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ABSTRACT In most of the manufacturing processes, we encounter different quality characteristics of a
product and process. These characteristics can be categorized into two kinds; study variables (variable of
interest) and the supporting/explanatory variables. Sometime, a linear relationship might exist between the
study and supporting variable, which is called simple linear profiles. This study focuses on the simple linear
profiles under assorted control charting approach to detect the large, moderate and small disturbances in
the process parameters. The evaluation of the proposed assorted method is assessed by using numerous
performance measures, for instance, average run length, relative average run length, extra and sequential
extra quadratic losses. A comparative analysis of the proposal is also carried out with some existing
linear profile methods including Shewhart_3, Hotelling’s T 2, EWMA_3, EWMA/R and CUSUM_3 charts.
Finally, a real-life application of the proposed assorted chart is presented to monitor thermal management of
diamond-copper composite.

INDEX TERMS Control chart, cumulative sum, exponentially weight moving average, Shewhart, thermal
conductivity monitoring

I. INTRODUCTION
Control charts are magnificently applied in many industrial
processes and assist the specialists in improving the per-
formance of a process by decreasing the process variation.
In some manufacturing processes, the variable of interest is
associated (linearly or non-linearly) with one or more auxil-
iary variable(s).Monitoring the variable of interest alongwith
the linear association of one auxiliary variable is referred to
simple linear profiles. The usual practice in statistical process
control (SPC) is to monitor the mean and/or variance of the
process. On the contrary, in simple linear profiles, onemodels
the slope, intercept and error deviation of the linear model.

Many monitoring structures for the simple linear profiles
are developed in the literature: control chart for the moni-
toring of group adjusted variables was discussed in [1]–[5].
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The well-known control charting structures such as multi-
variate Hotelling’s T 2 and EWMA/R charts were suggested
by Kang and Albin [6], while Gupta, et al. [7] suggested
a Shewhart based linear profile monitoring method known
as Shewhart_3 chart. Further, for simple linear profiles,
Mahmoud and Woodall [8] and Yeh and Zerehsaz [9] have
proposed Phase I monitoring approach while the cumulative
sum (CUSUM) structure in multivariate setup was proposed
by Noorossana, et al. [10]. Noorossana, et al. [11] have
provided a study to resolve the issue of normality, and the
change point methods were discussed by Zou, et al. [12]
and Mahmoud, et al. [13]. A well-known EWMA_3 chart
was proposed by Kim, et al. [14], and the similar CUSUM
structure (CUSUM_3 chart) was introduced by Saghaei,
et al. [15]. Noorossana and Amiri [16] proposed integrated
MCUSUM and χ2 structures while a review on linear pro-
file methods was presented by Woodall [17]. Linear profile
monitoring based on the recursive residuals was proposed
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by Zou, et al. [18] and based on the mixed model was
studied by Jensen, et al. [19]. Soleimani, et al. [20] covered
the effect of within autocorrelation, and a likelihood ratio
based method was discussed by Zhang, et al. [21]. Most of
the above-mentioned studies were examined under the fixed
effect model while under a random effect model, a Phase II
method was suggested by Noorossana, et al. [22]. The max
and sum of square based linear profile monitoring methods
were discussed by Mahmood, et al. [23], and a progres-
sive approach for simple linear profile was suggested by
Saeed, et al. [24]. Most of the linear profile studies were
designed under simple random sampling but under different
sampling environments such as ranked set and modified suc-
cessive samplings were examined in [25]–[30]. The simple
linear profile methods under the Bayesian approach were
discussed in [31]–[34].

The Shewhart based structures are useful to detect a large
amount of shift in the process parameter while for the detec-
tion of small to moderate changes, EWMA and CUSUM
charts were used (cf. Faisal, et al. [35]). Instead of these
charts, Abbas, et al. [36] proposed a method, which is com-
patible for all type of shifts (i.e., small, moderate and large)
and referred to the assorted_3 chart. This study is intended
to propose an assorted_3 approach under the simple linear
profile setup. The rest of the article is outlined as follow:
simple linear profile model is discussed in section 2; structure
of the existing and proposed linear profile methods were
given in section 3; a brief discussion on the performance
evaluation is reported in section 4; comparative analysis
of the proposed with the existing control charting methods
were discussed in section 5; the implementation of pro-
posed assorted_3 chart with real-life dataset is demonstrated
in section 6, and the concluding remarks are reported in
section 7.

