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1. Introduction

The notion of best proximity point was proposed by Fan in [15] for non-self
continuous mappings T : A → X where A is a nonempty compact convex
subset of a Hausdorff locally convex topological vector space X. In fact, in
metric space (X, d) he proved that there exists x such that d(x, Tx) = d(Tx,A).
Various extensions of Fan’s theorem were established in the literature by Prolla
[18], Reich [19], Singh and Sehgal [20].

In 2010, S. Bacha [6] extended the above definition to a pair of nonempty
subsets (A,B) of a metric space (X, d) to introduce further extensions of Banach
contraction principle by a best proximity theorem under the hypothesis that B
is approximatively compact with respect to A.

Later on, several best proximity point results were derived (see eg. [7]-
[9]). Best proximity point theorems for non-self set valued mappings have been
obtained in [16] by M. Jleli and B. Samet, in the context of proximal orbital
completeness condition which is weaker than the compactness condition. Best
proximity point theorems serve for the generalization of fixed point theorems.
In fact best proximity point becomes a fixed point in the self-mappings case.

Several extensions of non-self contractions for the existence of a best prox-
imity points were studied in [13, 14, 1]. Moreover in [17, 2, 4] various best
proximity theorems for some classes of non-self mappings were established.

Herein, we study the existence and the uniqueness of best proximity points
for a novel class of non-self mappings. We show that the results obtained in
[6, 16] are particular cases of our main result.

2. Preliminaries and definitions

Let (X, d) be a metric space and (A,B) be a pair of nonempty subsets of X.
We consider the following notations:

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B};
d(x,B) := inf{d(x, b) : b ∈ B};
∆(A) := sup{d(a, b) : a, b ∈ A};
A0 := {a ∈ A : there exists b ∈ B such that d(a, b) = d(A,B)};
B0 := {b ∈ B : there exists a ∈ A such that d(a, b) = d(A,B)}.

Definition 2.1 ([6]). Let T : A → B be a mapping. An element x∗ ∈ A is said
to be a best proximity point of T if d(x∗, Tx∗) = d(A,B).

Definition 2.2 ([3]). Let β ∈ (0,+∞). A β−comparison function is a map
φ : [0,+∞) → [0,+∞) satisfying the following properties:

(i) φ is nondecreasing;

(ii) limn→∞ φn
β(t) = 0 for all t > 0, where φn

β denote the nth-iterate of φβ

and φβ(t) = φ(β t);
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(iii) there exists s ∈ (0,+∞) such that
∑∞

n=1 φ
n
β(s) < ∞.

(iv) (id − φβ) ◦ φβ(t) ≤ φβ ◦ (id − φβ)(t) for all t ≥ 0, where id : [0,+∞) →
[0,+∞) is the identity function.

The set of all β−comparison functions φ satisfying (i)–(iv) will be denoted
by Φβ.

Remark 2.1. Let α, β ∈ (0,+∞). If α < β, then Φβ ⊂ Φα.

We recall some useful lemma concerning the comparison functions Φβ.

Lemma 2.1 ([3]). Let β ∈ (0,+∞) and φ ∈ Φβ. Then

(i) φβ is nondecreasing;

(ii) φβ(t) < t for all t > 0;

(iii)
∑∞

n=1 φ
n
β(t) < ∞ for all t > 0;

(iv) (id− φβ) ◦ φn
β(t) ≤ φn

β ◦ (id− φβ)(t) for all t ≥ 0 and n ∈ N0.

Definition 2.3 ([6]). A mapping T : A → B is said to be a proximal contraction
if there exists a nonnegative real number α < 1 such that

d(u, Tx) + d(Tx, Ty) + d(Ty, v) ≤ αd(x, y)

whenever, x and y are distinct elements in A satisfying the condition that
d(u, Tx) = d(A,B) and d(v, Ty) = d(A,B) for some u, v ∈ A.

Definition 2.4 ([16]). A non self mapping T : A → B is said to be a proximal
quasi-contraction if there exists a number q ∈ [0, 1) such that

d(u, v) ≤ qmax{d(x, y), d(x, u), d(y, v), d(x, v), d(y, u)}

whenever, x, y, u, v ∈ A satisfying the condition that d(u, Tx) = d(A,B) and
d(v, Ty) = d(A,B).

Lemma 2.2 ([16]). Let T : A → B be a non self mapping. Suppose that the
following conditions hold:

(i) A0 ̸= ∅;

(ii) T (A0) ⊆ B0.

