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ABSTRACT In usual quality control methods, the quality of a process or product is evaluated by monitoring
one or more quality characteristics using their corresponding distributions. However, when the quality
characteristic is defined through the relationship between one or more response and independent variables,
the regime is referred to as profiles monitoring. In this article, we improve the performance of the
Exponentially Weighted Moving Average Range (EWMAR) control charts, which are implemented for
monitoring linear profiles (i.e., intercept, slope and average residual between sample and reference lines) by
integrating them with run rules in order to quickly detect various magnitudes of shifts in profile parameters.
The validation of the proposed control chart is accomplished by examining its performance using the average
run length (ARL) criteria. The proposed EWMAR chart with run rules exhibits a much better performance in
detecting small and decreasing shifts than the other competing charts. Finally, an example from multivariate
manufacturing industry is employed to illustrate the superiority of the EWMAR chart with run rules.

INDEX TERMS Control chart, linear profiles, phase II, profile monitoring, run rules scheme.

I. INTRODUCTION
Statistical Process Control (SPC) is widely utilized tomonitor
industrial processes and most of the academic researchers
in SPC focus on charting techniques; see the introductory
chapters of Montgomery [1] or.Chakraborti and Graham [2].
It is usually assumed that the quality of a process or product
can be sufficiently demonstrated by distributing a qualitative
characteristic. These quality characteristics are most moni-
tored by some univariate control chart; however, when they
are described by the distribution of multiple qualitative char-
acteristics, then they are monitored by a multivariate control
chart. Most of the control charts in the SPC literature are
based on monitoring location, variability or the latter two
jointly. Note though, when the quality of a process or product
is described by the relationship between a response variable
and one or more independent variables, this is referred to as
profile monitoring; see Woodall et al. [3]. The exact time
for the origin of profile monitoring is not known in the
literature and some researchers drew on different terms to
describe it; for instance, the term ‘‘signature’’ was introduced
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byGardner et al. [4] while Jin and Shi [5] used the ‘‘waveform
signals’’ term in monitoring functional relationships. In fact,
these terms are equivalent to the profile monitoring method
in a way. In various situations and applications, the profiles
relationship can be represented by linear [6], multichannel
profiles [7], Gaussian process [8], nonlinear [9] and even a
complex relationship [10].

Like usual quality control methods, profile monitoring is
conducted in two phases entailing Phases I and II. Evaluating
process stability and estimating the in-control (IC) process
parameters are the main goals in Phase I. In Phase II, on the
other hand, it is important to monitor the process and identify
the Out-of-Control (OC) situations as soon as possible. This
goal is usually measured by the Average Run Length (ARL)
which is defined as the number of samples taken to observe
an OC signal; when the process is IC (OC), it is denoted by
ARL0 (ARL1), respectively. For more details, the interested
reader is referred to the review articles provided by Woodall
[11] and Maleki et al. [12] on profile monitoring.

Generally speaking, linear profiles are classified into three
main groups based on the number of response and indepen-
dent variables, i.e., simple, multiple and multivariate. Simple
linear profiles are the simplest one in which the relationship
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between a response and an independent variable is assumed
linear. In the multiple linear profiles, there is a multiple
linear relationship between one response variable and several
independent variables. Note that in univariate models, there
is one response variable; however, multivariate models have
more than one response variable. The aim of this study is to
investigate the process shifts in simple, multiple and multi-
variate linear profiles in Phase II. Note that the other types of
profiles (including nonlinear profiles) will be considered in a
different study in the future.

Stover and Brill [13] implemented Hotelling’s T 2 and
univariate charts based on the first principal component of
the vectors of the regression parameters estimation for deter-
mining the response stability of a calibration tool and the
optimal calibration frequency Kang and Albin [6] proposed
two control charts for monitoring Phase II of the linear pro-
files, the first one is the multivariate T 2 chart and the sec-
ond is a combination of the Exponentially Weighted Moving
Average (EWMA) chart using a Range (R) charting statistic
(denoted as EWMAR) Kim et al. [14] proposed a method
based on a combination of three EWMA (EWMA3) charts to
identify the shifts in intercept, slope and standard deviation.
Simulation studies showed that the EWMA3 chart perform
better in detecting sustained shifts in parameters than the
T 2 & EWMAR charts proposed by Kang and Albin [6]
in terms of ARL Zou et al. [15] introduced the multivari-
ate EWMA (MEWMA) chart to monitor linear profiles in
Phase II. Although the performance of this method seems to
be similar to the one exhibited by EWMA3, it can additionally
identify decreasing shifts in the error variance Saghaei et al.
[16] proposed the CUSUM3 control chart which has a sim-
ilar design as the EWMA3 chart Xu et al. [17] used the
Generalized Likelihood Ratio (GLR) control chart to moni-
tor linear profiles and showed that the GLR chart performs
better than EWMA3, especially when the shifts are small
Huwang et al. [18] introduced a control chart based on
the simultaneous confidence set’s concept and their chart
provided a systematic diagnostic method for estimating the
change point and identifying the shifted parameters in the
process or profile diagnosis Riaz et al. [19] monitored linear
profiles by implementing the EWMA structure under ranked
set schemes which was also applied in monitoring quality
characteristic (see for example Abbasi et al. [20]) similar
to Mahmood et al. [21]. Riaz et al. [22] categorized the
EWMA3 and CUSUM3 charts as memory-type, and then
they proposed Shewhart-based charts (denoted as Shewhart3)
using a modified successive sampling strategy instead of
simple random sampling Motasemi et al. [23] presented a
novel approach to leverage the information in the area formed
between the sampled and IC profile to improve the mon-
itoring scheme performance Saeed et al. [24] designed a
memory-type control chart taking into account the progres-
sive mean to detect changes in linear profile parameters.
Some similar works can also be investigated in Abbas et al.
[25] and Riaz et al. [26]. Bayesian control charts have also
been developed for linear profiles, see [27]–[29].

