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ABSTRACT The dispersion control charts monitor the variability of a process that may increase or decrease.
An increase in dispersion parameter implies deterioration in the process for an assignable cause, while a
decrease in dispersion indicates an improvement in the process. Multivariate variability control charts are
used to monitor the shifts in the process variance-covariance matrix. Although multivariate EWMA and
CUSUM dispersion control charts are designed to detect the small amount of change in the covariance matrix
but to gain more efficiency, we have developed a Mixed Multivariate EWMA-CUSUM (MMECD) chart. The
proposed MMECD chart is compared with its existing counterparts by using some important performance run
length-based properties such as ARL, SDRL, EQL, SEQL, and different quantile of run length distribution.
A real application related to carbon fiber tubing process is presented for practical considerations.

INDEX TERMS Control charts, dispersion parameter, mixed EWMA-CUSUM, memory type, multivariate

normality.

I. INTRODUCTION

Control charts are widely used to detect changes in a pro-
cess location and/or dispersion parameter. These charts are
categorized as memory and memoryless charts. Shewhart [1]
initiated the idea of a control chart named by Shewhart
chart, which is a memoryless control chart; it identifies large
shifts in a process and uses only the current information.
Memory type control charts are efficient in identifying small
changes in the process parameter(s). The most common
examples include Cumulative sum (CUSUM) control chart
proposed by Page [2] and Exponentially Weighted Mov-
ing Average (EWMA) control chart by Roberts [3]. The
afore-mentioned charts are univariate charts that monitor a
single quality characteristic of interest.

Sometimes, we are interested in the monitoring of more
than one correlated quality characteristics like the hard-
ness and tensile strength of steel; thus multivariate control
charts are employed. Hotelling [4] introduced a chart that
monitors two or more correlated quality characteristics and
named it as Chi-squared control chart. Shewhart control chart
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(location) in the univariate set-up is an analog of Chi-squared
control chart (mean vector). Pignatiello Jr and Runger [5]
and Crosier [6] proposed memory type multivariate control
charts. They offered Multivariate CUSUM (MCUSUM) con-
trol charts that monitor the mean vector. Lowry et al. [7]
developed a Multivariate EWMA (MEWMA) control chart;
this chart follows a direct analog of univariate EWMA. Mul-
tivariate memory-type control charts are efficient to identify
small changes in the process mean vector.

Alt [8] proposed a multivariate control chart that mon-
itored the variance-covariance matrix and named it as
generalized variance chart. This chart is not effective to
detect small shifts in the process variance-covariance matrix.
Djauhari et al. [9] introduced vector variance control chart,
which can be employed when the variance-covariance matrix
is singular. This chart monitors both rational subgroups
and individual observations. It was also combined with
the generalized variance chart to produce an effective
detecting ability of the variance-covariance matrix chart.
Memar and Niaki [10] proposed multivariate charts used
to monitor the variance-covariance matrix with individual
observations. Healy [11] developed two charts that mon-
itor process mean vector and process variance-covariance
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matrix by using MCUSUM statistics. Also, Chen et al. [12]
developed a MEWMA (Max-MEWMA) chart that moni-
tors shift in both process parameters such as location and
dispersion simultaneously. Recently, Adegoke et al. [13] pro-
posed a multivariate version of Homogeneously Exponen-
tially Weighted Moving Average (HEWMA) control chart for
the monitoring of process mean vector.

Abbas et al. [14], [15] combined the structure of EWMA
and CUSUM charts to gain sensitive scheme for the mon-
itoring of process parameter(s). Ajadi et al. [16] extended
this idea by raising the sensitivity of mixed EWMA-CUSUM
(MEC) chart in the univariate set-up. Later, Ajadi and
Riaz [17] introduced a multivariate MEC chart for the
monitoring the process mean vector. Following the same
inspiration, we intend to design, in this article, a multi-
variate MEC control chart for the monitoring of process
variance-covariance matrix. The study proposal will serve the
purpose for different kind of processes such as carbon fiber
tubing process, material flow controlling process and bayer
process.

The rest of this study is organized as: Section II presents
the information of the existing multivariate control charts
for monitoring the process variance-covariance matrix, along
with the newly proposed control chart. Section III offers
the performance evaluations and comparison of the proposed
chart and its counterparts. Section IV provides a real appli-
cation to validate the superiority of the proposed scheme
to its counterparts. Finally, Section V gives the summary,
conclusions and recommendation of this study.

Il. CONTROL CHARTS FOR THE PROCESS
VARIANCE-COVARIANCE MATRIX

This section discusses some useful control charts used to
monitor process variance-covariance matrix, such as gen-
eralized variance chart, multivariate EWMA and CUSUM
control charts for monitoring the process variance-covariance
matrix. The design structures of these charts will be given,
and it will be discussed how the process is declared in-control
(IC) or out-of-control (OOC).

A. PRELIMINARIES

Let X be a p dimensional vector (X,x1) following a
multivariate normal distribution with mean vector u and
variance-covariance matrix ¥. Symbolically, we may write
it as: X ~Np, (u, X), where p is p dimensional mean vec-
tor (,u,pxl) and ¥ is p dimensional variance-covariance
matrix (3pp). The mean and variance-covariance matrix are
defined as follows:

/
wi=[m1 w2 o )
2
o o102 0010p—1 PO10p
2
00201 05 0020p—1 PO20p
Y= . .
2
0,0 0,0 0pOp_1 O
POpO1 POp0O2 POpOp—1 0 pxp
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For our study purposes, we will use pg and Xq as the known
mean vector and variance-covariance matrix, respectively.
Let X; be the i sample matrix consisting of the x;j as the
i (i =1,2,...,n) observation of the j’h G=1,2,---,p
quality characterlsnc on the k’h (k=1,2,...,m)sample. Let
X; and S; are p dimensional i/ sample mean vector and sam-
ple variance-covariance matrix (}_(pxl and S, ) respectively,
defined as:

Xi=[X1 X X,].
and
S5 5122 Sip
So1 S AY)
S; = .2 p
Spt Spp - 53

Based on these terminologies, we outline brief details of some
commonly used multivariate control charts for dispersion and
propose a new control chart in the following subsections.

