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Abstract
Electrochemical water splitting is a promising pathway for effective hydrogen (H2) evolution in energy conversion and 
storage, with electrocatalysis playing a key role. Developing efficient, cost-effective and stable catalysts or electrocatalysts 
is critical for hydrogen evolution from water splitting. Herein, we evaluated a graphene-modified nanoparticle catalyst for 
hydrogen evolution reaction (HER). The electrocatalytic H2 production rate of reduced graphene oxide-titanium oxide-nickel 
oxide-zinc oxide (rGO–TiO2–NiO–ZnO) is high and exceeds that obtained on components alone. This improvement is due 
to the presence of rGO as an electron collector and transporter. Moreover, a current density of 10 mA/cm2 was recorded 
at a reduced working potential of 365 mV for the nanocomposite. The electronic coupling effect between the nanoparticle 
components at the interface causes the nanoparticle's hydrogen evolution reaction catalytic activity.
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1  Introduction

Global environmental degradation and reducing non-renew-
able energy resources enhance the need for renewable energy 
sources. Hydrogen is one such source that can replace fos-
sil fuels [1]. Electrochemical water splitting has received 
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immense attention among the various hydrogen production 
methods because of its high efficiency, mild conditions, 
low energy input, and ease of manipulation [2, 3]. An elec-
trochemical cell with water as an electrolyzer can produce 
hydrogen [4]. Noble metals, or platinum group materials, 
are currently the most efficient electrocatalysts for HER, but 
their scarcity and high cost make them unsuitable for large-
scale applications [5–7]. Exploring cost-effective alterna-
tives to platinum group catalysts is critical for making HER 
more widely available [8].

Over the last few decades, several semiconductors have 
been investigated as anodes for HER. Earth-abundant metal 
oxides have generated the most intense interest in intermedi-
ate bandgaps [9–11]. However, charge recombination, poor 
electrical conductivity, and slow oxygen evolution reaction 
(OER) kinetics impede anode performance. Various tech-
niques, including doping, morphology engineering, and sur-
face modification, have been investigated to address these 
limitations [12, 13].

These techniques provide a viable method for promot-
ing charge carrier mobility between different components, 
thereby improving composite separation and photoactiv-
ity [14, 15]. Significantly improved performance has been 
achieved by incorporating metal oxides [16–18]. Nonethe-
less, the most difficult problem is identifying more efficient 
metal oxide-based heterojunctions [19].

Nanoparticles were fabricated and used to build metal 
oxide heterostructured anodes in this paper. Because of the 
improved charge separation and strong interfacial interac-
tion, the rGO-TiO2-NiO-ZnO (GTNZ) composite demon-
strated improved electrochemical activity [20–22]. Reduced 
graphene oxide (rGO) acts as a passivation layer, preventing 
corrosion and improving catalyst performance [23]. On the 
other hand, titanium dioxide (TiO2) is regarded as the stand-
ard gold semiconductor in electrocatalysis because it has a 
suitable band structure and allows the overall water-splitting 
reaction to occur thermodynamically [24]. NiO acts as a 
water oxidation cocatalyst, suppressing the recombination of 
induced electron and hole pairs, resulting in increased cata-
lytic activity in the system [25]. ZnO generally has n-type 
conductivity, and the difficulty in preparing p-type to form 
stable p-n junctions limits its commercial application [26, 
27]. The nanocomposite demonstrated a superior current 
density of 10 mA/cm2 at a reduced working potential of 
365 mV vs RHE. This heterostructured anode's open circuit 
potential is higher than that of pristine metal oxides and 
superior to several other metal oxide-based photoanodes. 
The high and consistent response over 24 h confirms the 
heterostructure's good stability for hydrogen production.

2 � Methodology

2.1 � Chemicals Used

Zinc nitrate (98%), graphite (99% carbon basis), sodium 
borohydride (powder, ≥ 98.0%) and nickel nitrate (crystal-
ized, 99.9%) were purchased from SRL. Sodium hydrox-
ide (≥ 98.0%), nafion (~ 5% in a mixture of lower aliphatic 
alcohols and water), ethanol (95%), titanium isopropoxide 
(97%), acetyl trimethylammonium bromide (99%), and gla-
cial acetic acid (99%) and sulphuric acid (985–98%) were 
purchased from Rankem, India.

