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ABSTRACT In most of the manufacturing processes, we encounter different quality characteristics of a
product and process. These characteristics can be categorized into two kinds; study variables (variable of
interest) and the supporting/explanatory variables. Sometime, a linear relationship might exist between the
study and supporting variable, which is called simple linear profiles. This study focuses on the simple linear
profiles under assorted control charting approach to detect the large, moderate and small disturbances in
the process parameters. The evaluation of the proposed assorted method is assessed by using numerous
performance measures, for instance, average run length, relative average run length, extra and sequential
extra quadratic losses. A comparative analysis of the proposal is also carried out with some existing
linear profile methods including Shewhart_3, Hotelling’s TZ, EWMA_3, EWMA/R and CUSUM_3 charts.
Finally, a real-life application of the proposed assorted chart is presented to monitor thermal management of
diamond-copper composite.

INDEX TERMS Control chart, cumulative sum, exponentially weight moving average, Shewhart, thermal

conductivity monitoring

I. INTRODUCTION
Control charts are magnificently applied in many industrial
processes and assist the specialists in improving the per-
formance of a process by decreasing the process variation.
In some manufacturing processes, the variable of interest is
associated (linearly or non-linearly) with one or more auxil-
iary variable(s). Monitoring the variable of interest along with
the linear association of one auxiliary variable is referred to
simple linear profiles. The usual practice in statistical process
control (SPC) is to monitor the mean and/or variance of the
process. On the contrary, in simple linear profiles, one models
the slope, intercept and error deviation of the linear model.
Many monitoring structures for the simple linear profiles
are developed in the literature: control chart for the moni-
toring of group adjusted variables was discussed in [1]-[5].
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The well-known control charting structures such as multi-
variate Hotelling’s 72 and EWMA/R charts were suggested
by Kang and Albin [6], while Gupta, et al. [7] suggested
a Shewhart based linear profile monitoring method known
as Shewhart_3 chart. Further, for simple linear profiles,
Mahmoud and Woodall [8] and Yeh and Zerehsaz [9] have
proposed Phase I monitoring approach while the cumulative
sum (CUSUM) structure in multivariate setup was proposed
by Noorossana, et al. [10]. Noorossana, et al. [11] have
provided a study to resolve the issue of normality, and the
change point methods were discussed by Zou, et al. [12]
and Mahmoud, et al. [13]. A well-known EWMA_3 chart
was proposed by Kim, et al. [14], and the similar CUSUM
structure (CUSUM_3 chart) was introduced by Saghaei,
et al. [15]. Noorossana and Amiri [16] proposed integrated
MCUSUM and x? structures while a review on linear pro-
file methods was presented by Woodall [17]. Linear profile
monitoring based on the recursive residuals was proposed
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by Zou, et al. [18] and based on the mixed model was
studied by Jensen, et al. [19]. Soleimani, et al. [20] covered
the effect of within autocorrelation, and a likelihood ratio
based method was discussed by Zhang, et al. [21]. Most of
the above-mentioned studies were examined under the fixed
effect model while under a random effect model, a Phase II
method was suggested by Noorossana, et al. [22]. The max
and sum of square based linear profile monitoring methods
were discussed by Mahmood, er al. [23], and a progres-
sive approach for simple linear profile was suggested by
Saeed, et al. [24]. Most of the linear profile studies were
designed under simple random sampling but under different
sampling environments such as ranked set and modified suc-
cessive samplings were examined in [25]-[30]. The simple
linear profile methods under the Bayesian approach were
discussed in [31]-[34].

The Shewhart based structures are useful to detect a large
amount of shift in the process parameter while for the detec-
tion of small to moderate changes, EWMA and CUSUM
charts were used (cf. Faisal, et al. [35]). Instead of these
charts, Abbas, et al. [36] proposed a method, which is com-
patible for all type of shifts (i.e., small, moderate and large)
and referred to the assorted_3 chart. This study is intended
to propose an assorted_3 approach under the simple linear
profile setup. The rest of the article is outlined as follow:
simple linear profile model is discussed in section 2; structure
of the existing and proposed linear profile methods were
given in section 3; a brief discussion on the performance
evaluation is reported in section 4; comparative analysis
of the proposed with the existing control charting methods
were discussed in section 5; the implementation of pro-
posed assorted_3 chart with real-life dataset is demonstrated
in section 6, and the concluding remarks are reported in
section 7.

Il. PRELIMINARIES TO SIMPLE LINEAR PROFILES
Let a study variable Y with the explanatory variable X is
observed in a paired form such as (Yj;, X;) for the i random
sample, collected with respect to time j, then the simple linear
regression model, is described as follows:
Yi=po+BiXi+e; i=12,....,mj=12,... (1)
where By, B1 and ¢; represents intercept, slope and error
term, respectively. It is assumed that the €;; follows a normal
distribution with mean (1 = 0) and variance (62 = 1). The
ordinary least square (OLS) estimates of the parameters are
described as follows:

31‘ _ Z?:] X; _)_()Yij _ Sxr ()
J — — - ’

Y —X)Y  Sxx
IéOj =Y - Blj?_f,

where ¥V, = YU, Y;/n, X = YL Xi/n and

Sxx = > iy (Xi — X)”. The expected values, variances and
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co-variance term of By; and B;; are defined as follows:

E(ByX) = p1; E (BylX) = fo,

Vi (ﬁ |X) 2y (ﬁ |X) 2[1+—22]
ar (BijIX ) = ;0 Var (BolX) =07 = )
/ Sxx ! n Sxx

A X
Cov (,31/', ,3Q,'|X) =——
Sxx

In most of the studies, mean square error (MSE) is used to
provides an unbiased estimate of the error variance o' and
computed by

~ 2 2
Yy —PyT Yiieg
n—2 )

MSE; = ,
where ¥j; is the /" predicted value for the i random sam-
ple. Generally, when we are interested in the monitoring
of two or more process parameters than it is necessary to
make them independent from each other. In simple linear
profiles, slope and intercept have a covariance, and in order
to meet zero covariance, the coded model is a productive
approach. To obtain the coded model, we transformed the X;
values such as Xi’ = X; — X and the obtained model named
by the transformed model can be represented as follows:

Yy=Bo+BiX+ep i=1,2...,mj=12.. (2

where intercept of the transformed model (By) is equals to
Bo + B1X + BoX, and slope of the transformed model (By)
is equals to (81 + Bo) X/. It is noted that B represents a
shift in terms of o, in the slope of the original model (given
in Eq. (1)). Similarly, one may obtain OLS estimates (i.e.,
boj, b1; and mse;) and other properties for the parameters
of transformed model. Several studies on monitoring linear
profile parameters are accessible in the latest literature, some
of which are shortly outlined below.

