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1 Introduction and Preliminaries

Mustafa and Sims [I] introduced the concept of G-metric spaces in the year
2004 as a generalization of the metric spaces. In this type of spaces a non-negative
real number is assigned to every triplet of elements. After that, many papers
relating different “G-metric spaces” have been published by authors (see [2-17]).
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In the present work, we introduce a new notion of generalized G-metric space
called universal metric space of dimension n and study some fixed point results for
two self-mappings f and g on U,-metric spaces. For similar results in this paper
in G-metric space; see [I8] [19] 20].

For n > 2, let X™ denotes the cartesian product X x---x X and Ry = [0, +00).
We begin with the following definition.

Definition 1.1. Let X be a non-empty set. Let U, : X™ — R, be a function
that satisfies the following conditions:

(U1) Un(z1,...,2n) =0if 1 =+ =y,

(U2) Un(zi,...,2n) > 0forallay,...,z, with z; # z;, for some ¢,j € {1,...,n},

(U3) Un(z1,...,2n) = Un(@x,, ..., 2z, ), for every permutation (7, ..., 7(,)) of
(1,2,...,n),

(U4) Up(x1, 22, Tne1,2n—1) < Up(z1,22,...,2n_1,2,) for all z1,...,2, €
X,

(U5) Un(z1,x2,...,24) < c(Up(z1,a,...,0)+Us(a,za,...,x,)), forallzq, ... x,,

ae X, 0<c< 1.

The function U, is called a universal metric of dimension n, or more specifically
a Uy, -metric on X, and the pair (X, U,) is called a U,,-metric space.

In the sequel, for simplicity we assume that ¢ = 1. The following useful
properties of a U,,-metric are easily derived from the axioms.

Proposition 1.2. Let (X,U,) be a U,-metric space, then for any x1,...,Tn,a € X
it follows that:

(1) If Up(x1,...,20) =0, then 1 = -+ - = xp,

(2) Up(ar,...,zn) <300 o Unlan, ..o 21, 25),

(3) Un(ar,...,zn) <370 Unlzj,a, ... a),

(4) Up(x1,22,...,22) < (n— D)Up(z1,...,21,22).

The following are relevant examples of U,-metric spaces. Note that most of
them come from combing all pairwise ordinary distances in a some way.

I) Let (X,d) be a usual metric space, then (X, S,) and (X, M,,) are U,-metric
spaces, where

Sn(acl,...,acn): ﬁ Z d(xi,acj),

1<i<j<n
My (z1,...,2,) =max{d(z;,x;) : 1 <i<j<n}.
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IT) Let ¢ be a non-decreasing and concave function with ¢(0) = 0. If (X,d) is
a usual metric space, then (X, ¢,,) defined by

On (@1, 0) = ¢>—1( > ¢(d(mi,xj))

1<i<j<n
is a U,-metric.
IIT) Let X = C([0,T]) be the set of all continuous functions defined on [0, T].
Defined I,, : X™ — RT by
Ln(@1,.mn) = Y supeqomlei(t) — z;(t)].
1<i<j<n
(X,1,) is a Up-metric space.

The above examples show that from any metric on X we can construct a
U,-metric. Conversely, for any U,,-metric U,, on X,

dU(m’y) = Un(x7y""’y)+Un(x7""m’y)7
defines a metric on X.

Definition 1.3. Let (X,U,) be a U,-metric space, then for zy € X, r > 0, the
U,-ball with center xy and radius r is

By (xo,7) ={y € X : Up(z0,¥y,...,y) <T}.
Proposition 1.4. Let (X,U,) be a U,-metric space, then for xog € X, r > 0,
(1) If Uy (xo, 21, ...,2,) <7, then x1,...,x, € By(xo,r),
(2) If y € By(zo,r), then there exists, 6 > 0 such that By (y,d) C By(zo,r),
(8) Buy(xo, %) C By, (zo,7) € By(zo,7).
Remark 1.5.

(i) It follows from (2) of the above proposition that the family of all U,-balls,
B = {By(z,r) : ® € X,r > 0}, is the base of a topology T (U) on X, the
U, -metric topology.

(ii) It follows from (3) of Proposition that U, -metric topology T (U) coin-
cides with the metric topology arising from dy. Thus while ‘isometrically’
distinct, every Uy, -metric space is topologically equivalent to a metric space.
This allows us to readily transport many concepts and results from metric
spaces into U, -metric space setting.

Definition 1.6. Let (X,U,) be a U,-metric space. The sequence {z} C X is
U, -convergent to x if its converges to z in the Uy,-metric topology, T (U).



432 Thai J. Math. 15 (2017)/ A.D. Nezhad et al.

Proposition 1.7. Let (X,U,) be a U-metric space. Then for a sequence
{zr} C X, and a point x € X the following are equivalent:

(1) {zx} is Up-convergent to x.

(2) dy(xg,x) =0, as k — oo.

(3) U(zk,...,xp,2) =0, as k — co.