II. PRELIMINARIES TO SIMPLE LINEAR PROFILES
Let a study variable Y with the explanatory variable X is
observed in a paired form such as (Yij,Xi) for the ith random
sample, collected with respect to time j, then the simple linear
regression model, is described as follows:

Yij = β0 + β1Xi + εij; i = 1, 2, . . . , n; j = 1, 2, . . . (1)

where β0, β1 and εij represents intercept, slope and error
term, respectively. It is assumed that the εij follows a normal
distribution with mean (µ = 0) and variance (σ 2

= 1). The
ordinary least square (OLS) estimates of the parameters are
described as follows:

β̂1j =

∑n
i=1 (Xi − X̄ )Yij∑n
i=1 (Xi − X̄ )

2 =
SXY (j)
SXX

,

β̂0j = Ȳj − β̂1jX̄ ,

where Ȳj =
∑n

i=1 Yij
/
n, X̄ =

∑n
i=1 Xi

/
n and

SXX =
∑n

i=1 (Xi − X̄ )
2. The expected values, variances and

co-variance term of β̂0j and β̂1j are defined as follows:

E
(
β̂1j|X

)
= β1; E

(
β̂0j|X

)
= β0,

Var
(
β̂1j|X

)
=

σ 2

SXX
; Var

(
β̂0j|X

)
= σ 2

[
1
n
+

X̄2

SXX

]
,

Cov
(
β̂1j, β̂0j|X

)
=−

σ 2X̄
SXX

.

In most of the studies, mean square error (MSE) is used to
provides an unbiased estimate of the error variance σ 2 and
computed by

MSE j =

∑n
i=1 (Yij − Ŷij)

2

n− 2
=

∑n
i=1 e

2
ij

n− 2
,

where Ŷij is the jth predicted value for the ith random sam-
ple. Generally, when we are interested in the monitoring
of two or more process parameters than it is necessary to
make them independent from each other. In simple linear
profiles, slope and intercept have a covariance, and in order
to meet zero covariance, the coded model is a productive
approach. To obtain the coded model, we transformed the Xi
values such as X ′i = Xi − X̄ and the obtained model named
by the transformed model can be represented as follows:

Yij = B0 + B1X ′i + εij; i = 1, 2, . . . , n; j = 1, 2, . . . (2)

where intercept of the transformed model (B0) is equals to
β0 + β1X̄ + βσ X̄ , and slope of the transformed model (B0)
is equals to (β1 + βσ)X ′i . It is noted that β represents a
shift in terms of σ , in the slope of the original model (given
in Eq. (1)). Similarly, one may obtain OLS estimates (i.e.,
b0j, b1j and msej) and other properties for the parameters
of transformed model. Several studies on monitoring linear
profile parameters are accessible in the latest literature, some
of which are shortly outlined below.

III. METHODS OF SIMPLE LINEAR PROFILES
This section is designed to formulate the monitoring methods
based on the preliminaries reported in section 2. Further,
the section is divided into existing and the proposed simple
linear profile methods, which are discussed into following
subsections.

A. EXISTING SIMPLE LINEAR PROFILE METHODS
In this subsection, we will provide the structure of all existing
simple linear profile methods, which will further be used as
the counterparts of the stated proposal.

1) THE HOTELLING’S T 2 CHART
In simple linear profiles literature, the Hotelling’s T 2 chart for
the monitoring of intercept and slope was proposed by Kang
and Albin [6]. The jth statistic of the Hotelling’s T 2 chart is
expressed as follows:

T 2
j =

(
Vj − U

)T
6−1

(
Vj − U

)
,
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where Vj =
(
β̂0j, β̂1j

)T
,U = (β0, β1)T , and

6 =

 σ
2
[
1
n
+

X̄2

SXX

]
−
σ 2X̄
SXX

−
σ 2X̄
SXX

σ 2

SXX

.
The upper control limit of the Hotelling’s T 2 statistic is
obtained as UCLH = χ2

2,α . When the process is stable,
the Hotelling’s T 2 statistic follows a non-central χ2 distri-
bution with non-centrality parameter (τ ), which is equals to
n(ϕσ + βσ X̄ )2 + (βσ )2SXX . Where ϕ and β are the shifts in
the intercept and slope of the original model given in Eq. (1).

2) THE EWMA/R CHART
For the linear profile monitoring, a combined structure cen-
tered on the EWMA and R charts was suggested by Kang and
Albin [6]. Basically, the combination of these charts was used
to serve the purposes such as (i) detecting changes in the error
variance of the model given in Eq. (1), and (ii) addressing
the unusual state of the error variance. The jth EWMA chart
statistic is measured as follows:

Zj = λēj + (1− λ)Zj−1,

where λε(0, 1] is the weighting parameter, ēj =
∑n

i=1 eij
/
n

and initial EWMA value is considered as zero (Z0 = 0). The
process is declared as out-of-control (OOC)when Zj < LCLE
or Zj > UCLE . Where

LCLE=−L1σ

√
λ

(2−λ)

[
1
n

]
; UCLE=L1σ

√
λ

(2−λ)

[
1
n

]
.

Further, the jth statistic of the R chart and control limits can
be obtained as follows:

Rj = max i
(
eij
)
− mini

(
eij
)
,

LCLR = σ (d2 − L2d3); UCLR = σ (d2 + L2d3) ,

where d2 and d3 are the unbiased constants which are reported
in [37].