IIl. METHODS OF SIMPLE LINEAR PROFILES

This section is designed to formulate the monitoring methods
based on the preliminaries reported in section 2. Further,
the section is divided into existing and the proposed simple
linear profile methods, which are discussed into following
subsections.

A. EXISTING SIMPLE LINEAR PROFILE METHODS

In this subsection, we will provide the structure of all existing
simple linear profile methods, which will further be used as
the counterparts of the stated proposal.

1) THE HOTELLING'S T2 CHART

In simple linear profiles literature, the Hotelling’s 7% chart for
the monitoring of intercept and slope was proposed by Kang
and Albin [6]. The j** statistic of the Hotelling’s 7 chart is
expressed as follows:

12 = (v~ 0) =7 (v~ v).
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where V; = (ﬂo,', ﬂlj) ,U = (o, BT, and

5 |:1 )_(zi| o?X
o2 |-+ -—
Y — Sxx Sxx

02X o2

Sxx Sxx
The upper control limit of the Hotelling’s T2 statistic is
obtained as UCLy = Xzz,op When the process is stable,
the Hotelling’s T2 statistic follows a non-central x? distri-
bution with non-centrality parameter (), which is equals to
n(go + BoX)* + (Bo)>Sxx. Where ¢ and f are the shifts in
the intercept and slope of the original model given in Eq. (1).

2) THE EWMA/R CHART

For the linear profile monitoring, a combined structure cen-
tered on the EWMA and R charts was suggested by Kang and
Albin [6]. Basically, the combination of these charts was used
to serve the purposes such as (i) detecting changes in the error
variance of the model given in Eq. (1), and (ii) addressing
the unusual state of the error variance. The j* EWMA chart
statistic is measured as follows:

Zi=hiej+ (1 —21)Ziq,

where Ae(0, 1] is the weighting parameter, &; = Y/, ¢; / n
and initial EWMA value is considered as zero (Zg = 0). The
process is declared as out-of-control (OOC) whenZ; < LCLg
orZj > UCLEg. Where

LCLE=-L * L. UCLE=L )L :
e (2—A)M’ S PR H

Further, the j” statistic of the R chart and control limits can
be obtained as follows:

— min; (e,-j) ,
LCLg = o(dy — Lad3); UCLR =0 (da + Lrd3),

R; = max; (eij)

where d> and d3 are the unbiased constants which are reported
in [37].

3) THE SHEWHART_3 CHART

A Shewhart based simple linear profile method, which
is referred to the Shewhart 3 chart was suggested by
Gupta, et al. [7]. The intercept, slope and mean square error
were used as the plotting statistics, which were plotted against
the following control limits.

o2
LCLs; = Bo — Zup2 -

For the intercept:

By

UCLs; = By + Zy 2
o2
LCLss = By — Zy)2 Sor
For the slope: XX
o2
UCLss = By + Zy 2| —
Sxx
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o
LCLsg = 2X<1 a/2).(n—2)

For the error variance:

UCLsE = — X2
where Z, > is the (a/ 2)"" quantile point of the standard nor-
mal distribution while X(21 a2, (n—2) and X(za /2).(n—2) € the
lower and upper quantile points of the x2 distribution with
(n — 2) degrees of freedom, respectively.

4) THE EWMA_3 CHART

Kim, et al. [14] developed a memory type structure cen-
tered on the EWMA control chart and referred to the
EWMA_3 chart. The EWMA_3 chart has the ability to detect
small to moderate amount of shifts in the linear profile
parameters. The structure of EWMA_3 chart relies on the
transformed model provided in Eq. (2) and the three separate
EWMA statistics based on intercept, slope and error variance
are described as follows:

EWMAp)j = Aboj + (1 — 1) EWMA -1,
EWMAs); = Abyj+ (1 — A) EWM (51,
EWMA ), = max [A In (msej)

+ (1= 3) EWMA g1, 1n () ],

where A € (0, 1] is the weighting parameter, and the control
limits for each statistic are described below:

A 1
Q-1 H

LCLE] = B() - LE]O'

For intercept:

UCLgr = By + Lgjo

LCLgs = By — Lgso

(2 — ) Sxx
A o2
(2—X) Sxx’

For slope:

UCLEs = By + Lgso

LCLEg =0

For error variance:
UCLpg=Lgg

where Lgy, Lgs, Lgg are the charting constants, which are
fixed against the IC average run length and the asymptotic
variance of the In (MSE;) (cf. Crowder and Hamilton [38])
can be obtained as follows:

2 2 2 16

2 a2 32 15— 2y

A
a—n Var [ln (MSEj)] ,

Var [ln (MSEj)] ~

5) THE CUSUM_3 CHART

Saghaei, et al. [15] proposed a cumulative sum (CUSUM)
control charting structure based on three distinct CUSUM
statistics (referred as CUSUM_3 control chart) to mon-
itor simple linear profile parameters. The statistics of
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TABLE 1. Control charting constant and limits for existing methods at fixed ARL, = 200.