For some earlier research works on these concepts, see
[30]–[33]. It is evident that most of the abovementioned
schemes can be utilized in both simple and multiple profiles;
however, only few researchers focused on multiple linear
profiles; this was attempted by Zou et al. [34], Amiri et al.
[35], Mahmoud et al. [36] and Qi et al. [37]. Among these
works, Amiri et al. [35] generated better results based on
Monte Carlo simulations by dimension reduction method.

In many practical situations, the profiles cannot be
represented adequately by a simple or multiple linear
model, because there are more than one dependent qual-
ity characteristics as response variables, which are mod-
eled as functions of one or more explanatory variables
called multivariate linear profiles. The aforementioned pro-
cess monitoring approaches could not be directly employed
in multiple linear profiles because of the correlation between
response variables and hence, some modifications are needed
in this type of profile Noorossana et al. [38] were the first
researchers, who studied control schemes for multivariate
profiles in Phase II by proposing three control charts denoted
as MEWMA, MEWMA/χ2 and MEWMA3. Their results
revealed that MEWMA and MEWMA/χ2 outperformed
MEWMA3 in most of the situations. In a similar research,
Eyvazian et al. [39] proposed four monitoring schemes based
on MEWMA statistics, parameter reduction, likelihood ratio
test (LRT) and change point estimator Haq [40] proposed
adaptive MEWMA charts for monitoring linear and multi-
variate profile parameters.

In addition, some other studies employed variable sam-
pling interval (VSI) technique to increase the sensitivity of
control charts in linear profiles (see [15], [30], [31], [41], [42]).
Run rules seem to be an alternative supplementary approach,
which can be used to increase the sensitivity of a control chart.
That is, non-random patterns including existence of two or
more points (samples) in the region nearby the OC limit of
control charts may reveal different situations according to
the nature of their root causes. In other words, these rules
utilize historical data and look for a non-random pattern that
can signify that the process is OC, before reaching the main
limits usually by the aid of additional warning limits. Several
researchers including [43]–[46] implemented different run
rules in the Shewhart, non-parametric and CUSUM charts
for monitoring location and variability parameters. However,
not enough attention has been paid to this subject in profile
monitoring; see for instance Riaz and Touqeer [47].

Recently, a heuristic and effective run rules approach
has been proposed by Yeganeh and Shadman [48] and
Yeganeh et al. [49]. This approach (different from previous
researches, i.e. based on a simulation matrix) which is aston-
ishingly matched with machine learning [32] and statistical
[15] control charts considered the ratio of the samples in
different prespecified IC regions with definition of a rule
matrix. The new matrix runs rule-based approach was shown
in [48] and [49] to improve the detection ability of the
MEWMA and artificial neural network (ANN)-based con-
trol charts for monitoring simple linear profiles in Phase II.
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It is worth mentioning that the MEWMA (by [15]) and
ANN-based (by [32]) control charts for monitoring profiles
have a single charting statistic. Note though, the EWMAR
(by [6]) and EWMA3 (by [14]) control charts have two and
three charting statistics, respectively; so these schemes are
not directly applicable in combination with the MEWMA
and ANN-based control charts. Therefore, in this article,
the matrix runs rule-based approach is incorporated into the
design of EWMAR and EWMA3 control charts to improve
the detection ability of these charts in monitoring not only
simple but also multiple and multivariate linear profiles.

The rest of the manuscript is structured as follows. The
implementation of EWMAR scheme in simple, multiple
and multivariate linear profiles are illustrated in Section II.
In Section III, we present the structure of the run rules
approach inmonitoring linear profile and the design approach
for the EWMAR scheme with the rule matrix is provided
in Section IV. Section V depicts several performance com-
parisons of the proposed control charts versus existing ones.
A real data application used to clarify the applicability and
implementation of the proposed monitoring scheme is pre-
sented in Section VI. Section VII concludes this article with
final remarks and future research suggestions.

II. MONITORING LINEAR PROFILES IN PHASE II
The general linear profile model entails n pairs of (Xj, Yj) at
the jth sampling time in phase II which is represented as:

Yj = X jβ + Ej, (1)

or equivalently,
y11j y12j . . . y1pj
y21j y22j . . . y2pj
. . . . . .

. . . . . .

. . . . . .

yn1j yn2j . . . ynpj

 =

1 x11j . . . x1qj
1 x21j . . . x2qj
. . . . . .

. . . . . .

. . . . . .

1 xn1j . . . xnqj



×


β01 β02 . . . β0p
β11 β12 . . . β1p
. . . . . .

. . . . . .

. . . . . .

βq1 βq2 . . . βqp

+

ε11j ε12j . . . ε1pj
ε21j ε22j . . . ε2pj
. . . . . .

. . . . . .

. . . . . .

εn1j εn2j . . . εnpj

 (2)

In this model, Yj is the matrix of jth response variable, Xj is
n×p with (n > p) independent explanatory variables matrix,
β is a (q+1)×pmatrix of regression parameters andEj is the
n×pwith n > pmatrix of error variances with an assumption
of independent normally distributed with mean vector 0 and
covariance matrix

∑
, which is given by

∑
=


σ11 σ12 . . . σ1p
σ21 σ22 . . . σ2p
...

...
. . .

...

σp1 σp2 . . . σpp

 . (3)

It is also a customary assumption to neglect the variation
of explanatory variables in each profile; hence, Xj hereafter
is denoted by X as follows:

X =


1 x11 . . . x1q
1 x21 . . . x2q
. . . . . .

. . . . . .

. . . . . .

1 xn1 . . . xnq

 . (4)

The estimators of coefficients in (2) (i.e., β̂j) are obtained
based on ordinary least square (OLS) estimation as follows:

β̂j = (XX ′)−1X ′Y j, (5)

where the vector form of β̂j is shown as a (q+ 1)p× 1 vector
and is denoted by β̂Vj as follows:

β̂Vj = (β̂01j, β̂11j, . . . , β̂q1j, β̂02j, β̂12j,. . .