3) THE SHEWHART_3 CHART
A Shewhart based simple linear profile method, which
is referred to the Shewhart_3 chart was suggested by
Gupta, et al. [7]. The intercept, slope and mean square error
were used as the plotting statistics, whichwere plotted against
the following control limits.

For the intercept:


LCLSI = B0 − Zα/2

√
σ 2

n

UCLSI = B0 + Zα/2

√
σ 2

n
,

For the slope:


LCLSS = B1 − Zα/2

√
σ 2

SXX

UCLSS = B1 + Zα/2

√
σ 2

SXX
,

For the error variance:


LCLSE =

σ 2

n− 2
χ2
(1−α/2),(n−2)

UCLSE =
σ 2

n− 2
χ2
(α/2),(n−2),

where Zα/2 is the (α/2)th quantile point of the standard nor-
mal distribution while χ2

(1−α/2),(n−2) and χ
2
(α/2),(n−2) are the

lower and upper quantile points of the χ2 distribution with
(n− 2) degrees of freedom, respectively.

4) THE EWMA_3 CHART
Kim, et al. [14] developed a memory type structure cen-
tered on the EWMA control chart and referred to the
EWMA_3 chart. The EWMA_3 chart has the ability to detect
small to moderate amount of shifts in the linear profile
parameters. The structure of EWMA_3 chart relies on the
transformed model provided in Eq. (2) and the three separate
EWMA statistics based on intercept, slope and error variance
are described as follows:

EWMA(I )j = λb0j + (1− λ)EWMA(I )j−1,

EWMA(S)j = λb1j + (1− λ)EWM (S)j−1,

EWMA(E)j = max
[
λ ln

(
msej

)
+ (1− λ)EWMA(E)j−1, ln

(
σ 2
0

)]
,

where λ ∈ (0, 1] is the weighting parameter, and the control
limits for each statistic are described below:

For intercept:


LCLEI = B0 − LEIσ

√
λ

(2− λ)

[
1
n

]
UCLEI = B0 + LEIσ

√
λ

(2− λ)

[
1
n

]
,

For slope:


LCLES = B1 − LESσ

√
λ

(2− λ)
σ 2

SXX

UCLES = B1 + LESσ

√
λ

(2− λ)
σ 2

SXX
,

For error variance:


LCLEE = 0

UCLEE=LEE

√
λ

(2−λ)
Var

[
ln
(
MSE j

)]
,

where LEI , LES , LEE are the charting constants, which are
fixed against the IC average run length and the asymptotic
variance of the ln

(
MSE j

)
(cf. Crowder and Hamilton [38])

can be obtained as follows:

Var
[
ln
(
MSE j

)]
≈

2
n−2
+

2

(n−2)2
+

2

3 (n−2)3
−

16

15(n− 2)5

5) THE CUSUM_3 CHART
Saghaei, et al. [15] proposed a cumulative sum (CUSUM)
control charting structure based on three distinct CUSUM
statistics (referred as CUSUM_3 control chart) to mon-
itor simple linear profile parameters. The statistics of
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TABLE 1. Control charting constant and limits for existing methods at fixed ARL0 = 200.

CUSUM_3 control chart was given as below:
For intercept:{
CUSUM+(I )j = max[0, b0j −

(
B0 + K

+

I

)
+ CUSUM+(I )j−1]

CUSUM−(I )j = max[0,
(
B0 + K

−

I

)
− b0j + CUSUM

−

(I )j−1]

For slope:{
CUSUM+(S)j = max[0, b1j −

(
B1 + K

+

S

)
+ CUSUM+(S)j−1]

CUSUM−(S)j = max[0,
(
B1 + K

−

S

)
− b1j+CUSUM

−

(S)j−1],

For error variance:{
CUSUM+(E)j = max[0,msej − K

+

E + CUSUM
+

(E)j−1]

CUSUM−(E)j = min[0,msej − K
−

E + CUSUM
−

(E)j−1],

where the initial value of each CUSUM statistic is considered
as zero while the KI , KS and KE are the reference values,
which are equal to 1

/
2. Where 1 is the difference between

the targeted value and the OOC value of the parameters. Fur-
ther, the CUSUMstatistics for intercept are plotted against the
H (−,+)
I and the CUSUM statistics for slope and error variance

are plotted against the H (−,+)
S and H (−,+)

E , respectively.
It is noted that the control charting constants and the

limits of existing simple linear profile methods are reported
in Table 1 to achieve an overall ARL0 = 200 (by setting an
individual ARL0 = 584.5).