2.2 � Nanoparticles and Electrodes Preparation

The modified Hummer method produced graphene oxide 
(GO) by oxidizing graphite [28]. The quaternary composite 
was prepared using the sol–gel process. Titanium isopropox-
ide was hydrolyzed in the first step using glacial acetic acid 
(1–2) at 30 °C by adding 80 mL of ethanol. To achieve com-
plete homogeneity, the mixture was stirred for 20 min. In 
80 mL of deionized water, Ni(NO3)2 (0.1wt%) and Zn(NO3)2 
(0.1wt%) were ultrasonically dispersed. To deposit nickel 
oxide-zinc oxide (NiO–ZnO) onto the surface of TiO2 nano-
particles, 2 mL of 0.5 M Sodium borohydride (NaBH4) solu-
tion was added to the TiO2 nanoparticle suspension while 
continuously stirring at 30 °C. Continuous stirring at 50 °C 
for 10 h completed the TiO2–NiO–ZnO reaction. Graphene 
oxide (GO) suspension (40 mg) and acetyl trimethylam-
monium bromide (CTAB, 1 g) were mixed in 60 mL of 
ethanol for half an hour before placing in a 250 mL beaker 
and dropwise added into the above TiO2–NiO–ZnO solu-
tion. After complete hydrolysis, a gelly mixture was formed. 
The product was dried in an 80 °C vacuum oven overnight. 
The gel material was then calcined in air for 5  min at 
500 °C to produce a mixed oxide nanocomposite. The same 
method was used to create rGO–TiO2, rGO–TiO2–NiO, and 
rGO–TiO2–ZnO nanocomposites, as described above.

A homogeneous catalytic ink was prepared to make elec-
trodes by ultrasonically mixing 20 mg of nanopowder, 2 mL 
of ethanol, and 20 µL of Nafion solution. The working elec-
trode was cleaned with distilled water and polished with 
aluminium oxide powder. Then, 10 µL of catalytic ink was 
uniformly coated on the surface of glassy carbon electrodes 
(GCE) and dried at ambient conditions.

2.3 � Characterization of Nanoparticle

The crystal phases were collected using an X-ray diffrac-
tometer (XRD-6100, LabX, SHIMADZU Ltd., Japan). A 
Thermo Nicolet Nexus 670 FTIR spectrometer (KBr pellets) 
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was used to investigate and confirm the molecular struc-
ture. The surface structure of the nano-catalysts was exam-
ined using a scanning electron microscope (SEM) (Hitachi 
S-4800, Japan).

2.4 � Electrochemical Characterization

The electrochemical analysis was carried out on a three-
electrode gamry potentiostat. Graphite and Ag/AgCl elec-
trodes were used as the counter and reference electrodes. 
The glassy carbon was coated with the prepared nanopow-
der. All electrochemical measurements were carried out in 
electrolytes containing 0.5 M H2SO4. To obtain the polariza-
tion curves, linear sweep voltammetry (LSV) experiments 
were carried out from 0–1.4 V (vs RHE) at a sweep rate of 
0.5 mV s−1.

3 � Results and Discussions

3.1 � physical Characterizations

Figure 1 depicts the XRD pattern of rGO, TiO2, NiO, ZnO 
and GTNZ nanocomposites. The TiO2 nanoparticles were 
represented by major XRD peaks at 2θ of 25.4°, 48°, 55.2°, 
and 62.8° [29]. Diffraction peaks revealed the formation of 
crystalline NiO onto the GTNZ at 2θ values of 37.1°, 62.8°, 
and 75.4°, and peaks revealed peaks of ZnO at 31.8°, 34°, 
36.9°, 47.7°, 56.7°, 62.95°, and 68° correspond to crystal 
planes of the hexagonal. [30] Few peaks on the rGO surface 
indicated that the carbonaceous surface was well-exfoliated 
and covered by other metal oxides. GTNZ diffraction peaks 
were sharper, indicating better crystallinity.

The FTIR spectra of individual nanoparticles and 
the composite are shown in Fig. 1b. The highest band at 
3550–3350  cm−1 is typical of OH stretching and is pri-
marily attributed to surface-adsorbed water. Several 
bands can be seen in the 1750–850 cm−1 range. Ti–O and 

Ti–O–Ti stretching vibration modes are assigned peaks 
at 1450–1400 cm−1 and below 850 cm−1. Metal–oxygen 
(Zn–O, Ni–O) peaks are detected at 443 cm−1. At around 
1386 cm−1, a bending vibration peak can be seen as adsorbed 
water molecules. NO3

−'s characteristic vibration causes a 
distinct absorption peak at 1612 cm−1. The absorption peak 
at 2348 cm−1 is caused by oxygen–oxygen bonds (O–O). 
Furthermore, a broad peak appears at a high wave number 
of 3450 cm−1, representing the stretching vibration of O–H. 
The absorption band is caused by water generated by metal 
hydroxyl group bonds and hydrogen bonds [31, 32].

The SEM images in Fig. 2 show GO with a smooth sur-
face and numerous folds, but they became rougher after 
TiO2, NiO and ZnO nanoparticles were anchored on rGO 
layers. Furthermore, the presence of TiO2, NiO and ZnO 
nanoparticles on rGO decreased the number of folds and 
increased the interlayer distance between the layers.

Figure 3f represents the EDS spectra of elements in the 
composite. The marked peaks represent the elements, and 
the remaining peaks represent impurities.

3.2 � Electrochemical Performance

Figure 3a depicts the HER activity of GTNZ on GCE meas-
ured using LSV at a scan rate of 5 mV s−1 in 1 M NaOH, 
0.5 M H2SO4 and DI water. Due to its insignificant par-
ticipation in HER activity, GCE was chosen for HER. The 
study discovered that HER evaluation in 0.5 M H2SO4 pro-
duced better results than basic and neutral electrolytes. The 
GTNZ NPs have an HER onset potential of 365 mV vs RHE, 
which is accompanied by visual detection of the formation 
of H2-gas bubbles near the electrode surface. For further 
investigation, 0.5 M H2SO4 was used as it produced more 
hydrogen compared to other electrolytes.