(4) U(zg,z,...,2) =0, as k — oo.

(5) Ulxm, xk, ..., z1,2) = 0, as m,k,...,l = oo.

Definition 1.8. Let (X,U,), (Y, V,,) be Universal metric spaces of dimension n,
m respectively, a function f : X — Y is U, »,-continuous at point o € X if
F~Y(Bv,, (f(z0),7)) € T(U), for all r > 0. We say f is U, m-continuous if it is
U, ,m-continuous at all points of X; that is, continuous as a function from X with
the T (U)-topology to Y with the 7 (V)-topology.

In the sequel, for simplicity we have assume that n = m. Since Uy,-metric
topologies are metric topologies we have:

Proposition 1.9. Let (X,U,), (Y,V,) be U,-metric spaces, a function f: X —
Y is Uy -continuous at point x € X if and only if it is Uy, -sequentially continuous at
x; that is, whenever {xy} is U,-convergent to x we have (f(xx)) is Uy-convergent

to f(x).

Proposition 1.10. Let (X, U,,) be a U, -metric space. Then the function U, (21, z2,
.oy 2Zpn) 18 jointly continuous in all n of its variables.

Now we discuss about concept completeness of U,,-metric spaces

Definition 1.11. Let (X,U,) be a U,-metric space, then a sequence {xy} C
X is said to be U,-Cauchy if for every € > 0, there exists N € N such that
Un(2k, Ty ...y x1) < e forall kym,... ;0 > N.

The next proposition follow directly from the definitions.

Proposition 1.12. In a U,-metric space, (X,U,,), the following are equivalent.
(1) The sequence {xy} is Up-Cauchy.

(2) For every e > 0, there exists N € N such that Up(Tm, ..., Tm,2k) < €, for
all k,m > N.

(3) {xzx} is a Cauchy sequence in the metric space (X,dy).
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2 Main Results

In metric fixed point theory, the concept of altering distance function has been
used by many authors in a number of works on fixed points. An altering distance
function is actually a control function which alters the distance between two points
in a metric space. This concept was introduced by Khan et al. in 1984 in their
well known paper [2I] in which addressed a new category of metric fixed point
problems by use of such functions.

Definition 2.1. The function ¢ : R, — R, is called an altering distance func-
tion if the following properties are satisfied:

(a) v is continuous and increasing;
(b) ¥(t) =0 if and only if t = 0.

Definition 2.2. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings. We say that f is a weakly U-contraction mapping of type B, with
respect to g if for all z1,..., 2z, € X, the following inequality holds:

ARSI
n—1
S ¢ (% <; Un(gzla -5 9%, fzi-i-l) + Un(gzna <y, 9%n, le)>>

n—1
—¢ Z Un(9zi, - - -, 9%, fzit1)ei + Un(g2n, - - -, g2n, f21)€n> (2.1)
i=1

where
(a) v is an altering distance function;

(b) ¢: R} — Ry is continuous function with ¢(us,...,u,) = 0 if and only if
Uy =+ =u, =0.

Theorem 2.3. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings such that f is a weakly U-contraction mapping of type B, with respect
to g. Assume that

(i) f(X) < g(X),
(i) g(X) is a complete subset of (X,U,),
(i1i) The pair {f, g}is weakly compatible.

Then f and g have a unique common fized point.

Proof. By the fact that f(X) C ¢g(X), we can construct a sequence {xy} in X such
that gxg11 = foy for any k € N. If for some k, gxi1 = gk, then gz = fxy, that
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is, f and g have a common fixed point. Thus, we may assume that grpi1 # gag
for any k € N. For k € N, then by [21)) and (Us), we get

w <U’ﬂ(gmk7 <oy 9Tk, gkarl))
= ¢<Un(f9€k1, S P ffEk)>
1
< Tﬂ(E((n —2)Un(9%k-1,-- -, 9Tk—1,9%k) + Un(9Tr—1,- .., 9Th—1, 9Th41)
n—2
+ Un(gzkagmka cee agxk))> - ¢)< Z Un(gxkfla e 791'1971;.99316)61'
=1

+ Un(gmkfla <o 9Tk 1, gkarl)enfl + Un(gxka 9Tk, ... 7gmk)en)

IN

1
¢<g((n —2)Un(92k-1,-- -, 9Tk—1, 9%k) + Un(g2—1, . . agxk—179$k+1)))

n—1 1
S¢< - Un(gxk—la---agxk—lagxk)‘f'EUn(QIk7---agxkagxk+l))- (2.2)

Since ¢ is increasing, by (22), we have

Un(gxka e agkagmk‘-'rl)

1
< E((Tl —2)Un(9%k—1, ..., 9Zk—1,9%k) + Un(9Tk-1, ..., 9Tk—1, §Tht1))

n—1

1
S Un(gfk—l,---,gﬂﬂk—hgfk)‘f' EUn(QIk7---7gIkagxk+1)' (23)

Then, it follows easily that

Un(gxka"'agxk7g$k‘+l) S Un(gfk—1,---,g$k—179$k) for any k Z 1. (24)