B. THE PROPOSED ASSORTED_3 CHART
The simple linear profile methods under Shewhart structure
were used to detect a large shift in the linear profile param-
eters while for the detection of small to moderate shifts,
EWMA and CUSUM charts were used. Beyond these charts,
Abbas, et al. [36] proposed amechanism,which is compatible
with all type of shifts and referred to the assorted_3 chart.
Similarly, the assorted_3 chart for the linear profile setup is
discussed below:

The plotting statistic
(
T(I )j

)
of the assorted_3 chart for the

intercept parameter is described as follows:

T(I )j = max
[
T1(I )j,T

+

2(I )j,T
−

2(I )j,T3(I )j
]
, (3)

where the Shewhart statistic
(
T1(I )j

)
, CUSUM statistics(

T+2(I )j,T
−

2(I )j

)
, and EWMA statistic

(
T3(I )j

)
are defined as

follows:

T1(I )j=
1
cs

∣∣∣∣∣∣∣∣
b0j − B0

σ

√[
1
n +

X̄ ′2

SXX

]
∣∣∣∣∣∣∣∣ ,

T+2(I )j=
1
hc

 C+(I )j

σ

√[
1
n+

X̄ ′2

SXX

]
, T−2(I )j=

1
hc

 C−(I )j

σ

√[
1
n+

X̄ ′2

SXX

]
,

T3(I )j=
1
Le

∣∣∣∣∣∣∣∣
EWMA(I )j − B0

σ

√[
1
n +

X̄ ′2

SXX

] [√
λ

2−λ

{
1− (1− λ)2j

}]
∣∣∣∣∣∣∣∣ ,

where C+(I )j and C
−

(I )j with reference value k are defined as
follows:

C+(I )j = max

0, b0j − B0 − kσ
√√√√[1

n
+
X̄ ′

2

SXX

]
+ C+(I )j−1

,
C−(I )j = max

0,−(b0j−B0)−kσ
√√√√[1

n
+
X̄ ′

2

SXX

]
+ C−(I )j−1

,
The plotting statistic

(
T(S)j

)
of the Assorted_3 chart for the

slope parameter is defined as follows:

T(S)j = max
[
T1(S)j,T

+

2(S)j,T
−

2(S)j,T3(S)j
]
, (4)

where the Shewhart statistic
(
T1(S)j

)
, CUSUM statistics(

T+2(S)j,T
−

2(S)j

)
, and EWMA statistic

(
T3(S)j

)
are represented

as follows:

T1(S)j =
1
cs

∣∣∣∣∣∣b1j − B1σ

√
1
SXX

∣∣∣∣∣∣ ,
T+2(S)j =

1
hc

 C+(S)j

σ

√
1
SXX

, T−2(S)i =
1
hc

 C−(S)j

σ

√
1
SXX


T3(S)j =

1
Le

∣∣∣∣∣∣∣
EWMA(S)j − B1

σ

√
1
SXX

[√
λ

2−λ

{
1− (1− λ)2j

}]
∣∣∣∣∣∣∣ ,
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TABLE 2. Choice of sensitivity parameters for different categories of shift.

where C+(S)j and C
−

(S)j with reference value k are defined as
follows:

C+(S)j = max

[
0, b1j − B1 − kσ

√
1
SXX
+ C+(S)j−1

]
,

C−(S)j = max

[
0,−(b1j − B1)− kσ

√
1
SXX
+ C−(S)j−1

]
,

The plotting statistic
(
T(E)j

)
of the Assorted_3 chart for the

error variance is defined as follows:

T(E)j = max
[
T1(E)j,T

+

2(E)j,T
−

2(E)j,T3(E)j
]
, (5)

where the Shewhart statistic
(
T1(E)j

)
, CUSUM statistics(

T+2(E)j,T
−

2(E)j

)
, and EWMA statistic

(
T3(E)j

)
are represented

as follows:

T1(E)j =
1
cs

(
T .MSE j
σ

)
,

T+2(E)j =
1
hc

(
C+(E)j
σ

)
, T−2(E)j =

1
hc

(
C−(E)j
σ

)
,

T3(E)j =
1
Le

∣∣∣∣∣∣ EWMA(E)j − B1

σ

√
λ

2−λ

{
1− (1− λ)2j

}
∣∣∣∣∣∣ ,

where T .MSE j is the transformed mean square error, which

equals to −0.7882 + 2.1089 × loge
(
mseij
n−2 + 0.6261

)
and

CUSUM statistics are given below:

C+(E)j = max
[
0,MSE − kσ + C+(E)j−1

]
,

C−(E)j = max
[
0,−MSE − kσ + C−(E)j−1

]
.

