and Hirsch 1998; Gonzalez-rizzo et al. 2006). Accord-
ing to studies, Medicago and Lotus cytokinin mutants had 
diminished nodule formation, whereas mutants with repaired 
function showed increased nodule formation (Gonzalez-
Rizzo et al. 2006; Murray et al. 2007; Tirichine et al. 2007).

Approaches for Improvement of low N 
Tolerance

Recent advancements in plant biotechnology could provide 
a way to identify genomic regions possessing natural genetic 
variations (NGV) and transform these targeting alleles into 
new elite breeding lines to generate NUE lines. QTLs asso-
ciated with root architecture systems (RSA) have also been 
identified in many major legume crops, including soybean, 
chickpea, lentil, and alfalfa (Abdel-Haleem et al. 2011). 
Some QTLs/genes could have lost during domestication pro-
cesses, maybe due to linkage with negative loci or a pleio-
tropic effect on yield. It is therefore necessary to carry out 
a fine mapping that may investigate the precise cause of the 
adverse impact on the yield, caused by pleiotropy influence 
or linkage with any other adverse loci. For that, a sizeable 
segregant population can be used to break the tight linkage 
amongst them. Furthermore, functional characterization of 
these genes using NGV could be an appropriate technique 
to thoroughly understand the physiological and molecular 
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Fig. 2  Hormonal regulation of root development and current under-
standing of hormones interactions. The active  involvement of hor-
monal-mediated signalling in controlling all crucial  aspects of root 

development,  elongation, differentiation, and cell division can be 
seen below. Hormonal networks are colour coded (Red; auxin; Green; 
ethylene; Black; cytokinin) (Color figure online)



Journal of Plant Growth Regulation 

1 3

pathways of stress adaption mechanisms to improve N-use 
efficiency in legumes.

Novel high-throughput genotyping and phenotyping 
approaches have the potential to monitor RSA and are 
indispensable for enhancing a better understanding of N-use 
efficiency. These field-based, cost-effective approaches have 
recently been utilized in some major field crops such as 
maize, wheat, and rice for phenotyping of RSA (Trachsel 
et al. 2011; York and Lynch 2015; Richard et al. 2015; Wis-
suwa et al. 2016) and also in some legume species, namely 
cowpea, common bean, and soybean (Manavalan et al. 2015; 
Prince et al. 2015). Furthermore, the efficiency and accuracy 
of RSA phenotyping can be accelerated by adopting high-
throughput image analysis through digital imaging of root 
traits (DIRT) (Das et al. 2015).

In the  past decade, legumes were considered 
amongst  minor crops with limited  genomic resources. 
However, as sequencing technology has improved, the sce-
nario for legume crops has entirely transformed, and they 
now belong to a group of crops that are rich in genomic 
resources. This has resulted in a new initiative to enhance 
the world food production by breeding legumes, which is 
mainly based on genomic-assisted breeding (GAB) pro-
jects. Marker-assisted selection (MAS) and genomic-based 
selections are the most prevalent methods in legumes breed-
ing (Pandey et al. 2016). The MAS technique can effec-
tively improve traits controlled by only one or two genes. 
But, MAS is not considered suitable for complex traits as a 
genomic technique. In comparison, genomic-based selection 
has recently been applied to improve complex breeding traits 
due to its efficiency.

Breakthroughs in high-precision genotyping and pheno-
typing have allowed a more accurate selection of targeted 
genotypes and reduced the breeding cycle time by eliminat-
ing unnecessary phenotyping observations. Genomic selec-
tion technique integrates the minor and massive impact on 
genetic factors, and it could be advantageous for speeding 
effective selection gain. Additionally, cost-effective geno-
typing has created a diversified gene pool in legume crops, 
which is crucial for breeding new genetic traits (Jain et al. 
2013). With emerging gene-editing tools like the CRISPR/
Cas9 system, plant scientists have a better chance of reach-
ing their goals, especially for the specific traits they want 
to change (Jacobs et al. 2015; Sun et al. 2015). CRISPR/
Cas9-mediated genome editing has been reported in Lotus 
japonicus (Wang et al. 2016), Vigna unguiculata (Ji et al. 
2019), Medicago truncatula (Meng et al. 2016), and Gly-
cine max with some desirable results (Cai et al. 2015; Sun 
et al. 2015). So, this new revolution in genome editing could 
modify RSA-related alleles to enhance their functionality 
in the required breeding environment. With these advanced 
genomic sequences, a massive database for various legume 
crops has been generated to identify critical regulatory 

genes, transcripts, and proteins, as well as gene families 
that contribute in stress tolerance. The availability of wider 
genetic diversity for major legume crops may smooth the 
way for digging out traits that can facilitate haplotype-
assisted breeding. Therefore, incorporating broader variabil-
ity of targeted traits from newly found genomic resources 
and technologies into advance breeding programmes would 
improve crop yield under nutrient-deficit conditions.