B. GENERALIZED VARIANCE CONTROL CHART
Generalized variance (GenVar) chart, proposed by Alt [8],
was developed for monitoring the determinant of the sample
variance-covariance matrix |S|. The decision limits including
upper control limit (UCL), center line (CL) and lower control
limit (LCL) for this chart are given as

vcL = %ol (b1 + Livb) . (1)
CL = |Xo| b1, 2)
LCL = max { %ol (bl ;L1ﬁ2> } . A3)

where

1 p
by = mn(”—l)
p p
by = 1)2,,]"[( []‘[(n—wz)—]"[(n-i)},

i=1 i=1

and L is the width of the control limit. In most of the time
when the actual value of X is unknown then, it is estimated
by |Zo| = |2A2| / by where ¥ is the Phase I estimate for the
variance-covariance matrix. The plotting statistic is taken as
|S;] which is compared against the above-mentioned control
limits. If |§;| falls outside UCL or LCL, then the process is
declared as OOC, otherwise IC.

C. MULTIVARIATE EWMA CONTROL CHART

Chen et al. [12] proposed a multivariate chart based on
EWMA statistic MEWMAD) for the simultaneous monitor-
ing of process mean vector and variance-covariance matrix.
In this study, we are only interested in the process dispersion,
and the variability statistic of the MEWMAD control chart is
given as:

W, = Z]’; Xy — X)) =5 (X5 — %), 4)
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YHW);p(n—1D1, 5

where H(.;p (n — 1)) represents the Chi-squared distribution
with p (n — 1) degrees of freedom, X is the smoothing con-
stant which always lies between zero and one, and o)
is the normal inverse cumulative distribution function. The
other notations are defined in Section II(A).

Based on Y;, we may define a new statistics V; as (that will
be used as plotting statistic):

WAl a-n¥) "

The plotting statistic |V;| is compared against the control
limit (hy). If |V;| exceeds hyp, the process is declared OOC,
otherwise IC.

Yi=(1=0)Yi | +10”

D. MULTIVARIATE CUSUM CONTROL CHART

The MCUSUM control chart for monitoring the process vari-
ability is named by MCUSUMD control chart, proposed by
Healy [11] and defined as:

Si=max (0 Z

where k| = pn (8 / 5 — 1) log § and § refers to the amount of
shift (see section III(A)).
According to Cheng and Thaga [18], the statistic

(Xij — X) 20—1 (Xij_)zi)_kl‘f‘sifl)»

n

j=1
was standardized by using the following expression

-1 n 7\ 51 AR
Ni=o"!(H [ijl(xl-j—x,-) 5! (=) p (1= D]).
Therefore, the plotting statistic is defined as

S; =max (O, N; — ki + S;_1) .

The process is stated as the IC state as long as the §; is below
the control limit /,, otherwise, it is considered as OOC. It is
to be mentioned that for our study purposes, we have fixed the
value of ki = 0.5, in order to make the chart more sensitive
for the smaller shift.

E. THE PROPOSED MULTIVARIATE MIXED
EWMA-CUSUM CONTROL CHART
In this section, we propose a new multivariate dispersion chart
by integrating the effects of MEWMAD and MCUSUMD
control charts into a single structure. This idea was initially
developed in the univariate setup by Abbas er al. [14],[15].
Later, Ajadi et al. [16] and Ajadi and Riaz [17] made further
developments on it. This study follows their inspirations and
develops a new multivariate dispersion chart, namely Mul-
tivariate Mixed EWMA-CUSUM (MMECD) control chart.
The methodological details of the proposed MMECD chart
are as follows:

Firstly, we compute the W; statistic given in (4) and convert
it into Chi-squared value with p(n — 1) degrees of freedom.
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After this, we applied normal inverse cumulative distribution
function to obtained the standardized statistic such as:

M; =o' [H(W;);pn—1)]. 7

Next, M; is transformed into the MEWMA statistic as given
below:

Zi=1-MNZ_1+ M, (8)

U = _2=r 7z )
WAl a =¥ )"

We can integrate U; into MCUSUM dispersion statistics as:

MMECD; = max (0, U; — ko + MMECD;_1) ,
ky = kz/ ~[1-a- M, (10)

where k3 is chosen equal to half of the shift in terms of
standard deviation. The statistic MMECD; is compared with
the control limit (#3) and the process is declared OOC when
MMECD; is greater than k3.

IIl. PERFORMANCE EVALUATION AND COMPARISONS
This section will serve the following purposes: discuss the
performance measures used to evaluate the performance
of the charts under investigation; describe the construction
of the control limits of various charts of this study; outline
the algorithm of run length, and design of control charting
constants; provide a detail comparison between the proposed
multivariate variance-covariance matrix chart (MMECD) and
its various counterparts.

A. PERFORMANCE MEASURES

In this study, we use various run length (RL) properties
to assess the performance of the control charts under dis-
cussion, by considering different amounts of shifts (§) in
a process. Following Chen et al. [12], the shift in the
variance-covariance matrix is defined as follows:

2

o] L0102 PO10p—1 PO10p
p0201 o3 PO20p—1 PO20p
X1 =94 .
i 2
0,0 00" 0,0p—1 O,
POpO1 POp02 POpOp—1 0 pXp
where § = 1 refers to an IC state, otherwise OOC. For the

sake of simplicity and a fair comparison with existing charts,
we have used p = 0.2 and the case of equal variances. How-
ever, one may expect similar findings for the other choices of
o and variances. For OOC, we have considered the case of an
increase in variability (i.e. § > 1).

The measures covered in this study include average run
length (ARL), standard deviation run length (SDRL), median
run length (MDRL), extra quadratic loss (EQL), and sequen-
tial extra quadratic loss (SEQL), and some useful per-
centiles/quantiles (Qjs) of the run length distribution. These
measures are briefly described as:
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. A series of points in an IC state until an OOC signal is
received referred to a run. The number of points in a run
is termed as run length.

. ARL represents the average number of sample points
awaited until the first OOC signal is received. It is
classified into two types, ARLoy (i.e. IC state) and
ARL(i.e. OOC state) [19].

. SDRL is another useful measure used to assess the
spread of the run length distribution.

. MDRL refers to the midpoint of run length distribution
(i.e. the point that covers 50% of the area).

. EQL is defined as the weighted ARL with respect to the
range of shift (§min to Smax) by considering the square of
shift (8%) as weight. Mathematically, it is defined as:

1

amax
EQL = / 8?ARL(8)ds

amax - 5min Smin
A discrete form of the EQL measure may be defined as:

S A
EQL=. ijl STARL (8)),

where g refers to the number of shifts covered in the perfor-
mance evaluation.

. SEQL is the cumulative measure that refers to the EQL
up to a certain shift (say §;), mathematically defined as:

SEQL;=

3i
/ 8?ARL(8)dS, ¥i=2,3,....... , Smax -

8i = 8min J 8,z
A discrete form of the SEQL measure may also be defined as:
~ I o
SEQL; = ijl 87ARL (5)
For more details on these performance measures, one may be
seen in [20]-[24] and the references therein.