The HER performance of the quaternary composite 
components was also evaluated (Fig. 3b and c). The quar-
ternary composite was observed to have low over poten-
tial compared to individual components and other possible 

Fig. 1   a XRD pattern b FTIR 
spectra
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Fig. 3   HER performance a dif-
ferent electrolytes, b Individual 
components, c nanocompos-
ites d comparison with Pt/C 
electrode
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composites (Table 1). Other components require signifi-
cantly higher HER overpotentials to achieve 10 mA cm−2, 
indicating that the GTNZ NPs have distinct HER catalytic 
activity. For a current density of 10 mA cm−2, GTNZ NP 
has the lowest 365 mV compared to other catalysts. In acid 
media, this HER performance is comparable to the bench-
mark Pt catalyst (20% Pt/C) supported on GCE at the same 
catalyst loading (Fig. 3d).

The catalyst's stability was also tested under fixed cur-
rent conditions (Fig. 4a). The stability test was set up using 
chronoamperometry at 365 mV for jHER = 10 mA cm−2. 
GTNZ is found to be stable for an extended period of 4 h 
at a constant current (10 mA cm−2). During the first hour 
of electrolysis, no metal dissolution was observed. A trace 
amount of GTNZ was detected in the electrolyte after 4 h 
of electrolysis, corresponding to only 2 wt% GTNZ in the 
fresh electrode.

To investigate the HER reaction kinetics, Tafel plots were 
generated from the LSVs, as shown in Fig. 4b. The GTNZ 
has a much lower slope of 56 mV dec−1 in acidic media than 
rGO NP (118 mV dec−1), TiO2 NP (89 mV dec−1), NiO NP 
(73 mV dec−1), and ZnO NP (96 mV dec−1). This slope 
value also differs significantly from previously reported 

GT-based catalysts, which typically exhibit Tafel slopes 
greater than 80 mV dec−1 and approaches Pt/C electrodes 
(Tafel slope: 50 mV dec−1), implying that the HER at the 
GTNZ NP is a Volmer-Heyrovsky HER mechanism.

Furthermore, GTNZ was used as both the anode and 
cathode in a whole-cell water electrolyzer. The GTNZ cell's 
polarization curve is recorded. The GTNZ NP cell was mon-
itored for stability for 24 h, as shown in Fig. 5a. Through-
out the experiment, the cell was extremely stable. We also 
looked at how the temperature of the environment affected 
HER performance. The experiment was conducted at five 
different temperatures: 35, 45, 55, 65, and 75 °C. The best 
results were obtained at room temperature. There was no 
correlation found for elevated temperatures (Fig. 5b).

Electrochemical impedance spectroscopy (EIS) data were 
collected at 1.23 Vs. Ag/AgCl in the sweeping frequency 
of 0.1 Hz–100 kHz. The blank electrode had an Rct ~ 700, 
while the GTNZ electrode had 470. The linear part (diffu-
sion impedance) of the GTNZ electrode was less than that 
of the blank electrode combinations at lower frequencies, 
indicating that the diffusion process was taking place with 
much lower resistance, thereby improving mass transporta-
tion (ions from the bulk to the electrode surface). It confirms 
that the GTNZ electrodes have more electron conduction 
pathways and reactive surfaces, which results in better elec-
trolyte diffusion on the electrode surface (Fig. 6a).

Figure 6b represents the SEM image of GTNZ after 
hydrogen evolution reaction. Furthermore, it was observed 
that as a result of hydrogen evolution reaction, the number 
of folds were decreased and increased the interlayer distance 
between the layers compared to Fig. 2e.

4 � Conclusion

In conclusion, this study shows that using GTNZ as an 
electrocatalyst can produce previously unseen synergis-
tic effects in electrocatalysis. This method overcomes the 

Table 1   HER performance of components and composites

Sl. No The catalyst used for HER 
activity in 0.5 M H2SO4 solu-
tion

Ƞ (Over 
potential in 
mV)

Tafel 
Slope 
(mV/dec)

1 rGO 1040 118
2 TiO2 689 89
3 NiO 986 73
4 ZnO 1038 96
5 GT 884 130
6 GTN 926 102
7 GTZ 739 136
8 GTNZ 365 56

Fig. 4   a stability analysis b 
Tafel plots for all nanoparticles
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practical limitation of low HER activity on mixed oxides 
for overall water electrolysis. Furthermore, this electro-
catalyst is highly capable of preserving catalyst structure 
and activity during power outages, making it ideal for 
a water electrolyzer powered by intermittent renewable 
energy sources. We hope this catalyst design will aid in 
developing other multimetallic nanoparticle electrocata-
lysts with varying compositions and structures and distinct 
interfaces for use in various electrolytic applications such 
as carbon dioxide reduction reactions and nitrogen reduc-
tion reactions.
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