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Assessing Supply Chain Resilience During
the Pandemic Using Network Analysis
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Abstract—Disruptions induced by the COVID-19 pandemic have
wreaked havoc in supply chain networks. To gain an understanding
of the dynamics that had been at play, we construct a real supply
chain network (scale-free) based on a seed firm (Apple), its cus-
tomers, and its first- and second-tier suppliers, yielding a network
of a total of 883 firms. We then use visualization to derive insight into
various network characteristics and develop an agent-based model
to capture the disruption of the network over a period of 400 days
from the onset of the pandemic. The disruptions experienced by
firms depend on the stringency of measures taken to curb the pan-
demic in their respective countries and the severity of disruptions
experienced by suppliers in a specific region. We specifically find
that spatial complexity, degree centrality, betweenness centrality,
and closeness centrality have changed significantly throughout our
observation period. We thus subsequently theorize on the influence
of some of these characteristics on supply chain resilience (SCRes),
and through our empirical tests, we find that, at the network
level, Average degree and spatial complexity significantly influence
SCRes. At the firm-level, we find that powerful firms within the
network influence SCRes based on their betweenness centrality
and closeness Centrality. Implications for managerial practice and
academic research are discussed.

Index Terms—Network analysis, pandemic, ripple effect, supply
chain resilience (SCRes), visualization.

I. INTRODUCTION

THE impact of the COVID-19 pandemic on global supply
chains has illustrated their interdependence and complex-

ity, contributing to the risk that needs to be managed [1]. What
makes this management so challenging is that a small disruption
anywhere in the network, no matter how far from the focal
firm, can have significant ripple effects throughout the sup-
ply chain [2]–[4], rendering these potential distant disruptions
critical yet difficult to assess and mitigate. Possessing supply
chain resilience (SCRes), which entails developing capabili-
ties enabling firms to resist and recover from disruptions, has
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therefore become imperative [5], [6]. Resilience can be built
at the firm level, through investments in capacity management,
resource allocation and inventory management, and at the net-
work level, through supplier development programs, network
visibility initiatives [4], optimized network structures [7], and
viewing networks as complex adaptive systems (CASs) [8]. We
label this resilience at the network level supply chain network
resilience (SCNR).

The repercussions of the COVID-19 pandemic exposed many
supply chains and demonstrated the need for further improve-
ments in SCRes. For example, Hyundai had to shut down its
South Korea manufacturing sites since it ran out of components
from China in February 2020 [9]. A month later, operations of re-
tailers like Amazon and Walmart got disrupted, scrambling to get
needed products on their shelves [10]. Repercussions continue
to be reported, such as Boeing delaying its deliveries in January
2021 [11]. While 27% of organizations responding to a survey
by the Business Continuity Institute [12] reported experiencing
ten or more disruptions in 2020 due to the pandemic, a total
of 40% of these disruptions occurred beyond tier 1 suppliers,
which makes these disruptions more difficult to manage and plan
for. Calls have therefore been issued to examine the resilience
of supply chain network structures [8], [13]—A topic that has
been elevated now due to the pandemic. What made navigating
pandemic-related supply disruptions even more challenging is
the fact that the pandemic impacted both supply and demand
simultaneously, in addition to multiple disruptions happening
at the same time at different locations [14]. While companies
struggled significantly, looking back at the dynamics experi-
enced offers a rich context to investigate SCRes and develop
recommendations for moving forward.

While studies have investigated network disruption models
(e.g., [2], [15], and [16]), to the best of our knowledge, none of
the studies have captured real-world disruptive events. This is,
therefore, the research context we focus on in this article, aiming
to provide guidance for more resilient network structures. The
specific research questions we aim to answer are as follows.

1) RQ1: As the pandemic progressed, how were supply chain
network structures influenced by the associated dynamics?

2) RQ2: What supply chain network characteristics were
most influential in contributing to SCNR during the pan-
demic?

In answering these research questions, we work to create a
better understanding of resilience and how to capture it, specifi-
cally by considering the ripple effect. We also recognize that not
all disruptions are alike—while some have only a minor impact
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on a few select stakeholders, others can impact the entire supply
chain. We frame our investigation within the network literature
in general, and the ripple effect more specifically. Our empirical
data is combined into an agent-based model, also leveraging
visualization to develop deeper insights.