B. ALGORITHM FOR CHOOSING THE CONTROL
LIMITS OF MMECD CHART
Step 1 Algorithm for Run Length:

(i) Generate a sample from the multivariate normal dis-
tribution and calculate the sample statistic (W;) and its
inverse normal using (4) and (7) respectively.

(ii) Calculate Z; and substitute its value in U; using (8)
and (9) respectively; then substitute U; in (10).

(iii)) Evaluate statistic MMECD; as given in (10) and plot
it against the control limit A3. If MMECD; is plotted
beyond the control limit, then the process is declared
OOC and the corresponding sample number (which is
one in this case) is the run length. On the other hand,
we proceed to (iv) if MMECD,; is plotted inside the
control limit A3.

(iv) We generate another sample from the multivariate nor-
mal distribution. Compute the plotting statistic and
compare it with the control limit, as we did in (ii) and
(iii) above. If the process is declared OOC, then stop at

this stage and report 2 as run length, otherwise continue

this method for several iterations.

VOLUME 7, 2019

Step 2 Iterative Procedure:

Repeat step 1 iteratively to get a large number of RL values
(say 10,000 run lengths), and calculate the average of these
RL values, producing ARL. If the process in the IC state,
then the resulting ARL will be ARL( and for OOC state the
resulting ARL will be ARL;.

C. DESIGN STRUCTURE OF CHARTING

CONSTANT AND LIMITS

The design structures of the proposed chart and its coun-
terparts depend on the sample size (n) and the number of
correlated quality characteristics to be monitored simultane-
ously (p). We have evaluated the performance of the charts
as a function of n and p. For our study purposes, we have
evaluated the results for n = 5 and p = 2, 3,4 for the
proposed MMECD control chart. For the comparison purpose
with the existing counterparts, we have covered the case of
p = 2. Some selective results for control limits are given
below for different charts of this study.

. In generalized variance (GenVar) control chart,
the width of the control limits depends on charting
constant L, which is L; = 5.394 and L; = 6.23
when p = 2 and p = 3, respectively for the prefixed
ARLqy = 250.

. The UCL (h;) of multivariate EWMA disper-
sion (MEWMAD) chart depends on the smoothing
constant A. For the fixed ARLy, = 250, hy =
2.57,2.73,2.794 and 2.856 with respect to A =
0.10, 0.20, 0.30 and 0.50 when p = 2.

. For the MCUSUMD chart, the control limit (hy =
3.725) with prefixed ARLy = 250 is used when the
reference parameter, k1, is 0.5 and Sp = 0.

. The control limit (k3) of the proposed MMECD chart
relies on four designing parameters n,p, A and k;‘.
First, we fixed n=5,p=2,k; = 0.5 and ARLy =
250, and the resulting values of control limit (k3)
are 34.7,24.2,18 and 10.75 with respect to A =
0.10, 0.20, 0.30 and 0.50. Similarly, for p = 3, the val-
ues of control limit (h3) are 34.9 and 18 with respect
to A = 0.10 and 0.30, while for p = 4, the values
of control limit (h3) are 34.9 and 18 with respect to
A = 0.10 and 0.30.

D. COMPARATIVE ANALYSIS

The run length profile (i.e., ARL, SDRL, and percentiles
values) with respect to various shifts in the process
variance-covariance matrix (1 < § < 2) for all charts under
considerations are provided in Tables 1-5. The results of the
generalized variance control chart are reported in Table 1.
The run length profile of the MEWMAD control chart
with respect to different choices of smoothing parameters
(A = 0.10, 0.20, 0.30 and 0.50) is given in Table 2. The find-
ings of MCUSUMD control chart are provided in Table 3. The
run length profile of the proposed MMECD control chart with
respect to different choices of A and quality characteristics
(p = 2,3 and 4) is given in Tables 4 and 5.
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TABLE 1. Run length profile of the generalized variance chart at fixed p = 2, when ARL, = 250.

8 ARL SDRL Qo0 Qo.s Qo.s0=MDRL Qo7 Qo.05
1.00 249.4119 248.6994 13 71 173 347 743
1.05 172.1502 171.1894 9 50 120 238 511
1.10 124.6748 123.5462 7 36 87 172 371
1.15 92.47498 91.98941 5 27 64 128 276
1.20 70.28158 70.14763 4 21 49 97 211
1.30 43.61294 43.74393 3 13 30 60 130
1.40 29.53602 28.93799 2 9 21 41 87
1.50 21.00708 20.4521 2 7 15 29 62
1.60 15.7665 15.25515 1 5 11 22 46
1.70 12.4051 11.90472 1 4 9 17 36
1.80 9.94478 9.47369 1 3 7 14 29
1.90 8.16916 7.651528 1 3 6 11 24
2.00 6.91642 6.39336 1 2 5 9 20
The findings of the GenVar control chart revealed that 20% _ o=t _ o=1s
increase in the dispersion parameter might cause 71.46% o e T T
decrease in the ARL(cf. Table 1). The run length profile of o oa / e
MEWMAD control chart with respect to different choices i % ; _ f, ,
of smoothing parameters (A = 0.10, 0.20, 0.30 and 0.50) > - /,f"" E; © I,' '/'
depicted that 86.77% decrease reported in the ARLy of 221 / . EE I .
MEWMAD chart due to 20% shift in the dispersion 337 / v (83 WEWNAD
o o MCUSUMD P MCUSUMD
parameter (i.e. § = 1.2)(cf. Table 2). The findings of the S/ MVECD s ] J!, MVECD

MCUSUMD control chart exhibited that there is 86.56%
decrease in the ARL; with the 20% increase of dispersion
parameter (i.e., § = 1.2)(cf. Table 2). The run length profile
of the MMECD control chart with respect to different choices
of X and quality characteristics (p = 2,3 and 4) is revealed
that 88.34% decrease is reported in ARL; of MMECD chart
due to 20% shift in the dispersion parameter.

In addition, the run length curves, along with the box plots,
are presented in Figure 1. When the process is in a stable
state or IC state (i.e. § = 1), all charts have similar perfor-
mance. For a shifted environment in dispersion parameter
(e.g. § = 1.5), then the proposed MMECD chart outperforms
the other competitive charts under study, as may be seen in
Figure 1.