. . . , β̂q2j, . . . , β̂0pj, β̂1pj, . . . , β̂qpj). (6)

The IC model in (1) simplifies to multiple and simple
linear profiles when considering p = 1, q > 1 and p =
q = 1 respectively. The model consists of observations of
the quality characteristic along an auxiliary information:

Yij = A0 + A1x1 + A2x2 + ...+ Aqxq + εij,

i = 1, 2, . . . , n; j = 1, 2, . . . ,

εij ∼ N (0, σ 2). (7)

where the subscript i shows the ith observations within each
profile and subscript j shows the jth profile collected over
time; with (β = {A0,A1, . . . ,Aq}, Ej = (ε1j, ε2j, . . . , εnj)
and å = σ1×1). Note that the parameters of model in (7)
assume that the intercept (A0), slopes (A1,A2, . . . ,Aq) and
error variance (σ 2) are known in phase II.
To monitor simple and multiple linear profiles, Kang and

Albin [6] defined two independent control charts entailing
monitoring range and average of residuals. The weighted
average of residuals at the jth sample for the EWMA statistic
(ēj = n−1

∑n
i=1 eij) is defined as follows

zj = (1− θ )zj−1 + θ ēj, (8)

where θ is the weighting constant (as a common manner in
other studies, θ is set at 0.2) and the proper initial value of
z0 may be 0. The control limits for the first two-sided control
chart are defined by:

LCLz = −UCLz = −Lσ

√
θ

(2− θ )n
. (9)

The range of residuals (rj = maxi(eij) − mini(eij)) is
also monitored by the one-sided control chart with the limits
defined as

LCLR = σ (d2 − Ld3)

UCLR = σ (d2 + Ld3). (10)
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Hereafter, the two charts based on (9) and (10) are called Z
andR, respectively; and the values of d2 and d3 are reported in
Montgomery [1] and L is the multiple of the sample statistic
standard deviation for both control charts determining the
ARL0. It is noteworthy that rj is always positive and LCLR = 0
in (10) for n < 7 based on the reported values of d2 and d3.
In this method, an OC signal is given if at least one of the
charting statistics falls beyond the control limits.

Equations (8), (9) and (10) cannot be utilized in multi-
variate linear profiles so to apply this scheme in multivariate
linear profiles, the 1 × n vector of residuals’ average is
calculated as follows [38]:

Ēj = (ē1j, ē2j, . . . , ēnj). (11)

It is followed by a multivariate normal distribution with

mean 0 and known covariance matrix
∑

Ē
=

∑
n
. The

weighted average of residuals at the jth sample is the same
as that in (8) and is calculated as follows:

Zj = (z1, z2, . . . , zp),

zj = (1− θ)zj−1 + θ ēj j = 1, 2, . . . , p, (12)

where θ is the weighting constant and Z0 = (0, . . . , 0)1×p.
The charting statistic is defined by:

T 2
Zj = Zj ×

∑
Ē
× Z′j. (13)

Due to non-zero value of T 2
Zj, LCLZ = 0 and UCLZ can be

obtained with chi square random variable [38] or simulations.
In a multivariate scenario, the same as Z chart, only the

value ofUCLR is required and it is determined by simulations
specifies the ARL and LCLR = 0. To construct the control
chart for the range of residuals, Rj = (r1j, r2j, . . . , rnj) where∑

R
=

∑
2
, thus, the charting statistic is given by

T 2
Rj = Rj ×

∑
R
× R′j. (14)

This statistic is monitored with LCLR = 0 and the UCLR
is obtained based on desired ARL0. When both of these
statistics (T 2

Zj and T
2
Rj) are located within their control lim-

its, it means that there are no OC situations. The proposed
EWMAR scheme in multivariate profiles is very similar to
MEWMA/χ2 control chart in Noorossana et al. [38] and there
is only a slight difference in the second statistic.

Because the EWMA3 approach can be directly applied
only in simple linear profiles and for brevity, the details of
this method are not provided here and the reader is referred
to Kim et al. [14].

III. COMBINATION OF RUN RULES AND EWMAR
METHOD IN MONITORING LINEAR PROFILES
The main application of run rules entails receiving previous
samples information and involving them in the current sample
for decision making and this has been shown to generally
increase the control charts detection ability of OC situations,
especially for small and moderate shifts. The proposed rule
matrix is defined corresponding to the charts’ control limit

with a 3-columns rule matrix consisting of S rows (S equals
to the number of rules) as follows:

o1 p1 m1
. . .

ok
. . .

. . .

pk
. . .

mk

oS pS mS

 . (15)

First column of rule matrix is the indicator of regions of
each rule including ok to UCL where 1 ≤ k ≤ S, o1 ≤
ok ≤ oS and pk ≤ 1 (Region 1 = (o1 − UCL), . . . , and
Region S = (oS − UCL)). The second column defines the
maximum acceptable ratio of the number of points in each
region to the total number of points until the current sample.
The last column is the maximum number of points plotted
(or minimum point with reverse definition) in each region
for not firing rules (mk ≥ 0). For more details of this type
of rule matrix procedure, the reader is referred to Yeganeh
and Shadman [48] and Yeganeh et al. [49]. Note that the
first column has been shown with ‘rk ’ in these articles but
it has been changed here due to similarity with the range of
residuals (rj) of the EWMAR statistics.

For better illustration, the details of the proposed approach
and designing are illustrated for EWMAR and the same can
be extended for other control charts. To employ this approach
in EWMAR as a control charts with more than one charting
statistic, the rule matrix needs to be defined for each sep-
arate control chart corresponding to its control limits with
definition of SR and SZ as the number of rules in each rule
matrix. Hence, two rule matrices are designed (the designing
procedure are described in the next section) for the EWMAR
control chart.