The rest of the article is organized as follows. Section II
proceeds with a review of the literature, followed by Sec-
tion III providing the model architecture. Section IV presents
the analysis and results. Section V reflects on theoretical and
managerial implications and Section VI concludes the article
with its limitations.

II. LITERATURE REVIEW

A. SCRes From a Network Perspective

SCRes has been investigated from a variety of perspec-
tives, including ecological, engineering, social, psychological,
economical and organizational [5]. Primary angles employed
have been the resource-based view and dynamic capabilities,
untangling aspects that help to minimize vulnerabilities [17],
[18]. Capabilities that were identified include agility, integration
and reengineering [19], and event readiness, responsiveness and
recovery [5]. The source of SCRes is founded in several roles
and functions, which are grouped under the broader construct
of functional capabilities; these can include procurement [20],
buyer-supplier relationships and collaboration [21], sourcing
strategy [22], supply chain visibility, cooperation, and infor-
mation sharing [23], with many of them being located at the
inter-organizational interface. While research is rich in the iden-
tification of these dimensions at the firm level, research that looks
at SCRes at the supply chain network level is scarce. Further
research in this domain has therefore been called for [24].

Choi et al. [25] helped jumpstart this research agenda by
considering supply networks as CASs. Inherent to CAS is that
they are not the outcome of a single entity, but emerge based
on network agents’ activities. Since changes in the network are
often beyond the awareness of the firm, Choi et al. [25] viewed
these supply chain networks as CAS. Carter et al. [8] took this
work further and viewed agents as grappling with the tension
between control and emergence. While a firm has control over
its internal operations, making planning doable, the emergence
of issues beyond the visible horizon of the firm in the external
environment creates challenges, necessitating the firm to adapt.
Further complicating aspects include the existence of both a
physical supply chain and a support supply chain, visibility
into which is generally bounded by a single organization. While
the physical supply chain involves products and materials, the
support supply chain consists of firms assisting in this primary
endeavor, such as financial and consulting firms. This complex-
ity is our current reality, which is why we focus on the network
perspective to investigate SCRes within this context. We find
our approach corroborated by Tukamuhabwa et al. [26] review
article, which positioned the CAS lens as the most appropriate
to study SCNR.

Two perspectives of SCRes are prevalent in the literature
[6], with the first one representing the “engineering” form of
resilience, which focuses on “bouncing back” to the equilibrium

state, and the second one being the “social-ecological” form of
resilience, which resists disruptive change by adapting through
the process of renewal, reorganization and development—this
can potentially lead to a state that is quite different from original
equilibrium. With this framing, Wieland and Durach [6] (p. 2)
defined SCRes as “the capacity of a supply chain to persist, adapt
or transform in the face of change.” Inherent to this definition
is dynamism, allowing the boundaries of the system to change
by including or excluding agents (firms) and/or by adding or
eliminating connections among agents [25]. From an SCRes
angle, this can be conceptualized through the adaptive cycle
approach [27], which is a concept borrowed from the natural
sciences. It suggests that the resilience of a CAS, such as a supply
chain, is not fixed, but expands and contracts over time. Akin to
this, Hosseini et al. [28] used systems theory to conceptualize
SCRes. We thus suggest that large-scale supply chain network
disruptions due to COVID-19 can be viewed through the CAS
lens [6], while at the same time acknowledging that disruptions
can come in all shapes and sizes [29]. This means that what may
work for one firm, may not for another firm.