) [ +SXX][\/_

Parameter Hotelling’s T2 EWMA/R Shewhat_3 EWMA_3 CUSUM_3
Intercept Lg;=3.0156 Z’; i 1132
UCLy = 10.60 1,=3 Zyp=3.14 L=
SIO e Loc=3 0109 HS =1.80
P ES™O: HE = 1.83
Error _ LCLsz = 0.005, _ Hg = 0.261
variance L=.1151 UCLgy = 5.298 Lpp=1.3723 Hf = 2510
K™ =050
() _
Design - 1=02 - 2=0.2 Ks™ 7 =005
K =2.00
K7 =0.25
CUSUM_3 control chart was given as below: follows:
For intercept:
1| bo—B
+ _ . + 0 0
{CUSUM(I)]. = max([0, bo; — (Bo + K;') + CUSUM (|1 Tyy= ~ | ==
— R A
CUSUM ;); = max[0, (Bo + K;) — boj + CUSUM ;] o [% 1 g(_x]
For slope:
CUSUM Y, . = max[0, byj — (By + K) + CUSUM ;. ] PN 1 " TR [ | T
Sy~ Ol P ($)j—1 Ty = . 5 20~ — |
— C ls C s
CUSUM (5, = max[0, (Bi + Ky') — bi;+CUSUM ), |1, o [1 4 gxx] [ + gxx]
For error variance:
+ + P —
{CUSUM(E)J = max[0, mse; — K + CUSUM (.| Tany = Ll EWMA ) — Bo ,
CUSUM(E)] = min[0, mse; — K, + CUSUM(E)]_I], )\)Zj}]

where the initial value of each CUSUM statistic is considered
as zero while the K;, Kg and Kg are the reference values,
which are equal to A / 2. Where A is the difference between
the targeted value and the OOC value of the parameters. Fur-
ther, the CUSUM statistics for intercept are plotted against the
H I(_’+) and the CUSUM statistics for slope and error variance
are plotted against the H é_’ﬂ and H lg_’+), respectively.

It is noted that the control charting constants and the
limits of existing simple linear profile methods are reported
in Table 1 to achieve an overall ARLy = 200 (by setting an
individual ARLg = 584.5).

B. THE PROPOSED ASSORTED_3 CHART
The simple linear profile methods under Shewhart structure
were used to detect a large shift in the linear profile param-
eters while for the detection of small to moderate shifts,
EWMA and CUSUM charts were used. Beyond these charts,
Abbas, et al. [36] proposed a mechanism, which is compatible
with all type of shifts and referred to the assorted_3 chart.
Similarly, the assorted_3 chart for the linear profile setup is
discussed below:

The plotting statistic (7(;);) of the assorted_3 chart for the
intercept parameter is described as follows:

+ —
T(1)j = max [T1<1>js Ty Towyo T3<1)j] ; 3)

where the Shewhart statistic (77(), CUSUM statistics
(T;('I)j, Tz_(,)j), and EWMA statistic (T3(1)j) are defined as
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where C&’)j and C(y)j with reference value k are defined as
follows:

C(}L)j = max | 0, boj — By — ko

CJ)]. = max | 0, —(bgj—Bo)—ko

\
The plotting statistic (T(S)j) of the Assorted_3 chart for the
slope parameter is defined as follows:

T(s); = max [Tl(S)j, T;S)j, Tys)0 T3(S)j] , 4

where the Shewhart statistic (7'(s);), CUSUM statistics

(T;[S)j, TZ_(S)j)’ and EWMA statistic (T3(s);) are represented
as follows:

1 blj — B
Ny =—|—7——1
S —_—
o Sxx
+ —
o+ 1 Csy ~ _ [ Cy
28) — hc 1 4 2(8) — hc 1
Sxx Sxx
1 EWMA(S)J
T35) = I |’
e /SXX 1—(1—)\)1}]
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TABLE 2. Choice of sensitivity parameters for different categories of shift.

Sensitivity Parameter Shift Size
Small Medium Large
A 0.03 to 0.20 0.21to 0.50 0.51to 1.00
k 0.1to 0.75 0.76 to 1.50 more than 1.50

where C(‘g)j and C&)j with reference value k are defined as
follows:

ch. = 0,b;;, — By —k : (op
sy = max | 0. 015 = By = ko fo o+ Cigymn |
_ 1 _
C(S)jzmax 0,—(b1j—Bl)—kO' Q_FC(S)J'—I s

The plotting statistic (7(g);) of the Assorted_3 chart for the
error variance is defined as follows:

+ —
T(E)J = max |:T1(E)j’ T2(E)j’ TZ(E)j’ T3(E)]] ’ )

where the Shewhart statistic (7)), CUSUM statistics
(TZJEE)]., T2_(E)j)’ and EWMA statistic (T3(E)j) are represented
as follows:

| (T.MSE;
Ty = ,

6\ o
+ -
T = l @ TS . — l @
2EV T po\ o ) 2EV T po\ o )
1 EWMA k) — B
Ty = 1~
e

o /25 {1 - (1 -2
where T .MSE; is the transformed mean square error, which

equals to —0.7882 + 2.1089 x log, (’”ieg +0.6261) and
CUSUM statistics are given below:

+ _ +
C(E)j = max [0, MSE — ko + C(E)j—l:l )

Cipy = max [o, _MSE — ko + c(;)j_l] .

