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ABSTRACT The dispersion control charts monitor the variability of a process that may increase or decrease.
An increase in dispersion parameter implies deterioration in the process for an assignable cause, while a
decrease in dispersion indicates an improvement in the process. Multivariate variability control charts are
used to monitor the shifts in the process variance-covariance matrix. Although multivariate EWMA and
CUSUMdispersion control charts are designed to detect the small amount of change in the covariance matrix
but to gainmore efficiency, we have developed aMixedMultivariate EWMA-CUSUM (MMECD) chart. The
proposedMMECDchart is comparedwith its existing counterparts by using some important performance run
length-based properties such as ARL, SDRL, EQL, SEQL, and different quantile of run length distribution.
A real application related to carbon fiber tubing process is presented for practical considerations.

INDEX TERMS Control charts, dispersion parameter, mixed EWMA-CUSUM, memory type, multivariate
normality.

I. INTRODUCTION
Control charts are widely used to detect changes in a pro-
cess location and/or dispersion parameter. These charts are
categorized as memory and memoryless charts. Shewhart [1]
initiated the idea of a control chart named by Shewhart
chart, which is a memoryless control chart; it identifies large
shifts in a process and uses only the current information.
Memory type control charts are efficient in identifying small
changes in the process parameter(s). The most common
examples include Cumulative sum (CUSUM) control chart
proposed by Page [2] and Exponentially Weighted Mov-
ing Average (EWMA) control chart by Roberts [3]. The
afore-mentioned charts are univariate charts that monitor a
single quality characteristic of interest.

Sometimes, we are interested in the monitoring of more
than one correlated quality characteristics like the hard-
ness and tensile strength of steel; thus multivariate control
charts are employed. Hotelling [4] introduced a chart that
monitors two or more correlated quality characteristics and
named it as Chi-squared control chart. Shewhart control chart
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(location) in the univariate set-up is an analog of Chi-squared
control chart (mean vector). Pignatiello Jr and Runger [5]
and Crosier [6] proposed memory type multivariate control
charts. They offered Multivariate CUSUM (MCUSUM) con-
trol charts that monitor the mean vector. Lowry et al. [7]
developed a Multivariate EWMA (MEWMA) control chart;
this chart follows a direct analog of univariate EWMA. Mul-
tivariate memory-type control charts are efficient to identify
small changes in the process mean vector.

Alt [8] proposed a multivariate control chart that mon-
itored the variance-covariance matrix and named it as
generalized variance chart. This chart is not effective to
detect small shifts in the process variance-covariance matrix.
Djauhari et al. [9] introduced vector variance control chart,
which can be employed when the variance-covariance matrix
is singular. This chart monitors both rational subgroups
and individual observations. It was also combined with
the generalized variance chart to produce an effective
detecting ability of the variance-covariance matrix chart.
Memar and Niaki [10] proposed multivariate charts used
to monitor the variance-covariance matrix with individual
observations. Healy [11] developed two charts that mon-
itor process mean vector and process variance-covariance
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matrix by using MCUSUM statistics. Also, Chen et al. [12]
developed a MEWMA (Max-MEWMA) chart that moni-
tors shift in both process parameters such as location and
dispersion simultaneously. Recently, Adegoke et al. [13] pro-
posed a multivariate version of Homogeneously Exponen-
tiallyWeightedMoving Average (HEWMA) control chart for
the monitoring of process mean vector.

Abbas et al. [14], [15] combined the structure of EWMA
and CUSUM charts to gain sensitive scheme for the mon-
itoring of process parameter(s). Ajadi et al. [16] extended
this idea by raising the sensitivity of mixed EWMA-CUSUM
(MEC) chart in the univariate set-up. Later, Ajadi and
Riaz [17] introduced a multivariate MEC chart for the
monitoring the process mean vector. Following the same
inspiration, we intend to design, in this article, a multi-
variate MEC control chart for the monitoring of process
variance-covariance matrix. The study proposal will serve the
purpose for different kind of processes such as carbon fiber
tubing process, material flow controlling process and bayer
process.

