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ABSTRACT
Control chart is a popular technique that is widely used in statistical process control to identify
any possible deviations from a stable state of a process. Shewhart charts are famous for identi-
fying larger shifts, while cumulative sum and exponentially weighted moving average control
charts are well known for identifying smaller shifts in process parameters. This study examines
the performance of a sequential-based EWMA (namely SEWMAÒ) chart for observing the location
of a normally distributed process. The performance of SEWMAÒ is oberved by using several over-
all run length properties (like average, median and standard deviation). The comparative study
reveals that the overall performance of the proposed design is better than the existing counter-
parts.Moreover, the superiority depends on the choice of the designparameters of the proposed
chart. A real-life data set from a steel rod manufacturing industry were considered to show the
real-life illustration of the proposed design.
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1. Introduction

Statistical process control (SPC) is a mechanism that
helps in monitoring the stability of an ongoing process
to produce quality products. It comprises extremely
powerful tools such as pareto chart, cause and effect
diagram, fishbone diagram, flow diagram and control
chart (cf. Montgomery [1]). SPC is vital for the reputation
of a manufacturing industry that relies on the quality of
products in aglobalmarket competition.Within the SPC
toolkit, control charts are themost important tools used
for observing and detecting the special cause variations
and ultimately enhancing the performance of the prod-
uct (cf. Shewhart [2]). In order to monitor any ongoing
process, the use of apropriate control charting tech-
niques is essential to ensure the stability of the process
and to provide several benefits such as reduction in cost
and time and increase in efficiency of the industrial pro-
cess. Shewhart charts are well known for the detection
of large shifts in process parameterswhile exponentially
weighted moving average (EWMA) (cf. Roberts [3]) and
cumulative sum (CUSUM) charts (cf. Page [4]) aremostly
used for the detection of small to moderate shifts. In
this study, we introduce an efficient sequential-based
EWMA chart which is more sensitive to shifts in process
location. Several authors worked to enhance the perfor-
mance of classical EWMA chart (cf. Yang et al. [5]). The
aim of this article is to design an EWMA chart based on
a sequential testing algorithm to enhance the perfor-
mance of the traditional EWMA chart and to increase its
efficiency over the classical setup.

In the existing literature, there are mainly two forms
of charts where sequential process monitoring is used.
That is, some SPC practitioners adopt sequential sam-
pling in their study, while others implement SPRT con-
trol charts for onlinemonitoring. Both approaches have
an advantageous mechanism for quality control charts
for the monitoring of process parameters. According
to Matheson [6], the probability of identifying the shift
using sequential sampling is more than or equivalent
to the likelihood of identifying the shift using a ran-
dom sampling technique in-control charts as it needs
fewer number of samples at a smaller cost. Green [7]
highlighted that there is little advantage to sequential
sampling if the cost of sample collection is similar to the
cost of sample analysis. That is, if sequential sampling
is to be more economical than many used approaches,
less time should be needed to take a sample in the field
than to analyse it in the laboratory. Sequential sampling
is appropriate when the time required to gather at least
one observation is a very small interval. In this way, it is
likely to take numerous samples successively at a sam-
pling point. A useful discussion in this context may be
seen inGreen [8] and the references therein. As a natural
extension of the ideas from sequential analysis, sequen-
tial sampling methods have been widely used in the
area of acceptance samplingbut not somuch in process
monitoring (cf. Stoumbos and Reynolds [9, 10]).

The sequential probability ratio test (SPRT) chart is
useful where testing is very costly or difficult. Peng and
Reynolds [11] applied sequential sampling using gen-
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eralized likelihood ratio (GLR) charts. Steiner at el. [12]
designed the exact expression for the Wald-SPRT and
CUSUM design. Various authors also worked on single
directional process monitoring using sequential sam-
pling (SS). Reynolds [13–15] and Reynolds et al. [16,
17] designed sequential sampling-based control charts
which were very effective for detecting changes in a
singledirection in theprocess,with some tuningparam-
eters specified. Reynolds and Arnold [18] constructed
a one-sided EWMA design for VSI following a sequen-
tial sampling algorithm. Zhang et al. [19] designed an
EWMA chart under a sequential sampling scheme for
single directional process monitoring, and this design
was more sensitive to single direction shift detection
in the process. Stoumbos and Reynolds [20] designed
SPRT chart for process location which was more effi-
cient and highly effective with administrative benefits.
Ou at el. [21] designed an SPRT location chart using sev-
eral sampling intervals. Ou at el. [22] further enhanced
the performance of SPRT location chart. Xu and Jeske
[23] used SPRT technique to deal with the INAR model.
Godase and Mahadik [24] introduced an SPRT disper-
sion chart.

Keeping in view of several dynamic aspects of SPRT
and sequential sampling, we intend to design a sequen-
tial algorithm-based EWMAchart, named SEWMAÒ. This
scheme uses two pairs of control limits as follows in
SPRT. The novelty of this article is to propose a more
flexible EWMA control chart for monitoring the pro-
cess location by employing an SPRT decision algorithm.
The rest of this paper is organized as follows: Section 2
provides the design structure of the proposed sequen-
tial EWMA chart. Section 3 demonstrates procedural
flow for the computation of run length measures. The
performance evaluation and comparative analysis are
provided in Section 4. A real-life application concern-
ing the monitoring of breaking strength of steel rods is
presented in Section 5. Finally, Section 6 lists the main
finding and recommendations of the study.

2. Design structure of the proposed SEWMAÒ

chart

This section provides the design structure of the pro-
posed chart. For the rest of the current article, we will
denote the proposed chart as a SEWMAÒ chart. In the
SPRT technique, observations are taken ingroupsof one
ormoreobservations. If the single observation falls in an
indecision zone then another observation is taken until
a decision is achieved. For the sakeof simplicity,wehave
used individual observations for this study; however,
subgroups of different sizes may also be considered on
similar lines (cf. Wald [25]).

Let X1, X2, X3 . . . . . . . . . ..,Xn be a set of indepen-
dent individual observations, selected from a specific
probability distribution (say normal distribution). An

individual observationmay be classified into three non-
overlapping regions categorized as

Region I: the acceptance region (where the process is con-
sidered to be in-control);

Region II: the resampling region (where the process needs
to be resampled);

Region III: the rejection region (where the process is con-
sidered to be out-of-control).

For a single observation, let α be the probability of
falling in the rejection region and γ be the probability of
falling in the indecision region. Thenunder a resampling
setup, the respective probabilities for the three regions
are given as shown in Figure 1.

Let us denote Rs as the resampling region. Now
based on observed sample values Xjs we may define a
plotting statistic, say Zj, of the SEWMAÒ chart as follows:

Zj = λgIj + (1 − λg)Zj−1, j = 0, 1, 2, . . . , (1)

where E[Z0] = μ0 and 0 < λg ≤ 1. Also for compact-
ness, we can alternatively denote Ij as follows:

Ij =
{
Xj if Xj /∈ Rs

Xj +
∑Nj

k=1 Yj,k if Zj ∈ Rs′
(2)

whereNj is the number of data points sequentially sam-
pled in the jth monitoring batch, k is just the counter
for the sequential sampling, and Yj,k is the resampled
point in the kth sequence of the jth monitoring batch.
Or alternatively, we can denote Ij as

Ij = Xj +
Nj∑
k=0

Yj,k , when Xj /∈ Rs.