Further, other performance measures, such as EQL and
SEQL are reported in Table 6. The SEQL is employed to
check the performance of a chart over a specific range of
shifts in the dispersion parameter. It is to be mentioned that
EQL is based on all the shifts in the process dispersion (that is
the last column of Table 6). The findings depict that MMECD
chart having smoothing parameter (A = 0.5) offers the min-
imum SEQL and EQL as compared to all the competitive
charts under consideration.

Moreover, the prime findings of this study are summarized
as follows:

. The proposed MMECD scheme is better than the Gen-
Var chart for small and moderate shifts in the process
dispersion for all values of A.

. The proposed MMECD chart outperforms MCUSUMD
chart for the monitoring of process variance-covariance
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FIGURE 1. RL curves and box plots of the proposed MMECD control chart
and its counterparts.

matrix when the shifts in the process are very small.
It holds true for all values of A.

. The proposed structure is better than the MEWMAD
chart at small shifts when A < 0.5. When A > 0.5 (for
the sake of brevity, we did not include results in Tables),
the proposed MMECD is better than MEWMAD chart
for small and moderate shifts of the process dispersion.

. The sensitivity of the proposed chart to detect small
and moderate shifts in the variance-covariance matrix
increases as p increases.

IV. AN APPLICATION
In this section, we provide an application of the proposed
chart for the manufacturing process. We outline brief details

VOLUME 7, 2019
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TABLE 2. Run length profile of the MEWMAD control chart for the monitoring of dispersion at fixed p = 2 and ARL, = 250.

5 ARL SDRL | Quos | Quss | _ou% | Qus | Quos
1.00 254.7117 258.7215 9 69 174 358 780
1.05 167.3683 169.2136 7 46 116 235 505
1.10 90.8772 88.21587 5 28 65 125 265
1.15 53.0809 50.24277 4 18 38 73 153
1.20 33.9435 30.44225 3 12 25 47 94
1.30 18.63015 15.69073 2 7 15 25 49
A=10.10 1.40 12.0963 9.569828 2 5 10 16 31
h, = 2.57 1.50 8.7257 6.742917 1 4 7 12 22
1.60 6.815 5.051351 1 3 6 9 17
1.70 5.4745 4.006489 1 2 5 7 13
1.80 4.6575 3.330338 1 2 4 6 11
1.90 4.0377 2.840578 1 2 3 5 10
2.00 3.57485 2.445158 1 2 3 5 8
1.00 251.9869 257.2832 12 72 173 345 772
1.05 181.9365 180.6236 9 52 126 252 544
1.10 108.4391 107.2587 7 32 74 151 323
1.15 66.3498 63.94976 5 21 47 91 192
1.20 43.1293 40.58517 3 14 31 60 123
1.30 22.0334 19.53681 2 8 16 30 61
A=0.20 1.40 13.94225 11.55171 2 6 11 19 37
hy, = 2.73 1.50 9.82905 7.770473 1 4 8 13 25
1.60 7.52515 5.718584 1 3 6 10 19
1.70 6.04195 4.401211 1 3 5 8 15
1.80 5.0788 3.586953 1 2 4 7 12
1.90 4.35645 3.026574 1 2 4 6 10
2.00 3.8308 2.611669 1 2 3 5 9
1.00 247.6967 250.54 13 71 170 341 749
1.05 187.387 186.7722 10 55 131 260 554
1.10 120.1797 120.1936 7 35 83 166 357
1.15 76.37805 74.66793 5 23 54 106 224
1.20 50.03515 4791077 4 16 35 69 145
1.30 25.92315 23.89356 3 9 19 35 73
A=10.30 1.40 16.01985 14.03289 2 6 12 22 44
h, =2.794 1.50 10.83165 8.965357 2 5 8 15 29
1.60 8.17405 6.483738 1 4 6 11 21
1.70 6.49415 4.966367 1 3 5 9 16
1.80 5.42985 3.973911 1 3 4 7 13
1.90 4.59945 3.324961 1 2 4 6 11
2.00 4.06865 2.835196 1 2 3 5 9
1.00 252.242 248.8667 14 73 176 348 756
1.05 197.9535 197.3766 10 57 137 276 598
1.10 138.7828 139.5844 8 40 96 192 415
1.15 94.06115 92.60537 6 28 66 130 278
1.20 64.48505 62.97933 5 19 45 89 190
1.30 34.0636 32.75663 3 11 24 47 99
A=10.50 1.40 20.76115 19.35889 2 7 15 28 60
h, = 2.856 1.50 13.8152 12.48033 2 5 10 19 39
1.60 9.95335 8.833826 1 4 7 13 27
1.70 7.8038 6.634622 1 3 6 10 21
1.80 6.2156 5.123693 1 3 5 8 16
1.90 5.2223 4.061503 1 2 4 7 13
2.00 4.4822 3.381872 1 2 4 6 11
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TABLE 3. Run length profile for the MCUSUMD control chart at fixed p = 2, ARLy = 250 and h; = 3.725.

5 ARL SDRL Quas Quas b Qus Quss
1 251.7577 246.6743 17 75 176 347 757
1.05 131.1152 127.0055 11 41 92 179 388
1.1 76.42915 72.27781 8 25 54 105 220
1.15 48.31865 44.17811 6 17 35 66 138
1.2 33.79105 29.66911 5 13 25 45 94
1.3 19.22465 15.51715 4 8 15 25 50
1.4 12.85185 9.424412 3 6 10 17 31
1.5 9.56815 6.45521 3 5 8 12 22
1.6 7.7126 4.867729 3 4 6 10 17
1.7 6.4304 3.832831 2 4 5 8 14
1.8 5.4766 3.042304 2 3 5 7 11
1.9 4.86345 2.582099 2 3 4 6 10
2 4.41905 2.258274 2 3 4 5 9
of the process related to carbon fiber tubes, followed by the
implementation of the proposed and some existing charts. Length Thicknes

A. CARBON FIBER TUBING PROCESS

The carbon fibers making is a partly chemical and partly
mechanical process. Carbon fibers are long and thin strands
of material (about 0.005-0.010 mm in diameter), composed
mostly of carbon atoms. The raw material used to make
carbon fiber is called the precursor. Several thousand car-
bon fibers are twisted together to form a yarn, which
may be used by itself or woven into a fabric. The yarn
or fabric is combined with epoxy and wound or molded
into shape to form various composite materials. Carbon
fiber-reinforced composite materials are used to make air-
craft and spacecraft parts, racing car bodies, golf club shafts,
bicycle frames, fishing rods, automobile springs, sailboat
masts, and many other components where lightweight and
high strength are needed. The latest development in car-
bon fiber technology is tiny carbon tubes called nanotubes.
These hollow tubes, some as small as 0.001 mm in diam-
eter, have unique mechanical and electrical properties that
may be useful in making new high-strength fibers, submicro-
scopic test tubes, or possibly new semiconductor materials
for integrated circuits. (http://www.madehow.com/Volume-
4/Carbon-Fiber.html ixzzS0E8ZmqNw).