The rest of this study is organized as: Section II presents
the information of the existing multivariate control charts
for monitoring the process variance-covariance matrix, along
with the newly proposed control chart. Section III offers
the performance evaluations and comparison of the proposed
chart and its counterparts. Section IV provides a real appli-
cation to validate the superiority of the proposed scheme
to its counterparts. Finally, Section V gives the summary,
conclusions and recommendation of this study.

II. CONTROL CHARTS FOR THE PROCESS
VARIANCE-COVARIANCE MATRIX
This section discusses some useful control charts used to
monitor process variance-covariance matrix, such as gen-
eralized variance chart, multivariate EWMA and CUSUM
control charts for monitoring the process variance-covariance
matrix. The design structures of these charts will be given,
and it will be discussed how the process is declared in-control
(IC) or out-of-control (OOC).

A. PRELIMINARIES
Let X be a p dimensional vector (Xp×1) following a
multivariate normal distribution with mean vector µ and
variance-covariance matrix 6. Symbolically, we may write
it as: X ∼N p (µ,6) , where µ is p dimensional mean vec-
tor

(
µp×1

)
and 6 is p dimensional variance-covariance

matrix (6p×p). The mean and variance-covariance matrix are
defined as follows:

µi =
[
µ1 µ2 · · · µp

]′
6 =


σ 2
1 ρσ1σ2 ρσ1σp−1 ρσ1σp

ρσ2σ1 σ 2
2

· · · ρσ2σp−1 ρσ2σp
...

. . .
...

ρσpσ1 ρσpσ2 · · · ρσpσp−1 σ
2
p


p×p

For our study purposes, we will use µ0 and 60 as the known
mean vector and variance-covariance matrix, respectively.
Let Xi be the ith sample matrix consisting of the xijk as the
ith (i = 1, 2, . . . , n) observation of the jth (j = 1, 2, · · · , p)
quality characteristic on the k th (k = 1, 2, . . . ,m) sample. Let
X̄i and Si are p dimensional ith sample mean vector and sam-
ple variance-covariance matrix (X̄p×1 and Sp×p) respectively,
defined as:

Xi =
[
X1 X2 · · · Xp

]′
,

and

Si =


S21 S12 · · · S1p
S21 S22 · · · S2p
...

...
. . .

...

Sp1 Sp2 · · · S2p


Based on these terminologies, we outline brief details of some
commonly used multivariate control charts for dispersion and
propose a new control chart in the following subsections.

B. GENERALIZED VARIANCE CONTROL CHART
Generalized variance (GenVar) chart, proposed by Alt [8],
was developed for monitoring the determinant of the sample
variance-covariance matrix |S|. The decision limits including
upper control limit (UCL), center line (CL) and lower control
limit (LCL) for this chart are given as

UCL = |60|
(
b1 + L1

√
b2
)
, (1)

CL = |60| b1, (2)

LCL = max

{
|60|

(
b1 − L1

√
b2
)

0

}
. (3)

where

b1 =
1

(n− 1)p

p∏
i=1

(n− i) ,

b2 =
1

(n− 1)2p

p∏
i=1

(n− i)

[ p∏
i=1

(n− i+ 2)−
p∏
i=1

(n-i)

]
,

and L1 is the width of the control limit. In most of the time
when the actual value of 60 is unknown then, it is estimated
by |60| = |6̂|

/
b1 where 6̂ is the Phase I estimate for the

variance-covariance matrix. The plotting statistic is taken as
|Si| which is compared against the above-mentioned control
limits. If |Si| falls outside UCL or LCL, then the process is
declared as OOC, otherwise IC.