Then, for all a ∈ A0, there exists a sequence {xn} ⊂ A0 such that

(1)

{
x0 = a

d(xn+1, Txn) = d(A,B), ∀n ∈ N.
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Definition 2.5 ([16]). Under the assumptions of Lemma 2.2, any sequence
{xn} ⊂ A0 satisfying (1) is called a proximal Picard sequence associated to
a ∈ A0.

For every a ∈ A0, we denote PP (a) the set of all proximal Picard sequences
associated to a. Let a ∈ A0 and {xn} ∈ PP (a). For all (n, k) ∈ N2, we define
the following sets O(xn, k) := {xn, . . . , xn+k} and O(xn,∞) := {xk, k ≥ n}

Definition 2.6 ([16]). We say that A0 is proximal T -orbitally complete if and
only if every Cauchy sequence {xn} ∈ PP (x0) for some x0 ∈ A0, converges to
an element in A0.

Definition 2.7. We say that B is approximatively compact with respect to A if
and only if every sequence {yn} ⊂ B satisfying limn→+∞ d(x, yn) = d(x,B) for
some x ∈ A, has a convergent subsequence.

3. Main results and theorems

In [5] the following definition of Proximal β-quasi- contraction was introduced.

Definition 3.1 ([5]). Let β ∈ (0,+∞). A non-self mapping T : A → B is
said to be a proximal β-quasi-contraction if and only if there exist φ ∈ Φβ and
nonnegative numbers α0, . . . , α4 such that:

d(u, v) ≤ φ(max
{
α0d(x, y), α1d(x, u), α2d(y, v), α3d(x, v), α4d(y, u)

}
).

For all x, y, u, v ∈ A satisfying, d(u, Tx) = d(A,B) and d(v, Ty) = d(A,B).

In the case of self mappings, a proximal β-quasi-contraction is exactly a
β-quasi contractive mapping introduced first in [3].

Definition 3.2 ([3]). Let (X, d) be a non empty complete space. A self mapping
T : X → X is called β-quasi contractive if there exist β > 0 and φ ∈ Φβ such
that d(Tx, Ty) ≤ φ(MT (x, y)), where,

MT (x, y) = max
{
α0d(x, y), α1d(x, Tx), α2d(y, Ty), α3d(x, Ty), α4d(y, Tx)

}
,

for all x, y ∈ X with αk ≥ 0 for k = 0, 1, · · · , 4.

Remark 3.1. (i) Definition 2.3 [Basha, [6]] follows from definition 3.1 by
taking β = α0 = 1, α1 = α2 = α3 = α4 = 0 and φ(t) = αt for some
0 < α < 1.

(ii) Definition 2.4 [Samet, [16]] follows from definition 3.1 by taking β = α0 =
· · · = α4 = 1 and φ(t) = qt for some 0 < q < 1.

Our main results are given by the following best proximity point theorem.
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Theorem 3.1. Let (A,B) be a pair of subsets of a metric space (X, d). Let
T : A → B be a given non-self mapping. Suppose that the following conditions
hold:

(i) A0 ̸= ∅;

(ii) A0 is proximal T -orbitally complete;

(iii) T (A0) ⊆ B0;

(iv) there exists β ≥ max0≤k≤4{αk} such that T is a proximal β-quasi contrac-
tion.

Furthermore, assume that one of the following conditions holds:

(a) φ is continuous;

(b) β > max{α1, α4};

Then, T has a unique best proximity point x∗ ∈ A0.

To prove Theorem 3.1, we need following preliminary lemmas.

Lemma 3.1. Under the conditions of Theorem 3.1, let {xn} ∈ PP (x0). Then
for (s, n) ∈ N× N∗ with 1 ≤ i ≤ j ≤ n, we have

(2) d(xs+i, xs+j) ≤ φβ(∆(O(xs+i−1, j − i+ 1))) ≤ φβ(∆(O(xs, n)))

Proof. Since T is a proximal β-quasi contraction and since d(xs+i, Txs+i−1) =
d(xs+j , Txs+j−1) = d(A,B) then

d(xs+i, xs+j) ≤ φ(max{α0d(xs+i−1, xs+j−1), α1d(xs+i−1, xs+i),

α2d(xs+j−1, xs+j), α3d(xs+i−1, xs+j), α4d(xs+j−1, xs+i)}).