In the above-mentioned expressions, the cg, he and L, are
the charting constants and k is the reference value, which
are equal to A / 2. Where A is the difference between the
targeted value and the OOC value of the simple linear pro-
file parameters. Hence, the final plotting statistic for the
assorted_3 control chart is given below:

T; = max [T(1)j,T(S)j aT(E)j] : ©)

The plotting statistic 7} has only an upper control limit which
is defined as follow:

UCL = 1. (7

When 7; > 1 then an OOC signal is observed in the process
intercept and/or slope and/or error variance. The rationale for
selecting the UCL equal to is outlined as follow:

VOLUME 8, 2020

The T; > 1 implies the following:

(i) either Ty > 1, and/or Ty(s); > 1 and/or Tyg); > 1
(cf. Eq. (3), (4) and (5)),
= the Shewhart statistic exceeds its corresponding
control limit ¢y for linear profile parameters;

(ii) and/or TZJEI)j or T{(I)j > 1, and/or TZJgS)j or T27(S)j
and/or T;('E)j or TZ_(E)j > 1 (cf. (3), (4) and (5)),
= the CUSUM statistic exceeds its corresponding con-
trol limit A, for linear profile parameters;

(iii) and/or T3(;); > 1, and/or T3(s); > 1 and/or T3g); > 1
(cf. (3), (4) and (5)),
= the EWMA statistics exceeds its respective control
limit L, for linear profile parameters.

> 1

IV. PERFORMANCE EVALUATIONS

This section consists of the discussion on the per-
formance evaluation of proposed Assorted_3 chart and
comparative analysis with Shewhart_3, Hotelling’s T2,
CUSUM_3, EWMA/R, and EWMA_3 charts.

A. IC SIMPLE LINEAR PROFILE MODEL

In the simulation study, we considered IC simple linear pro-
file model with By = 3 and 81 = 2 (following Kang and
Albin [6]) and the original model is given in Eq. (1) can be
written as:

Yi=3+2X;+e;; i=12,...,4

where X; are chosen as 2, 4, 6 and 8 while ¢; follows a
standard normal distribution. Furthermore, the coded (trans-
formed) model presented in Eq. (2) can be expressed as:

Yj =By + BlXi/ + €ij,

where By = 13+5 (B0), B| = (2+ Bo)X] and X/ are equals
to —3, —1, 1 and 3.

B. SHIFTS FOR SIMPLE LINEAR PROFILE MODEL

For evaluating the performance of simple linear profile meth-
ods, we have considered several amounts of shifts in simple
linear profile parameters which are given as follows:

. Shifts in intercept parameter (By to By + ¢ (o //n)),
. Shifts in slope parameter (81 to f1 + B (0/\/§XX>),
. Shifts in slope parameter (B fo B + ¢ (O‘ / VS xx)),

. Shifts in error variance (o2 to yo),
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TABLE 3. Charting constants of the assorted_3 chart at fixed ARL, = 200.

Case k A h, L, Cs
1 0.25 11.57075 3.461273 3.518018
2 0.25 0.38 11.57075 3.495503 3.518018
3 0.55 11.57075 3.511677 3.518018
4 0.25 6.421674 3.414323 3.473969
5 0.50 0.38 6.431839 3.452829 3.476706
6 0.55 6.431839 3.469855 3.476706
7 0.05 4.566855 3.182446 3.523721
8 0.13 4.439271 3.321801 3.472589
9 0.75 0.25 4.370697 3.383178 3.444825
10 0.38 4.370697 3.419843 3.444825
11 0.55 4.380133 3.441441 3.448658
12 0.05 3.446544 3.189418 3.529296
13 1.00 0.13 3.367723 3.338557 3.487365
14 0.25 3.281446 3.379014 3.440934
15 0.05 2.722548 3.188036 3.528191
16 1.25 0.13 2.65931 3.336629 3.485664
17 0.25 2.594751 3.379852 3.441717

where the size of shifts are quantified as: for intercept param-
eter: A = 0.2 — 2.0 with jump of 0.2; for slope parameter:
B = 0.025 — 0.25 with jump of 0.025; for slope parameter:
6 = 0.2 — 1.0 with jump of 0.1, and for error variance:
y = 1.2 — 3.0 with jump of 0.2. It is to be noted that
¢ =B =68 =0and y = 1 corresponds to an in-control
(IC) situation; whereas ¢ = 8 = 6 # 0 and y # 1 refers to
an OOC situation.

C. PERFORMANCE MEASURES
Control charts performance is provided by using some useful
performance measures which are briefly outlined as follows:

Average Run Length (ARL): The number of points until
an OOC signal appeared is called run length (RL) and the
average number of points until an OOC signal indicated is
known by average run length (ARL). Further, ARL is observed
under two known states, namely IC state and OOC state.
The ARL under IC state is represented by ARLg while under
the OOC state, it is referred to ARL{. The objective of the
maximized ARL is to delay the false alarms as far as feasible
while ARL is required to be minimized to detect the signal
at the earliest for OOC process.

Extra Quadratic Loss (EQL): The EQL is the weighted
average RL with respect to a range of shifts (8,in tO Smax)-
In this measure, a square of shift (8%) is considered as a

120684

weight. Mathematically, EQL is described as:

ama)(

EQL = 8?ARL (8) ds,

Smax — Omin
Srmin
Sequential extra quadratic loss (SEQL): The SEQL is the
extended form of the EQL up to a particular shift (§;) and
defined as follow:

d;

1
SEQL; = T~ f 82ARL (8) ds:

i min
Smin

Relative Average Run Length RARL(): The RARL measure
is used to address the efficacy of the control chart compar-
ative to a benchmark control chart (cf. Wu, et al. [39]). The
mathematical expression of the RARL is defined as follow:

amax

1 / ARL () s
Smax — Smin ARLpenchmark (5) ’

where ARL (§) and ARL penchmark (8) denotes the ARL at shift
6 for a specific chart and benchmark chart, respectively.
A chart with aleast EQL is generally regarded as a benchmark

RARL =
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TABLE 4. ARL; and EQL of the proposed assorted_3 chart.