In the above-mentioned expressions, the cs, hc and Le are
the charting constants and k is the reference value, which
are equal to 1

/
2. Where 1 is the difference between the

targeted value and the OOC value of the simple linear pro-
file parameters. Hence, the final plotting statistic for the
assorted_3 control chart is given below:

Tj = max
[
T(I )j,T(S)j,T(E)j

]
. (6)

The plotting statistic Tj has only an upper control limit which
is defined as follow:

UCL = 1. (7)

When Tj > 1 then an OOC signal is observed in the process
intercept and/or slope and/or error variance. The rationale for
selecting the UCL equal to is outlined as follow:

The Tj > 1 implies the following:

(i) either T1(I )j > 1, and/or T1(S)j > 1 and/or T1(E)j > 1
(cf. Eq. (3), (4) and (5)),
⇒ the Shewhart statistic exceeds its corresponding
control limit cs for linear profile parameters;

(ii) and/or T+2(I )j or T
−

2(I )j > 1, and/or T+2(S)j or T
−

2(S)j > 1
and/or T+2(E)j or T

−

2(E)j > 1 (cf. (3), (4) and (5)),
⇒ the CUSUM statistic exceeds its corresponding con-
trol limit hc for linear profile parameters;

(iii) and/or T3(I )j > 1, and/or T3(S)j > 1 and/or T3(E)j > 1
(cf. (3), (4) and (5)),
⇒ the EWMA statistics exceeds its respective control
limit Le for linear profile parameters.

IV. PERFORMANCE EVALUATIONS
This section consists of the discussion on the per-
formance evaluation of proposed Assorted_3 chart and
comparative analysis with Shewhart_3, Hotelling’s T2,
CUSUM_3,EWMA/R, and EWMA_3 charts.

A. IC SIMPLE LINEAR PROFILE MODEL
In the simulation study, we considered IC simple linear pro-
file model with β0 = 3 and β1 = 2 (following Kang and
Albin [6]) and the original model is given in Eq. (1) can be
written as:

Yij = 3+ 2Xi + εij; i = 1, 2, . . . , 4

where Xi are chosen as 2, 4, 6 and 8 while εij follows a
standard normal distribution. Furthermore, the coded (trans-
formed) model presented in Eq. (2) can be expressed as:

Yij = B0 + B1X ′i + εij,

where B0 = 13+5 (βσ), B1 = (2+βσ )X ′i and X
′
i are equals

to −3, −1, 1 and 3.

B. SHIFTS FOR SIMPLE LINEAR PROFILE MODEL
For evaluating the performance of simple linear profile meth-
ods, we have considered several amounts of shifts in simple
linear profile parameters which are given as follows:

� Shifts in intercept parameter (B0 to B0 + ϕ
(
σ
/√

n
)
),

� Shifts in slope parameter (β1 to β1 + β
(
σ
/√

SXX
)
),

� Shifts in slope parameter (B1 to B1 + δ
(
σ
/√

SXX
)
),

� Shifts in error variance (σ 2 to γ σ ),
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TABLE 3. Charting constants of the assorted_3 chart at fixed ARL0 = 200.

where the size of shifts are quantified as: for intercept param-
eter: λ = 0.2 − 2.0 with jump of 0.2; for slope parameter:
β = 0.025 − 0.25 with jump of 0.025; for slope parameter:
δ = 0.2 − 1.0 with jump of 0.1, and for error variance:
γ = 1.2 − 3.0 with jump of 0.2. It is to be noted that
ϕ = β = δ = 0 and γ = 1 corresponds to an in-control
(IC) situation; whereas ϕ = β = δ 6= 0 and γ 6= 1 refers to
an OOC situation.

C. PERFORMANCE MEASURES
Control charts performance is provided by using some useful
performance measures which are briefly outlined as follows:

Average Run Length (ARL): The number of points until
an OOC signal appeared is called run length (RL) and the
average number of points until an OOC signal indicated is
known by average run length (ARL). Further,ARL is observed
under two known states, namely IC state and OOC state.
The ARL under IC state is represented by ARL0 while under
the OOC state, it is referred to ARL1. The objective of the
maximized ARL0 is to delay the false alarms as far as feasible
while ARL1 is required to be minimized to detect the signal
at the earliest for OOC process.

Extra Quadratic Loss (EQL): The EQL is the weighted
average RL with respect to a range of shifts (δmin to δmax).
In this measure, a square of shift (δ2) is considered as a

weight. Mathematically, EQL is described as:

EQL =
1

δmax − δmin

δmax∫
δmin

δ2ARL (δ) dδ,

Sequential extra quadratic loss (SEQL): The SEQL is the
extended form of the EQL up to a particular shift (δi) and
defined as follow:

SEQL i =
1

δi − δmin

δi∫
δmin

δ2ARL (δ) dδ;

i = 2, 3, . . . . . . ., δmax .

Relative Average Run Length RARL(): The RARL measure
is used to address the efficacy of the control chart compar-
ative to a benchmark control chart (cf. Wu, et al. [39]). The
mathematical expression of the RARL is defined as follow:

RARL =
1

δmax − δmin

δmax∫
δmin

ARL (δ)
ARLbenchmark (δ)

dδ,

where ARL (δ) and ARLbenchmark (δ) denotes the ARL at shift
δ for a specific chart and benchmark chart, respectively.
A chart with a leastEQL is generally regarded as a benchmark
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TABLE 4. ARL1 and EQL of the proposed assorted_3 chart.

chart and have RARL = 1. All other charts have RARL > 1
indicates lower performance than the benchmark chart.