C. MULTIVARIATE EWMA CONTROL CHART
Chen et al. [12] proposed a multivariate chart based on
EWMA statistic (MEWMAD) for the simultaneous monitor-
ing of process mean vector and variance-covariance matrix.
In this study, we are only interested in the process dispersion,
and the variability statistic of the MEWMAD control chart is
given as:

Wi =
∑n

j=1

(
Xij − X̄i

)′
6−10

(
Xij − X̄i

)
, (4)
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Yi = (1− λ)Yi−1 + λ8−1 [H (Wi) ; p (n− 1)] , (5)

where H(.;p (n− 1)) represents the Chi-squared distribution
with p (n− 1) degrees of freedom, λ is the smoothing con-
stant which always lies between zero and one, and 8−1 (.)
is the normal inverse cumulative distribution function. The
other notations are defined in Section II(A).

Based on Yi, we may define a new statistics Vi as (that will
be used as plotting statistic):

Vi =

(√
2− λ

λ
[
1− (1− λ)2i

])Yi, (6)

The plotting statistic |Vi| is compared against the control
limit (h1). If |Vi| exceeds h1, the process is declared OOC,
otherwise IC.

D. MULTIVARIATE CUSUM CONTROL CHART
The MCUSUM control chart for monitoring the process vari-
ability is named by MCUSUMD control chart, proposed by
Healy [11] and defined as:

Si=max
(
0,
∑n

j=1

(
Xij − X̄i

)′
6−10

(
Xij − X̄i

)
− k1 + Si−1

)
,

where k1 = pn
(
δ
/
δ − 1

)
log δ and δ refers to the amount of

shift (see section III(A)).
According to Cheng and Thaga [18], the statistic

n∑
j=1

(
Xij − X̄i

)′
6−10

(
Xij − X̄i

)
,

was standardized by using the following expression

Ni=8−1
(
H
[∑n

j=1

(
Xij−X̄i

)′
6−10

(
Xij−X̄i

)
; p (n− 1)

])
.

Therefore, the plotting statistic is defined as

Si = max (0,Ni − k1 + Si−1) .

The process is stated as the IC state as long as the Si is below
the control limit h2, otherwise, it is considered as OOC. It is
to bementioned that for our study purposes, we have fixed the
value of k1 = 0.5, in order to make the chart more sensitive
for the smaller shift.

E. THE PROPOSED MULTIVARIATE MIXED
EWMA-CUSUM CONTROL CHART
In this section, we propose a newmultivariate dispersion chart
by integrating the effects of MEWMAD and MCUSUMD
control charts into a single structure. This idea was initially
developed in the univariate setup by Abbas et al. [14],[15].
Later, Ajadi et al. [16] and Ajadi and Riaz [17] made further
developments on it. This study follows their inspirations and
develops a new multivariate dispersion chart, namely Mul-
tivariate Mixed EWMA-CUSUM (MMECD) control chart.
The methodological details of the proposed MMECD chart
are as follows:

Firstly, we compute theWi statistic given in (4) and convert
it into Chi-squared value with p(n − 1) degrees of freedom.

After this, we applied normal inverse cumulative distribution
function to obtained the standardized statistic such as:

Mi = 8
−1 [H (Wi) ; p (n− 1)] . (7)

Next, Mi is transformed into the MEWMA statistic as given
below:

Zi = (1− λ)Zi−1 + λMi, (8)

Ui =

(√
2− λ

λ
[
1− (1− λ)2i

])Zi. (9)

We can integrate Ui into MCUSUM dispersion statistics as:

MMECDi = max (0,Ui − k2 +MMECDi−1) ,

k2 = k∗2

√
λ

2− λ

[
1− (1− λ)2i

]
, (10)

where k∗2 is chosen equal to half of the shift in terms of
standard deviation. The statistic MMECDi is compared with
the control limit (h3) and the process is declared OOC when
MMECDi is greater than h3.

III. PERFORMANCE EVALUATION AND COMPARISONS
This section will serve the following purposes: discuss the
performance measures used to evaluate the performance
of the charts under investigation; describe the construction
of the control limits of various charts of this study; outline
the algorithm of run length, and design of control charting
constants; provide a detail comparison between the proposed
multivariate variance-covariance matrix chart (MMECD) and
its various counterparts.