We note that the probability of a sample Zj ∈ Rs is
given by P(Zj ∈ Rs) = γ . Samples will be drawn at
each stage j until Zj /∈ Rs. Moreover, for simplicity
of derivations and for finding the first two centred
moments of Zj, we will use the transformation λ∗

g =
1 − λg(check Appendix for details). It is to be men-
tioned that λg is the smoothing or the weighting factor
(0 < λg ≤ 1) and it may take varying values depending
on how frequently the monitoring statistic is falling in
the indecision region. In other words, it may be used
to cater to the sensitivity of the shifts that might occur
in a process. The initial value of SEWMAÒ statistic is
usually set to be Z0 = μ0. Moreover, X and Y are inde-
pendently distributed random variables that follow the
normal distribution with μ0 as mean and variance σ 2

0 .
The mean and variance of SEWMAÒ statistic are

μZi = μ0

(
1 + 1

1−γ

)
σ 2
Zi

=
(
1 + 1

1−γ

) (
1−λ∗

g
1+λ∗

g

)
σ 2
0 + γ

(1−γ )2

(
1−λ∗

g
1+λ∗

g

)
μ2
0

⎫⎬
⎭ .

(3)
It is to be mentioned that the abovementioned expres-
sions are asymptotic versions of mean and variance of
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Figure 1. A graphical display of decision regions under sequential algorithm.

Zj (cf. Appendix). The details regarding the derivations
of these expressions can be seen in the Appendix.

The control limits of the proposed SEWMAÒ control
chart are in the form of two pairs of upper and lower
control limits because of the three regions (as indicated
in Figure 1). Using the expressions given in Equation (3)
and the splitted regions in Figure 1, the control limits of
the proposed SEWMAÒ chart are defined as

LCL2 = μZj − L2σZj
UCL2 = μZj + L2σZj

}
LCL1 = μZj − L1σZj
UCL1 = μZj + L1σZj

}
⎫⎪⎪⎬
⎪⎪⎭ , (4)

where LCL1, UCL1 determine the out-of-control and
LCL2, UCL2 determine the in-control regions, respec-
tively, and accordingly the inner region (i.e. the area
between UCL1 & UCL2 and LCL1 & LCL2) corresponds
to the indecision region where we need to resample
(cf. Figure 1). It is to be mentioned that when the mon-
itoring statistic falls in the indecision region, we con-
tinue resampling and keep updating the plotting statis-
tic (using the new sample information) until it falls in
one of the decisive regions (i.e. Regions I or III). The
quantities L1 and L2 are the control limit coefficients
that are used to adjust the in- and out-of-control lim-
its to achieve the desired in-control average run length
(denoted by ARL0). These coefficients must hold the
condition that L1 ≥ L2.Note that for L1 = L2, the perfor-
mance of SEWMAÒ chart is exactly the same as the usual
EWMA chart.

i. Percentile Adjustment for Indecision zone

In the sequential sampling setup, it is important to
adjust the indecision zone in order to achieve the desir-
able properties corresponding to a prespecifiedARL0. In
this study, we adjust the width of the indecision region,

according to the following relation

L2 = L − ÒL, (5)

where L is the control limit coefficient (at a prespecified
ARL0) for the SEWMAÒ chart, which matches its perfor-
mance with the EWMA chart (i.e. L1 = L2 = L), and Ò is
the factor used to adjust the width of the decisive zone,
0≤ Ò ≤. For Ò = 0, L1 = L2 = L, the performance of the
SEWMAÒ chart is exactly the same as the proposed
SEWMAÒ chart.

2.1. Decision criteria

Using Equations (3)–(6), we compute the two pairs of
control limits for a fixed ARL0. For each new monitor-
ing sample, we calculate the plotting statistic Zj using
Equation (1) sequentially. If the plotting statistic Zj falls
in one of the decisive regions I or III, then we make the
decision accordingly. If Zj falls in the indecision region,
we continue resampling to update the plotting statistic
(using the new sample information), until it falls in one
of the decisive regions (i.e. Regions I or III). Figure 2 pro-
vides an exemplary charting display for the proposed
SEWMAÒ chart.

It is to be noted that: (i) the sensitivity of the regions
maybe controlled by thedesignparameters, namelyλg,
Ò, L1 and L2; (ii) for the sake of simplicity, we have used
λg = λ for each occasion where we needed to resam-
ple; (iii) classical EWMA chart is a special case of the
proposed chart when L1 = L2 = L.

3. Performance evaluation techniques

To assess the performance of the SEWMAÒ chart, we
have used different run length properties, such as the
average (ARL), themedian (MRL) and the standard devi-
ation of the run length (SDRL) distribution. ARL is the
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Figure 2. A charting display for the SEWMAÒ control chart.

frequently used measure to evaluate the performance
of control charts. ARL can be categorized into in-control
(IC) average run length (ARL0) and out-of-control ARL
(ARL1), defined as

ARL0: Average number of samples plotted on a control
chart until the first point goes outside the limits, when
the process is in-control (IC).

ARL1: Average number of samples plotted on a control
chart until the first point goesout of the limits, when the
process is out-of-control (OOC).

Similarly, MRL and SDRL can be defined based on an
in-control or out-of-control state of the process.

To examine the detection ability of the SEWMAÒ

chart, shifts are introduced in the in-control (IC) pro-
cess location say,μ0 and the OOC process mean level is
defined asμ1 = μ0 + δσ0, where δ refers to the amount
of shift.

These run length properties may be calculated by
using the following expressions (cf. Chakraborti [26],
Khaliq et al.[27])

ARL = Expected (RL) =
∫ +∞

−∞
(RL)f (RL)d(RL). (6)

SDRL =
√
E(RL2) − [E(RL)]2. (7)

MRL = p(RL ≤ m) = p(RL > m)

=
m∫

−∞
f (RL)d(RL) = 0.5. (8)

3.1. Algorithm for SEWMAÒ chart construction

In this subsection, we discuss how to construct the
SEWMAÒ chart via an algorithm. The following are

the necessary steps of the algorithm to achieve this
work.

(i) Draw a randomobservation fromanormal distribu-
tion with in-control mean μ0 and standard devia-
tion σ0. Without loss of generality, we used μ0 =
0 and σ0 = 1. Find the monitoring statistic for the
SEWMAÒ chart (using Equation (1)).

(ii) Select L1 = L2 = L and plot the monitoring statis-
tic (using the criterionmentioned in (2)) against the
control limits (given in Equation (4)), to achieve the
desired IC-ARL0.

(iii) Decide L2 using Equation (5) after selecting a level
of p. For a given specified L2, L1is then chosen to
achieve the desired ARL0.

We now discuss the simulation procedure to assess
the performance of the SEWMAÒ chart.

3.2. Algorithm for RL properties

Monte Carlo simulations are used to obtain the RL prop-
erties of the SEWMAÒ chart, following Quesenberry [28]
and Khaliq at el.[29]. The steps taken in the simulation
study are as follows.

(i) With the sequential charting algorithm described
in the previous subsection, construct the SEWMAÒ

chart.
(ii) For getting out-of-control RL, shifts are introduced

in the process mean level by plotting the moni-
toring statistic of the shifted samples against the
control limits (using the criterion mentioned in
Equation (2)). The OOC run length is computed as
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the number of samples plotted on the control chart
before the first point goes beyond LCL2 or UCL2.

(iii) The process is repeated 100,000 times to record RL
values of the proposed design.

(iv) Using the RL’s from step (iii) above, the ARL, MRL
and SDRL are computed as the mean, median and
standard deviations of these RLs respectively.