Using the fact that φ is nondecreasing, we get

d(xs+i, xs+j) ≤ φ(βmax{d(xs+i−1, xs+j−1), d(xs+i−1, xs+i),

d(xs+j−1, xs+j), d(xs+i−1, xs+j), d(xs+j−1, xs+i)})
≤ φ(β∆(O(xs+i−1, j − i+ 1)))

= φβ(∆(O(xs+i−1, j − i+ 1)))

≤ φβ(∆(O(xs, n))).

Lemma 3.2. Under the conditions of Theorem 3.1, let {xn} ∈ PP (x0). Then,
we have the following two assertions

(I) For all (s, n) ∈ N× N∗, there exists 1 ≤ j ≤ n such that

(3) ∆(O(xs, n)) = d(xs, xs+j).

(II)

(4) (Id− φβ)(∆(O(x0, n))) ≤ d(x0, x1)
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Proof. Using Lemma 3.1 and the property ϕβ(t) < t, we obtain that for (s, n) ∈
N × N∗ with 1 ≤ i ≤ j ≤ n, d(xs+i, xs+j) ≤ φβ(∆(O(xs, n))) < ∆(O(xs, n))
Thus, ∆(O(xs, n)) ̸= d(xs+i, xs+j) when both i, j ≥ 1. Therefore ∆(O(xs, n)) =
d(xs+i, xs+j) whenever one of i or j is equal to 0. Hence assertion (1) holds.
Now, we prove the second assertion. Using the first assertion and Lemma 3.1,
we have

∆(O(x0, n)) = d(x0, xj),≤ d(x0, x1) + d(x1, xj) ≤ d(x0, x1) + φβ(∆(O(x0, n))).

This proves the inequality (4).

Lemma 3.3. Under the conditions of Theorem 3.1, every sequence {xn} ∈
PP (x0) is a Cauchy sequence.

Proof. Let (m,n) ∈ N2 with 1 ≤ n < m. Using 2 we have

(5) d(xn, xm) = d(x(n−1)+1, x(n−1)+m−n+1) ≤ φβ(∆(O(xn−1,m− n+ 1))).

On the other hand, from (3), we get ∆(O(xn−1,m− n+ 1)) = d(xn−1, xn−1+j)
for some j ∈ {1, . . . ,m− n+ 1}, and so equation (5) becomes

(6) d(xn, xm) ≤ φβ(d(xn−1, xn−1+j)).

Using Lemma 3.1 we obtain

(7) d(xn−1, xn−1+j) = d(x(n−2)+1, x(n−2)+j+1) ≤ φβ(∆(O(xn−2,m− n+ 2))).

From (6) and (7), we obtain d(xn, xm) ≤ φ2
β(∆(O(xn−2,m−n+2))). Continuing

this process, by induction, we obtain that

(8) d(xn, xm) ≤ φn
β(∆(O(x0,m))).

Now by Lemma 3.2, we have (Id−φβ)(∆(O(x0,m))) ≤ d(x0, x1). Applying the
non-decreasing map t 7→

∑p
ℓ=0 φ

ℓ
β(t) to both side of the previous inequality, we

get
p∑

ℓ=0

φℓ
β ◦ (id− φβ)(∆(O(x0,m))) ≤

p∑
ℓ=0

φℓ
β(d(x0, x1)).

Using property (iv) of φβ, we obtain

p∑
ℓ=0

(id− φβ) ◦ φℓ
β(∆(O(x0,m))) ≤

p∑
ℓ=0

φℓ
β(d(x0, x1)).

Which implies that

∆(O(x0,m))− φp+1
β (∆(O(x0,m))) ≤

p∑
ℓ=0

φℓ
β(d(x0, x1)).
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Hence, by letting p → ∞ in the above inequality and using (ii) of definition 2.2,
we obtain

∆(O(x0,m)) ≤
∞∑
ℓ=0

φℓ
β(d(x0, x1)), for all m ∈ N.

Taking φn
β for both sides of the above inequality and using (8) and the fact that

φn
β is non-decreasing, we get

d(xn, xm) ≤ φn
β(∆(O(x0,m))) ≤ φn

β(
∞∑
ℓ=0

φℓ
β(d(x0, x1))).

Since, φn
β(t) → 0 as n → +∞, we deduce that {xn} is a Cauchy sequence.