Advances in Breeding for low N Tolerance

Plants with a robust root system can extract nutrients from 
the soil efficiently and enable them to maintain normal 
growth in N-deficit conditions. For instance, root archi-
tecture of soybean is the key characteristic for sustaining 
yield in N-deficient environments. A better subsoil explo-
ration owing to stronger and deeper roots has been proven 
to enhance the yield of chickpeas under stress conditions 
(Kashiwagi et al. 2015). Several root traits, including root 
diameter, length, root volume, and surface area were studied 
to determine the importance of root architecture in sustain-
ing legume yield in a nutrient-limited environment (Fried 
et al. 2019). Root traits directly impact legume productivity 
under N-deficit conditions, suggesting that root architecture 
is a desired trait for further breeding initiatives. Although 
many recent studies have been conducted to identify QTLs/
genes and genetic diversity that influence root architecture, 
but fewer attempts to exploit these resources in breeding 
programmes. Efforts are currently being made to introduce 
the genomic region to various other elite legume lines (Pan-
dey et al. 2016). Legumes are revealed to have abundant 
genetic resources for root architecture. Unfortunately, these 
genetic resources have not yet been exploited in crop stress 
breeding programs to develop better lines. Thus, genotypes 
with a better and robust root system should be exploited to 
develop breeding lines with improved root architecture under 
nutrient-poor environments.

Conclusion and Future Prospects

Extensive and rapid root growth is crucial for plant sur-
vival in unfavourable environments, allowing plants to 
access nutrients and water more efficiently. Furthermore,  
root growth angle, which is connected to the extraction of 
water and nutrients; is a fundamentally significant charac-
teristic impacting the root system architecture of legumes. 
Therefore, a greater understanding of key genes associated 
with root structure and their control would allow researchers 
to use marker-assisted selection to develop new genotypes 
with robust root system. Significant progress has recently 
been made in understanding the genetic bases of the root 
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system in legumes, primarily through the identification of 
QTLs.

Many genes that regulate root architecture have been 
identified, but the molecular mechanisms of root hair 
formation, LR development, and root elongation are 
still poorly understood. With the rapid advancements in 
molecular approaches, including transcriptomics, genom-
ics, phenomics, and proteomics, researchers will be able 

to understand the underlying molecular mechanisms which 
regulate the roots system. A proposed approach to integrate 
the above-mentioned multidisciplinary strategies for enhanc-
ing legumes NUE is summarized in Fig. 3. Despite the fact 
that identifying the targeted QTLs with moderate effects is 
difficult, but cloning these genes using QTL analysis is an 
effective strategy to  select candidate genes for future breed-
ing programs. In addition, genome-wide association studies, 

Fig. 3  A proposed strategy for improving N acquisition and utilization by integrating multidisciplinary approaches
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often known as GWAS, have been proven a realistic and 
feasible way to find alleles of existing genotypes, which can 
be exploited in molecular breeding. Using these new strate-
gies, numerous QTLs have been identified comprising can-
didate genes for root development. Unfortunately, GWAS 
and QTL mapping have limitations in cloning genes which 
regulate the root development. The root phenotypes grown 
in agar/gel or hydroponic conditions do not precisely reflect 
their growth when sown in the soil; this constraint makes it 
tougher to perform root phenotyping in natural soil environ-
ment. Exploring the symbiotic relationship between micro-
organisms (rhizobia and AMF) and host plants would be 
another impotent approach to speed up NUE. Roots are the 
primary site of rhizobial and AMF infection; therefore, the 
root system may play a vital role in colonization. Although 
the molecular mechanisms of the rhizobial and AMF sym-
biosis and signalling transduction have been identified, com-
plex regulatory mechanisms and various other components 
are still unknown. To develop NUE cultivars, it is necessary 
to combine omics approaches with traditional breeding and 
effective agronomic strategies (Fig. 3). For a more precise 
assessment of root system, it is also necessary to investi-
gate the root architecture in complex and natural soils using 
cutting-edge techniques, like magnetic resonance imaging 
and X-ray microcomputed tomography.
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