4. Performance evaluation and comparisons

In this section, we evaluate the performance of the
proposed SEWMAÒ chart at different levels of design
parameters λ, Ò, and ARL0, L1 and L2. The performance
of the proposed SEWMAÒ chart is compared with some
existing charts for efficient detection of shifts in the
process mean level. Tables 1–3 provide the RL proper-
ties of the proposed SEWMAÒ chart and the competing
charts such as EWMA, CUSUM and FIR-EWMA charts for
varying values of λ, Ò and δ. Moreover, Figures 1 and 2
provide a graphical comparison of the performance of
the proposed SEWMAÒ chart at varying levels of design
parameters.

4.1. SEWMAÒ performance analysis

This section is about the Run Length (RL) performance
of SEWMAÒ chart by varying Ò and λ. Several perfor-
mancemeasureswereused toobserve theperformance
of the proposed design, i.e. average, median and stan-
dard deviation (cf. ARL, MRL and SDRL). Tables 1 and
2 represent the ARL1, MRL and SDRL performance of
SEWMAÒ versus EWMA chart by varying λ and Ò. Here,
λ is the smoothing or weighting factor that has a sim-
ilar effect on the performance of the EWMA chart. The
Ò has a significant impact on the performance of the
SEWMAÒ chart. Here, Ò is control limits adjusting factor
(percentile) and it guarantees the better ARL1 perfor-
mance of SEWMAÒ chart. Several choices of Ò are 2%,
4%, 6%, 8%, 10% and 12%. It may be observed from the
tables that we have smaller ARL1, MRL and SDRL values
from SEWMAÒ than classical EWMA.

i. ARL1 Performance Analysis

Although both designs performed equally well based
on the ARL under the in-control situation, our proposed
design has better ARL1performance in the out-of con-
trol situations than the classical EWMA chart as it has
smaller ARL1 for all choices of Ò. As an illustration, con-
sider Table 2; EWMA chart shows ARL1 = 282 while
SEWMAÒ at Ò = 2%, 4%, 6%, 8%, 10% and 12% are
272.51, 264.29, 256.36, 173.4, 232.68 and 271, respec-
tively, for λ = .9 and δ = .2. That is, SEWMAÒ charts
have better ARL1 than classical EWMA chart. This per-
formance gain may be observed up to a process shift
of δ = 4. Similar ARL behaviour may be observed from
Tables 1 and 2. Figures 3 and 4 also support these
results.

ii. MRL Performance Analysis

SEWMAÒ not only have better ARL1but it also per-
formed well considering median RL properties. EWMA
and SEWMAÒ are equally efficient at Ò = 5%. However,
our design has smallerMRL values for small tomoderate
shift at Ò = 4%, 6%, 8%,10%, and 12%. Consider Table 2.
The MRL values of EWMA is 282.14 while for SEWMAÒ,
MRL values are 272.51 (2%), 264.29 (4%), 256.36 (6%),
173.4 (8%), 232.68 (10%) and 217.25 (12.5%). Further-
more, it may be observed from Tables 1 and 2, our
proposed design showed better MRL values up to shift
of δ = 1.75 at λ = 0.99, 0.5, 0.25 and 0.05.

iii. SDRL Performance Analysis

SEWMAÒ has smaller SDRL values than EWMA up
to δ = 3. SEWMAÒ outperformed the EWMA chart at
λ = 0.99, 0.5, 0.25 and 0.05 up to δ = 3. As an exam-
ple, consider Table 2. For δ = .25, our proposed design
showed SDRL values of 273.04 (2%), 261.04 (4%), 252.04
(6%), 171.883 (8%), 227.37 (10%) and 214.32 (12.5%)
while EWMA showed SDRL of 282.14. Similar SDRL
behaviourmay be observed fromTables 1 and 2. That is,
our proposed design has a smaller variation in RL than
the classical EWMA design.

4.1.1. General Comments
The proposed SEWMAÒ chart has better ARL, MRL and
SDRL performance than the classical EWMA design. The
proposed design is more efficient than the classical one
from small, moderate and larger shifts. In particular,
SEWMAÒ is more efficient than the EWMA chart when
Ò > 0.02 as may be seen in Figures 3 and 4. It is to be
noted that the SEWMAÒ reduces to the EWMA chart
when Ò = 0.

4.2. Comparative analysis of SEWMAÒ versus
EWMA, CUSUMand FIR-EWMA

This section is designed to show the comparative per-
formance of SEWMAÒ versus classical EWMA, CUSUM
and FIR-EWMA chart using several ARL0values. Table
3 demonstrates the ARL performance of SEWMAÒ

(Ò = 10% and 12.5%) against classical EWMA and
CUSUM design at ARL0 = 168, 400 and 500. Moreover,
Table 3 also presents the ARL performance of SEWMAÒ

(Ò = 10% and 12.5%) versus FIR-EWMA at ARL0. The
findings are as discussed below.

i. SEWMAÒ versus EWMA and CUSUM charts at
ARL0 = 168, 400 and 500.

Table 3 shows the ARL performance of SEWMAÒ

versus EWMA and CUSUM charts using ARL0 = 168,
400 and 500. It may be perceived that SEWMAÒ has
smaller ARL1 values than EWMA until a shift parameter
of δ = 2 while it has better performance than CUSUM
up to δ = 1.5. SEWMAÒ chart (Ò = 10% and 12.5%) has
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Table 1. RL properties of SEWMAÒ and EWMA (L1 = L2) charts for varying δ and Ò when λ = 0.05 and 0.25 at ARL0 = 370.

λ = 0.05 λ = 0.25

Ò 0 0.02 0.04 0.06 0.08 0.1 0.125 0 0.02 0.04 0.06 0.08 0.1 0.125
L1 0.2928 0.2952 0.2989 0.304 0.3117 0.3204 0.3318 0.9251 0.9427 0.9669 1.0075 1.0561 1.1222 1.227
L2 0.2928 0.2869 0.2811 0.2752 0.2694 0.2636 0.2563 0.9251 0.9066 0.888 0.8695 0.851 0.8325 0.8095

0 ARL 371.38 370.8 370.47 369.01 371.78 369.66 369.61 368.71 370.45 369.58 370.86 370.32 370.44 370.86
MDRL 259 261 260 259 263 262 259 257 257 257 258 256 258 256
SDRL 360.39 358.6 358.72 355.76 358.61 355.81 358.91 371.03 370.79 366.47 366.82 363.78 366.12 363.87

0.25 ARL 73.46 72.69 71.97 71.06 70.36 68.92 66.96 136.64 134.36 130.2 127.72 122.64 117.24 109.89
MDRL 56 55 55 54 53 52 50 95 93 89 87.5 84 81 76
SDRL 59.34 58.46 57.86 57.45 56.84 55.72 54.3 133.78 131.71 129 126.45 120.19 114.6 106.85

0.5 ARL 26.61 26.24 25.89 25.41 24.91 24.33 23.54 41.05 39.77 38.29 36.95 35.2 33.42 31.19
MDRL 23 22 22 22 21 21 20 30 29 28 27 26 25 23
SDRL 15.54 15.34 15.11 14.9 14.72 14.32 13.98 36.62 35.32 33.69 32.88 31.16 29.18 27.29

0.75 ARL 15.38 15.14 14.87 14.58 14.25 13.94 13.52 18.13 17.48 16.89 16.31 15.57 14.86 13.92
MDRL 14 14 14 13 13 13 12 14 14 13 13 12 11 11
SDRL 6.96 6.87 6.76 6.74 6.58 6.48 6.3 14.15 13.53 13.08 12.63 11.99 11.46 10.57

1 ARL 10.75 10.56 10.36 10.17 9.91 9.7 9.42 10.26 9.95 9.6 9.25 8.92 8.54 8.11
MDRL 10 10 10 9 9 9 9 8 8 8 8 7 7 7
SDRL 4.01 3.99 3.93 3.88 3.82 3.79 3.69 6.81 6.57 6.32 6.03 5.79 5.53 5.16