Suppose there are two rule matrices for Z and R chart
(see (9) and (10)), after computation of zj and rj in the
jth sample for the simple or multiple profiles, the charting
statistics are firstly compared with their control limits. When
the charting statistics are not located within the control limits
(fall outside the limits), the chart signals naturally. In other
words, this is not a pure run rule system in which there are no
control limits (i.e. there are warning limits only) and a signal
is triggered by run rules [50]; however, to declare the process
as IC, all the conditions of the two rule matrices should not
be satisfied in addition to locating statistics in IC region.
The signaling procedure of EWMAR control chart in the jth

profile is illustrated in Figure 1. The procedure of EWMAR
signaling can easily be applied in multivariate profiles by
changing of zj and rj to T 2

Zj and T
2
Rj, respectively.

IV. DESIGNING OF THE PROPOSED SCHEME
When a control chart has more than one charting statistic,
precautions need to be taken into account when designing
the control limits because they have an impact in the chart
performance. If the charts are independent, the overall type I
error can be as expressed:

αoverall = 1−
G∏
g=1

(1− αg), (16)
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FIGURE 1. The signaling procedure in combination of rule matrix and EWMAR control chart for the j th sampling point.

where G denotes the number of control charts (i.e., G = 2 for
the EWMAR and G = 3 for the EWMA3). As a common
approach in phase II applications, ARL is utilized instead
of αg; g = 1, 2, . . . ,G in a way that αoverall denotes the
inverse of the IC ARL (αoverall = 1

ARL0
).

Although the use of run rules violates the independency
assumption, (16) with some modifications is employed in
rule matrix designing in this article. Set the equal values of
αg for each control chart is a common manner in designing
of control charts [24], [27], [51]. Note though Kang and
Albin [6] did not set the IC limits in the same manner as
done in the latter publications. That is, to reach a final ARL0
equal to 200, they set L = 3 in (9) and by using this
adjustment, the values of individual ARL0 for the chart were
obtained equal to 270 and 790. However, to be consistent with
most of the previous researches, the rule matrix designing is
conducted to reach the same value of ARL0 in each control
chart. So, firstly, without consideration of rulematrix, the lim-
its of control charts are obtained with (9) and (10). Then,
the IC region of control chart is divided into some predefined
regions in each step (i.e. the same as Yeganeh et al. [49]
one region (rule) is added to the rule matrix). One region
has the best performance based on the minimizing ARL1
for predefined shift(s) is selected as a fixed region from
candidate regions in the rule adding procedure. In each steps

of rule adding, there are SR − 1(SZ − 1) fixed regions in
the rule matrix of R (Z ) chart, respectively. Because the IC
region is naturally widened, by adding of run rules, the can-
didate and fixed region(s) are varied during the designing
process.

To assign the ratio of each region, two main approaches
can be used: (i) separate designing of each rule, and (ii)
simultaneous designing. Because of spanning a bigger chunk
of time in the first approach, the second approach is suggested
in this article. In the second approach, the ratios of the fixed
and candidate regions are set by four different definitions of
ARL0 which are defined as follows:
• ARL0: Final value of the IC ARL for all of the G charts.
• ARL0R, ARL0Z : Final value of the IC ARL for R and Z
charts in the EWMAR. Using (16), ARL0R and ARL0Z
are given by:

ARL0R =
1

1−
√
1− 1

ARL0

ARL0Z =
1

1−
√
1− 1

ARL0

. (17)

• ARL0IR, ARL0IZ : Individual value of the IC ARL for
each rule and control limits in each chart. It is calculated
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for each chart separately based on SR, SZ , ARL0R and
ARL0Z , i.e.

ARL0IR =
1

1− (1− 1
ARL0R

)
1

SR+1

ARL0IZ =
1

1− (1− 1
ARL0Z

)
1

SZ+1

. (18)

• ARL0CR, ARL0CZ : The calculative value of IC ARL of
both control charts for design of fixed rules in the design-
ing procedure. It is a (SR−1)×1 and (SZ −1)×1 vector
based on the fixed regions and are given by:

ARL0CR(l) =
1

1− ((1− 1
ARL0IR

)l+1 × (1− 1
ARL0Z

))
;

l = 1, 2, . . . , SR

ARL0CZ (l) =
1

1− ((1− 1
ARL0IZ

)l+1 × (1− 1
ARL0R

))
;

l = 1, 2, . . . , SZ . (19)

In addition, to reach the same IC run length in run rules,
reducing the value of ARL1 for some specific and predefined
shifts is an effective manner in designing of run rules. In this
way, ARL0 remains constant at the desired level while the
ARL1 is minimized by changing control limits based on sim-
ulations see for instance Riaz et al. [45] or Saeed et al. [24].
Considering this aim, the designing of proposed rule matrices
will be performed under the following assumptions:

- For the ease of computations, the absolute value of
zj(i.e.,

∣∣zj∣∣) is imported to the rule matrix procedure
so the lower limit of Z chart is considered as zero
(LCLZ = 0). Also, the value of LCLR is not changed
during the designing steps.

- After the designing procedure, the values of type I error
for each chart are the same (ARL0R = ARL0Z ).

- The rule matrix for R chart is firstly designed and fixed
then the designing of Z chart should be performed.

- In each step, one rule is added to rule matrix on the
basis of relative reducing of ARL1 in comparison with
the previous state

- The control charts are divided to some equal regions
based on the control limits. The regions are chosen based
on the minimizing ARL1 in predefined shift(s).

- The chosen regions are fixed in the subsequent adding
procedure steps and selection of regions should be
done among candidate regions. Because of changing the
regions during the rule adding procedure, the closest
region(s) to previous fixed region(s) are defined as a new
fixed region(s).

- In designing of rule percentage in fixed regions, the rules
are assumed to be independent, (16) can be used; how-
ever, in designing of the rule percentage in candidate
regions, ARL0 is the criteria.