D. SENSITIVITY ANALYSIS OF ASSORTED_3 CHART
The choice of design parameters k and λ plays a vital role in
the sensitivity of the proposed chart. To examine the sensitiv-
ity of the proposed method, we have considered 17 different
cases of parameters against all type of shifts. The setting of
parameters with respect to different type of shifts is reported
in Table 2.

After the selection of different choices of sensitivity
parameters, the next step is to find an optimal combination
of the control limit coefficients (hc,Le, cs). The adopted opti-
mality criteria is discussed below:

Objective function: min(EQL)
Subject to: ARL0 = τ , where τ is the pre-specified ARL0.
such that ARLs = ARLe = ARLc

where ARLs, ARLe and ARLc refers to the ARL of the
Shewhart, EWMA and CUSUM charts, respectively.

On the fixed overallARL0 = 200, control limit coefficients
of the twelve individual charts are selected in such a way that
all posses same individual ARL. The assumption of similar
individual ARL is considered to avoid the redundancy of any
single chart. Further, the resulting control charting constants
(hc,Le, cs) are provided in Table 3.

E. PERFORMANCE ANALYSIS OF ASSORTED_3
CONTROL CHART
The efficiency of the assorted_3 chart is assessed by
using the ARL and EQL for different combinations of k, λ
and ϕ. The outcomes are provided in Table 4 at fixed
ARL0 = 200. The result reveals the following findings:

� The assorted_3 chart is sensitive to the small, moderate
and large shifts.

� Case 15 with sensitivity parameters such as k = 1.25
and λ = 0.05 and the charting constants (hc =
2.722548,Le = 3.188036, cs = 3.528191) is an optimal
choice, because it has minimum EQL equals to 3.340.
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TABLE 5. Performance comparison under the shifts in intercept (B0 to B0 + ϕσ ).

� The sensitivity of assorted_3 chart rises with a reduction
in λ at a specific choice of k, and it is valid for all k
values.

� The sensitivity of assorted_3 chart upturns with a decline
in k at a particular selection of λ and it is correct for all
λ values.

V. COMPARATIVE ANALYSIS
In addition to ARL (used as performance measurement at a
specific shift), other significant measures such asEQL, SEQL
and RARL are also used to assess the general performance of
the chart. The performance of all charts under consideration
are discussed in the following subsections.

A. A SHIFT IN INTERCEPT OF TRANSFORMED MODEL
When the shift occurs in the intercept of the transformed
model, the outcomes of distinct efficiency assessments are
shown in Table 5. The findings show that:

� The assorted_3 chart is chosen as a benchmark chart
due to minimum EQL (i.e., 3.11). The EQL ′s for
Shewhart_3, Hotelling’s T 2, EWMA/R, EWMA_3 and

CUSUM_3 charts are 7.19, 6.38, 4.23, 4.09 and 3.35,
respectively.

� The RARL of the assorted_3 chart is equaled to 1 while
the RARL for Shewhart_3, Hotelling’s T 2, EWMA/R,
EWMA_3 and CUSUM_3 charts are 2.54, 2.24, 1.32,
1.27 and 1.11, respectively. These results indicate that
the assorted_3 chart’s detection ability is greater than all
other charts listed in this research.

� SEQLs behavior also demonstrate that the performance
of assorted_3 chart is greater than others competing
charts, over different amounts of shifts (cf. Table 5 and
Figure 1(a)). For example, at ϕ = 1.20, the SEQL
values for the assorted_3, Shewhart_3, Hotelling’s T 2,
EWMA/R, EWMA_3 and CUSUM_3 charts are 2.45,
8.57, 7.33, 3.03, 2.85 and 2.81 respectively.

B. A SHIFT IN SLOPE OF ORIGINAL MODEL
When shifts are introduced in the slope of the model given in
Eq. (1). The findings of the assorted_3 chart and competing
are provided in Table 6. The main results are as follows:

� The assorted_3 chart is selected as a benchmark chart
due to minimum EQL (i.e., 0.096) while EQL ′s are
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TABLE 6. Performance comparison under the shifts in the slope of the original model (β1 to β1 + βσ ).

TABLE 7. Performance comparison under the shifts in the slope of the transformed model (B1 to B1 + δσ ).

reported as 0.314, 0.236, 0.123, 0.114 and 0.104 for the
Shewhart_3, Hotelling’s T 2, EWMA/R, EWMA_3 and
CUSUM_3 charts, respectively.

� All competing charts (i.e., Shewhart_3, Hotelling’s
T 2, EWMA/R, EWMA_3 and CUSUM_3 charts)
have RARL greater than 1 (i.e., 3.228, 2.469, 1.26,
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TABLE 8. Performance comparison under the shifts in error variance (σ to γ σ ).

1.16 and 1.078), which shows the superiority of
assorted_3 chart.