ARL,
Case EQL
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
1 51.842 18.303 9394 5560 3.702 2733 2147 1765 1501 1.310 3.861
2 52.326 19.120 10.323  6.182 4.038 2.889 2222 1.811 1525 1.328 4.060
3 53.236 19.829 11172 7.053 4.624 3203 2373 1.875 1554 1.341 4.350
4 68.363 17.603 8535 5237 3,600 2663 2102 1.732 1475 1.289 3.770
5 69.446 18.053 8872 5512 3801 2797 2175 1776 1498 1.308 3.900
6 70.259 18.382 9.165 5824 4.055 2984 2291 1.831 1532 1.320 4.050
7 49.246 15.633 7533 4517 3.161 2385 1.891 1581 1362 1.212 3.360
8 68.679 17.428 8.062  4.867 3369 2533 2011 1.669 1431 1.258 3.610
9 87.020 21.154 8774 5143 3525 2623 2075 1709 1459 1.280 3.840
10 91.783 22.193 9.076 5304 3.658 2717 2143 1746 1481 1.297 3.960
11 94.632 22.807 9.323 5467 3.789 2817 2209 1796 1510 1.309 4.070
12 49.701 15.701 7532 4523 3.157 2384 1905 1590 1367 1.213 3.370
13 70.171 17.706 8140 4918 3401 2550 2.023 1.676 1434 1.263 3.640
14 93.492 23.822 9353 5241 3517 2625 2071 1.705 1454 1.279 3.930
15 48.717 14.696 7.337 4511 3.154 2.383 1905 1585 1367 1.215 3.340
16 69.939 17.721 8.147 4904 3394 2545 2.022 1677 1434 1.264 3.640
17 95.000 24.040 9447 5287 3547 2626 2072 1.710 1458 1.280 3.950

chart and have RARL = 1. All other charts have RARL > 1
indicates lower performance than the benchmark chart.

D. SENSITIVITY ANALYSIS OF ASSORTED_3 CHART

The choice of design parameters k and A plays a vital role in
the sensitivity of the proposed chart. To examine the sensitiv-
ity of the proposed method, we have considered 17 different
cases of parameters against all type of shifts. The setting of
parameters with respect to different type of shifts is reported
in Table 2.

After the selection of different choices of sensitivity
parameters, the next step is to find an optimal combination
of the control limit coefficients (.., L., cs). The adopted opti-
mality criteria is discussed below:

Objective function: min(EQL)

Subject to: ARLy = 1, where t is the pre-specified ARLy.

such that ARL; = ARL, = ARL.
where ARL;, ARL, and ARL. refers to the ARL of the
Shewhart, EWMA and CUSUM charts, respectively.
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On the fixed overall ARLy = 200, control limit coefficients
of the twelve individual charts are selected in such a way that
all posses same individual ARL. The assumption of similar
individual ARL is considered to avoid the redundancy of any
single chart. Further, the resulting control charting constants
(h., Le, cs) are provided in Table 3.

E. PERFORMANCE ANALYSIS OF ASSORTED_3

CONTROL CHART

The efficiency of the assorted_3 chart is assessed by
using the ARL and EQL for different combinations of k, A
and ¢. The outcomes are provided in Table 4 at fixed
ARL( = 200. The result reveals the following findings:

. The assorted_3 chart is sensitive to the small, moderate
and large shifts.

. Case 15 with sensitivity parameters such as k = 1.25
and A = 0.05 and the charting constants (h, =
2.722548, L, = 3.188036, c; = 3.528191) is an optimal
choice, because it has minimum EQL equals to 3.340.
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TABLE 5. Performance comparison under the shifts in intercept (Bg to By + ¢c).

Chart Measure 4
0.20 0.40 0.60 0.80 1.00 120 140 160 1.80 2.00
ARL 48.70 14.68 7.31 4.52 316 239 190 158 137 1.21
assorted_3 SEQL 0.97 1.56 1.87 2.09 228 245 261 277 293 311
RARL 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00
ARL 151.40 7790  33.80 1550 770 430 270 190 150 1.20
Shewhart_3 SEQL 3.03 6.14 8.20 8.91 889 857 816 778 745 7.19
RARL 2.05 3.13 3.74 3.81 364 339 313 290 271 254
ARL 137.70 63.50  28.00 1320 690 4.00 260 180 150 1.20
Hotelling’s T*? SEQL 2.75 5.29 6.90 7.49 753 733 706 678 655 @ 6.38
RARL 1.91 2.75 3.19 3.24 310 290 271 253 237 224
ARL 66.50 17.70 8.40 5.40 390 320 270 230 210 1.90
EWMA/R SEQL 1.33 2.04 2.33 2.56 278 303 330 359 390 4.23
RARL 1.18 1.23 1.22 1.20 121 122 124 127 129 132
ARL 59.10 16.20 7.90 5.10 380 310 260 230 210 1.90
EWMA_3 SEQL 1.18 1.83 2.13 2.36 259 285 313 342 375 4.09
RARL 1.11 1.13 1.12 1.12 113 115 117 120 124 127
ARL 72.10 20.30 8.20 4.60 310 240 191 160 140 130
CUSUM_3 SEQL 1.44 2.25 2.54 2.64 272 281 292 304 319 335

RARL 1.24 1.34 1.31

1.25 120 116 114 112 1.11 1.11

. The sensitivity of assorted_3 chart rises with a reduction
in A at a specific choice of k, and it is valid for all k
values.

. The sensitivity of assorted_3 chart upturns with a decline
in k at a particular selection of A and it is correct for all
A values.

V. COMPARATIVE ANALYSIS

In addition to ARL (used as performance measurement at a
specific shift), other significant measures such as EQL, SEQL
and RARL are also used to assess the general performance of
the chart. The performance of all charts under consideration
are discussed in the following subsections.

A. A SHIFT IN INTERCEPT OF TRANSFORMED MODEL
When the shift occurs in the intercept of the transformed
model, the outcomes of distinct efficiency assessments are
shown in Table 5. The findings show that:

. The assorted_3 chart is chosen as a benchmark chart
due to minimum EQL (i.e., 3.11). The EQL’s for
Shewhart_3, Hotelling’s T2, EWMA/R, EWMA_3 and
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CUSUM_3 charts are 7.19, 6.38, 4.23, 4.09 and 3.35,
respectively.