1.25 ARL 8.29 8.14 7.96 7.8 7.63 7.46 7.23 6.9 6.72 6.52 6.31 6.09 5.9 5.63
MDRL 8 8 8 7 7 7 7 6 6 6 5 5 5 5
SDRL 2.69 2.66 2.63 2.6 2.55 2.54 2.47 3.86 3.77 3.64 3.5 3.38 3.26 3.07

1.5 ARL 6.76 6.63 6.5 6.37 6.22 6.07 5.93 5.19 5.04 4.9 4.77 4.62 4.48 4.31
MDRL 6 6 6 6 6 6 6 5 5 4 4 4 4 4
SDRL 1.97 1.94 1.9 1.89 1.86 1.82 1.8 2.5 2.42 2.35 2.25 2.18 2.11 2.02

1.75 ARL 5.73 5.61 5.51 5.4 5.27 5.17 5.02 4.14 4.03 3.93 3.82 3.73 3.62 3.49
MDRL 6 5 5 5 5 5 5 4 4 4 4 3 3 3
SDRL 1.53 1.51 1.48 1.47 1.45 1.43 1.38 1.75 1.71 1.66 1.61 1.57 1.52 1.48

2 ARL 4.99 4.89 4.8 4.7 4.61 4.51 4.39 3.45 3.38 3.31 3.23 3.15 3.07 2.97
MDRL 5 5 5 5 4 4 4 3 3 3 3 3 3 3
SDRL 1.23 1.21 1.19 1.18 1.17 1.15 1.12 1.31 1.28 1.26 1.24 1.2 1.17 1.13

2.5 ARL 3.99 3.91 3.83 3.75 3.69 3.62 3.53 2.65 2.59 2.54 2.49 2.44 2.38 2.32
MDRL 4 4 4 4 4 4 3 3 2 2 2 2 2 2
SDRL 0.88 0.85 0.84 0.84 0.82 0.82 0.81 0.85 0.83 0.82 0.81 0.8 0.78 0.77

3 ARL 3.36 3.3 3.24 3.17 3.11 3.05 2.97 2.2 2.15 2.11 2.07 2.02 1.98 1.94
MDRL 3 3 3 3 3 3 3 2 2 2 2 2 2 2
SDRL 0.66 0.66 0.65 0.65 0.65 0.64 0.64 0.62 0.61 0.6 0.6 0.6 0.6 0.59

3.5 ARL 2.91 2.85 2.81 2.76 2.71 2.65 2.59 1.89 1.86 1.82 1.78 1.74 1.71 1.66
MDRL 3 3 3 3 3 3 3 2 2 2 2 2 2 2
SDRL 0.56 0.56 0.57 0.57 0.57 0.57 0.56 0.52 0.53 0.53 0.54 0.54 0.54 0.54

4 ARL 2.57 2.52 2.48 2.43 2.39 2.34 2.28 1.67 1.63 1.59 1.56 1.52 1.48 1.43
MDRL 3 3 2 2 2 2 2 2 2 2 2 2 1 1
SDRL 0.53 0.53 0.52 0.52 0.5 0.49 0.46 0.51 0.51 0.51 0.51 0.51 0.51 0.5
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Table 2. RL properties of SEWMAÒ and EWMA (L1 = L2) charts for varying δ and Ò when λ = 0.50 and 0.99 at ARL0 = 370.

λ = 0.50 λ = 0.99

Ò 0 0.02 0.04 0.06 0.08 0.1 0.125 0 0.02 0.04 0.06 0.08 0.1 0.125
L1 1.7176 1.7580 1.8146 1.9001 2.0317 2.2014 2.4699 4.1691 4.2553 4.3970 4.6444 4.7667 5.4866 6.2954
L2 1.7176 1.6836 1.6489 1.6148 1.5802 1.5461 1.5028 4.1691 4.0857 4.0024 3.9190 3.8356 3.7522 3.6480

0 ARL 370.65 369.53 369.36 369.16 369.29 368.68 370.45 370.61 369.68 368.47 371.67 369.97 370.94 371.45
MDRL 262.00 258.00 255.00 255.00 254.00 253.00 257.50 259.00 255.00 256.00 257.00 254.00 256.00 259.00
SDRL 370.48 368.88 366.84 365.94 367.20 373.17 371.90 371.57 373.98 367.22 371.72 370.87 371.43 373.03

0.25 ARL 195.37 190.57 182.94 176.81 169.27 160.20 148.79 282.14 272.51 264.29 256.36 173.40 232.68 217.25
MDRL 136.00 131.00 126.00 122.00 117.00 112.00 102.00 194.00 187.00 182.00 178.00 119.00 165.00 152.00
SDRL 193.04 190.75 183.04 175.05 166.64 156.53 147.47 283.21 273.04 261.83 252.56 171.83 227.37 214.32

0.5 ARL 70.89 67.59 63.89 60.33 56.75 52.38 46.50 155.53 144.39 135.22 125.01 58.32 103.21 88.90
MDRL 49.00 47.00 45.00 42.00 39.00 37.00 33.00 108.00 100.00 95.00 87.00 41.00 71.00 61.00
SDRL 69.40 65.56 61.68 58.37 55.13 50.14 44.84 153.73 142.99 132.96 125.10 56.48 102.76 89.22

0.75 ARL 30.29 28.75 26.86 25.05 23.32 21.60 19.43 80.65 73.82 67.25 61.11 24.11 48.56 41.35
MDRL 22.00 21.00 19.00 18.00 17.00 16.00 14.00 57.00 52.00 47.00 42.00 17.00 34.00 29.00
SDRL 28.35 26.37 24.68 22.87 20.96 19.49 17.39 78.88 72.76 65.99 60.02 21.78 47.51 40.40

1 ARL 15.27 14.42 13.63 12.80 11.98 11.21 10.19 44.02 39.56 35.45 32.15 12.28 25.35 21.81
MDRL 11.00 11.00 10.00 10.00 9.00 8.00 8.00 31.00 28.00 25.00 23.00 9.00 18.00 15.00
SDRL 13.02 12.37 11.55 10.83 10.09 9.41 8.53 43.31 38.50 34.29 31.00 10.34 24.70 21.08

1.25 ARL 8.89 8.48 8.04 7.57 7.17 6.78 6.32 25.18 22.47 20.31 18.23 7.31 14.62 12.68
MDRL 7.00 6.00 6.00 6.00 6.00 5.00 5.00 18.00 16.00 14.00 13.00 6.00 10.00 9.00
SDRL 7.01 6.63 6.27 5.82 5.45 5.15 4.73 24.64 22.03 19.69 17.55 5.63 14.04 12.05

1.5 ARL 6.00 5.73 5.44 5.23 4.97 4.76 4.46 15.17 13.68 12.33 11.13 5.06 9.06 7.96
MDRL 5.00 5.00 4.00 4.00 4.00 4.00 4.00 11.00 10.00 9.00 8.00 4.00 6.00 6.00
SDRL 4.19 3.95 3.70 3.53 3.35 3.15 2.89 14.49 13.06 11.75 10.54 3.41 8.49 7.39

1.75 ARL 4.39 4.21 4.03 3.88 3.70 3.55 3.40 9.52 8.65 7.86 7.17 3.76 5.94 5.30
MDRL 4.00 4.00 3.00 3.00 3.00 3.00 3.00 7.00 6.00 6.00 5.00 3.00 4.00 4.00
SDRL 2.72 2.58 2.42 2.31 2.18 2.07 1.95 8.95 8.11 7.23 6.62 2.24 5.46 4.80