A. PERFORMANCE MEASURES
In this study, we use various run length (RL) properties
to assess the performance of the control charts under dis-
cussion, by considering different amounts of shifts (δ) in
a process. Following Chen et al. [12], the shift in the
variance-covariance matrix is defined as follows:

61 = δ


σ 2
1 ρσ1σ2 ρσ1σp−1 ρσ1σp

ρσ2σ1 σ 2
2

· · · ρσ2σp−1 ρσ2σp
...

. . .
...

ρσpσ1 ρσpσ2 · · · ρσpσp−1 σ
2
p


p×p

where δ = 1 refers to an IC state, otherwise OOC. For the
sake of simplicity and a fair comparison with existing charts,
we have used ρ = 0.2 and the case of equal variances. How-
ever, one may expect similar findings for the other choices of
ρ and variances. For OOC, we have considered the case of an
increase in variability (i.e. δ > 1).

The measures covered in this study include average run
length (ARL), standard deviation run length (SDRL), median
run length (MDRL), extra quadratic loss (EQL), and sequen-
tial extra quadratic loss (SEQL), and some useful per-
centiles/quantiles (Qis) of the run length distribution. These
measures are briefly described as:
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� A series of points in an IC state until an OOC signal is
received referred to a run. The number of points in a run
is termed as run length.

� ARL represents the average number of sample points
awaited until the first OOC signal is received. It is
classified into two types, ARL0 (i.e. IC state) and
ARL1(i.e. OOC state) [19].

� SDRL is another useful measure used to assess the
spread of the run length distribution.

� MDRL refers to the midpoint of run length distribution
(i.e. the point that covers 50% of the area).

� EQL is defined as the weighted ARL with respect to the
range of shift (δmin to δmax) by considering the square of
shift (δ2) as weight. Mathematically, it is defined as:

EQL =
1

δmax − δmin

∫ δmax

δmin

δ2ARL(δ)dδ

A discrete form of the EQL measure may be defined as:

EQL∼=
1
q

∑q

j=1
δ2j ARL

(
δj
)
,

where q refers to the number of shifts covered in the perfor-
mance evaluation.

� SEQL is the cumulative measure that refers to the EQL
up to a certain shift (say δi), mathematically defined as:

SEQLi=
1

δi−δmin

∫ δi

δmin

δ2ARL(δ)dδ, ∀i=2, 3,. . . . . . ., δmax .

A discrete form of the SEQL measure may also be defined as:

SEQLi ∼=
1
qi

∑qi

j=1
δ2j ARL

(
δj
)

For more details on these performance measures, one may be
seen in [20]–[24] and the references therein.

B. ALGORITHM FOR CHOOSING THE CONTROL
LIMITS OF MMECD CHART
Step 1 Algorithm for Run Length:
(i) Generate a sample from the multivariate normal dis-

tribution and calculate the sample statistic (Wi) and its
inverse normal using (4) and (7) respectively.

(ii) Calculate Zi and substitute its value in Ui using (8)
and (9) respectively; then substitute Ui in (10).

(iii) Evaluate statistic MMECDi as given in (10) and plot
it against the control limit h3. If MMECDi is plotted
beyond the control limit, then the process is declared
OOC and the corresponding sample number (which is
one in this case) is the run length. On the other hand,
we proceed to (iv) if MMECDi is plotted inside the
control limit h3.

(iv) We generate another sample from the multivariate nor-
mal distribution. Compute the plotting statistic and
compare it with the control limit, as we did in (ii) and
(iii) above. If the process is declared OOC, then stop at

this stage and report 2 as run length, otherwise continue
this method for several iterations.

Step 2 Iterative Procedure:
Repeat step 1 iteratively to get a large number of RL values

(say 10,000 run lengths), and calculate the average of these
RL values, producing ARL. If the process in the IC state,
then the resulting ARL will be ARL0 and for OOC state the
resulting ARL will be ARL1.