Therefore {U, (gxk, ..., 9%k, gTr+1), k € N} is a decreasing sequence. Hence there
exists r > 0 such that

lim U,(gxk,..., 9Tk, gTkt1) =T (2.5)

k—+4o00
Letting k — 400 in [23)), we get

n—2 1 . n—1
r+— lm U,(9Tk—1,---)9Th—1,9Tk+1) <
n N k—+oo

r< r+-r=r,
n

which implies that

lim U,(92k—1,-.-,9Tk—1,9Tkt1) = 27 (2.6)
k—+4o00
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Again, from ([22]) we have
T/) <Un(gmk7 <y 9Tk gﬂ?k+1)>

1
< ¢<E((n = 2)Un(9%k—1,- -, 9Tk—1,9%k) + Un(g2r—1,. .. agxk—1a9$k+1)))

n—2
- ¢< > Un(gra,- - g2k-1,971)ei + (9251, -, gk 1, 9$k+1)€n1) :
i=1

Letting k — +o0 and using (23], (Z.0) and from continuities of 1 and ¢, we get

1/1(7") § 1/1(7") - ¢(Ta s T QT’ 0)7
and hence ¢(r,...,r,2r,0) = 0. By a property of ¢, we deduce that r = 0, that is,

lim U,(gxk,..., 9%k gTrr1) = 0. (2.7)

k——+o00

Next, we will show that {gxy} is a U,,-Cauchy sequence. Suppose, on the contrary,
that {gxy} is not a U,-Cauchy sequence, that is,

lim  Up(92m; - - - 9Tm, grx) 7 0.

m,k——+oo

Then, there exists ¢ > 0 for which we can find two subsequences {gz,,} and
{gxn,} of {z\} such that n; is the smallest index for which

n; >m; > i, Un(9Zm;s- -y §Tm;, §Tn,;) > €. (2.8)
This means that
Un(gxmiw-'agxmiagxmfl) <e. (29)
Now, from (Z8), 23), (Us) and item (4) of Proposition [[.2 we have that

€ < Un(9%mys- -3 GTm;,s GTn,;)
S Un(9Zmys- -+ s 9Tmys 9Tmi+1) + Un(9Tm; 41, - -+ 9Tm; 41, 9Tn; )
< Un(9Zmys - 9Tmys 9Tm;+1) + Un(9Zm, 41, -« -y 9Ty, +1, §Tn;—1)
+Un(9Tn,-1,- -, 9Tn;—1,9%n,)
<nUn(9Tm;y - s 9Tmys 9Tmi+1) + Un(9Tmss -« 9Tm; s §Tn;—1)
+ Un(9%n;—1y- -y GTn;—1, G%n,;)
<nUp(9Tm;s-- - 9Tm;» 9Tm;+1) + €+ Un(9Tn;—1,- -, 9Tn,—1, 9Tn;)-

Letting ¢ — 400 in the above inequalities and using [2.7)), we get that

. lim Un(gl'm-ba cee agxmiagxni) = lim Un(gmmiJrl; s 9Tm, 41, gxnl)
i—+00 i——+00
= z—lginoo Un(gwm“ cee 7g$miagan,—1)

—e. (2.10)
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By @210, we have

w (Un(gxmi+1; <3 9Tm;+1, gxn,))
= ¢<Un(f$m“ sy fxmq',?fanj_l))
1
§ l/} E((n - Q)Un(gxmia s agxmiagxmiJrl) + Un(gxmia s 7gxmiﬂgx’ﬂi)
n—2
+ Un(gxm—l; <3 9Tn;—1, gxmi+1))) - ¢( Z Un(gxmia s 79Imiagxm,,+1)ei
1=1
+ Un(gxm,,a v ,gxmq,,gan,)en_l + Un(gan,—la v 9Tn,—1, gmmi-i-l)en)
1
§ l/} E((n - Q)Un(gxmia s agxmiagxmiJrl) + Un(gxmia s 7gxmiﬂgx’ﬂi)
+ Un(9%n,—1, - .- ,gmnil,gwmiﬂ))). (2.11)

Once again, since v is increasing, we get

Un(gxm,,+17 <5 9Tm;+1, gmni)
1
< E((n - 2)Un(gxmia v 7gmmiagxmi+1) + Un(gxmm s 9Tmy, gzm)

+ Un(gxnifla o agxniflagmmﬂrl))'
Then, by (Us) and Proposition [[L2] we have
Un(gxmi+1; s 9Tm,+1, gxn,,)

1
< E((n - 2)Un(gxmia v 7gmmiagxmi+1) + Un(gxmm s 7gmmiagxni)
+ Un(gxnifla ) agxniflagmmﬂrl))