An image of a carbon fiber tube from a tubing pro-
cess is shown in Figure 2, where three characteristics
(inner diameter, thickness and length of the carbon fiber
tubes) is labelled. (https://rcmarketpuss-rcmarket.netdna-s
sl.com/images/D/white%20carbon%?20fiber%20tube-01.jpg,
with some modifications for our study purpose).

B. A QUALITY CONTROL APPLICATION

In this Section, we apply a dataset related to the industrial
manufacturing of a carbon fiber tubing process. In an appli-
cation, it was observed that the quality of carbon fiber tubes
might depend on three variables, including inner diameter,

100180

Diameter

FIGURE 2. An image of a carbon fiber tube from a tubing process.

thickness and length [25], as shown in Figure 2. The dataset
is categorized as carbonl and carbon2; where carbonl and
carbon2 datasets contain 30 and 25 multivariate samples,
respectively, of the three correlated quality characteristics,
each of size 8. This data can be obtained by installing the
MSQC package in R program. The implementation procedure
used for this dataset is outlined below.

First, we used carbonl to get the Phase I estimates for
the required parameters and employed carbon2 for Phase II
monitoring of the multivariate variability of the process.
We noticed that all the data points are in-control in Phase II
for each chart. We have considered the GenVar, MEWMAD,
MCUSMD, MMECD control charts. Thus, we combined
both carbonl and carbon2 datasets, computed the sample
variance-covariance matrix of the combined dataset as pro-
vided in (11) to obtain a new Phase I estimate:

024 035 0.67
Sx100=|035 144 1.15]. (11)
067 1.15 648
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TABLE 4. Run length profile of the MMECD control chart for p = 2 at fixed ARL, = 250.

ARL SDRL Qo.0s Qoas Qo50"MDRL Qo1s Qo5
1 252.2496 223.9771 38 94 184 338 701
1.05 106.0152 79.31398 27 50 83 138 264
1.1 62.57016 39.43867 22 35 52 79 140
1.15 44.35546 23.14256 19 28 39 55 90
1.2 34.73182 15.80737 17 23 31 42 65
2 =010 1.3 25.053 9.154358 14 19 23 30 42
hs_: 3'4.7 1.4 20.3011 6.333514 12 16 19 24 32
1.5 17.37136 4.866765 11 14 17 20 27
1.6 15.36956 3.914625 10 13 15 17 23
1.7 13.9508 3.310232 10 12 13 16 20
1.8 12.86418 2.871087 9 11 12 14 18
1.9 11.96104 2.548013 8 10 12 13 17
11.2401 2.325399 8 10 11 13 15
1 252.6598 228.5118 34 91 183 341 708
1.05 106.6179 84.18543 24 47 82 140 276
1.1 62.0194 42.02007 19 33 51 79 145
1.15 42.76746 24.92882 16 25 36 54 92
1.2 32.5648 16.80904 14 21 29 40 66
1= 020 1.3 22.76062 9.612103 11 16 21 27 41
h3_= 2'4.2 1.4 17.79754 6.445642 10 13 17 21 30
1.5 15.01306 4.862781 9 12 14 18 24
1.6 13.06718 3.846105 8 10 12 15 20
1.7 11.75198 3.194137 8 9 11 13 18
1.8 10.73168 2.753012 7 9 10 12 16
1.9 9.94944 2.427262 7 8 10 11 14
9.28576 2.17753 6 8 9 10 13
1 257.2159 236.0945 32 89 185 349 730
1.05 109.6768 91.65577 21 46 82 145 290
1.1 61.64732 44.14792 16 30 49 80 149
1.15 41.86888 26.45432 14 23 35 53 94
1.2 31.2763 17.75527 12 19 27 39 66
1 =030 1.3 21.15212 9.957405 10 14 19 26 40
hs = 18 1.4 16.26344 6.633307 8 12 15 19 29
1.5 13.4623 4.89305 7 10 13 16 23
1.6 11.63008 3.8852 7 9 11 14 19
1.7 10.33628 3.20577 6 8 10 12 16
1.8 9.37562 2.716652 6 7 9 11 14
1.9 8.64086 2.388328 6 7 8 10 13
2 8.0484 2.140866 5 7 8 9 12
1 250.9925 236.9971 25 82 178 344 726
1.05 111.0526 97.84321 17 42 81 149 307
1.1 62.29336 50.27892 13 27 47 82 162
1.15 40.66604 29.69112 10 20 32 53 99
1.2 29.70482 19.8487 9 16 24 38 69
1 =050 1.3 19.00814 10.72226 7 11 16 24 40
hy ; 16.75 1.4 14.1173 6.913151 6 9 13 17 27
1.5 11.37454 5.046988 5 8 10 14 21
1.6 9.69288 3.996573 5 7 9 12 17
1.7 8.45538 3.206252 5 6 8 10 15
1.8 7.55676 2.713228 4 6 7 9 13
1.9 6.89878 2.362551 4 5 6 8 11
2 6.38738 2.077374 4 5 6 7 10
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TABLE 5. Run length profile of the MMECD control chart for p =3 and 4 at fixed ARL, = 250.