. The RARL of the assorted_3 chart is equaled to 1 while
the RARL for Shewhart_3, Hotelling’s T2, EWMA/R,
EWMA_3 and CUSUM_3 charts are 2.54, 2.24, 1.32,
1.27 and 1.11, respectively. These results indicate that
the assorted_3 chart’s detection ability is greater than all
other charts listed in this research.

. SEQLs behavior also demonstrate that the performance
of assorted_3 chart is greater than others competing
charts, over different amounts of shifts (cf. Table 5 and
Figure 1(a)). For example, at ¢ = 1.20, the SEQL
values for the assorted_3, Shewhart_3, Hotelling’s T2,
EWMA/R, EWMA_3 and CUSUM_3 charts are 2.45,
8.57,7.33, 3.03, 2.85 and 2.81 respectively.

B. A SHIFT IN SLOPE OF ORIGINAL MODEL

When shifts are introduced in the slope of the model given in
Eq. (1). The findings of the assorted_3 chart and competing
are provided in Table 6. The main results are as follows:

. The assorted_3 chart is selected as a benchmark chart
due to minimum EQL (i.e., 0.096) while EQL’s are

VOLUME 8, 2020
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TABLE 6. Performance comparison under the shifts in the slope of the original model (8, to 8; + o).

Chart Measure 4
0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
ARL 90.84 31.11 15.53 9.509 6.552 4.834 3.771 3.05¢  2.55 2.186
assorted_3 SEQL 0.028 0.048 0.059 0.067 0.074 0.079 0.084 0.088 0.092 0.096
RARL 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ARL 178.3 125.0 79.20 46.70 27.90 17.10 10.90 7.100 5.000 3.600
Shewhart_3 SEQL 0.056 0.134 0.216 0.276 0.311 0.327  0.332 0.329 0.322 0.314
RARL 1.481 2.236 3.010 3.509 3.724 3.753 3.676 3.542 3.387  3.228
ARL 166.0 105.6 60.70 34.50 20.10 12.20 7.800 5.200 3.700 2.700
Hotelling’s T? SEQL 0.052 0.118 0.179 0.220 0.242 0.251 0.252 0.248 0.243 0.236
RARL 1.414 2.012 2.558 2.861 2.958 2.931 2.840 2.721 2.594 2.469
ARL 119.0 43.90 19.80 11.30 7.700 5.800  4.700 3.900 3.400 3.000
EWMA/R SEQL 0.037 0.065 0.080 0.088 0.094 0.099 0.104 0.110 0.116 0.123
RARL 1.414 1.258 1.286 1.272 1.254 1.243 1.240 1.243 1.250 1.260
ARL 101.6 36.5 17.00 10.30 7.200 5500  4.500 3.800 3.300 2.900
EWMA_3 SEQL 0.032 0.055 0.068 0.075 0.082 0.088 0.094 0.100 0.107  0.114
RARL 1.059 1.103 1.113 1.107 1.104 1.106 1.115 1.128 1.143 1.160
ARL 85.700 37.800 19.000 11.100 7200  5.000  3.900 3.100  2.600 2.300
CUSUM_3 SEQL 0.027 0.050 0.067 0.078 0.084 0.089 0.093 0.097  0.100 0.104
RARL 0.972 1.025 1.090 1.116 1.120 1.111 1.100 1.090 1.082 1.078

TABLE 7. Performance comparison under the shifts in the slope of the transformed model (B, to B; + éo).

Chart Measure i

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

ARL 12.1 6.05 3.76 2.66 2.02 1.63 1.38 1.21 1.1

assorted_3 SEQL 0.24 0.33 0.39 0.44 0.48 0.52 0.56 0.6 0.65

RARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ARL 64.29 25.29 11.08 5.42 3.06 2.03 1.49 1.24 1.10

Shewhart_3 SEQL 1.28 1.66 1.75 1.72 1.63 1.55 1.47 1.42 1.38

RARL 3.15 3.68 3.65 3.42 3.15 2.89 2.67 2.50 2.34

ARL 52.2 21.2 9.6 49 2.9 1.9 1.5 1.2 1.1

Hotelling’s T2 SEQL 1.04 1.36 1.45 1.44 1.39 1.33 1.28 1.25 1.23

RARL 2.66 3.07 3.06 2.89 2.68 2.48 2.31 2.17 2.05

ARL 76.7 33.7 15.3 7.5 4.2 2.6 1.8 14 1.2

EWMA/R SEQL 1.53 2.04 2.21 2.2 2.12 2.02 1.92 1.83 1.76

RARL 3.67 4.43 4.53 4.31 4 3.69 3.41 3.17 2.96

ARL 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7

EWMA_3 SEQL 0.26 0.36 0.43 0.5 0.57 0.63 0.71 0.79 0.87

RARL 1.04 1.06 1.07 1.1 1.13 1.17 1.2 1.24 1.27

ARL 12.4 7.9 5.8 4.6 3.8 3.3 2.9 2.6 24

CUSUM_3 SEQL 0.26 0.37 0.48 0.59 0.7 0.82 0.93 1.05 1.17

RARL 1.01 1.06 1.15 1.25 1.34 1.43 1.51 1.58 1.64
reported as 0.314, 0.236, 0.123, 0.114 and 0.104 for the . All competing charts (i.e., Shewhart_3, Hotelling’s
Shewhart_3, Hotelling’s 72, EWMA/R, EWMA_3 and 72, EWMA/R, EWMA _3 and CUSUM_3 charts)
CUSUM_3 charts, respectively. have RARL greater than 1 (i.e., 3.228, 2.469, 1.26,

VOLUME 8, 2020 120687



l EEEACC@SS M. Riaz et al.: Improved Control Chart for Monitoring Linear Profiles and Its Application in Thermal Conductivity

TABLE 8. Performance comparison under the shifts in error variance (¢ to y o).