2 ARL 3.42 3.29 3.18 3.08 2.97 2.86 2.75 6.30 5.75 5.25 4.87 3.02 4.14 3.77
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 2.00 5.00 4.00 4.00 4.00 3.00 3.00 3.00
SDRL 1.84 1.76 1.69 1.61 1.54 1.48 1.40 5.75 5.21 4.70 4.31 1.58 3.62 3.23

2.5 ARL 2.39 2.33 2.26 2.20 2.13 2.08 2.00 3.23 3.03 2.83 2.67 2.16 2.39 2.23
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.07 1.05 1.02 1.00 0.97 0.94 0.91 2.65 2.45 2.27 2.11 0.97 1.81 1.64

3 ARL 1.85 1.80 1.76 1.71 1.68 1.65 1.60 2.02 1.91 1.83 1.76 1.69 1.63 1.56
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00
SDRL 0.75 0.73 0.72 0.71 0.69 0.68 0.66 1.41 1.31 1.22 1.15 0.69 1.01 0.92

3.5 ARL 1.52 1.49 1.46 1.43 1.40 1.37 1.34 1.45 1.41 1.37 1.33 1.41 1.27 1.23
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.58 0.58 0.56 0.55 0.54 0.53 0.52 0.80 0.75 0.71 0.66 0.55 0.59 0.54

4 ARL 1.30 1.27 1.25 1.23 1.20 1.18 1.16 1.19 1.17 1.15 1.13 1.21 1.10 1.09
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.47 0.46 0.44 0.43 0.41 0.39 0.37 0.47 0.44 0.41 0.39 0.42 0.34 0.31
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Table 3. ARL performance of EWMA, FIR-EWMA, CUSUM and SEWMAÒ charts when λ = .25 and ARL0 = 168,400, 500.

δ

Control chart 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

EWMA 167.76 74.89 27.44 13.52 8.21 5.78 4.44 3.62 3.07
CUSUM 167.2 74.31 26.65 13.4 8.37 6.05 4.77 3.35 2.45
SEWMA(Ò = 0.1) 168.66 68.01 23.59 11.5 7.05 5.05 3.91 3.21 2.76
SEWMA(Ò = 0.125) 167.9 65.09 23.33 10.91 6.74 4.84 3.78 3.12 2.68

EWMA 400.98 146.32 43.01 18.7 10.5 7.04 5.27 4.19 3.5
CUSUM 402.17 129.87 35.78 16.37 10.06 7.15 5.62 3.9 2.33
SEWMA(Ò = 0.1) 399.69 123.96 34.77 15.32 8.73 6 4.56 3.86 3.1
SEWMA(Ò = 0.125) 399.33 116.45 32.28 14.32 8.26 5.71 4.37 3.54 3

EWMA 502.52 171.46 48.66 20.4 11.19 7.39 5.47 4.34 3.62
CUSUM 500 143.87 37.71 17.29 10.53 7.49 5.77 4.04 3.67
SEWMA(Ò = 0.1) 501.54 147 38.46 16.4 9.19 6.26 4.72 3.77 3.19
SEWMA(Ò = 0.125) 500.65 135.71 35.34 15.34 8.66 5.95 4.51 3.66 3.08

EWMA 502.52 171.46 48.66 20.4 11.19 7.39 5.47 4.34 3.62
FIR-EWMA 515 169.8 47.6 19.5 10.6 5 3.1 1.7 1.2
SEWMA(Ò = 0.1) 501.54 147 38.46 16.4 9.19 6.26 4.72 3.77 3.19
SEWMA(Ò = 0.125) 500.65 135.71 35.34 15.34 8.66 5.95 4.51 3.66 3.08

Figure 3. ARL comparison of EWMA and SEWMAÒ charts when ARL0 = 370 and λ = 0.05, 0.25, 0.50 and 0.99.

ARL values of 147 and135.71, respectively, whereas the
same values for CUSUM and EWMA are, respectively,
143.87 and 171.46 at ARL0 = 500 and δ = .25. Similar
ARL performance may be observed for ARL0 = 168 and
400.

ii. SEWMAÒ versus FIR-EWMA charts at ARL0 = 500

Table 3 exhibits the comparative ARL performance of
SEWMAÒ using (Ò = 10% and 12.5%) versus FIR-EWMA
at ARL0 = 500 (cf. [30]). From Table 3, the ARL1 values
for SEWMAÒ Ò = 10% and 12.5% at δ = .25 are 147.71
and 135.1, respectively. FIR-EWMA exhibits ARL of 47.6
which is smaller than EWMA. Although similar ARL1 may
be observed for other shifts, SEWMAÒ showed better
ARL1 than FIR-EWMA for shifts up to δ = 1.5.

4.2.1. General Comments
The proposed design exhibits better performance than
EWMA for all choices of Ò > 0. As Ò increases, the
performance of the SEWMAÒ chart becomes increas-
ingly better than EWMA, especially for higher values
of smoothing parameter λ (cf. Table 3). The proposed
SEWMAÒ chart outperforms the CUSUM chart at all lev-
els of shift δ. The performance of the SEWMAÒ chart
(comparedwith CUSUM chart) gets better with increase
in p. Table 3 also provides the comparison of SEWMAÒ

chart (Ò = 10% and 12.5%) versus FIR-EWMA at λ = .25
and ARL0 = 500 [36]. It is noticed that as Ò increases,
SEWMAÒ chart is more sensitive for the detection of
shifts as compared with FIR-EWMA chart (cf. last row of
Table 3). Overall, the proposed SEWMAÒ chart performs
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Figure 4. ARL comparison of EWMA and SEWMAÒ charts (at different levels of Ò) when ARL0 = 370 and λ = 0.05, 0.25, 0.50 and
0.99.

better than other competing charts (such as EWMA,
CUSUMand FIR-EWMA charts) for detecting shifts in the
process mean level. The performance of the SEWMAÒ

chart relies mainly on the choice of λ and Ò. The detec-
tion ability of the SEWMAÒ chart improves with an
increase in p at all levels of λ. For a fixed Ò, if the
interest is in the detection of small shifts, it is recom-
mended to use low values ofλ (i.e. λ = 0.05 or 0.25). In
the next section, a real-life application for monitoring
the strength of steel rods is presented.

It is to be mentioned that the current study is
designed under normality; however, one may extend
this for other distributional environments such as
Maxwell, Weibull, Burr, Power, etc. (cf. Al Mutairi and
Volodin [31], Basheer [32], Haq et al. [33], Hossain et al.
[34, 35]).

5. A real application of SEWMAÒ to steel rod
manufacturing industry

This section presents a real-life application of the pro-
posed technique in a production line that relates to
an ongoing monitoring process of steel rod manufac-
turing. The steel industry is a booming industry and it
plays an essential role in the development of a coun-
try and helps strengthen the economy. Most of the
steel manufactured by an aluminium plant or a steel
mill is moulded through extrusion or rolling into long
continuous strips of numerous shape and size. Sev-
eral testing techniques are commercially available and
can be customized to meet specific inspection needs.
Whethermanual, automatedor phased array, ultrasonic

Figure 5. A flow of SEWMAÒ design in steel rodmanufacturing
process
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Figure 6. Control charts of the EWMA and SEWMAÒ for the steel rod data when λ = 0.05 and Ò = 0.1.

testing can help manufacturers of bars, tubing and
related metal products to assure product quality and
customer satisfaction. But without proper SPC tech-
niques, it will be time consuming and costly. To reduce
the cost, it is necessary to use such techniques which
provide a timely identification of any deviations from
the stable state of a process. Several authors designed
efficient SPC techniques to identify the unusual varia-
tions present during several processes. Lyu and Chen
[36] designed a multivariate SPC technique to detect
defects which often occur during manufacturing pro-
cess. Pérez-González et al. [37] applied SPC to get the
proper decision from the entire emergency and security
system. In several steel manufacturing industries, qual-
ity control techniques are implemented toenhancepro-
cess monitoring of designing and manufacturing steel
rods. Christyanti [38], Naeem et al. [39] and the refer-
ences therein may be seen for further details related to
the topic. They used different statistical approaches like
DOE (design of experiment) and X̄ chart for the identifi-
cation of special causes. They suggested that 6-sigma
procedures really helps to identify the special causes
during process monitoring. Figure 5 provides a graph-
ical representation of the monitoring process in steel
rod manufacturing, where one can potentially use the
proposed SEWMAÒ chart.