C. DESIGN STRUCTURE OF CHARTING
CONSTANT AND LIMITS
The design structures of the proposed chart and its coun-
terparts depend on the sample size (n) and the number of
correlated quality characteristics to be monitored simultane-
ously (p). We have evaluated the performance of the charts
as a function of n and p. For our study purposes, we have
evaluated the results for n = 5 and p = 2, 3, 4 for the
proposedMMECD control chart. For the comparison purpose
with the existing counterparts, we have covered the case of
p = 2. Some selective results for control limits are given
below for different charts of this study.

� In generalized variance (GenVar) control chart,
the width of the control limits depends on charting
constant L1, which is L1 = 5.394 and L1 = 6.23
when p = 2 and p = 3, respectively for the prefixed
ARL0 = 250.

� The UCL (h1) of multivariate EWMA disper-
sion (MEWMAD) chart depends on the smoothing
constant λ. For the fixed ARL0 = 250, h1 =
2.57, 2.73, 2.794 and 2.856 with respect to λ =

0.10, 0.20, 0.30 and 0.50 when p = 2.
� For the MCUSUMD chart, the control limit (h2 =
3.725) with prefixed ARL0 = 250 is used when the
reference parameter, k1, is 0.5 and S0 = 0.

� The control limit (h3) of the proposed MMECD chart
relies on four designing parameters n,p, λ and k∗2 .
First, we fixed n = 5, p = 2,k∗2 = 0.5 and ARL0 =
250, and the resulting values of control limit (h3)
are 34.7, 24.2, 18 and 10.75 with respect to λ =

0.10, 0.20, 0.30 and 0.50. Similarly, for p = 3, the val-
ues of control limit (h3) are 34.9 and 18 with respect
to λ = 0.10 and 0.30, while for p = 4, the values
of control limit (h3) are 34.9 and 18 with respect to
λ = 0.10 and 0.30.

D. COMPARATIVE ANALYSIS
The run length profile (i.e., ARL, SDRL, and percentiles
values) with respect to various shifts in the process
variance-covariance matrix (1 ≤ δ ≤ 2) for all charts under
considerations are provided in Tables 1-5. The results of the
generalized variance control chart are reported in Table 1.
The run length profile of the MEWMAD control chart
with respect to different choices of smoothing parameters
(λ = 0.10, 0.20, 0.30 and 0.50) is given in Table 2. The find-
ings ofMCUSUMDcontrol chart are provided in Table 3. The
run length profile of the proposedMMECD control chart with
respect to different choices of λ and quality characteristics
(p = 2,3 and 4) is given in Tables 4 and 5.
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TABLE 1. Run length profile of the generalized variance chart at fixed p = 2, when ARL0 = 250.

The findings of the GenVar control chart revealed that 20%
increase in the dispersion parameter might cause 71.46%
decrease in the ARL1(cf. Table 1). The run length profile of
MEWMAD control chart with respect to different choices
of smoothing parameters (λ = 0.10, 0.20, 0.30 and 0.50)
depicted that 86.77% decrease reported in the ARL1 of
MEWMAD chart due to 20% shift in the dispersion
parameter (i.e. δ = 1.2)(cf. Table 2). The findings of the
MCUSUMD control chart exhibited that there is 86.56%
decrease in the ARL1 with the 20% increase of dispersion
parameter (i.e., δ = 1.2)(cf. Table 2). The run length profile
of theMMECD control chart with respect to different choices
of λ and quality characteristics (p = 2,3 and 4) is revealed
that 88.34% decrease is reported in ARL1 of MMECD chart
due to 20% shift in the dispersion parameter.

In addition, the run length curves, along with the box plots,
are presented in Figure 1. When the process is in a stable
state or IC state (i.e. δ = 1), all charts have similar perfor-
mance. For a shifted environment in dispersion parameter
(e.g. δ = 1.5), then the proposedMMECD chart outperforms
the other competitive charts under study, as may be seen in
Figure 1.