� The assorted_3 chart performed well for the detection
of moderate to large shifts. For instance, at β = 0.125,
the ARL1 of assorted_3 and competing charts namely
Shewhart_3, Hotelling’s T 2, EWMA/R, EWMA_3 and
CUSUM_3 charts are 6.552, 27.90, 20.1, 7.7, 7.2 and
7.2, respectively. Moreover, SEQL are presented in Fig-
ure 1(b), which reveals that the assorted_3 chart has
superior performance as compared to all other charts.

C. A SHIFT IN SLOPE OF TRANSFORMED MODEL
For the evaluation of simple linear profile methods, shifts are
introduced in the slope of the transformed model given in
Eq. (2). The findings are reported in Table 7, and the main
results reveal:

� The detection ability of the assorted_3 chart at
small, moderate and large shifts is better than She-
whart_3, Hotellin’s T 2, EWMA/R, EWMA_3 and
CUSUM_3 charts. The assorted_3 chart has the
lowest EQL, which equals to 0.65. The EQLs of the
Shewhart_3, Hotellin’s T 2, EWMA/R, EWMA_3 and
CUSUM_3 charts are reported as 1.38, 1.23, 1.76,
0.87 and 1.17, respectively.

� The assorted_3 chart is considered a benchmark chart,
so it’s RARL is equals to 1. All other charts (i.e.,
Shewhart_3, Hotellin’s T 2, EWMA/R, EWMA_3 and
CUSUM_3 charts) have RARL greater than 1

(i.e., 2.34, 2.05, 2.96, 1.27, 1.64 and 1.21), which shows
their inferiority to detect shifts in the slope of the trans-
formed model.

� The graphical representation of SEQL measure is plotted
in Figure 1(c), and results reveal that the assorted_3 chart
has superior performance as compared to all other
charts.

D. A SHIFT IN ERROR VARIANCE OF ORIGINAL MODEL
The findings of the shifts in the error variance parameter are
reported in Table 8. The notable outcomes are:

� The detection ability of assorted_3 chart at small and
moderate shifts is significantly better among all other
charts. For instance, at γ = 1.40, the ARL values
of assorted_3, Shewhart_3, Hotellin’s T 2, EWMA/R,
EWMA_3 and CUSUM_3 charts were 8.84, 13.50,
14.90, 12.00, 12.70 and 9.40, respectively.

� Since assorted_3 chart has lowest EQL, which equals to
23.38. Therefore, it is considered as a benchmark chart.
The EQL ′s of the Shewhart_3, Hotellin’s T 2, EWMA/R,
EWMA_3 and CUSUM_3 chart are reported as 27.49,
30.57, 26.44, 29.97 and 24.94.

� The RARL of the assorted_3 chart is equaled to 1 while
other competing charts have RARL greater than 1. The
second-best chart is the CUSUM_3 with RARL = 1.03.

� The SEQL values of all charts against shifts in error
variance are drawn in Figure 1(d). The assorted_3 chart
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FIGURE 1. SEQL comparison: (a) shift in the intercept of the transformed model; (b) shift in the slope of original model (c) shift in the
slope of the transformed model; (d) shift in error variance of original model.

showed superior performance as compared to all other
charts at small, moderate and large shifts in the error
variance of the original model.

VI. MONITORING THERMAL MANAGEMENT OF
DIAMOND-COPPER COMPOSITES
Thermal management of high-performance electronic
devices is the key to their efficient and continued working.
The average size of electronic devices is decreasing day by
day with the decreasing size of the transistor. Each electronic
process produces waste heat in the component.

High thermal conductivity metals like copper, silver or
aluminum (for copper ∼ 400 W/mK) seems a good solution
for the substrate material. The thermal expansion coefficient
of electronic devices has low value (for silicon ∼ 5 m/mK)
while that of the mentioned metals is very high in comparison
(for copper ∼ 16 m/mK). Ceramic materials are generally
very low in their thermal expansion coefficient; for example,
diamond has a very high thermal conductivity of 2000W/mK
with a thermal expansion coefficient of only ∼ 2 m/mK.
A composite of diamond particles and copper metal may
produce a combination of high thermal conductivity and
a thermal expansion coefficient comparable to that of
electronic devices. The effective thermal conductivity and

thermal expansion coefficients are mainly affected by the
volume fraction of diamond and the densification of the com-
posite. Densification is the ratio of actual density to the
theoretical density of the composite sample.

A. DATA DESCRIPTION
In this study, diamond-copper composites were produced
by conventional sintering route. The pressure of cold
compaction (PCC) is an important parameter which affects
the final properties of the composite. The composite samples
were sintered following the same sintering cycle. The volume
fraction of diamond particles was 10%, and the sintering was
carried out at 900 ◦C for 2 hours in a vacuum environment.
The only independent variable was PCC. The composite sam-
ples were cold compacted at five different levels of pressure,
i.e. 425, 450, 475, 500 and 525 MPa. The dependent variable
was the densification of the diamond-copper composite. The
densification was measured 24 times by an apparatus based
on Archimedes’ principle.