Chart Measure L4

1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

ARL 26.90 884 470 3.11 237 195 1.69 1.52 1.39 1.31
assorted_3 SEQL 119.37 73.69 54.02 4328 3658 32.06 28.85 2649 2472 23.38
RARL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ARL 4010 1350 650 4.00 280 2.20 1.80 1.60 1.50 1.40
Shewhart_3 SEQL 128.87 8549 64.17 51.83 43.88 3839 3441 3143 2919 2749
RARL 1.25 1.38 1.40 1.39 1.36 1.32 1.29 1.26 1.24 1.22

ARL 3960 1490 790 510 3.80 3.00 250 220 2.00 1.80
Hotelling’s T2 SEQL 12851 85.81 6545 53.68 4612 4091 3713 3432 3220 3057
RARL 1.24 1.41 1.50 1.54 1.56 1.56 1.55 1.54 1.53 1.52

ARL 3430 1200 610 390 290 230 1.90 1.70 1.50 1.40

EWMA/R SEQL 124.70 80.58 60.24 4871 4139 3639 32.77 30.07 28.02 26.44
RARL 1.14 1.23 1.26 1.26 1.25 1.25 1.24 1.22 1.21 1.19

ARL 3350 1270 720 510 390 320 280 250 230 2.10
EWMA_3 SEQL 12412 80.34 60.78 4996 43.18 3857 3532 3297 3125 2997
RARL 1.12 1.23 1.32 1.38 1.44 147  1.50 1.52 1.53 1.54

ARL 3120 940 480 320 240 2.00 1.70  1.50 1.40 1.30

CUSUM_3 SEQL 12246 77.07 5649 4520 3816 3340 30.02 2751 2563 2420
RARL 1.08 1.10 1.08 1.07 1.06 1.05 1.05 1.04 1.03 1.03

1.16 and 1.078), which shows the superiority of
assorted_3 chart.

. The assorted_3 chart performed well for the detection
of moderate to large shifts. For instance, at § = 0.125,
the ARL of assorted_3 and competing charts namely
Shewhart_3, Hotelling’s T2, EWMA/R, EWMA_3 and
CUSUM_3 charts are 6.552, 27.90, 20.1, 7.7, 7.2 and
7.2, respectively. Moreover, SEQL are presented in Fig-
ure 1(b), which reveals that the assorted_3 chart has
superior performance as compared to all other charts.

C. A SHIFT IN SLOPE OF TRANSFORMED MODEL

For the evaluation of simple linear profile methods, shifts are
introduced in the slope of the transformed model given in
Eq. (2). The findings are reported in Table 7, and the main

results reveal:
. The detection ability of the assorted_3 chart at

small, moderate and large shifts is better than She-
whart_3, Hotellin’s 72, EWMA/R, EWMA_3 and
CUSUM_3 charts. The assorted_3 chart has the
lowest EQL, which equals to 0.65. The EQLs of the
Shewhart_3, Hotellin’s 72, EWMA/R, EWMA_3 and
CUSUM_3 charts are reported as 1.38, 1.23, 1.76,
0.87 and 1.17, respectively.

. The assorted_3 chart is considered a benchmark chart,
so it’s RARL is equals to 1. All other charts (i.e.,
Shewhart_3, Hotellin’s 72, EWMA/R, EWMA_3 and
CUSUM_3 charts) have RARL greater than 1
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(i.e., 2.34,2.05,2.96, 1.27, 1.64 and 1.21), which shows
their inferiority to detect shifts in the slope of the trans-
formed model.

. The graphical representation of SEQL measure is plotted

in Figure 1(c), and results reveal that the assorted_3 chart
has superior performance as compared to all other
charts.

D. A SHIFT IN ERROR VARIANCE OF ORIGINAL MODEL
The findings of the shifts in the error variance parameter are
reported in Table 8. The notable outcomes are:

. The detection ability of assorted_3 chart at small and

moderate shifts is significantly better among all other
charts. For instance, at y = 1.40, the ARL values
of assorted_3, Shewhart_3, Hotellin’s 72, EWMA/R,
EWMA_3 and CUSUM_3 charts were 8.84, 13.50,
14.90, 12.00, 12.70 and 9.40, respectively.

. Since assorted_3 chart has lowest EQL, which equals to

23.38. Therefore, it is considered as a benchmark chart.
The EQL’s of the Shewhart_3, Hotellin’s 72, EWMA/R,
EWMA_3 and CUSUM_3 chart are reported as 27.49,
30.57, 26.44, 29.97 and 24.94.

. The RARL of the assorted_3 chart is equaled to 1 while

other competing charts have RARL greater than 1. The
second-best chart is the CUSUM_3 with RARL = 1.03.

. The SEQL values of all charts against shifts in error

variance are drawn in Figure 1(d). The assorted_3 chart
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FIGURE 1. SEQL comparison: (a) shift in the intercept of the transformed model; (b) shift in the slope of original model (c) shift in the
slope of the transformed model; (d) shift in error variance of original model.

showed superior performance as compared to all other
charts at small, moderate and large shifts in the error
variance of the original model.

VI. MONITORING THERMAL MANAGEMENT OF
DIAMOND-COPPER COMPOSITES

Thermal management of high-performance electronic
devices is the key to their efficient and continued working.
The average size of electronic devices is decreasing day by
day with the decreasing size of the transistor. Each electronic
process produces waste heat in the component.