Further, other performance measures, such as EQL and
SEQL are reported in Table 6. The SEQL is employed to
check the performance of a chart over a specific range of
shifts in the dispersion parameter. It is to be mentioned that
EQL is based on all the shifts in the process dispersion (that is
the last column of Table 6). The findings depict that MMECD
chart having smoothing parameter (λ = 0.5) offers the min-
imum SEQL and EQL as compared to all the competitive
charts under consideration.

Moreover, the prime findings of this study are summarized
as follows:

� The proposed MMECD scheme is better than the Gen-
Var chart for small and moderate shifts in the process
dispersion for all values of λ.

� The proposed MMECD chart outperforms MCUSUMD
chart for the monitoring of process variance-covariance

FIGURE 1. RL curves and box plots of the proposed MMECD control chart
and its counterparts.

matrix when the shifts in the process are very small.
It holds true for all values of λ.

� The proposed structure is better than the MEWMAD
chart at small shifts when λ < 0.5.When λ ≥ 0.5 (for
the sake of brevity, we did not include results in Tables),
the proposed MMECD is better than MEWMAD chart
for small and moderate shifts of the process dispersion.

� The sensitivity of the proposed chart to detect small
and moderate shifts in the variance-covariance matrix
increases as p increases.

IV. AN APPLICATION
In this section, we provide an application of the proposed
chart for the manufacturing process. We outline brief details
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TABLE 2. Run length profile of the MEWMAD control chart for the monitoring of dispersion at fixed p = 2 and ARL0 = 250.
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TABLE 3. Run length profile for the MCUSUMD control chart at fixed p = 2, ARL0 = 250 and h1 = 3.725.

of the process related to carbon fiber tubes, followed by the
implementation of the proposed and some existing charts.

A. CARBON FIBER TUBING PROCESS
The carbon fibers making is a partly chemical and partly
mechanical process. Carbon fibers are long and thin strands
of material (about 0.005-0.010 mm in diameter), composed
mostly of carbon atoms. The raw material used to make
carbon fiber is called the precursor. Several thousand car-
bon fibers are twisted together to form a yarn, which
may be used by itself or woven into a fabric. The yarn
or fabric is combined with epoxy and wound or molded
into shape to form various composite materials. Carbon
fiber-reinforced composite materials are used to make air-
craft and spacecraft parts, racing car bodies, golf club shafts,
bicycle frames, fishing rods, automobile springs, sailboat
masts, and many other components where lightweight and
high strength are needed. The latest development in car-
bon fiber technology is tiny carbon tubes called nanotubes.
These hollow tubes, some as small as 0.001 mm in diam-
eter, have unique mechanical and electrical properties that
may be useful in making new high-strength fibers, submicro-
scopic test tubes, or possibly new semiconductor materials
for integrated circuits. (http://www.madehow.com/Volume-
4/Carbon-Fiber.html ixzz5oE8ZmqNw).

An image of a carbon fiber tube from a tubing pro-
cess is shown in Figure 2, where three characteristics
(inner diameter, thickness and length of the carbon fiber
tubes) is labelled. (https://rcmarketpuss-rcmarket.netdna-s
sl.com/images/D/white%20carbon%20fiber%20tube-01.jpg,
with some modifications for our study purpose).

B. A QUALITY CONTROL APPLICATION
In this Section, we apply a dataset related to the industrial
manufacturing of a carbon fiber tubing process. In an appli-
cation, it was observed that the quality of carbon fiber tubes
might depend on three variables, including inner diameter,

FIGURE 2. An image of a carbon fiber tube from a tubing process.

thickness and length [25], as shown in Figure 2. The dataset
is categorized as carbon1 and carbon2; where carbon1 and
carbon2 datasets contain 30 and 25 multivariate samples,
respectively, of the three correlated quality characteristics,
each of size 8. This data can be obtained by installing the
MSQCpackage in R program. The implementation procedure
used for this dataset is outlined below.