Network theory has been a primary framework to analyze
supply chain network disruptions and SCNR [13]. In this vein,
Margolis et al. [7] designed a model for a resilient supply chain
network, and Hosseini and Ivanov [30] developed a resilience
measure considering a Bayesian network approach. Cardoso
et al. [31] assessed network resilience metrics of supply chains
under demand uncertainty, and Dixit et al. [32] assessed pre-
and-post disaster SCNR based on network theory. Similarly, Li
and Zobel [15] explored risk propagation and SCRes. Basole
et al. [33] also highlighted the importance of network structure
and its effect on performance. In applying network theory,
these studies had to assume the homogeneity of nodes, which
is an assumption that can be relaxed when using agent-based
modeling. With this approach, the interdependence of nodes
can be captured. This was for instance done by Zhao et al.
[34], who analyzed the resilience of a supply chain network,
and Nair and Vidal [35], who used CAS theory to model a
simulation-based system to find out whether there is a significant
association between network characteristics and supply network
robustness measures. Basole and Bellamy [2] also developed a
model based on heterogenous nodes to explore risk diffusion.
In addition to these network models, relatively few studies used
survey-based instruments to analyze supply chain characteristics
during disruptions. Examples here include Bode and Wagner
[1] and Brandon-Jones et al. [36], who established supply chain
complexity to be related to upstream disruption frequency. An
overview of articles on SCRes taking a network perspective is
given in Table I.

Several of the above-cited studies have used network level
metrics to assess resilience, including network density, node
criticality and complexity [37], capturing networks with many
critical nodes tend to suffer more severe disruptions than net-
works with less critical nodes [38]. However, most of these
studies do not incorporate the cascading failure of nodes,
commonly referred to as the ripple effect. Exceptions include
Zhao et al. [16], who modeled a complex supply chain network
system using agent-based modeling to understand supply chain’s
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TABLE I
LITERATURE ON SCRES TAKING A NETWORK PERSPECTIVE

adaptive behavior during disruptions, and Li and Zobel [15],
who explored the network characteristics of SCRes based on
synthetic networks.

B. Ripple Effect

Risks originating in seemingly unrelated and distant parts of
the network can quickly propagate and cripple the entire network
through the disruption’s ripple effects [2]. The traditional view
of a supply chain network subscribes to a unidirectional flow
of materials and information. However, real-life supply chain
networks are complex and non-linear, also exhibiting circular
flows. As such, a disruption’s ripple effect is more severe when
it occurs inside (as opposed to outside) circular flows [39]. It is
thus expected that when multiple disruptions occur in a supply
chain network, the impact of the disruptions should be greater
than if a single disruption occurs, given that the disruptions
occur in similarly prominent network locations. Within this
context, the concept of the ripple effect describes the impact
of a disruption’s propagation on supply chain performance,
including its structural design and planning parameters [3], [4],
[40]. The ripple effect is different from the bullwhip effect in
that the ripple effect arises from disruptive low probability events
affecting the structure of the supply chain, with the possibility of
severe long-term effects amid short-term effects [3]. A relatively
few studies have measured the effect of such propagation. For
example, Osadchiy et al. [41] considered the propagation of sys-
tematic risk to reflect in production decisions and order aggrega-
tion, and Levner and Ptsukin [42] developed an entropy-based
model to manage ripple effects of environmental risks. Further,
Garvey et al. [43] suggested that Bayesian networks lend a
natural fit for the goal of measuring risks within a supply chain.
If constructed according to a supply network structure, Bayesian
networks represent a snapshot of a firm’s supply chain risk

profile. Hosseini et al. [30] and Shi and Mena [44] both used
a Bayesian approach to develop a SCNR assessment metric.
Ivanov [45], using a discrete-event simulation model, found that
the ripple effect enhances the performance impacts of disrup-
tions, making firms more vulnerable under a single sourcing
policy. Using a similar model, Ivanov [14] considered a single in-
dustry with strict assumptions and developed predictive insights
with respect to supply chain disruptions due to COVID-19.

Overall, while work on the ripple effect has been proliferat-
ing, research is scant that considers networks of heterogeneous
agents using real-world data. An exception forms again Li
and Zobel [15], who investigated overall SCNR using several
metrics in the presence of the ripple effect. In addition, what
characterizes most empirical studies in this domain is that a static
approach to assess SCNR was taken, with relatively few studies
considering the impact of risk propagation in a complex network
context [2], [15], [16]. The importance to do so is however
given, since it makes the network model more realistic. We also
note that the ripple effect is not focused on risk propagation
itself, but on the consequences of risk propagation in the supply
chain network, which directs further attention to the resilience
attribute. Since we aim to understand how supply chain network
structures were influenced during the pandemic taking network
perspective, considering the ripple effect becomes imperative.