- There is only one candidate region added to the rule
matrix in each step.

In a nutshell, the ratio of fixed region(s) is tuned based
on (19); in other words, the ratio of the l th fixed region of the
R (Z ) chart are set to reach ARL0CR(l) (ARL0CZ (l)), respec-
tively. Then the rule percentage of candidate regions is set to
reach ARL0. Note that if SR is equal to 0, the UCLR should
be calculated and go to step 4; else, the iterative suggested
procedure from step 1 will be iterated. The same can be said
for Z chart designing and to preserve writing space, it is not
provided here. The following steps are provided for designing
the run rule matrix of the R chart:
Step 1: Investigation of rules adding condition
The designing procedure is iterated by increasing the num-

ber of rules. The rule adding procedure is terminated when
there is a significant decrease (i.e., relative distance to previ-
ous state) is not shown in ARL1. The procedure is terminated
when the relative difference to previous state is fewer than
2%. If relative distance is greater than 2%, the selected region
in the current step is assumed as a fixed region.
Step 2: Computing theARL0IRand UCLR
Considering SR, ARL0IR is calculated with (18) and then

the UCLR is increased to reach ARL0IR.
Step 3:Tuning rule percentage of fixed regions based on

rule independency assumption
The rule percentage of SR−1 fixed regions should be tuned

with the sequence that they are selected. With the assumption
of independence between rules,ARL0CR(l) is calculated based
on (19) for l th; l = 1, 2, . . . , SR − 1 fixed region with
consideration of ARL0IR of each rule and UCLR.
Step 4: Tuning rule percentage of candidate regions

based onARL0
In this step, from SR rules in the rule matrix, SR − 1 rules

have been tuned and only one rule has remained. Because the
rules are not independent, we can’t use (16) in this step andwe
tune last rule based on ARL0. The rule percentage is designed
for all the candidate regions and the region with the lowest
ARL1 is selected as a fixed region for subsequent steps.
Step 5: Assign maximum point for each rule in the rule

matrix
The same as Yeganeh et al. [49], the greater value of

maximum point is assigned to the larger regions considering

m(k) = S − k + 1; k = 1, 2, . . . , SR. (20)

After designing of UCLR and the rule matrix for R chart,
these values are fixed and designing of Z chart is started.
Note thatUCLR and the rule matrix for R chart do not change
during designing of Z chart. The framework of the designing
of each control chart is shown in Figure 2.

V. SIMULATION RESULTS
Simulation results based on the performance of the proposed
chart using ARL criteria are provided in this section for
simple, multiple and multivariate linear profiles. Also, the
polynomial profiles have been simulated for the proposed
chart. The numerical examples, used by Kang and Albin [6],
Amiri et al. [35], Noorossana et al. [38] and Huwang et al.
[18] are utilized here for simple, multiple, multivariate linear
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FIGURE 2. The designing framework of each control chart.

and polynomial profiles, respectively; with assumption of
ARL0 equal to 200 (soARL0R = ARL0Z = 400 based on (17)).
The IC profiles for these examples are defined in Table 1. The
values of the control limits and the final rule matrices (for R
and Z charts) after all designing steps are shown in two last
columns.

A. NUMERIC EXAMPLE OF DESIGNING PROCEDURE OF
THE RULE MATRIX IN SIMPLE LINEAR PROFILES
For better illustration of the proposed method, designing
procedure of the R chart for the simple linear model is intro-
duced here and the designing of the other profiles follow in a

similar manner. The desired shifts for calculation of ARL1 are
λ = 0.2, η = 1.1 and γ = 1.1 i.e. shifts in intercept (A0 to
λσ ), slope (A1 to A1 + ησ ) and standard deviation(σ to γ σ ).
Without the use of run rules, the conventional EWMAR con-
trol chart produces the average of ARL1 in these shifts equal
to 55.54 (the details are gathered in the first row of Table 5).
Table 2 represents themain limit of each chart (UCLR,UCLZ )
and individual run length of each rule (ARL0IR,ARL0IZ ) based
on independent rule assumption and (18). For example, if we
want to use only one rule in R chart (SR = 1 and SZ = 0),
we have two type I error (i.e., main limit and rule) in R chart
so ARL0IR for each of these rules should be equal to 800.
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TABLE 1. The IC profiles used in performance comparisons.

TABLE 2. The values of UCLR , UCLZ , ARL0IR and ARL0IZ to reach ARL0
equal to 200.

Hence, ARL0R is equal to 400 and ARL0 become 200 ((I)
SR = 1 and ARL0IR = 800 → ARL0R = 400. (II) SZ =
0→ ARL0IZ = ARL0Z = 400. (I) and (II)→ ARL0 = 200).
Note that Table 2 is only used in designing of fixed regions
and in reality, the rules are not independent and, hence (16)
cannot be used.

Tuning of the rule percentage of SR − 1 fixed regions is
done based on the values of ARL0CR. Table 3 shows these
values for different values of SR. For example, in designing
of rule matrix in R chart with SR = 3, we have two fixed
regions from previous steps so the values of ARL0CR (1) and
ARL0CR (2) should be assigned. Tuning the first fixed region

TABLE 3. The values of ARL0CR with different values of SR .

is done to reach the IC run length equal to 267 or ARL0CR (1)
= 267 (from (19) with l = 1, SR = 3, ARL0IR = 400 and
ARL0IR = 1600). The second fixed region is also designed
with the same procedure with ARL0CR (2) equal to 229 after
tuning the first fixed region (from (19) with l = 2, SR = 3,
ARL0IR = 400 and ARL0IR = 1600).

The rule adding procedure based on dividing IC region
to 20 sections for R chart is shown in Table 4. The chart
sections or candidate regions considering UCLR is shown
in the first column of each part of the chart. The candi-
date regions, selected candidate region and fixed region(s)
are shown with white, green and yellow cells, respectively.
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TABLE 4. Rule adding procedure for R chart based on ARL0 equal to 200.