d ARL SDRL Qo.05 Qo.25 Qo.50"MDRL Qo.75 Qo.95
1.0 258.84 229.56 39 95 187 352 719.5
1.1 52.319 29.938 20 31 44 65 112
1.2 28.881 11.52 15 21 26 34 51
1.3 21.287 6.7637 13 16 20 25 34
1.4 17.274 4.641 11 14 17 20 26
;31031% 1.5 14.842 3.5418 10 12 14 17 21
1.6 13.171 2.9081 9 11 13 15 19
1.7 12.015 2.4872 9 10 12 13 17
1.8 11.045 2.1418 8 10 11 12 15
1.9 10.302 1.9465 8 9 10 11 14
_ 2.0 9.6805 1.7278 7 8 9 11 13
p=3 1.0 258.2 238.39 32 89 186 352 736.5
1.1 50.538 34.635 15 27 41 64 118
1.2 25.093 12.778 11 16 22 31 50
1.3 17.207 7.1151 9 12 16 21 31
1.4 13.314 47154 7 10 12 16 22
/‘}113=:0-13§ 1.5 11.086 3.4667 7 9 10 13 18
1.6 9.629 2.767 6 8 9 11 15
1.7 8.6506 2.3174 6 7 8 10 13
1.8 7.8479 1.9631 5 6 8 9 11
1.9 7.2626 1.7587 5 6 7 8 10.5
2.0 6.7712 1.537 5 6 7 8 10
1.0 258.19 227.48 38 96 188 352 716.5
1.1 45.874 24.194 19 29 40 57 93
1.2 25.483 9.1289 14 19 24 30 43
1.3 18.903 5.3428 12 15 18 22 29
1.4 15.396 3.7136 10 13 15 17 22
;3103}1_% 1.5 13.283 2.8542 9 11 13 15 19
1.6 11.83 2.3411 9 10 12 13 16
1.7 10.729 1.9537 8 9 10 12 14
1.8 9.924 1.7546 7 9 10 11 13
1.9 9.2834 1.5701 7 9 10 12
B 2.0 8.7079 1.3947 7 9 10 11
p= 1.0 256 23542 30 89 185 343 727
1.1 43.288 27.129 14 24 37 55 96
1.2 21.472 9.759 10 14 19 26 40
1.3 14.789 5.4768 8 11 14 17 25
1.4 11.522 3.6013 7 9 11 13 18
A1=10.30
hy = 18 1.5 9.7011 2.7481 6 8 9 11 15
1.6 8.4693 2.1833 6 7 8 10 12
1.7 7.6179 1.8085 5 6 7 9 11
1.8 6.933 1.5326 5 6 7 8 10
1.9 6.4386 1.3826 5 5 6 7 9
2.0 6.0388 1.2425 4 5 6 7 8
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TABLE 6. SEQL of the proposed MMECD control chart and its Counterparts for p = 2 at fixed ARLy = 250.

Chart 8
1.2 1.3 14 1.6 1.7 1.8 1.9 2
GenVar 126.8534 107.6626 93.88305 83.56643 75.61256 69.371 64.36502 60.22711 56.73811
MCUSUMD 69.99166 55.18605 46.36523 40.61775 36.62666 33.70897 31.50449 29.79776 28.44862
2=0.10 | 78.48672 | 59.15192 | 48.48826 | 41.74614 37.0965 33.68628 | 31.08324 | 29.04122 | 27.40488
ME AD 2=0.20 98.22072 74.11974 60.30016 51.43109 45.31824 40.85527 37.45581 34.7911 32.6564
A=0.30 | 109.0312 | 83.71507 | 68.28204 | 58.15395 51.102 4592242 | 41.96061 | 38.84324 | 36.33373
2=0.50 130.562 103.2156 | 8522776 | 72.86712 | 63.99549 | 57.34354 52.1991 48.11814 | 44.81122
2=0.10 62.89061 54.51338 50.03424 47.38963 45.77483 44.8049 44.27255 44.05596 44.07559
MMECD 2=0.20 | 61.08067 | 51.85419 | 46.78744 | 43.68772 | 41.69428 | 4039187 | 39.55471 | 39.04984 | 38.79308
2=0.30 59.50639 49.7766 44.39395 41.04799 38.83954 37.3411 36.31642 35.6293 35.19516
2=0.50 58.571 47.76603 41.7325 37.95414 35.40543 33.60878 32.31412 31.37454 30.69677
Based on this estimate, we generated 50 tri-variate samples e
. . .. 10.01 i eongr | Out-of-control
(referring to the three correlated quality characteristics), each ! !
of size 8. The first 20 samples are kept in-control, while {1 NoAam,
we shifted the sample variance-covariance matrix of the last 7,54
30 samples by rescaling by 1.2. The resulting Phase II dataset
is presented in Table 7.
For this dataset, we constructed all the control charts under < 50
investigation in this study. For all the charts, control limits i
coefficients are set such that ARLy = 250. The graphical /\
displays of the proposed chart and its counterparts are shown 2.51
in Figures 3-6. The result of our findings is outlined as
follows:
0.0+
0 5 10 15 20 25 30 35 40 45 50
o | observations
1.5e-051 I :
FIGURE 4. The MEWMAD chart when h; = 2.86 and = 0.5.
__ 1.0e-051 In-control Qut-of-control
= | ¢ Alam /
\ i Qut-of-control
 * NoAlarm
5.0e-06+ /\./\. 9 e emee i
0.0e+001 _/v\f\f/\v\

0 5 10 15 20 25 30 35 40 45 50
observations

FIGURE 3. The GenVar control chart when L; = 5.394.

. The GenVar chart detected 3 out-of-control signals,
at sample numbers 35, 48 and 49 (cf. Figure 3).

. The MEWMAD chart for the process dispersion alarmed
4 out-of-control signals, at sample numbers 26,48, 49
and 50 (cf. Figure 4).

. The MCUSUMD chart captured 15 out-of-control
points, at sample numbers 31 and 37-50 (cf. Figure 5).

. The proposed MMECD chart detected 27 out-of-control
signals at sample numbers 23-50 (cf. Figure 6).

From the analysis above, it is evident that the proposed
chart is very effective in detecting small shifts (such as
6 = 1.2) in process variance-covariance matrix.

VOLUME 7, 2019
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FIGURE 5. The MCUSUMD chart when h, = 3.725 and k; = 0.5.

The potential reasons for such OOC might include a special
cause(s) in one of the important steps in the carbon fiber tub-
ing process such as spinning, stabilizing, carbonizing etc. and
these un-natural variations may be caused by the variables
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TABLE 7. Specific carbon fiber tubing phase Il dataset.