Proof of Theorem 3.1. By Lemma 2.2 there is a sequence {xn} ⊂ A0 such
that d(xn+1, Txn) = d(A,B) and so by Lemma 3.3 the sequence is Cauchy. Since
A0 is proximal T−orbitally complete the sequence {xn} converge to x∗ ∈ A0.
Since T (A0) ⊆ B0 there exists u ∈ A0 such that d(u, Tx∗) = d(A,B). Using (1)
and the fact that T is β-proximal quasi-contraction we get

(9) d(u, xn+1) ≤ φ
(
max

{ α0d(x
∗, xn), α1d(x

∗, u), α2d(xn, xn+1),
α3d(x

∗, xn+1), α4d(xn, u)

})
.

For simplicity, denote ρ = d(u, x∗) and

Xn = max
{
α0d(x

∗, xn), α1d(x
∗, u), α2d(xn, xn+1), α3d(x

∗, xn+1), α4d(xn, u)
}
.

Thus,

(10) lim
n→∞

Xn = max{α1ρ, α4ρ} = max{α1, α4}ρ.

Now, we will prove that ρ = 0. Assume that ρ > 0. If φ is continuous, then by
taking limit of (9) as n → ∞ and using (10) we get

ρ ≤ φ(max{α1, α4}ρ) ≤ φ(βρ) = φβ(ρ) < ρ

which is a contradiction. If β > max{α1, α4}, then there exists ε > 0 and N > 0
such that for all n > N , we have

Xn < (max{α1, α4}+ ε)ρ and β > max{α1, α4}+ ε.

Therefore,

d(u, xn+1) ≤ φ(Xn)

≤ φ((max{α1, α4}+ ε)ρ) = φβ(
max{α1, α4}+ ε

β
ρ)

<
max{α1, α4}+ ε

β
ρ < ρ.
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Thus, by letting n → ∞, we get

ρ <
max{α1, α4}+ ε

β
ρ < ρ,

which is a contradiction as well. Therefore, our claim holds. Assume that x∗

and y∗ are two distinct best proximity points of T on A0 that is d(x∗, Tx∗) =
d(A,B) = d(y∗, T y∗). Since T is a proximal β-quasi contraction, we obtain the
following inequality d(x∗, y∗) ≤ φ(max{α0, α3, α4}d(x∗, y∗)) ≤ φ(βd(x∗, y∗)) =
φβ(d(x

∗, y∗)) < d(x∗, y∗), which is a contradiction.

Theorem 3.2. Let (A,B) be a pair of non empty closed subsets of a complete
metric space (X, d). Further, suppose that A0 and B0 are non empty. Let
T : A → B be a single valued mapping satisfying the following conditions:

(i) B is approximatively compact with respect to A;

(ii) T (A0) ⊂ B0;

(iii) there exists β ≥ max0≤k≤4{αk, 2α4} such that T is a proximal β-quasi
contraction.

Moreover, assume that one of the following conditions holds:

(a) φ is continuous;

(b) β > max{α2, α3};

Then, T has a unique best proximity point x∗ ∈ A such that d(x∗, Tx∗) =
d(A,B).

Let x0 ∈ A0. As before, we can find xn+1 ∈ A0 such that

d(xn+1, Txn) = d(A,B).

for every positive integer n. If xn = xn+1 are equals for some non negative
integer n, then nothing to prove. Thus, we assume that xn ̸= xn+1 for every
nonnegative integer n. Now we have the following claim

Claim. The sequence {xn} is Cauchy.

Proof of the claim. Since d(xn+1, Txn) = d(A,B) and d(xn, Txn−1) =
d(A,B) and T is a proximal β-quasi contraction, we get

d(xn+1, xn) ≤ φ(max{α0d(xn, xn−1), α1d(xn, xn+1), α2d(xn−1, xn),
α4d(xn−1, xn+1)})

≤ φ(max{α0d(xn, xn−1), α1d(xn, xn+1), α2d(xn−1, xn),
α4d(xn−1, xn) + α4d(xn, xn+1)})

≤ φ(max{α0d(xn, xn−1), α1d(xn, xn+1), α2d(xn−1, xn),
2α4max{d(xn−1, xn), d(xn, xn+1)}})

≤ φ(βmax{d(xn, xn−1), d(xn, xn+1)}).
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If d(xn, xn−1) ≤ d(xn, xn+1), then by Lemma 2.1,

d(xn+1, xn) ≤ φ(βd(xn+1, xn)) = φβ(d(xn+1, xn)) < d(xn+1, xn)

which is a contradiction. So, for each n ≥ 1 we have d(xn−1, xn) > d(xn+1, xn)
and so,

d(xn+1, xn) ≤ φβ(d(xn, xn−1)), ∀n ≥ 1.