IN

1
E((n —2)Un(9%m,, - 9%m;, 9Tmi+1) + Un(9Zmis - - -, 9Ty, 9Tn,)
+ (n - 1)Un(gﬂ?ni71,ga€mi+1, cee agxmiJrl))

IN

1
E((n - 2)Un(g$mla e 7g$mi;gxm,3+1) + Un(gxﬂ’Lm e 7gl‘mi7 gl‘nl)

+(Tl - 1) (Un(gxmia s 5gx’n'7,iﬂgxni*1) + Un(gxmiagxmﬂrla s 7gmmi+1))) .
Letting ¢ — 400 in the above inequalities, and using (Z7) and (ZI0), we get that

Un(9Tn;—15- s 9Tn;—1,9Tm;+1) = (n — 1)e. (2.12)
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Now, letting ¢ — 400 in (ZI1)) and using 7)), ZI0), ZI2) and the continuities
of 1 and ¢, we have

w(e) < z/;(%(s +(n— 1)5)> — 60, 0,2, (n— 1)e).

Therefore, we get ¢(0,...,0,e,(n — 1)) = 0 and hence, by property of ¢, we
deduce ¢ = 0, a contradiction. Thus {gxj} is a U,-Cauchy sequence in g(X).
Since (g(X),U,) is complete, there exist ¢t,u € X such that {gzy} converges to
t = gu, that is,

lim U,(gxk,gu,...,gu) = lim U,(gzg,...,g92k,gu) = 0. (2.13)

k——+o0 k——+o00

Then by Proposition [[LT0, we have

lim U,(gzk, fu,..., fu) =U,(gu, fu,..., fu), (2.14)
k—-+o00
and
lim U,(gxk,..., g9z, fu) = Uy(gu,...,gu, fu). (2.15)
k——+o0

Let us show that fu =+¢. By 21]), we have
w (Un(gxk-‘rla <y 9Tk 41, f’U/))
1
S T/) E((n - 2)Un(gﬂ'5k; e agxkagkarl) + Un(gxka <oy 9Tk, fu)
n—2
+ Un(Q“v -, gu, g$k+1))) - ¢( Z Un(gxka < 9Tk, gmk‘-'rl)ei
i=1
+ Un(9zky .- - gk, fu)en—1 + Un(gu, ..., gu, gmk+1)en> )

Letting k — 400 and using (Z7), (213) and (ZI4) and the continuities of ¢ and
¢, we get

) (Un(gu, e, gU, fu))
< w(%Un(gu, e, gu, fu)) — qb(O, oo, 0,Un(gu, . . ., gu, fu), O)) (2.16)

Since 1 is increasing therefore U, (gu,...,gu, fu) = 0 and hence fu = gu = t.
Then, u is a coincidence point of f and g, and since the pair {f,g} is weakly
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compatible, we have ft = gt. Now we prove that ft = gt =¢. By (Z1]), we have
¢ (Un(gta e agta gxk-i-l))

< w(%((n —2)Un(gt,...,gt, ft) + Un(gt,..., gt,gTk+1)
n—2
+ Un(g$k7 -y 9Tk, ft))) - ¢( Z Un(gta DR 7gt7 ft)el
i=1

+ Un(9t7 s 7gt7 gxk‘-‘rl)en—l + Un(gxka < 9Tk, ft)en) .

Letting & — 400, we get
1
1/}<Un(gt’ AR ’gt’gu)> S w<E(Un(gt’ AR 7gt7 gu) + Un(gu, A 7gu7 gt)))

— (Z)(Un(gt, oo gtygu)en—1 + Up(gu, . .., gu, gt)en)

1 n—1
< w(EUn(gt, S gt gu) + TUn(gt, . ,gt,gu)))
- ¢)<U’ﬂ(gt7 e agta gu)enfl + Un(gua e 7gu7 gt)€n>
— (Z)(Un(gt, oo gtygu)en—1 + Up(gu, ..., gu, gt)en)7

Which is true if qb(Un(gt, oo gtygu)en—1 + Un(gu, ..., gu,gt)e, | = 0, that is,

gt = gu = t. We conclude that t = gt = ft, and so ¢ is a common fixed point of f
and g. To prove the uniqueness, let ¢’ be another common fixed point of f and g.

By (Z1)), we have
(0 (Un(t, ... ,t’))

w(Un(ftaftla"'aft/)>

1

< w<E(Un(gt, e gt fUY+ (n=2)Us(gt's ..., gt ft))

+Uyn(gt', ..., gt ft))) — qb(Un(gt, gt fte

n—1
+ Z Un(gt's... gt ft)ei + Un(gt, ..., gt', ft)en)

=2
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=0 (S Onlats. gt 1O+ Ul ot 1)
= 0(Unlatoreosgt s + Ut oot )
(0= DU ) 4 Tl ')
(Ut st )er + U(E, ,t’,t)en)

(Un(t,t’, ) qb(Un(t, ot t)er + UL .. .,t',t)en).

Therefore, ¢p| Up(t, ..., t,te1+UL (¢, ..., t, t)en) = 0 and hence U, (t,...,t,t') =
Un(t',...,t',t) =0. Thus t = ¢t'.