The data we have used here is related to the
steel manufacturing industry. The breaking strength of
the rods is our quality characteristic of interest that
needs monitoring over time for a better quality of
the products related to the process output. A sample
of 90 steel rods measurements is collected from the
aforementioned process, and their breaking strength is

measured. Through distribution fitting tests, we identi-
fied that the breaking strengths of the steel rods follow
a normal distribution. We have constructed SEWMAÒ

and the classical EWMA charts for this dataset using
λ = .05 and Ò = 0.1. Figure 6 presents these compar-
ative charts where UCL and LCL refer to limits of the
classical EWMA, while the other two pairs (LCL1, UCL1)
and (LCL2, UCL2) correspond to the SEWMAÒ chart. It is
observed that the proposed design is not only indicat-
ing the shift earlier than the classical EWMA, but it is also
giving a larger number of out-of-control signals (this is
exactly in accordance with the findings in Section 4).

These earlier and larger detections by SEWMAÒ

designhasmanypractical implications for processmon-
itoring. It may be used as a tool needed to reduce
the amount of labour and to perform cost-effective
experimentations. The potential factors causing out-of-
control signals might include changes in these factors:
mechanical properties of metal, hardness level, yield
strength, intensity of temperature, the grain size, atmo-
spheric pressure, the quality of the protective surface
film, the presence of certain agents reducing any corro-
sive effects, the presence of surface cracks or disconti-
nuities and other environmental condition. These kinds
of abnormalitiesmay be identified by using appropriate
SPC techniques such as the newly proposed SEWMAÒ

chart of this study.

6. Concluding remarks

This study introduces a memory control chart, namely
SEWMAÒ chart, for an efficient monitoring of shifts in
the process location parameter. The performance of the
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proposed design is assessed by using several RL prop-
erties (such as ARL, MRL and SDRL) at varying values of
design parameters λg, Ò, L1 and L2. The results advocate
that theproposeddesignprovides enhancedRLproper-
ties as compared with the classical EWMA, CUSUM and
FIR-EWMA charts at several p values. As p increases, the
proposed design offers more sensitivity towards shifts
in the process mean relative to the competing charts.
A real-life application concerning the breaking strength
of steel rods highlights the significance of our study.

The current work can be extended to study the
performance of CUSUM, mixed / combined Shewhart,
EWMA-CUSUM charts both in univariate and multivari-
ate directions for location and dispersion parameters.
The scopemay further be extended to cover mixed and
sequential sampling techniques in SPC for efficient pro-
cess monitoring of non-normally distributed process.
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Appendix

For derivations of some results in this appendix, we will rely
on the following Theorem, which we present without proof,
on themoments of the random sumof random variables from
Klugman et al. (2014)

Theorem 1: ([40], Equation (9.9)). Let the random sum, S =∑N
j=1 Xj where Xj is iid from any distribution f (x;μ, σ 2) and the

size random variable, N, has a distribution h(n;m,π). Then, the
first twomoments of S are as follows:

E(S)=E(N)E(X) and Var (S)=E(N)Var (X) + Var (N)(E(X))2.

Definition 1: Let us denote Rs as the resampling region. With
0 < λg ≤ 1 and for j = 1, 2, 3, . . . , the sequential EWMA ran-
dom variable Zj is defined as follows Zj = λgIj + (1 − λg)Zj−1

Ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xj if Xj /∈ Rs
Xj + Yj1 if Zj1 ∈ Rs

Xj + Yj1 + Yj2
...

if Zj2 ∈ Rs
...

where E[Z0] = μ0.

For compactness, we can alternatively denote Ij as follows:

Ij =
{
Xj ifXj /∈ Rs
Xj +

∑Nj

k=1 Yj,k ifZj ∈ Rs.

Or alternatively, we can denote Ij as

Ij = Xj +
Nj∑
k=0

Yj,k where Yj0 = · when Xj /∈ Rs.

We note that the probability of a sample Zj ∈ Rs is given by
P(Zj ∈ Rs) = γ . We note that the random sample Yj,k will be
drawn sequentially at each stage j until Zj /∈ Rs. As such, the
random variable Nj measures the sample size needed until Zj
is outside of the resampling region. Thus, Nj is a geometrically
distributed random variable. We also note that the random
sample Xj comes from a normal distribution with a mean of
μ0 and variance of σ 2

0 . The sequential random sample Yj,k also
comes from a normal distribution with a mean ofμ0 and vari-
ance of σ 2

0 . For simplicity of derivations and results for the first

two centred moments of Zj , we will use the transformation
λ∗
g = 1 − λg.

A) Derivation of theMean of Zj.

1) Mean of Z1.

E[Z1] = E[λgI1 + (1 − λg)Z0] = E[λ∗
gZ0 + (1 − λ∗

g)I1]

= E[λ∗
gZ0 + (1 − λ∗

g)I1] = λ∗
gE[Z0] + (1 − λ∗

g)E[E[I1|Rs]]

= λ∗
gμ0 + (1 − λ∗

g)E

[
E

[
X1 +

N1∑
k=0

Y1,k |Rs

]]

= λ∗
gμ0 + (1 − λ∗

g)E[E[X1|Rs]] + (1 − λ∗
g)

× E

[
E

[ N1∑
k=0

Y1,k |Rs

]]

= λ∗
gμ0 + (1 − λ∗

g)μ0 + (1 − λ∗
g)E

[ N1∑
k=0

E[Y1,k |Rs

]
]

= μ0 + (1 − λ∗
g)E[N1]E[Y1,k]

due toTheorem1 (byKlugmanet al.)41 whereN1 ∼ geom(1−γ )
and Y1,k is iid with μ0. Thus

E[Z1] = μ0 + (1 − λ∗
g)

(
1

1 − γ

)
μ0

= μ0

(
1 + 1 − λ∗

g

1 − γ

)
.

2) Mean of Z2.

E[Z2] = E[λ∗
gZ1 + (1 − λ∗

g)I2] = λ∗
gE[Z1] + (1 − λ∗

g)E[E[I2|Rs]]

= λ∗
gμ0

(
1 + 1 − λ∗

g

1 − γ

)
+ (1 − λ∗

g)

× E

[
E

[
X2 +

N2∑
k=0

Y2,k |Rs

]]

= λ∗
gμ0 + (1 − λ∗

g)μ0 + μ0λ
∗
g

(
1 − λ∗

g

1 − γ

)

+ (1 − λ∗
g)E

[ N2∑
k=0

E[Y2,k |Rs

]
]

= μ0 + μ0λ
∗
g

(
1 − λ∗

g

1 − γ

)
+ (1 − λ∗

g)E[N2]E[Y2,k]

due toTheorem1 (byKlugmanet al.)41 whereN2 ∼ geom(1−γ )
and Y2,k is iid with μ0. Thus

E[Z2] = μ0 + μ0λ
∗
g

(
1 − λ∗

g

1 − γ

)
+ (1 − λ∗

g)

(
1

1 − γ

)

μ0 = μ0

(
1 + 1 − λ∗

g

1 − γ
(λ∗

g + 1)
)

= μ0

(
1 + (1 − λ∗

g)(1 + λ∗
g)

1 − γ

)
.