C. Measuring Supply Chain Network Resilience

The resilience of a supply chain network (which we consider
consisting of several individual supply chains) is dependent on
the following network characteristics.

1) Network Type: SCNR is affected by network type [13],
which is based on the degree of the node distribution.
Based on the classification by Kim et al. [13], network
types can be scale-free, block-diagonal, centralized and
diagonal. Other classifications, such random graph, small-
world [2], [35], and hierarchical [34] are also present in
the literature. The scale-free pattern has few nodes with
disproportionately many connections, which generally re-
sembles a power-law distribution. The scale-free design
has been considered as an attack-tolerant complex net-
work [13], with however Zhao et al. [34] countering that
scale-free networks are vulnerable to targeted disruptions.

2) Network Density: Craighead et al. [40] identified supply
chain network density as the clustering of suppliers in
different parts of the world. We view this explanation
closer to the definition of spatial complexity. Instead, we
capture network density as the ratio of the number of
existing edges to the number of total possible edges at
a given time period in the network [31], [13].

3) Supply Chain Complexity: Supply chain complexity is the
sum of the total number of nodes and edges [31]. It can be
further expanded to node complexity, i.e., the total number
of nodes in the network, and flow complexity, i.e., the
total number of edges in the network [35]. Another related
metric is Average Degree, which refers to the ratio of the
total number of edges to the total number of nodes in
a given period. Complexity can also be captured at the
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supplier base level. For example, Horizontal Complexity
is the number of suppliers directly connected to the focal
buyer [46], [1], while Vertical Complexity refers to the
depth of the supplier base, which reflects the number of
tiers in a supply chain [1]. Spatial Complexity refers to the
level of geographical spread of suppliers [1].

4) Path Length: Path length indicates the average number
of firms that must be traversed between any two firms
selected at random. The diameter of a network is the
maximum of the shortest path length between any two
nodes [34], [16].

5) Clustering Coefficient: This captures the average proba-
bility of two neighboring nodes that are connected to a
given node, which are also connected to each other [16].

6) Network Centralization: Network centralization metrics
are assessed at the node-level and capture the extent to
which overall connectedness is organized around partic-
ular nodes. Specifically, betweenness centrality assesses
how often the nodes in a network lie on the shortest path
between all combinations of network node pairs [13],
[15]. Degree Centrality is defined by the number of a
node’s edges, which, in a directional network, depends
on the flow initiated (out-degree) and the flow received
(in-degree). In-degree Centrality reflects the degree of
difficulty when managing incoming flows from suppliers.
Out-degree centrality reflects the level of difficulty in
managing customer needs [13]. Degree centrality is linked
to node criticality, where nodes that distribute material to
many other nodes are considered to be more critical [25],
[32]. Closeness centrality measures how close a node is
to all other nodes in the network beyond the nodes that
it is directly connected to [13]. Eigenvector centrality is
based on the connections to high-scoring nodes, which
contributing more to the score of a node than equal connec-
tions to low-scoring nodes. In this purview, Kim et al. [13]
suggested that network metrics do not consistently nor
reliably predict network resilience. Interestingly, denser
or merely more complex networks do not necessarily have
higher resilience.

7) Supply Chain Network Resilience: There are several
definitions of SCNR in the literature. For example,
Kim et al. [13] defined it as the ratio of the total number
of node/edge disruptions that do not result in a network
disruption to the total number of node/edge disruptions.
It is also defined as a function of the service level during
disruption [47], or as the demand-weighted connectivity
[7]. Li and Zobel [15] considered three dimensions: ro-
bustness, recovery time, and average performance retained
over time. In their context, robustness is reflective of the
number of healthy nodes, the size of the least connected
nodes, and the ratio of the size of the least connected
components to the average path length. Zhao et al. [34]
suggested the availability of suppliers to demand nodes,
the largest connected network, and the average path length
as resilience indicators. Dixit et al. [32] developed a for-
mula combining connectivity, size, centrality and density.