Corollary 2.4. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings such that:

n—1
Un(leafZQa .. 7fzn) S « <Z Un(gzw v agziafZiJrl) + Un(gzna cee ,an,f21)> )
=1

where o € [0,1). Assume that
(i) £(X) C g(X),
(ii) g(X) is a complete subspace of (X,U,,),
(i1i) The pair {f, g}is weakly compatible.

Then f and g have a unique common fixed point.

Proof. It suffices to take () = ¢ and ¢(> ;1 uie;)) = (£ — )37, uwi) in
Theorem 2.3 m

Corollary 2.5. Let (X,U,) be a complete Uy-metric space and f : X — X be
such that:

y (Un(le, Foaeeos fzn))
n—1
< w(%(; Un(ziy. oy 2iy f2ig1) + Un(zny - s 20, le)))

n—1
_ ¢< Z Un(ziy ooy 2iy fziv1)ei + Un(2zn, - - -, 20, le)en>
i=1

where
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(i) v is an altering distance function;

(ii) ¢ : R — Ry is continuous function with ¢(uy,. .., u,) = 0 if and only if
UL =+ =u, =0.

Then f has a unique fized point.
Proof. Tt suffices to take g = Id,, the identity mapping on X in Theorem 2.3 O

Corollary 2.6. Let (X,U,) be a complete U, -metric space and f : X — X be
two mappings such that:

1 n—1
Un(fz1, fo2,. .., fon) < - ( Z Un(%iy -5 Ziy fzix1) + Un(2Zn, - -y Zn, le))
i=1

n—1
_ ¢<Z Un(ziy .oy 2iy fziv1)ei + Un(Zny - -y 20, le)en>
i=1

where ¢ : R} — Ry is continuous function with ¢(uy,...,un) = 0 if and only if
uy =---=up =0. Then [ has a unique fized point.
Proof. Tt follows by taking 1 (t) = ¢ in Corollary 25 O

Definition 2.7. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings. We say that f is a weakly U-contraction mapping of type A, with
respect to g if for all zq,..., 2z, € X, the following in equality holds:

¥ (Un(le,sz, - fzn))

n—1
§ 1/1(% ( Z Un(gzla fZiJrla .- ~7fZi+1) + Un(gzn, lea ey le)))
=1

n—1
- ¢< Z Un(gz’i7 fzi-'rla ey fzi-'rl)ei + Un(gZTH fzh ceey le)en)
=1

where
(a) 1 is an altering distance function;
(b) ¢ : R} — Ry is continuous function with ¢(uy,...,u,) = 0 if and only if

Uy =+ =uy =0.

Using arguments similar to those in Theorem 23] we can prove the following
theorem.

Theorem 2.8. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings such that f is a weakly U-contraction mapping of type A, with respect
to g. Assume that
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(i) f(X) < g(X),
(ii) g(X) is a complete subspace of (X,U,,),
(i1i) The pair {f, g}is weakly compatible.

Then f and g have a unique common fized point.

As in the case of Theorem 23 we can deduce various corollaries from
Theorem 2.8

Corollary 2.9. Let (X,U,) be a U,-metric space and f,g : X — X be two
mappings such that:

n—1

Un(fzh fZQa ey on) S a(z Un(gzu fZi+17 ceey fzi-‘rl) + Un(gz'fm lea DRI le))7
i=1
where o € [0, 1). Assume that
(1) f(X) S g(X),
(i1) g(X) is a complete subspace of (X,U,),
(111) the pair {f, g}is weakly compatible.

Then f and g have a unique common fized point.

Corollary 2.10. Let (X,U,) be a complete U,-metric space and f: X — X be
such that:

¥ (Un(le,sz, . fzn)>
n—1

S ¢(%(Z Un(ziafz’i-i-h o 'afz’i"rl) + Un(2"7f217 c ’le)))
i=1

n—1
- ¢)< Z Un(z’w fZiJrla ceey fZ’iJrl)ei + Un(znv lea ey le)e’ﬂ>
=1

where
(i) ¥ is an altering distance function,

(ii) ¢ : R} — Ry is continuous function with ¢(uy,...,u,) = 0 if and only if
Uy =+ =up =0.

Then f has a unique fixed point.
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Corollary 2.11. Let (X,U,) be a complete U, -metric space and f: X — X be
such that:

Un(f217f227 .. 7fzn)
n—1
: %Q} Un(zis f2i41s o f2iea) & Unlzn, fo1,00 le)>

n—1
- ¢<Z Un(Z’ia fzi-‘rla LR fzi-i-l)e’i + UTL(ZTHth .. '7f21)€n)

i=1
where ¢ : R — R is continuous function with ¢(ui, ... ,un) = 0 if and only if
uy =---=up =0. Then [ has a unique fized point.

Remark 2.12. Using arguments similar to those in corollaries[2.10, with weak
condition we can prove the following theorem.