The rule percentage of each candidate region for obtaining
ARL0 equal to 200 is shown in the second column. Also,
for brevity, the average of ARL1 for the selected shifts is
only shown for SR = 1. Note that all the calculations
in Table 4 were done based on SZ = 0 and UCLZ equal to
0.478 (see Table 2).

The values of UCLR for different values of SR are gathered
from Table 2. Among candidate regions for adding the first
rule, the region (3.93−5.24) has minimum ARL1 hence this
region is chosen as the first fixed region in further steps.
It means that with UCLR equal to 5.24, UCLZ is equal to
0.478 and all the candidate regions in Table 4 with their rule
percentage, ARL0 becomes equal to 200 and the minimum
ARL1 is obtained with rule (3.92 0.11 1) and this region
selected as the first fixed region. Note that for the regions
greater than 2.88, it is impossible to design R chart based on
ARL0 equal to 200 with UCLR equal to 5.24.
Because the reduction ofARL1 is greater than 2%( 55.54−41.2441.24
× 100), we continue adding rule procedure and set SR = 2.
From Table 2,UCLR is equal to 5.39 and the closest region to
3.93 is 4.04 and is highlighted in yellow. The rule percentage

of this region is designed based on ARL0C (1) equal to 240
(from Table 3). It means that with UCLR equal to 5.39,
UCLZ equal to 0.478 and the rule (4.04 0.12 1), the ARL0
becomes 240. Then among candidate regions (19 regions),
the rule percentage is tuned to reach ARL0 equal to 200. The
region (2.96 0.549 1) has the minimum ARL1 and selected as
fixed region for further calculations. Note that for the regions
greater than 2.43, it is impossible to design R chart based on
ARL0 equal to 200 with UCLR equal to 5.39 and fixed region
(4.04 0.12 1). Other calculations for SR = 3 and 4 can be
explained in a similar manner.

The difference between reduction of ARL1 in SR = 3 and
4 is smaller than 2% so the final rule matrix for R chart is
obtained considering SR = 3. This matrix and UCLR equal
to 5.47 are fixed and then the designing of Z chart starts.
The designed rule matrix in each rule adding procedure is
shown in Table 5. The final number of rules is 3 and 2 for
the R and Z charts, respectively. Note that results of first
row i.e. ARL1 without consideration of run rules are different
with the reported values in Kang and Albin [6] because of
different values of control limits.
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TABLE 5. The designed rule matrix and average of ARL1 for predefined shifts based on adding rules.

B. PERFORMANCE COMPARISON UNDER SIMPLE LINEAR
PROFILES
Our proposed method (EWMAR-RULE, hereafter) is com-
pared with some of the best competitive charts including
EWMAR (see [6]), EWMA3 (see [14]), MEWMA (see [15]),
MEWMARULE (see [49]) and ANNWR1 (see [48]). For
purposes of easier visual inspection, best results are bold-
faced. Note that all the simulations were obtained based on
10000 iterations with MATLAB 2018.

1) PERFORMANCE COMPARISONS UNDER UNIQUE
POSITIVE SHIFTS IN THE SIMPLE LINEAR MODEL
Table 6 shows the results of ARL1 for detecting unique
positive shifts. The results clearly show that the proposed
EWMAR-RULE chart significantly outperforms not only the
EWMAR chart but also other competing methods in all of
the shifts. As the shifts size increases, the difference between
methods decreases. Note that in places within the tables
where there is a ‘-’, it means that the article that these values

were taken from, did not consider that specific shift in λ, η
or γ . It would be interesting to look how different control
charts treat with the proposed rule matrix. Generally, combi-
nation of this scheme has better performance with EWMAR
than other statistics.

2) PERFORMANCE COMPARISONS UNDER UNIQUE
NEGATIVE SHIFTS IN THE SIMPLE LINEAR MODEL
Based on Table 7, we can conclude that the same as positive
shifts, that is, our proposed approach is the best method in
most of the shifts and the same discussion can be iterated here.
It should be noted that some methods like MEWMA, can also
detect decreasing shifts in error variance but the EWMAR
does not have this ability; thus, the proposed chart is unable
to detect decreasing error variance shifts.

3) PERFORMANCE COMPARISONS BETWEEN PROPOSED
METHOD AND VSI SCHEME
As the proposed method is a tool for reducing the ARL1
of the EWMAR control chart, one can compare it with
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TABLE 6. Comparisons of ARL1 for simple linear profile with unique positive shifts.

TABLE 7. Comparisons of ARL1 for simple linear profile with unique negative shifts.

other chart integrated with the VSI approach. Both of
this approach can increase the efficiency of detecting a
shift in the process parameters. The EWMAR-RULE chart
is compared with combination of VSI approach and the
MEWMA by [15] denoted as VSI-MEWMA, LRT by [30]
denoted as VSI-LRT and GLR by [41] denoted as VSI-GLR.
Figure 3 shows the ARL1 for shifts in intercept (b) and
standard deviation (a) in simple linear profiles for comparing
VSI enhanced schemes and our proposed scheme. It can be

seen that the proposed scheme is almost uniformly superior to
VSI enhanced schemes. It is observed in Figure 3(a) that the
EWMAR-RULE and VSI-GLR charts do not have the ability
to detect decreasing shifts in the error variance.

4) EMPLOYING THE PROPOSED RULE MATRIX IN
EWMA3 CONTROL CHART
To show the efficiency of the proposed method in control
charts with more than one statistic, the designing approach
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FIGURE 3. Comparisons of ARL1 values for simple model for shifts in intercept and standard deviation based on VSI-MEWMA, VSI-GLR, VSI-LRT and
EWMA-RULE charts.