We leverage this insight to develop our model in the
following section.

III. NETWORK CONSTRUCTION AND MODEL DEVELOPMENT

A. Data Collection

Secondary data from Thomson Reuters’ Refinitiv Eikon
database was used1 to construct the network. The use of such
secondary data available from vendors such Mergent Horizon,
Compustat, Bloomberg SPLC, and Thomson Reuters, has be-
come a popular approach for capturing supply network struc-
tures [2], [8], [16], since it allows for the collection of data
beyond the first supplier tier. The Thomson Reuters database
provides information about competitors, customers, and suppli-
ers under the category of “peers and valuation.” For each pair of
companies, it collects information from related documents (e.g.,
news, filings), and estimates the probability that there is a valid
supplier-customer relationship. This estimation is based on the
evidence snippets collected and takes into account the source
type. An aggregate score called “confidence score’ is created
that ranges from 0 to 100%, depicting the confidence associated
with the presence of the buyer-supplier relationship.

We collected data by using a snowballing approach suitable
for collecting large scale network data [48]. Our focal company
or seed node is Apple, which we chose for two reasons. First,
it is the most valuable company in the world [49], and thus
understanding its supply chain network structure would be valu-
able. And second, Apple’s supply chain experienced numerous
disruptions during the pandemic [50], making the company a
formidable subject to investigate its SCNR. As such, Apple had
to postpone production due to supply and demand disruptions
as a result of the pandemic in 2020 [51], primarily due to the
firm’s reliance on China.

We also note that the choice of the focal company is not
relevant when the network is large, as it only serves as a seed node
[16]. At the time of data collection in March 2020, there were
302 suppliers listed in the database. We only selected suppliers
that had a Confidence score of more than 50%, yielding a total
of 204 first-tier suppliers. We matched this list with the list of
manufacturing suppliers provided in Apple’s 2019 sustainability
report [52], which yielded an overlap of more than 50%. That
this percentage is not larger can be attributed to the fact that the
list of manufacturers in Apple’s sustainability report included
only those that produced physical goods. As such, our list of
suppliers also captured suppliers in the support supply chain.
The Thomson Reuters database provides comprehensive data in
this regard.

Similarly, for the list of 204 first-tier suppliers, we collected
a list of their suppliers (second-tier suppliers) using the same
confidence score rule, which was followed by a validation of the
firms’ existence. Firms with no or incomplete information in the
database were removed. The final network is based on a total of
22 customers, 204 tier-one suppliers, and 736 tier-two suppliers.

1Thomson Reuters’ Refinitiv Eikon - [Online]. Available: https://eikon.
thomsonreuters.com
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Fig. 1. Network structure of Apple Inc.

TABLE II
TOPOLOGICAL CHARACTERISTICS

This yields a total of 883 unique firms and 1298 buyer-supplier
relationships. The firms are headquartered in 36 countries and
cover 91 industries, with Software (19.36%), IT Services and
Consulting (11.77%) and Semiconductors (11.09%) being the
top three industries. This richness of the data allows us to analyze
resilience beyond the visible horizon of the focal firm.

The initial network diagram is shown in Fig. 1. The supply
chain network can be denoted by a directed network G = (N,
E), where N represents the set of nodes and E represents the set
of edges. Each node ni � N represents a firm, and each directed
unweighted edge ei,j � E indicates a buyer-supplier relationship,
where ni is the supplier for nj.

B. Topological Characteristics

The initial network characteristics at time t0 of our analysis
period is given in Table II. We use Gephi 0.9.22, to analyze the
topological characteristics. Such topological analysis can pro-
vide invaluable insight into supply chain networks and their ro-
bustness against disruptions [53]. All network characteristics are
explained in Section II-C except Clusters. Clusters are calculated

2[Online]. Available: www.gephi.org

Fig. 2. Degree Distribution.

using the Modularity function, which uses a heuristic algorithm
[54] to identify the community structure in a large network.
It initially identified 12 clusters. On average, two nodes have
approximately two nodes in between and a maximum of five.