SUBGROUP
1 2 3 4
sample inner thickness | length inner | thickness | length | inner | thickness | length inner thickness | length
1 1.06 1.16 50.02 1.04 1.04 50.14 0.90 0.75 49.72 0.95 1.00 49.89
2 0.95 0.94 50.16 1.10 1.24 50.49 0.96 0.92 49.94 1.06 1.16 50.25
3 0.97 1.01 50.09 0.95 0.86 49.96 1.05 0.93 50.23 1.01 1.10 49.85
4 0.97 0.90 49.62 1.06 1.25 50.40 1.04 1.16 50.13 1.02 1.07 50.25
5 1.03 1.14 50.08 0.96 0.77 50.03 0.95 0.83 49.77 1.00 1.03 49.72
6 0.97 0.95 49.73 1.10 1.17 50.53 0.97 1.03 50.25 1.12 1.13 49.98
7 1.12 1.28 50.51 1.00 1.05 49.47 1.06 1.13 50.34 1.01 1.09 50.35
8 1.04 0.99 50.44 1.04 1.05 50.14 0.93 0.96 49.55 0.95 1.08 49.84
9 1.01 1.04 49.81 0.98 1.00 49.69 1.01 1.10 49.95 1.04 1.21 50.19
10 0.99 1.06 49.62 0.96 1.03 50.12 1.04 1.10 49.86 1.03 1.18 50.38
11 1.04 1.13 50.70 0.96 1.12 50.32 0.98 0.98 49.77 1.00 0.94 50.38
12 0.95 1.01 50.07 0.98 0.93 50.04 0.99 0.98 49.98 0.98 1.09 50.14
13 0.95 0.87 49.80 1.02 1.00 50.25 0.97 1.02 49.73 0.97 0.93 49.80
14 0.90 0.79 49.89 0.94 0.85 49.93 1.07 1.08 50.38 0.99 1.16 50.18
15 1.01 1.04 49.94 1.05 1.11 49.72 1.02 1.24 49.98 1.01 0.95 50.55
16 0.91 0.87 49.75 0.95 1.01 49.89 0.98 1.07 49.70 0.99 0.96 50.12
17 1.05 1.20 50.09 0.99 1.10 50.17 0.93 1.02 49.69 0.96 0.89 50.06
18 0.97 0.99 50.13 0.96 1.09 50.13 0.99 1.19 49.79 0.91 0.87 49.66
19 0.98 1.15 50.04 0.99 1.22 50.05 1.02 0.99 49.76 1.02 1.09 49.91
20 1.01 1.24 50.20 1.05 1.09 50.05 1.04 1.07 50.16 1.02 0.97 49.92
21 1.06 1.28 50.44 0.98 1.08 49.92 0.91 1.00 49.37 0.97 1.17 50.26
22 1.02 0.84 49.96 1.00 0.98 49.85 1.03 1.24 49.84 0.97 1.10 49.91
23 0.94 0.86 49.98 1.03 0.88 49.96 0.95 1.06 49.77 0.86 0.82 49.30
24 0.99 1.06 49.89 0.91 0.91 49.95 1.00 1.22 49.93 1.02 1.13 50.44
25 1.01 1.01 50.13 0.99 0.96 50.01 0.89 0.77 49.95 0.99 1.10 50.17
26 0.98 1.13 50.61 0.98 1.05 49.91 0.99 1.08 49.74 0.90 0.98 49.22
27 0.92 1.00 49.83 0.96 0.97 50.02 0.93 1.01 49.75 1.03 1.07 50.24
28 0.99 1.05 49.63 0.97 0.90 50.02 1.07 0.95 50.26 1.01 0.96 49.63
29 0.99 1.19 50.27 0.96 0.92 49.77 1.02 0.90 49.85 1.01 0.93 50.42
30 0.94 1.06 50.00 1.01 1.02 50.17 0.98 0.96 49.90 1.04 1.01 50.00
31 0.96 1.04 49.32 1.02 1.08 49.99 0.99 1.39 50.14 1.00 1.08 50.17
32 1.03 1.03 50.22 1.01 1.06 50.00 0.95 0.91 49.95 1.03 1.09 49.79
33 1.01 1.17 50.18 1.03 1.10 49.88 1.00 0.95 50.19 1.07 1.34 50.43
34 0.98 0.88 49.77 1.01 0.94 49.87 1.01 0.96 50.13 0.97 1.07 49.90
35 0.95 1.05 49.83 0.93 0.93 49.92 1.02 1.00 50.36 1.07 0.80 50.21
36 1.04 1.09 50.47 1.00 1.14 49.96 0.91 0.77 49.52 1.10 1.15 50.47
37 1.02 1.06 50.08 1.01 1.10 50.22 0.99 1.06 49.78 1.03 1.34 50.24
38 1.00 1.08 50.18 1.06 1.12 50.42 0.90 0.78 49.88 1.13 1.01 50.27
39 0.99 0.88 50.06 0.96 0.89 50.12 1.04 1.02 49.69 1.08 1.23 50.43
40 1.10 1.32 50.31 1.00 1.30 49.72 1.00 0.93 50.21 1.03 0.91 50.61
41 0.98 1.06 49.69 0.94 0.81 49.79 0.94 0.95 49.97 1.01 0.94 50.39
42 0.98 0.90 50.02 1.01 1.02 49.86 1.04 0.92 50.13 0.97 1.00 49.99
43 1.00 1.09 50.09 0.90 0.96 49.36 1.08 0.94 49.71 1.07 1.31 50.08
44 0.93 1.01 50.05 0.91 0.86 49.89 1.04 1.10 50.13 1.08 1.00 50.00
45 1.01 1.19 50.38 1.06 0.99 50.35 0.99 1.05 50.29 0.95 0.91 50.15
46 0.96 1.02 49.72 1.03 1.16 50.09 0.89 0.78 49.78 1.05 1.25 49.88
47 1.03 1.10 50.01 1.02 1.13 50.33 0.87 0.89 49.82 1.02 1.08 50.11
48 1.11 1.29 50.26 1.00 1.03 50.16 0.97 1.10 49.22 1.08 1.10 50.01
49 1.04 1.16 50.08 0.95 0.85 49.72 0.98 0.94 49.64 1.12 1.31 49.95
50 1.01 1.19 49.73 1.01 0.97 50.20 0.94 0.69 49.90 0.95 0.86 50.16
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TABLE 7. (Continued.) Specific carbon fiber tubing phase Il dataset.