3) Mean of Z3.

E[Z3]= E[λ∗
gZ2 + (1 − λ∗

g)I3] = λ∗
gE[Z2] + (1 − λ∗

g)E[E[I3|Rs]].

By applying Theorem 1 (Klugman et al.)41 with simplification
steps similar to the derivation of E[Z2], we have,

E[Z3] = μ0 + μ0λ
∗
g

(1 − λ∗
g)(1 + λ∗

g)

1 − γ
+ (1 − λ∗

g)

(
1

1 − γ

)
μ0

= μ0

(
1 + (1 − λ∗

g)

1 − γ
(1 + λ∗

g + λ* 2g )

)
.
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4) Mean of Z4.

E[Z4]= E[λ∗
gZ3 + (1 − λ∗

g)I4] = λ∗
gE[Z3] + (1 − λ∗

g)E[E[I4|Rs]]

By applying Theorem 1 (Klugman et al.)41 with simplification
steps similar to the derivation of E[Z3], we have,

E[Z4] = μ0 + μ0
(1 − λ∗

g)

1 − γ
λ∗
g(1 + λ∗

g + λ∗2
g )

+ (1 − λ∗
g)

(
1

1 − γ

)
μ0

= μ0

(
1 + (1 − λ∗

g)

1 − γ
(1 + λ∗

g + λ* 2g + λ* 3g )

)
.

5) Mean of Zj .
The following summarizes the results, we have thus far:

E[Z1] = μ0

(
1 + 1 − λ∗

g

1 − γ

)
,

E[Z2] = μ0

(
1 + (1 − λ∗

g)(1 + λ∗
g)

1 − γ

)
,

E[Z3] = μ0

(
1 + (1 − λ∗

g)

1 − γ
(1 + λ∗

g + λ* 2g )

)
, and

E[Z4] = μ0

(
1 + (1 − λ∗

g)

1 − γ
(1 + λ∗

g + λ* 2g + λ* 3g )

)
.

Based on these, we now let

E[Zj−1] = μ0

⎛
⎝1 + (1 − λ∗

g)

1 − γ

j−2∑
k=0

λ∗k
g

⎞
⎠ .

Then by induction, we have

E[Zj] = E[λ∗
gZj−1 + (1 − λ∗

g)Ij]

= λ∗
gE[Zj−1] + (1 − λ∗

g)E[E[Ij|Rs]]

= λ∗
gμ0

⎛
⎝1 + (1 − λ∗

g)

1 − γ

j−2∑
k=0

λ* kg

⎞
⎠

+ (1 − λ∗
g)E

⎡
⎣E
⎡
⎣Xj +

Nj∑
k=0

Yj,k |Rs

⎤
⎦
⎤
⎦

= λ∗
gμ0 + (1 − λ∗

g)E[E[Xj|Rs]] + μ0
(1 − λ∗

g)

1 − γ
λ∗
g

j−2∑
k=0

λ* kg

+ (1 − λ∗
g)E

⎡
⎣E
⎡
⎣ Nj∑

k=0

Yj,k |Rs

⎤
⎦
⎤
⎦

= λ∗
gμ0 + (1 − λ∗

g)μ0 + μ0
(1 − λ∗

g)

1 − γ

j−2∑
k=0

λ* k+1
g

+ (1 − λ∗
g)E

⎡
⎣ Nj∑

k=0

E[Yj,k |Rs

⎤
⎦]

= μ0 + μ0
(1 − λ∗

g)

1 − γ

j−2∑
k=0

λ* k+1
g + (1 − λ∗

g)E[Nj]E[Yj,k]

due toTheorem1 (byKlugmanet al.)41 whereNj ∼ geom(1−γ )
and Yj ,k is iid with μ0. Thus,

E[Zj] = μ0 + μ0
(1 − λ∗

g)

1 − γ

j−2∑
k=0

λ∗k+1
g + (1 − λ∗

g)

(
1

1 − γ

)
μ0

= μ0

⎛
⎝1 + 1 − λ∗

g

1 − γ

⎛
⎝ j−2∑

k=0

λ* k+1
g + 1

⎞
⎠
⎞
⎠

= μ0

⎛
⎝1 + (1 − λ∗

g)

1 − γ

j−1∑
m=0

λ*mg

⎞
⎠ .

Since 0 < λ∗
g < 1, we can also reexpress the above as follows:

E[Zj] = μ0

⎛
⎝1 + (1 − λ∗

g)

1 − γ

j−1∑
m=0

λ∗m
g

⎞
⎠

= μ0

(
1 + (1 − λ∗

g)

1 − γ

(1 − λ
∗j
g )

1 − λ∗
g

)

= μ0

(
1 + 1 − λ

∗j
g

1 − γ

)
.

B) Asymptotic behaviour of themean of Zj.

Since 0 < λ∗
g < 1, as j grows large, we have the following:

lim
j→∞

E[Zj] = lim
j→∞

μ0

(
1 + 1 − λ

∗j
g

1 − γ

)
= μ0

(
1 + lim

j→∞
1 − λ

∗j
g

1 − γ

)

= μ0

⎛
⎜⎝1 +

1 − lim
j→∞

λ
* j
g

1 − γ

⎞
⎟⎠ = μ0

(
1 + 1

1 − γ

)
.

C) Derivation of the variance of Zj.

1) Variance of Z1.

Var[Z1] = Var[λgI1 + (1 − λg)Z0] = Var[λ∗
gZ0 + (1 − λ∗

g)I1]

= λ* 2g Var[Z0] + (1 − λ∗
g)

2Var(I1) since Cov(Z0, I1) = 0

= λ* 2g σ 2
0 + (1 − λ∗

g)
2Var

(
X1 +

N1∑
k=0

Y1,k

)

= λ* 2g σ 2
0 + (1 − λ∗

g)
2

(
Var(X1) + Var

( N1∑
k=0

Y1,k

))

× since Cov(X1, Y1,k) = 0

= λ* 2g σ 2
0 + (1 − λ∗

g)
2σ 2

0 + (1 − λ∗
g)

2(E(N1)Var(Y1,k)

+ Var(N1)(E(Y1,k))
2)

due toTheorem1 (byKlugmanet al.)41 whereN1 ∼ geom(1−γ )
and Y1,k is iid with mean μ0 and variance σ 2

0 . Thus,

Var[Z1] = (λ* 2g + (1 − λ∗
g)

2
)σ 2

0 + (1 − λ∗
g)

2

((
1

1 − γ

)
σ 2
0 + γ

(1 − γ )2
(μ0)

2
)

=
(

λ* 2g + (1 − λ∗
g)

2
(
1 + 1

1 − γ

))
σ 2
0

+ γ (1 − λ∗
g)

2

(1 − γ )2
μ2
0.
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2) Variance of Z2.