First, we used carbon1 to get the Phase I estimates for
the required parameters and employed carbon2 for Phase II
monitoring of the multivariate variability of the process.
We noticed that all the data points are in-control in Phase II
for each chart. We have considered the GenVar, MEWMAD,
MCUSMD, MMECD control charts. Thus, we combined
both carbon1 and carbon2 datasets, computed the sample
variance-covariance matrix of the combined dataset as pro-
vided in (11) to obtain a new Phase I estimate:

S × 100 =

 0.24 0.35 0.67
0.35 1.44 1.15
0.67 1.15 6.48

 . (11)
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TABLE 4. Run length profile of the MMECD control chart for p = 2 at fixed ARL0 = 250.
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TABLE 5. Run length profile of the MMECD control chart for p =3 and 4 at fixed ARL0 = 250.

100182 VOLUME 7, 2019



M. Riaz et al.: Multivariate Mixed EWMA–CUSUM Control Chart for Monitoring the Process Variance–Covariance Matrix

TABLE 6. SEQL of the proposed MMECD control chart and its Counterparts for p = 2 at fixed ARL0 = 250.

Based on this estimate, we generated 50 tri-variate samples
(referring to the three correlated quality characteristics), each
of size 8. The first 20 samples are kept in-control, while
we shifted the sample variance-covariance matrix of the last
30 samples by rescaling by 1.2. The resulting Phase II dataset
is presented in Table 7.

For this dataset, we constructed all the control charts under
investigation in this study. For all the charts, control limits
coefficients are set such that ARL0 = 250. The graphical
displays of the proposed chart and its counterparts are shown
in Figures 3-6. The result of our findings is outlined as
follows:

FIGURE 3. The GenVar control chart when L1 = 5.394.

� The GenVar chart detected 3 out-of-control signals,
at sample numbers 35, 48 and 49 (cf. Figure 3).

� TheMEWMADchart for the process dispersion alarmed
4 out-of-control signals, at sample numbers 26,48, 49
and 50 (cf. Figure 4).

� The MCUSUMD chart captured 15 out-of-control
points, at sample numbers 31 and 37-50 (cf. Figure 5).

� The proposed MMECD chart detected 27 out-of-control
signals at sample numbers 23-50 (cf. Figure 6).

From the analysis above, it is evident that the proposed
chart is very effective in detecting small shifts (such as
δ = 1.2) in process variance-covariance matrix.

FIGURE 4. The MEWMAD chart when h1 = 2.86 and λ = 0.5.

FIGURE 5. The MCUSUMD chart when h2 = 3.725 and k1 = 0.5.

The potential reasons for suchOOCmight include a special
cause(s) in one of the important steps in the carbon fiber tub-
ing process such as spinning, stabilizing, carbonizing etc. and
these un-natural variations may be caused by the variables
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TABLE 7. Specific carbon fiber tubing phase II dataset.
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TABLE 7. (Continued.) Specific carbon fiber tubing phase II dataset.

VOLUME 7, 2019 100185



M. Riaz et al.: Multivariate Mixed EWMA–CUSUM Control Chart for Monitoring the Process Variance–Covariance Matrix

FIGURE 6. The MMECD chart when h3 = 10.75, λ = 0.5 and k∗2 = 0.5.

that might include temperature, gas flow, and chemical com-
position. It is important to timely fix any issues with these
stages/variables as it may lead to serious health issues such
as skin allergy, lungs infections etc.

V. SUMMARY, CONCLUSION AND RECOMMENDATIONS
A new multivariate control chart, namely MMECD chart is
proposed to monitor changes in the process dispersion in
a multivariate setup. It is designed by mixing the features
of multivariate EWMA and CUSUM charts for dispersion
matrix of a process. The performance of the proposed scheme
is evaluated in terms of several useful measures such as
ARL, SDRL, MDRL, EQL and SEQL. The performance of
the MMECD control chart is compared with the other com-
peting charts, including GenVar control chart, MEWMAD
and MCUSUMD control charts. The comparisons revealed
that the proposed scheme has better performance than its
counterparts for detecting the small shifts in the process
dispersion in a multivariate environment. The scope of
this study may be extended to investigate the Multivariate
Mixed EWMA-CUSUM under contaminated normal and
non-normal processes.
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