Theorem 2.13. Let X be a complete U,-metric space. Suppose the map f :
X — X satisfies for all z1,2z9,...,2, € X

w(Un(lea fz2; ey fzn)) S w(Un(zlaz% .. 7Zn)) - QS(Un(ZlaZQa oo azn))a (217)

where Y and ¢ are altering distance functions. Then f has a unique fized point
(say u) and f is Up-continuous at u.

Proof. Let z¢p be an arbitrary point in X, and let zpy1 = fxy for any k£ € N.
Assume xy, # x;_1. For k € N, we use (2I7) and definition of ¢

w(Un(zk; Thtlyeros karl)) = w(Un(kafla kaa ey fmk))
< w(Un(Jck_l,xk, e wk)) — qb(Un(xk_l,xk, . ,xk))
Sw(Un(xkflazka"'amk))' (218)

Since 1) is non-decreasing, we get that
Un(xk,ka, . ;$k+1) < Un(xk_l,xk, cee xk). (2.19)
If we take ty = Up(zk, Tpt1,- .-, Tkt1), then from ZI), we get 0 < ¢ < t—1,

so the sequence {t¢} is non-increasing, hence it converges to some r > 0. Letting
this in (ZI8), then as k — +o0

P(r) < (r) — o(r),

using the continuity of ¥ and ¢. Then, we find ¢(r) = 0, hence by a property of
¢, we have r = 0. We rewrite this as

lim U, (zk, Zkt1,.. . Tks1) = 0. (2.20)
k—+oo
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Next, we prove that {zy} is a U,-Cauchy sequence. We argue by contradiction.
Assume that {zx} is not a U,-Cauchy sequence. Then, there exists ¢ > 0 for which
we can find subsequences {2, } and {x,,} of {xy} with n; > m; > i such that

Un(Tn;, Ty - - o s Ty ) > €. (2.21)

Further, corresponding to m;, we can choose n; in such a way that it is the smallest
integer with n; > m; and satisfying ([Z2I)). Then

Un(Zp;—1, Ty ey Ty ) < E. (2.22)

We have, using (Z22)) and the condition (Us), that

e <Up(Tn;y Tmyye - s Tim,)
< Un(@n;s Tny—1y -+ oy Tny—1) + Un(@ny—1, Tingy + -+ s Tmy )
<e+ Un(xn,,7xn,,—1; . ,l‘ni_l). (223)

In other words, we have:

0 < Un(Tn;y Tny—1y e+ y Tmy—1)
= Un(mni—h e 7xn,,—1; Inl)
< (n—DUn(Tp;—1,Tn;s -« Tny)-

Letting ¢ — 400, and using 220), we find Uy, (2n;, Tn;—1,- -, Tn;—1) — 0. We

take this in ([2:23)

i_l}ig_noo Un(Tnys Ty - - - Tmy ) = E- (2.24)
Moreover, we have:
Un(xn“xm“ to ’xmi) < Un(xnﬂxni*l’ s 793711‘*1) + Un(xni*h Tmg—1ye s mmifl)
+ Un(Tom;—15 Ty - - - s Ty )
and
Un(mniflaxmifla e ;mmifl) S Un(mniflaxnia cee 7xni) + Un(xni;mmia cee 7xmi)

+ Un(Trmys Ty =1y -+ Trny—1)-

Letting ¢ — +oo in the above two inequalities and using (2:20)-(2.24)

dim Up(@p,—1, Timy—1y - -+ Tny—1) = €. (2.25)
1— 400
Setting 21 = @p,—1 and 23 = - = 2z, = Ty, —1 in (ZTI7) and using Z2T)), we

obtain thanks to the fact that 1 is increasing

V() SY(Un(Tn,s Timgs - -+ Tmy)) = V(Un(fTn,—15 fTm,—15 -5 fTm, 1))
< w(Un(Ini—la Tm;—1y--- axmi—l)) - ¢(Un(xn,,—1a Tm;—1y--- 7xm1,—1))-
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Letting ¢ — 400, then using (225)) and the continuity of ¢ and ¢, we get

P(e) < ¥(e) — (o),

yielding that ¢(¢) = 0, which is a contradiction since € > 0. This show that {xy}
is a Up-convergent to some u € X, then

lim Up(xg,...,z5u) = Uy(zk,u,...,u) =0. (2.26)

k—+o0
We show now that w is a fixed point of the map f. From (ZI7),
Y(Un(@kt1,y -y g1, fu) = O(Un(fak, - .., fag, fu))
<YPUn(zky. . xp,u)) — d(Un(xpy - oy They 1))
Thanks to (Z26]) and the continuity of ¢ and ¢, we find
lim Up(xg41,-..,Tkt1, fu) =0. (2.27)

k—+oo

Again, using the condition (Uy) and (Us), one can write
Un(ty ... yu, fu) <Up(ty .oty @pg1) + Un(Thsty - o Thg1, fu).