Var[Z2] = Var[λgI2 + (1 − λg)Z1] = Var[λ∗
gZ1 + (1 − λ∗

g)I2]

= λ* 2g Var[Z1] + (1 − λ∗
g)

2Var(I2) since Cov(Z1, I2) = 0

= λ* 2g Var[Z1] + (1 − λ∗
g)

2Var

(
X2 +

N2∑
k=0

Y2,k

)

=
(

λ* 4g + λ* 2g (1 − λ∗
g)

2
(
1 + 1

1 − γ

))
σ 2
0

+ γ λ* 2g (1 − λ∗
g)

2

(1 − γ )2
μ2
0

+ (1 − λ∗
g)

2

(
Var(X2) + Var

( N2∑
k=0

Y2,k

))

since Cov(X2, Y2,k) = 0

=
(

λ* 4g + λ* 2g (1 − λ∗
g)

2
(
1 + 1

1 − γ

))

× σ 2
0 + γ λ* 2g (1 − λ∗

g)
2

(1 − γ )2
μ2
0

+ (1 − λ∗
g)

2σ 2
0 + (1 − λ∗

g)
2

× (E(N2)Var(Y2,k) + Var(N2)(E(Y2,k))
2)

due toTheorem1 (byKlugmanet al.)41 whereN2 ∼ geom(1−γ )
and Y2,k is iid with mean μ0 and variance σ 2

0 . Thus,

Var[Z2] =
(

λ* 4g + λ* 2g (1 − λ∗
g)

2
(
1 + 1

1 − γ

)
+ (1 − λ∗

g)
2
)

× σ 2
0 + γ λ* 2g (1 − λ∗

g)
2

(1 − γ )2
μ2
0

+ (1 − λ∗
g)

2
((

1
1 − γ

)
σ 2
0 + γ

(1 − γ )2
(μ0)

2
)

=
(

λ* 4g + (1 − λ∗
g)

2
(
1 + 1

1 − γ

)
(1 + λ* 2g )

)
σ 2
0

+ γ

(1 − γ )2
(1 − λ∗

g)
2(1 + λ* 2g )μ2

0.

3) Variance of Z3.

Var[Z3]=Var[λgI3 + (1 − λg)Z2] = Var[λ∗
gZ2 + (1 − λ∗

g)I3]

With the independence of Z2 and I3 and independence of
X3 and Y3,k and by applying Theorem 1 (Klugman et al.)41

with simplification steps similar to the derivation of Var[Z2],
we have,

Var[Z3] =
(

λ∗6
g +(1 − λ∗

g)
2
(
1+ 1

1 − γ

)
(1 + λ∗2

g (1 + λ∗2
g ))

)

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2(1 + λ∗2

g (1 + λ∗2
g ))μ2

0.

4) Variance of Zj .
We now summarize the following results:

Var[Z1] =
(

λ∗2
g + (1 − λ∗

g)
2
(
1 + 1

1 − γ

))

× σ 2
0 + γ (1 − λ∗

g)
2

(1 − γ )2
μ2
0,

Var[Z2] =
(

λ* 4g + (1 − λ∗
g)

2
(
1 + 1

1 − γ

)
(1 + λ* 2g )

)

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2(1 + λ* 2g )μ2

0, and

Var[Z3] =
(

λ* 6g + (1 − λ∗
g)

2
(
1 + 1

1 − γ

)
(1 + λ* 2g (1 + λ* 2g ))

)

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2(1 + λ* 2g (1 + λ* 2g ))μ2

0.

Based on the above, we now let

Var[Zj−1] =
⎛
⎝λ

∗2(j−1)
g + (1 − λ∗

g)
2
(
1 + 1

1 − γ

) j−2∑
k=0

λ∗2k
g

⎞
⎠

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2μ2

0

j−2∑
k=0

λ∗2k
g .

Then by induction, we have

Var[Zj] = Var[λgIj + (1 − λg)Zj−1] = Var[λ∗
gZj−1 + (1 − λ∗

g)Ij]

= λ* 2g Var[Zj−1] + (1 − λ∗
g)

2

Var(Ij) since Cov(Zj−1, Ij) = 0

= λ* 2g Var[Zj−1] + (1 − λ∗
g)

2Var

⎛
⎝Xj +

Nj∑
k=0

Yj,k

⎞
⎠

=
⎛
⎝λ

* 2j
g + (1 − λ∗

g)
2
(
1 + 1

1 − γ

)
λ* 2g

j−2∑
k=0

λ* 2kg

⎞
⎠

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2μ2

0

j−2∑
k=0

λ* 2(k+1)
g

+ (1 − λ∗
g)

2σ 2
0

+ (1 − λ∗
g)

2(E(Nj)Var(Yj,k) + Var(Nj)(E(Yj,k))
2)

due to Theorem 1 (Klugman et al.)41 where Nj ∼ geom(1−γ )
and Yj ,k is iid with mean μ0 and variance σ 2

0 . Thus,

Var[Zj] =
(

λ
* 2j
g + (1 − λ∗

g)
2
(
1 + 1

1 − γ

)

j−2∑
k=0

λ* 2(k+1)
g + (1 − λ∗

g)
2

⎞
⎠

× σ 2
0 + μ2

0γ

(1 − γ )2
(1 − λ∗

g)
2
j−2∑
k=0

λ* 2(k+1)
g + (1 − λ∗

g)
2

×
((

1
1 − γ

)
σ 2
0 + γ

(1 − γ )2
(μ0)

2
)

=
⎛
⎝λ

* 2j
g + (1 − λ∗

g)
2

⎛
⎝1 +

j−2∑
k=0

λ* 2(k+1)
g

⎞
⎠(1 + 1

1 − γ

)⎞⎠

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2

⎛
⎝1 +

j−2∑
k=0

λ* 2(k+1)
g

⎞
⎠μ2

0

=
⎛
⎝λ

* 2j
g + (1 − λ∗

g)
2
(
1 + 1

1 − γ

)⎛⎝ j−1∑
m=0

λ* 2mg

⎞
⎠
⎞
⎠

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2

⎛
⎝ j−1∑

m=0

λ* 2mg

⎞
⎠μ2

0.
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Since 0 < λ∗2
g ≤ 1,we can also reexpress the above as follows:

Var[Zj] =
(

λ
∗2j
g + (1 − λ∗

g)
2

(
1 − λ

∗2j
g

1 − λ∗2
g

)(
1 + 1

1 − γ

))

× σ 2
0 + γ

(1 − γ )2
(1 − λ∗

g)
2

(
1 − λ

∗2j
g

1 − λ∗2
g

)
μ2
0.

D) Asymptotic behaviour of the variance of Zj.

Since 0 < λ∗
g ≤ 1, as j grows large we have the following:

lim
j→∞

Var[Zj] = lim
j→∞

(
λ

∗2j
g +

(
1 + 1

1 − γ

)
(1 − λ∗

g)
2

(
1 − λ

∗2j
g

1 − λ∗2
g

))

× σ 2
0 + lim

j→∞
γ

(1 − γ )2
(1 − λ∗

g)
2

(
1 − λ

∗2j
g

1 − λ∗2
g

)
μ2
0

= σ 2
0 lim
j→∞

(λ
* 2j
g ) + σ 2

0

((
1 + 1

1 − γ

)
lim
j→∞

(1 − λ∗
g)

2

×
(

1 − λ
* 2j
g

(1 + λ∗
g)(1 − λ∗

g)

))

+ γ

(1 − γ )2
(1 − λ∗

g)
2

⎛
⎜⎝ 1 − lim

j→∞
λ
* 2j
g

(1 + λ∗
g)(1 − λ∗

g)

⎞
⎟⎠μ2

0

=
(
1 + 1

1 − γ

)(
1 − λ∗

g

1 + λ∗
g

)
σ 2
0 + γ

(1 − γ )2

(
1 − λ∗

g

1 + λ∗
g

)
μ2
0.
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