Then, by induction we obtain that

d(xn+1, xn) ≤ φn
β(d(x0, x1)), ∀n ≥ 1.

Now, for n < m and using triangle inequalities, we obtain

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) ≤
m−1∑
k=n

φk
β(d(x0, x1)) ≤

∞∑
k=1

φk
β(d(x0, x1)).

By Lemma 2.1,
∑∞

k=1 φ
k
β(d(x0, x1)) < ∞, so for every ϵ > 0 there exists N > 0

such that
m−1∑
k=n

φk
β(d(x0, x1)) < ϵ for all m > n > N.

Thus, d(xn, xm) < ϵ. This imply that {xn} is a Cauchy sequence in X.
To this end, as the spaceX is complete, the sequence {xn} ∈ A and converges

to some element x ∈ A, ( since A is closed). Furthermore,

(11)
d(A,B) ≤ d(x,B) ≤ d(x, Txn) ≤ d(x, xn+1) + d(xn+1, Txn)

= d(x, xn+1) + d(A,B)
≤ d(x, xn+1) + d(x,B).

Therefore, as n → +∞ in the above inequalities we get d(x, Txn) → d(x,B)
and d(x,B) = d(A,B) which implies that

(12) d(x, Txn) → d(x,B) = d(A,B)

Using B is approximatively compact with respect to A, it follows that there is
a subsequence Txnk

which converges to an element y ∈ B. Thus, by (12)

(13) d(x, y) = lim
k→∞

d(x, Txnk
) = d(x,B) = d(A,B)

So, x ∈ A0. Since T (A0) ⊂ B0, there is u ∈ A such thatd(u, Tx) = d(A,B).
Since, d(xn+1, Txn) = d(A,B) = d(u, Tx), then by definition 3.1 we have

(14) d(xn+1, u) ≤ φ
(
max

{ α0d(x, xn), α1d(xn, xn+1), α2d(x, u),
α3d(xn, u), α4d(x, xn+1)

})
For simplicity, denote ρ = d(u, x). We will prove that ρ = 0. Assume, by
contradiction that ρ > 0. Now, If φ is continuous, then by letting n → +∞ on
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the above inequality, we get ρ ≤ φ(max{α2, α3}ρ) ≤ φ(βρ) = φβ(ρ) < ρ which
is a contradiction. Now consider β > max{α2, α3}. Let

Xn = max{α0d(xn, x), α1d(xn, xn+1), α2d(x, u), α3d(xn, u), α4d(x, xn+1))}.

As n → +∞ in the above equality, then Xn → max{α2, α3}ρ. We show that
ρ = 0. Suppose ρ > 0. Since β > max{α2, α3}, then there exists ϵ > 0 and
N > 0 such that for all n > N

Xn < (max{α2, α3}+ ϵ)ρ and β > max{α2, α3}+ ϵ.

Therefore,

d(u, xn+1) ≤ φ(Xn)

≤ φ((max{α2, α3}+ ϵ)ρ) = φβ(
max{α2,α3}+ϵ

β ρ)

≤ max{α2,α3}+ϵ
β ρ < ρ.

Thus, by letting n → ∞ we get

ρ ≤ max{α2, α3}+ ϵ

β
ρ < ρ,

which is a contradiction as well. Hence, u = x and therefore d(x, Tx) = d(A,B),
which implies that x is a best proximity point for the mapping T . For uniqueness
of best proximity point, we proceed in a similar fashion as in the proof of the
uniqueness in Theorem 3.1.

4. Consequences

The following result of [16] is a direct consequence of Theorem 3.1 by taking
β = αi = 1, i ∈ {0, 1, 2, 3, 4} and φ(t) = qt.

Corollary 4.1 ([16]). Let (A,B) a pair subsets of a metric space (X, d). Let
T : A → B be a giving mapping. Suppose that the following conditions hold:

(i) A0 ̸= ∅;

(ii) A0 is proximal T -orbitally complete;

(iii) T (A0) ⊆ B0;

(iv) T is a proximal quasi contraction.

Then, T has a unique best proximity point x∗ ∈ A0. Moreover, for any
x0 ∈ A0, any sequence {xn} ∈ PP (x0) converges to x∗.