Letting ¥k — +oo in the above inequality and having in mind (226) and 227),
one finds Uy, (u,...,u, fu) = 0, and then fu = u. Hence u is a fixed point of f.
Let us to show its uniqueness. Let v be another fixed point of f, then
Y(Un(u, ..., u,v)) =0Un(fu,..., fu, fv))

< YUn(u,...,u,v)) — o(Un(u,...,u,v)).
It follows that ¢(Up(u,...,u,v)) = 0, and then Uy, (u,...,u,v) = 0, yielding that
u = v. Following Proposition [[L9] to show that f is U,-continuous at u, let {yz}
be any sequence in X such that {yj} is U,-convergent to u. For k € N, we have

Y(Un(u, .. u, fyk)) = Y(Un(fu, ..., fu, fyr))
< P(Up(uy ..., u,y5)) — O(Un(u, ... u,yk)).

Letting k¥ — 400 and using again the continuity of ¢ and ¢, the right-hand side
of the above inequality tends to 0, then we obtain

lim U,(u,...,u, fyr) =0.

k——+oo

Hence {fyx} is U,-convergent to u = fu, so f is Up,-continuous at u. O

Corollary 2.14. Let X be a complete U,-metric space. Suppose the map f :
X — X satisfies form € N and z1,22,...,2, € X

w(Un(fmzla fmZQa .. 7fmzn)) < w(Un(zlsza oo ;Zn)) - QS(UW(ZDZQ? . '7Z’ﬂ))7

where Y and ¢ are altering distance functions. Then f has a unique fized point
(say u), and f is Uy-continuous at u.
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Proof. From Theorem 213, we conclude that f™ has a unique fixed point say u.
Since

fu=f(f"u) = " u= f"(fu),

we have that fu is also a fixed point to f”*. By uniques of u, we get fu=u. O

Corollary 2.15. Let X be a complete U,-metric space. Suppose the map f :
X — X satisfies for all z1,29,...,2, € X

Un(fz1, f22,- .oy fon) < aUy(z1,22,. .., 20),

where a € [0,1), then f has a unique fized point (say u), and f is Up-continuous
at u.

Proof. Tt suffices to take in Theorem T3] ¢(t) = ¢t and (1 — )t for a € [0,1). O

To continue we define a I'-distance on a complete U,-metric space which is a
generalization of the concept of w-distance due to Kada et al. [22] and prove fixed
point theorem in partially ordered U,-metric space.

Definition 2.16. Let (X, U,) be a U,-metric space. Then a function I : X" —
R, is called an I'-distance on X if the following conditions are satisfied:

(a) T(z1,29,...,2,) < T'(21,a,...,a) + [(a,z2,...,2,) for all z1,...,2,,a €
X,

(b) for any z1,...,2p—1 € X, I'(z1,...,2p-1,.) : X — Ry is lower semi
continuous,

(c) for each € > 0, there exists a § > 0 such that I'(z1,a,...,a) < J and
F(a,l‘g’ s axn) S 5 anly Un(mlam% cee 7xn) <e.

Also, X is said to be I'-bounded if there is a constant M > 0 such that
D(x1,...,2n) < M for all zq,...,2, € X.

Example 2.17. Let (X,d) be a metric space and U, : X" — R defined by
Un(21,...,2,) = max{d(z;,x;) : 1 <i<j<n},
forallxzy,...,x, € X. Then I =U, is a I'-distance on X.

Proof. (a) and (b) are immediate. We show (¢). Let ¢ > 0 be given and put
§ =¢/2. If Up(z1,a,...,a) < 6 and Uy(a,za,...,2,) < 6 then d(z1,a) < 6,
d(a,z;) < dfori=2,...,n and d(z;,z;) < for 2 < i < j < n, which implies
that Uy (z1,...,2,) <25 =¢. ([

Example 2.18. Let (X,d) be a usual metric space, then (X,Uy,) is Uy,-metric
space, where

2
Un(21,...,20) = —— Z d(z;, x;)

n(n—1) 1<i<j<n
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Then the function T' : X™ — Ry defined by

n

T(z1,...,2n) = de(lﬂhmi)

n(n —1) <
forall xy,...,x, € X is a I'-distance on X.

Proof. The proofs of (a) and (b) are obvious. we show (c¢). Let € > 0 be given
and put 6 = ——. If I'(z,a,...,a) < 0 and I'(a,x2,...,2,) < &, we have,

n2—2n+2"°
respectively, d(z1,a) < 2 and d(a,z;) < M for i = 2,...,n. which imply

that Uy, (z1,...,7,) < (n? —2n+2)§ =¢. O

Lemma 2.19. Let (X,U,) be U,-metric space and T' be a T'-distance on X. Let
{zr}, {yr} be sequence in X, {0} and {Br} be sequences in Ry converging to zero
and let z1,...,2n,a € X. Then we have the following:
(1) If T(yk, xky - - s 2k) < O and T(xk, Ymy -+, Y1, 2n) < Bk for any l > -+ >
m >k €N, then Un(Yk, Yms, - - - Y1, 2n) — 0 and hence yi, — zp.
(2) If T(xky Ty .. oyxy) < O for anyl > -+ > m >k € N, then {xx} is an
U, -Cauchy sequence.