FIGURE 4. The results of ARL1 for shifts in (a) intercept and (b) standard deviation of EWMA3, EWMAR-RULE and EWMA3-RULE.

has also been carried out on the EWMA3 chart in which trans-
formation on explanatory variables is the main requirement
[14]. Since transformation makes the estimators of each chart
independent, the EWMA3 can only be implemented in simple
linear profiles; hence, the integration of the run rules and
the EWMA3 chart (denoted as EWMA3-RULE) can only be
conducted in simple linear profiles. By using this approach,
the IC intercept of simple linear model in Table 2 changes
to 13 instead of 2 (for more details, see [14]). Equation (21)
represents the obtained rule matrix for the intercept, slope
and standard deviation of errrors, respectively; considering
UCLI = 13.50, UCLS = 2.32 and UCLE = 0.62. Note that
the absouloute value of statistics are utilized here; hence, so
LCLI = 13, LCLS = 2 and LCLE = 0.62.(

13.15 0.32 1
13.10 0.69 2

)
(
2.15 0.08 1
2.11 0.25 2

)
(
0.44 0.05 1
0.18 0.49 2

)
(21)

The results of ARL1 for shifts in the intercept and standard
deviation of EWMA3, EWMAR-RULE and EWMA3-RULE
are depicted in Figure 4. Although using of run rules
improves the efficiency of the EWMA3 method; how-
ever, its performance is still inferior to that of the
EWMAR-RULE. It is interesting that although EWMA3 has
better performance than EWMAR (see Table 6), using
of run rules has a reverse effect. We cannot state a
clear reason for this; but this situation might be caused
by the transformation in the explanatory variables of the
EWMA3.

In the transformed model, the results of ARL1 are
dependent on the slope values in random profile generation
of the slope shifts (for more details see Table 1 in
Zou et al. [15]) . For a fair judgment, it is not apropos to
compare EWMA3-RULE with EWMAR-RULE in this sit-
uation because EWMA-RULE has not been extended for the
transformed model so the competitive methods are EWMA3,
MEWMA and MEWMARULE in Figure 5. In this situa-
tion, EWMA3-RULE outperforms tangibly other competitive
methods in all of the shifts.
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TABLE 8. Comparisons of ARL1 for multiple linear profiles with unique positive shifts.

TABLE 9. Comparisons of ARL1 for multiple linear profiles with joint positive and negative shifts.

FIGURE 5. The results of ARL1 for shifts in slope of EWMA3,
EWMA3-RULE, MEWMA and MEWMA-RULE.

C. PERFORMANCE COMPARISON UNDER MULTIPLE
LINEAR PROFILES
The multiple linear model based on parameters mentioned
in Table 1 has also simulated with proposed method.
Competitive charts are parameter reduction (PREDUCE)

proposed by Amiri et al. [35], MEWMA by [15], LRT by
[30] and the LASSO-based EWMA chart by Zou et al. [34].

1) PERFORMANCE COMPARISONS UNDER UNIQUE
POSITIVE SHIFTS IN THE MULTIPLE LINEAR MODEL
The multiple linear profiles model has also been simulated
using the rule matrix method. The results of the unique
positive shifts simulations in multiple profiles model are
gathered in Table 8. Note that all the results of the LRT,
LEWMA and PREDUCE are taken from Amiri et al. [35].
The results in Table 8 clearly shows that the EWMAR-RULE
chart generate smallerARL1 than other competing charts in all
of the shifts. Similarly, as in the simple linear profile scenario,
as the shift sizes increase, the difference in performance for
the different control charts also decreases.

2) PERFORMANCE COMPARISONS UNDER JOINT POSITIVE
AND NEGATIVE SHIFTS IN THE MULTIPLE LINEAR MODEL
Based on the empirical analysis in Table 9, it can be con-
cluded that the proposed EWMAR-RULE chart performs
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TABLE 10. Comparisons of ARL1 for multivariate linear profile with single positive shifts with ρ = 0.1.

TABLE 11. Comparisons of ARL1 for multivariate linear profile with joint positive shifts with ρ = 0.1.

verywell in joint shifts inmultiple linear profiles as compared
to competing charts. All of the competitive methods have
greater ARL1 than proposed method in most of the shifts.
Some outstanding results are generated in joint positive and

negative shifts and in all of the joint positive and negative
shifts, the same results can be obtained and for brevity,
the results are not shown here. We also see the bias effect
(i.e. greater ARL1 than ARL0) in one of the shifts (i.e. λ = 0.2
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TABLE 12. Comparisons of ARL1 for polynomial model with unique positive shifts.

and η = −0.04 ) and we cannot justify it. Huwang et al.
[18] stated that the similarity to Shewhart-type charts usually
make bias effect in machine learning based control charts
in all the negative shifts; but for one shift value, it is not a
resonable justification.

D. PERFORMANCE COMPARISONS UNDER SHIFTS IN
THE MULTIVARIATE MODEL
Considering the IC model in Table 2 and Equations (11),
12 and (13), the EWMAR method is extended for multi-
variate profiles in this article. The three control charts in
Noorossana et al. [38] i.e., MEWMA, MEWMA/χ2 and
MEWMA3, are chosen as the competing charts. Different
simulations setups can be defined for themultivariate models;
but for brevity, the results of some single and joint shifts with
ρ = 0.1 are analyzed in the following sections.

1) PERFORMANCE COMPARISONS UNDER SINGLE POSITIVE
SHIFTS IN THE MULTIVARIATE LINEAR MODEL
Table 10 gathers the ARL1 for the shifts in the first IC
profile (λ0, η0, γ0). It is obvious that for all the shifts the
EWMAR-RULE chart has superiority over the other compet-
ing charts.

2) PERFORMANCE COMPARISONS UNDER JOINT POSITIVE
SHIFTS IN THE MULTIVARIATE LINEAR MODEL
The results of joint shifts in the multivariate profiles are
illustrated in Table 11, where λ0, δ0 and λ1 are the shift

sizes in the first and second profiles intercept and the slope
of the first profile, respectively. The same as single shifts,
the EWMAR-RULE chart outperforms the other competitors.