SUBGROUP
5 6 7 8
sample inner thickness | length inner thickness | length | inner | thickness | length inner thickness | length
1 1.08 1.09 50.21 0.97 1.00 50.06 1.01 1.06 49.95 0.97 0.92 49.87
2 1.01 1.05 49.94 0.98 0.98 49.82 1.01 1.07 50.18 1.03 1.20 50.34
3 1.00 1.04 49.80 0.95 0.93 49.78 0.93 1.02 49.94 1.06 1.15 50.16
4 0.99 1.21 49.65 0.93 0.95 49.91 1.02 0.94 50.27 0.97 0.91 49.95
5 1.00 1.04 49.75 0.93 0.95 49.87 1.04 1.14 49.85 1.03 1.16 49.90
6 1.04 1.01 50.29 1.02 0.94 50.15 1.01 1.05 49.77 0.95 0.99 49.91
7 1.06 1.27 50.34 1.03 1.05 50.04 0.96 0.92 50.10 1.03 1.13 49.97
8 0.96 1.03 49.99 0.98 1.07 50.15 0.95 0.94 49.86 1.00 1.04 50.12
9 0.99 1.00 50.09 0.94 1.10 50.32 0.96 0.99 50.04 0.98 1.12 50.22
10 1.06 0.99 50.12 1.02 1.23 50.13 0.96 1.07 49.54 1.02 1.18 50.58
11 1.05 1.14 50.02 0.99 1.11 49.88 1.04 1.02 50.16 1.00 1.06 50.27
12 0.94 0.90 49.72 0.96 1.15 49.80 0.96 0.93 49.87 1.01 1.18 50.37
13 0.98 1.04 49.87 1.09 1.41 50.05 0.94 0.83 50.00 1.00 1.24 49.68
14 0.97 0.83 49.91 0.97 0.95 49.38 1.00 0.96 50.04 0.98 1.07 50.25
15 1.05 1.12 50.31 1.05 1.14 50.18 0.87 0.82 49.48 0.85 0.79 49.71
16 1.01 1.02 49.45 0.91 0.76 49.75 0.96 1.11 50.23 1.00 1.08 50.28
17 0.86 0.87 49.27 0.95 0.95 49.75 0.94 0.97 49.76 1.03 1.33 50.13
18 1.00 1.21 50.30 0.92 0.94 50.18 1.04 1.25 49.95 0.95 0.96 49.85
19 0.89 0.86 49.42 0.97 0.87 49.84 0.94 1.12 49.67 1.01 1.15 49.66
20 0.96 0.95 50.21 1.03 1.09 50.37 1.05 1.15 50.27 0.99 1.07 50.06
21 0.90 1.08 49.56 0.93 0.99 49.80 1.00 0.98 49.76 0.99 0.92 49.99
22 0.96 0.93 50.19 0.99 1.16 50.20 1.11 1.10 50.22 1.05 1.13 50.27
23 1.04 1.12 49.45 0.95 1.02 49.65 0.95 1.03 49.78 0.99 1.17 49.96
24 1.00 1.05 49.82 0.97 1.29 49.58 0.99 0.91 49.88 0.99 0.92 49.96
25 1.08 1.15 50.22 0.97 1.13 49.78 0.91 0.90 49.46 1.05 0.98 50.12
26 1.04 1.25 50.41 1.00 1.21 49.82 0.96 0.96 50.27 0.99 0.68 49.74
27 1.01 1.01 50.02 1.07 1.22 49.77 0.97 0.90 50.19 0.95 1.00 49.92
28 1.04 1.23 50.03 1.01 0.91 50.05 1.06 1.14 50.35 0.93 0.87 49.74
29 0.97 1.08 49.86 1.01 0.88 50.41 1.01 1.15 50.00 0.93 1.00 49.69
30 1.03 1.11 49.94 0.98 0.74 50.44 1.03 1.17 50.09 1.00 1.07 50.04
31 1.12 1.33 50.59 0.97 0.94 49.85 1.02 1.19 50.01 1.14 1.41 50.14
32 1.03 1.01 49.96 1.04 1.21 50.21 1.06 1.12 50.20 1.02 1.30 49.84
33 0.94 1.00 50.20 1.00 0.99 49.87 1.01 1.06 49.96 1.10 1.18 50.29
34 0.95 1.03 49.99 1.00 1.02 50.05 1.04 1.14 50.12 1.08 1.15 50.16
35 0.89 0.82 49.67 1.10 1.35 49.96 1.02 1.23 50.66 0.97 0.97 49.82
36 0.97 0.92 49.97 0.87 0.91 49.31 1.01 0.97 49.72 1.03 1.15 50.29
37 0.91 1.14 49.71 1.05 0.97 50.37 0.97 0.79 49.91 1.09 1.23 50.18
38 0.93 0.86 49.77 1.08 1.06 49.77 0.99 1.03 50.26 1.01 0.94 50.07
39 1.00 1.03 50.12 0.95 1.09 50.04 0.97 1.03 49.80 1.08 1.15 50.46
40 1.08 1.17 50.20 0.99 0.90 50.26 1.00 0.90 50.02 1.02 1.06 49.97
41 0.96 1.03 49.54 1.02 0.91 49.78 1.00 1.02 50.12 0.88 0.79 49.67
42 0.93 0.92 49.64 0.99 1.19 49.65 0.94 0.98 50.05 0.99 1.13 49.87
43 0.95 1.04 49.69 1.03 1.04 50.34 1.00 1.16 49.75 1.05 1.03 50.41
44 1.04 1.08 50.33 0.97 0.89 50.22 0.92 1.05 49.74 1.07 1.16 50.04
45 0.96 0.97 49.74 1.00 0.97 50.02 0.99 1.11 49.80 0.99 1.07 49.93
46 0.97 0.97 50.22 1.07 1.07 50.10 1.07 1.16 50.53 1.02 1.12 49.92
47 0.96 0.99 49.93 0.96 0.79 50.07 1.03 1.14 50.13 1.00 1.06 50.03
48 0.98 0.81 49.73 1.05 0.90 49.98 0.97 0.77 50.19 0.89 1.10 50.40
49 1.10 1.29 50.59 1.03 0.98 49.68 0.95 1.19 50.16 0.98 0.80 50.42
50 1.02 0.96 50.21 1.02 1.16 50.05 1.02 1.00 49.55 0.99 0.97 50.16
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FIGURE 6. The MMECD chart when hs = 10.75, » = 0.5 and k;‘ =0.5.

that might include temperature, gas flow, and chemical com-
position. It is important to timely fix any issues with these
stages/variables as it may lead to serious health issues such
as skin allergy, lungs infections etc.

V. SUMMARY, CONCLUSION AND RECOMMENDATIONS
A new multivariate control chart, namely MMECD chart is
proposed to monitor changes in the process dispersion in
a multivariate setup. It is designed by mixing the features
of multivariate EWMA and CUSUM charts for dispersion
matrix of a process. The performance of the proposed scheme
is evaluated in terms of several useful measures such as
ARL, SDRL, MDRL, EQL and SEQL. The performance of
the MMECD control chart is compared with the other com-
peting charts, including GenVar control chart, MEWMAD
and MCUSUMD control charts. The comparisons revealed
that the proposed scheme has better performance than its
counterparts for detecting the small shifts in the process
dispersion in a multivariate environment. The scope of
this study may be extended to investigate the Multivariate
Mixed EWMA-CUSUM under contaminated normal and
non-normal processes.
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