B. IMPLEMENTATION OF ASSORTED_3 CHART
In this study, we have considered the explanatory
variable (PCC) and its values are fixed as (X =

425, 450, 475, 500 and 525) while the densification (Y ) is
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FIGURE 2. (a) shifted intercept of Assorted_3; (b) shifted intercept of Shewhat_3; (c) shifted intercept of EWMA_3; (d) shifted intercept of
CUSUM_3.

considered as a predictor variable. The implementation of the
assorted _3 chart needs the following steps:

Step 1: We have a complete set of 120 observations (i.e.,
24 profiles). The IC regression model centered on 24 profiles
is expressed as:

Y = 77.999+ 0.0297X + ε. (original model)

Step 2: In addition, to obtain the coded model, we con-
verted X into X ′ by using X ′ = X − X̄ ,

X ′ = −50,−25, 0, 25, 50

and the transformed model is represented as,

Y = 91.518+ 0.0297X ′ + ε. (transformed model)

Step 3: The charting constants are chosen for the
Assorted_3, Shewhart_3, EWMA_3 and CUSUM_3 charts
were provided below:

For Assorted_3:



k = 1.25, λ = 0.05
hc = 2.7225
Le = 3.1880
cs = 3.5281
UCL = 1,

For Shewhart_3:

{
cs = 3.215
UCL = 3.215

For EWMA_3:


k = 1.25, λ = 0.05
Le = 2.873
UCL = 0.44

For CUSUM_3:


k = 1.25, λ = 0.05
hc = 2.302
UCL = 2.302

Step 4: The proposed statistics for intercept, slope and error
variance are plotted against their upper control limit.

Step 5: A shift is noted in the densification of the diamond-
copper composite due to raising in the PCC after 16th

sample profile. We will evaluate the performance of our
proposed assorted_3 chart versus CUSUM_3, EWMA_3 and
Shewhart_3 charts in Figures 2-4, respectively. The sum-
mary of the detection ability of these charts is presented
in Table 9. The results reveal that the assorted_3 chart has
superior detection ability to monitor simple linear profile
parameters.

It is obvious from the detection ability that the She-
what_3 and EWMA_3 charts are the lowest effective charts.

The detection ability of Assorted_3 chart is best among the
other counterpart charts. This order of superiority refers in
terms of shift amount in the process. Since the purpose of
the assorted_3 chart is to detect any amount of shift (small,
moderate and large) in the process, the detection of OOC
situations requires precedence over other charts.
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FIGURE 3. (a) shifted slope of Assorted_3; (b) shifted slope of Shewhat_3; (c) shifted slope of EWMA_3; (d) shifted slope of CUSUM_3.

FIGURE 4. (a) shifted error variance of Assorted_3; (b) shifted error variance of Shewhart_3 (c) shifted error variance EWMA_3;
(d) shifted error variance of CUSUM_3.

The diamond-copper composite is portrayed
in Figure 5; (a) at 500 PCC while when PCC is
increased, we can observe a blister on the diamond-copper

composite in Figure 5 (b). Further, this blister is
investigated by scanning electron microscopy (SEM)
(cf. Figure 5 (c and d)) (cf. [38]).
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FIGURE 5. Blister investigation by SEM.

TABLE 9. Detection summary.

VII. SUMMARY AND CONCLUSIONS
Monitoring methods based on simple linear profiles is an
emerging area within SPC. Many control charting structures
are available in the literature to monitor slope, intercept
and error variance such as the Shewhart_3, Hotelling’s T 2,
EWMA_3, EWMA/R and CUSUM_3 charts. We have pro-
posed a new assorted_3 approach for themonitoring of simple
linear profile parameters in a single control charting setup.
Using the performance measures such as ARL,EQL, SEQL
and RARL, we have assessed and compared the efficiency of
the proposed assorted_3 chart with some current equivalent
existing counterpart charts.

Thorough performance analysis showed that the proposed
assorted_3 chart is sensitive to monitor simple linear profile
parameters at varying shift amounts. The performance of
assorted_3 chart at k = 1.25 and λ = 0.05 is ideal in aspects
of distinct run length properties. The RARL of the competing
charts are greater than 1which shows that the assorted_3 chart
has better detection ability as compared to the Shewhart_3,
Hotelling’s T 2, EWMA_3, EWMA/R and CUSUM_3 charts.
Furthermore, the SEQL is calculated to explore the efficiency
of said charts at different amounts of shifts, and it also
supports that the assorted_3 chart has outperformed all other
charts. For thermal conductivity process, real implementation
of the proposed and other competing charts is also provided.
The real-life application supports the results in favor of
our proposed assorted_3 technique to monitor simple linear

profile parameters. It is noted that the scope of this research
may be extended, using assorted approach, to monitor all
kinds of shifts in non-linear and multivariate profiles.
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