E. PERFORMANCE COMPARISONS UNDER SHIFTS IN THE
POLYNOMIAL MODEL
The polynomial profiles are very important in several prac-
tical applications such as deep reactive ion etching (DRIE)
and semiconductor manufacturing [15, 18, 49]. To examine
the performance of the proposed chart, the simulaion results
of the IC model shown in the last row of Table 2 are reported
in Table 12. It is shown that the EWMAR-RULE scheme
outperforms other competitive methods entailing commom
EWMAR (it has not been reported in any research yet),
MEWMA [15] and VSCS (the results of Huwang et al.
[18]’s control chart are shown with VSCS abbreviation) in
the polynomial model for most shift values. To describe
precisely, in the lowest values of η, the performance of the
EWMAR-RULE scheme is in the second place but other pos-
itive shifts in η indicate that the performance of the proposed
scheme is better than other competitive methods.

VI. ILLUSTRATIVE EXAMPLE
In a calibration experiment associated with body of an auto-
motive industrial group, Noorossana et al. [38] considered
a multivariate linear relationship between a set of responses
and one explanatory variable. In this application, a hydraulic
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FIGURE 6. The statistics of proposed EWMAR method without rule matrix consideration in the illustrative example.

FIGURE 7. The location of the charting statistics in each region (a) and the percentage of points in each region (b).

press machine generated a real force which should be cali-
brated with the prespecified desired (designed) forces. In the
components of the press machines entailing a set of cylinders,
pistons and the hydraulic pipe, the first one has the most
important function because of its effect on quality of outputs.
In other words, the nominal forces that should be exerted by
cylinders on the metal plates to give the desired parts are
very important in the machine. Therefore, the multivariate
IC profile, shown in (22), has been defined for each value
of nominal force (explanatory variable) and a set of real
forces (response variables) including four cylinders based on
the historical data. These data measured by the controlling
system of the press machine should be established to be close
enough relationship to the IC model and the purpose of the

profiles monitoring in this problem is to check whether it is
violated or not. Violation of this IC model may happen due
to oscillation in oil temperature, variation in oil volume, daily
set-up changes, etc., and naturally lead to low quality outputs.
It is noteworthy to mention that the response variables or real
forces are correlated in this problem, so only the multivariate
model can be used.

yi1j = −8.5+ 0.87xi + ε1j,

yi2j = −5.8+ 0.95xi + ε2j,

yi3j = 3.2+ 1.04xi + ε3j,

yi4j = 13.6+ 1.09xi + ε4j,

i = 1, 2, . . . , 11. (22)
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In (22), the independent variable has the matrix form
of

X ′ =
(
1 1 · · · 1 1
50 80 · · · 320 350

)
while the covariance matrix of the error terms is

∑
=


80 89.6 45.1 25.3
89.6 122.1 71.5 29.1
45.1 71.5 189 −28.8
25.3 29.1 −28.8 84.4

 .
To show the capability of the proposed EWMAR-RULE

chart, an artificial shift in the first profile intercept
(-8.5 to -7) was employed and the statistics of each control
chart are shown in Figure 6. It is obvious that the pro-
posed EWMAR chart without run rules in this article (or
MEWMA/χ2) detected this shift in the 11th sample (this is
similar to Figure 2 in Noorossana et al. [38]).
As shown in Figure 6, to reach ARL0 equal to 200

(or equivalently 400 for each chart) the control limits
are 74.92 and 15.6, respectively. Considering the proposed
designing approach and ARL0 equal to 200, the following
rule matrix has been obtained with UCLR = 78.66 and
UCLZ = 16.9.60.46 0.05 1

45.11 0.19 2
41 0.30 3

13.74 0.04 1
9.23 0.2 2
7.16 0.42 3

 (23)

Taking the rule matrix into account, the OC signal is trig-
gered in the 8th sample due to firing [49] of the first rule of
the Z chart. In this sample, there are 4 samples in the first
region and the percentage of points (0.5) is greater than 0.42
so the rule matrix shows an OC situation. The location of
the charting statistics in each region are shown withbrown
(Region 1), green (Region 2) and blue (Region 3) colors
in Figure 7(a). Also, the percentages of points in each of these
regions are depicted in Figure 7(b).

VII. CONCLUSION
In general, the aim of this article is to provide effective
control charts for monitoring linear profiles in Phase II.
As mentioned, the study used an EWMAR control chart
to monitor the linear profiles with a combination of run
rules to enhance the performance of the chart in detecting
OC conditions. In order to evaluate the performance of the
proposed control chart in comparison with other competitive
methods including the conventional EWMAR, EWMA3 and
etc., the numerical example of Kang andAlbin [6] was used in
simple linear profiles. The results indicate better performance
of the proposed control chart in identifying OC shifts in
almost nearly all of the shifts considered. Instead of sim-
ple linear profiles, performance evaluations of the proposed
approach were also performed in multiple, multivariate and
polynomial models. The results indicate the similar pattern
as those observed when the simple model was implemented.
Finally, a performance’s appraisal of the proposed scheme

leads to the conclusion that it seems to be almost superior
to the performance of other existing charts based on the
VSI scheme. According to all the numerical comparisons
and evaluations carried out, a significant improvement in
the performance of the EWMAR control chart is observed,
when it is enhanced with run rules. Therefore, the implemen-
tation of run rules schemes in alternative control charts or
Phase I applications is also recommended. Also, it seems to
be evident that the VSI approach can be combined with the
proposed scheme to boost its performance. Finally, we intend
to incorporate the rule matrix to the adaptive MEWMA
chart (proposed by Haq [40]) to improve its detection abil-
ity in monitoring univariate and multivariate simple linear
profiles.
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