Specializing β = αi = 1, i ∈ {0, 1, 2, 3, 4} and φ(t) = qt in Theorem 3.2, we
obtain the following result of [16].
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Corollary 4.2 ([16]). Let (A,B) a pair of closed subsets of a complete metric
space (X, d). Let T : A → B be a giving mapping. Suppose that the following
conditions hold:

(i) A0 ̸= ∅;

(ii) B is approximatively compact with respect to A;

(iii) T (A0) ⊆ B0;

(iv) T is a proximal quasi contraction.

Then, T has a unique best proximity point x∗ ∈ A0. Moreover, for any
x0 ∈ A0, any sequence {xn} ∈ PP (x0) converges to x∗.

Taking β = α0 = 1, αi = 0, i ∈ {1, 2, 3, 4} and φ(t) = αt, in Theorem 3.2 we
obtain the following result of [6].

Corollary 4.3 ([6]). Let X be a complete metric space. Let A and B be
nonempty, closed subsets of X such that is approximatively compact with re-
spect to A. Further, suppose that A0 and B0 are nonempty. Let T : A → B be
a single valued map satisfying the following conditions:

(i) T (A0) is contained in B0;

(ii) T is a proximal contraction.

Then, there exists a unique element x in A such that d(x, Tx) = d(A,B).

The preceding results subsume the following fixed point theorem. First, as
a consequence of Theorem 3.1, we obtain the following result:

Corollary 4.4. Let A be a nonempty subsets of a metric space (X, d); Let
T : A → A be a giving mapping. Assume that the following conditions hold:

(i) A is proximal T -orbitally complete;

(ii) there exists β ≥ max0≤k≤4{αk} such that T is a β-quasi contraction.

Moreover, assume that one of the following conditions holds:

(a) φ is continuous;

(b) β > max{α1, α4}.

Then, T has a unique fixed point in A.

Since, every set is approximatively compact with it self. As a consequence
of Theorem 3.2, we obtain the following fixed point theorem
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Corollary 4.5. Let (X, d) be a complete metric space. Let T : X → X be a
giving mapping. Suppose there exists β ≥ max0≤k≤4{αk, 2α4} such that T is a
β-quasi contraction.

Moreover, assume that one of the following conditions holds:

(a) φ is continuous;

(b) β > max{α2, α3}.

Then, T has a unique fixed point in X.

Example 4.1. Consider the complete metric space X = R with the metric
d(x, y) = |x− y|. Let A = [0, 2] and B = [3, 5]. Also, let T : A → B be defined
by T (x) = 5 − x. Then, it is easy to see that d(A,B) = 1 and A0 = {2},
B0 = {3}. Thus, T (A0) = T ({2}) = {3} = B0. It is clear that A0 is proximal
T -orbitally complete since the only sequence can be formed in A0 is the constant
sequence xn = {2} which is Cauchy sequence and converge to 2 ∈ A0.

Now we shall show that T is proximal β-quasi-contraction mapping with ϕ(t) =
1
10 t, β = 2 and αi = 1

3 for i = 0, 1, 2, 3, 4. Note that ϕ(t) = 1
10 t ∈ Φ2 since

ϕβt = ϕ2t =
2
10 t =

1
5 t.

As above the only x, y, u, v ∈ A such that d(u, Tx) = d(A,B) = 1 = d(v, Ty)
is x = y = u = v = 2 ∈ A. Now

0 = d(u, v) = d(2, 2)

≤ 2

10
max{1

3
d(x, y),

1

3
d(x, u),

1

3
d(y, v),

1

3
d(x, v),

1

3
d(y, u)}

= ϕ(max{1
3
d(1, 1),

1

3
d(1, 1),

1

3
d(1, 1),

1

3
d(1, 1),

1

3
d(1, 1)})

= ϕ(max{0, 0, 0, 0, 0})
= 0

So, T is a proximal β-quasi-contraction mapping with ϕ(t) = 1
10 t. We deduce

using our Theorem 3.1, that T has a unique best proximity point which is x∗ = 2
in this example.

Finally, ϕ(t) is continuous mappings as well as β > max0≤i≤4{αi}.

d(x∗, Tx∗) = d(2, 3) = 1 = d(A,B).

5. Conclusion

A novel class of non-self mappings is given in this paper. Under the proximal
orbital completeness condition and compactness condition, we established the
existence and uniqueness of best proximity points for such mappings. As a
consequence of these theorems, we obtained some fixed point results for the self
mapping case.
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