(3) If T(xg,a,...,a) <O for any k € N, then {xy} is an Uy-Cauchy sequence.

Proof. From definition of I'-distance, there exists a d > 0 such that I'(v1, a,...,a) <
§ and T'(a,vay ..., 0p—1,2n) < & imply Up(v1,...,0n—1,2n) < &. Choose N € N
such that dx < 6 and By < § for every k > N. Then we have, for any [ > --- >
m>k>N,

F(yk‘7xka- --7xk) S 5k S 5; F(x]mymw' '7ylazn) S ﬁk S 1)

and hence U, (Yk, Ym, - - -, Y1, 2n) < €, so that {y,} converges to z,.
Now we prove (2). Let € > 0 be given. As in the proof of (1), choose § > 0
and then N € N. Then, forany [ > --->m >k > N,

D(2r, Trgts oo Thyp1) < 0 <0, C(@rs1, Ty ooy 1) < Opg1 <6,
and hence U, (xk, Tm,...,2;) < €. This implies that {z;} is an U,-Cauchy se-
quence. Condition (3) is a special case of (2). O

Definition 2.20. Suppose (X, <) is a partially ordered set and F : X — X
is a mapping of X into itself. We say that F' is non-decreasing if x < y implies
F(z) < F(y) for z,y € X.

Theorem 2.21. Suppose (X, <) is a partially ordered set. Suppose that there
exists a Un-metric on X such that (X,U,) is a complete U, -metric space and T
is an I'-distance on X and F is a non-decreasing mapping from X into itself. Let
X be I'-bounded. Suppose that there exists r € [0,1) such that

[(Fx,F?z,...,F%z, Fv) <rT(z,Fx, ..., Fx,0)
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forx < Fx andv € X. Also for every x € X
inf{l'(z, F*z, F™z,... Flz,y) ;2 < Fz} >0 forl>--->m>kecN (2.28)

for every y € X with Fy # y. If there exists an ©o € X with xo < Fxg, then F
has a fized point. Moreover, if Fw = w, then I'(w,...,w) = 0.

Proof. If Fxy = xg, then the proof is finished. Suppose that Fxg # xg. Since
zo < Fxg and F is non-decreasing, we obtain

xg < Fag < F?29 < - < FFPlgy <o
For all k e Nand t > 0,
L(FFag, F¥ g, . FM g, F¥ag) < rD(F* tag, Frao, ..., Frao, FF 1)
< - <7*D(xg, Fo, ..., Fao, Flxo).

Thus, for any Iy >l > -+ > lp_1 >l in which [; + I, = 1,1, [, e Ni =2,.. .k,
we have

D(F' g, Fle=120, ..., Fliag)
<TD(F'ag, Fe g, o F' P lag) + T(F* g, Fletgg, . Fliag)
<T(Foag, Fe gy, Fe ) 4 TR, FUt2gg 0 FUt2a)
+ D(F 2, Flirgg, o Fligg)
<T(Flgg, FUet gy, o Fetlpg) £ D(FFlag, Fe 2, FUt2g)
e R T2, Flet g, Bl )

+ T(Fh=17 gy, Fle-igg, Fle-2g . Fligg)
lp_1—1

Z Mr?

i=ly

IN

rle
<
“1-r
By (2) of LemmaZI9, {F' 0} is a U,-Cauchy sequence. Since X is U,-complete,

{F'% a0} coverges to a point z € X. Let I € N be fixed. Then, by the lower semi-
continuity of I', we have, for Iy > -+ > lp_1 > i

I’(Fl’“xo, Fle-igg . Fl2gg 2) < limian(Fl’“xO, Fle=igy ... Fl2xy, FPxg)

p—o0

M.

rle
<
—1—-r

Assume that Fz # z. By [2:28)), we havefor [ >--->m >k €N

M.

Ik
0 < inf{T(F'%zg, F'**Fgy, Fletmy,  Fetlyg o)} <inf 1T

—r
which is a contradiction. Therefore, we have Fz = z. Now, if Fw = w, we have
[(w,...,w) =T(Fw, F?w,..., F?w, Fw) < rT(w, Fuw,..., Fw,w) = r[(w,...,w)
and so I'(w, ..., w) = 0. O

M=0
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3 Conclusion

In this work, we established some common fixed point results for two mapping
f,9 : X — X satisfying contractive condition of types A, and B,. Also we
studied some fixed point consequences for a self mapping in a complete U,,-metric
space X under condition related to altering distance functions. Last result of our
paper is a fixed point theorem involving I'-distance.

Acknowledgement : The authors are extremely grateful to the referee for mak-
ing valuable suggestions leading to an improvement of the paper.
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