High thermal conductivity metals like copper, silver or
aluminum (for copper ~ 400 W/mK) seems a good solution
for the substrate material. The thermal expansion coefficient
of electronic devices has low value (for silicon ~ 5 m/mK)
while that of the mentioned metals is very high in comparison
(for copper ~ 16 m/mK). Ceramic materials are generally
very low in their thermal expansion coefficient; for example,
diamond has a very high thermal conductivity of 2000 W/mK
with a thermal expansion coefficient of only ~ 2 m/mK.
A composite of diamond particles and copper metal may
produce a combination of high thermal conductivity and
a thermal expansion coefficient comparable to that of
electronic devices. The effective thermal conductivity and

VOLUME 8, 2020

thermal expansion coefficients are mainly affected by the
volume fraction of diamond and the densification of the com-
posite. Densification is the ratio of actual density to the
theoretical density of the composite sample.

A. DATA DESCRIPTION

In this study, diamond-copper composites were produced
by conventional sintering route. The pressure of cold
compaction (PCC) is an important parameter which affects
the final properties of the composite. The composite samples
were sintered following the same sintering cycle. The volume
fraction of diamond particles was 10%, and the sintering was
carried out at 900 °C for 2 hours in a vacuum environment.
The only independent variable was PCC. The composite sam-
ples were cold compacted at five different levels of pressure,
i.e. 425, 450, 475, 500 and 525 MPa. The dependent variable
was the densification of the diamond-copper composite. The
densification was measured 24 times by an apparatus based
on Archimedes’ principle.

B. IMPLEMENTATION OF ASSORTED_3 CHART
In this study, we have considered the explanatory

variable (PCC) and its values are fixed as (X
425,450, 475,500 and 525) while the densification (Y) is
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FIGURE 2. (a) shifted intercept of Assorted_3; (b) shifted intercept of Shewhat_3; (c) shifted intercept of EWMA_3; (d) shifted intercept of

CUSUM_3.

considered as a predictor variable. The implementation of the
assorted _3 chart needs the following steps:

Step 1: We have a complete set of 120 observations (i.e.,
24 profiles). The IC regression model centered on 24 profiles

is expressed as:
Y =77.999 4+ 0.0297X + ¢. (original model)

Step 2: In addition, to obtain the _coded model, we con-
verted X into X’ by using X' = X — X,
X' = -50, -25,0, 25, 50
and the transformed model is represented as,
Y =91.518 + 0.0297X’ + ¢. (transformed model)

Step 3: The charting constants are chosen for the
Assorted_3, Shewhart_3, EWMA_3 and CUSUM_3 charts
were provided below:

k=1.25,A=0.05

he = 2.7225

For Assorted_3: L, = 3.1880
cg = 3.5281
UCL =1,

For Shewhart_3: ¢ =3.215
UCL = 3.215
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k=125A=0.05

For EWMA_3: L, =22873
UCL =0.44
k=1.25,A=0.05
For CUSUM_3: he = 2.302
UCL =2.302

Step 4: The proposed statistics for intercept, slope and error
variance are plotted against their upper control limit.

Step 5: A shift is noted in the densification of the diamond-
copper composite due to raising in the PCC after 160
sample profile. We will evaluate the performance of our
proposed assorted_3 chart versus CUSUM_3, EWMA_3 and
Shewhart_3 charts in Figures 2-4, respectively. The sum-
mary of the detection ability of these charts is presented
in Table 9. The results reveal that the assorted_3 chart has
superior detection ability to monitor simple linear profile
parameters.

It is obvious from the detection ability that the She-
what_3 and EWMA _3 charts are the lowest effective charts.

The detection ability of Assorted_3 chart is best among the
other counterpart charts. This order of superiority refers in
terms of shift amount in the process. Since the purpose of
the assorted_3 chart is to detect any amount of shift (small,
moderate and large) in the process, the detection of OOC
situations requires precedence over other charts.

VOLUME 8, 2020
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FIGURE 3. (a) shifted slope of Assorted_3; (b) shifted slope of Shewhat_3; (c)
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FIGURE 4. (a) shifted error variance of Assorted_3; (b) shifted error variance of Shewhart_3 (c) shifted error variance EWMA _3;
(d) shifted error variance of CUSUM_3.

Further, this blister is
scanning electron microscopy (SEM)

(cf. Figure 5 (c and d)) (cf. [38]).
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FIGURE 5. Blister investigation by SEM.

TABLE 9. Detection summary.

Intercept Slope Error Variance
Control Charts
False Alarms 0O0C False Alarms O0C False Alarms 0O0C
Assorted_3 0 4 0 9 0 5
Shewhart_3 0 0 4 5 0 0
EWMA_3 0 2 0 5 0 0
CUSUM_3 0 4 0 9 1 7

VIl. SUMMARY AND CONCLUSIONS

Monitoring methods based on simple linear profiles is an
emerging area within SPC. Many control charting structures
are available in the literature to monitor slope, intercept
and error variance such as the Shewhart_3, Hotelling’s T2,
EWMA_3, EWMA/R and CUSUM_3 charts. We have pro-
posed a new assorted_3 approach for the monitoring of simple
linear profile parameters in a single control charting setup.
Using the performance measures such as ARL, EQL, SEQL
and RARL, we have assessed and compared the efficiency of
the proposed assorted_3 chart with some current equivalent
existing counterpart charts.

Thorough performance analysis showed that the proposed
assorted_3 chart is sensitive to monitor simple linear profile
parameters at varying shift amounts. The performance of
assorted_3 chart at k = 1.25 and A = 0.05 is ideal in aspects
of distinct run length properties. The RARL of the competing
charts are greater than 1 which shows that the assorted_3 chart
has better detection ability as compared to the Shewhart_3,
Hotelling’s 72, EWMA_3, EWMA/R and CUSUM_3 charts.
Furthermore, the SEQL is calculated to explore the efficiency
of said charts at different amounts of shifts, and it also
supports that the assorted_3 chart has outperformed all other
charts. For thermal conductivity process, real implementation
of the proposed and other competing charts is also provided.
The real-life application supports the results in favor of
our proposed assorted_3 technique to monitor simple linear
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profile parameters. It is noted that the scope of this research
may be extended, using assorted approach, to monitor all
kinds of shifts in non-linear and multivariate profiles.
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