We can estimate from Fig. 2 that the network follows a
power-law distribution, which is characteristic of scale-free
networks. Very few nodes have a high degree of surrounding
neighbors, with most of them having few neighbors. Only Apple,
Microsoft, and AT&T have a degree higher than 100. AT&T
is linked as a tier 1 supplier, a tier 2 supplier, as well as a
customer, while Microsoft is linked as a TIER 1 as well as a
tier 2 supplier. Similar findings are reported by Zhao et al. [16]
when analyzing Boeing’s supply chain network, i.e., the fact
that a firm’s competitor can also be an upstream supplier. This
finding highlights that real-world network is highly complex and
close examination is required.

C. Model Development

Our study is exploratory in nature, as the main objective is to
understand how a large-scale real network navigated disruptions
during the COVID-19 pandemic. As discussed above, disrup-
tions of extreme nature have a ripple effect that spreads through
the supply chain. The measures taken during the COVID-19
pandemic by most countries are expected to have had such
a ripple effect, with for instance firms being shut down or
operating at reduced capacity. Other disruptions are in the
form of border closures impacting delivery and service levels.
Previous studies considering the ripple effect used system-
dynamics, discrete-event simulations, or agent-based modeling
[3]. Bayesian network modeling has also been used [55], which
relies on a conditional probability to capture risk propagation.
This is however difficult to assess in a large real-world network,
and the approach is not able to capture temporal dynamics [30].
We therefore leverage agent-based modeling to simulate actions
and interactions of autonomous heterogenous agents. In CAS,
combinations of approaches can imply multi-directional causal-
ities, as well as simultaneous and time-lagged effects between
agents [38], [56]. This also increases the model’s realism, which
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Fig. 3. Model development.

is made possible by the incorporation of empirical data to reflect
real-life settings. We apply these principles when designing our
network.

Specifically, the model simulates how a supply failure propa-
gates through the agents due to an increase in lockdown policies
across the countries of operation. An assumption we make is that
firms are operating in the country of their headquarters, which
however may not be entirely correct. For example, 3M, a direct
supplier to Apple, is headquartered in the United States, having
four manufacturing facilities in the country and three outside.
Similarly, Darfon electronics is headquartered in Taiwan, with
one manufacturing location in Taiwan and one in China. How-
ever, since our sample did not include a firm that does not operate
where they are headquartered, we believe that the assumption
does not violate reality too significantly.

In our model a firm/node represents an agent in the supply
chain that faces supply disruption risks from two sources: a) the
stringency of measures in a country to curb the spread, as result
of which the firm/node must shut down or operate at a reduced
level, and b) the severity with which suppliers are impacted in
their respective region, thus impacting the delivery of the product
or service. This represents a realistic depiction of the situation
during the onset of pandemic and is still prevalent in regions
in 2021 [57]. We captured the severity of lockdown policies
of firms’ countries based on the stringency index (SI) calcu-
lated by the”oxford coronavirus government response tracker”
project [58]. The SI returns a composite score between 0 to 100,
based on nine parameters: school closures; workplace closures;
cancellation of public events; restrictions on public gatherings;
closures of public transport; stay-at-home requirements; public
information campaigns; restrictions on internal movements; and
international travel controls. The dataset starts with January
21, 2020, which is nearly a month after the disease was first
identified in Wuhan, China, and ends with February 23, 2021,
capturing a 400-day period.

Within this background, the following five steps were ap-
plied to construct our model (see Fig. 3). First, most opera-
tional research investigating infectious diseases categorizes a
population into groups based on the level of infectiousness to

enable decision-making; these levels can include susceptible-
infected, susceptible-infected-susceptible, susceptible-infected-
recovered [58]. Following the same logic, Basole and Bel-
lamy [2] developed a good, moderate and toxic state for agents
in a supply chain network. To model the ripple effect, we thus
classify in step 1 the operational status of nodes based on the SI
into three statuses: fully operational (value = 1, if 0 ≤ SI < 25),
semi-operational (value = 0.5, if 25 ≤ SI < 50), and shut down
(value = 0, if 50 ≤ SI ≤ 100).

Second, we assess the suppliers’ operational status (i.e., the
ability to supply) in step 2. With firms sourcing similar products
or materials from multiple suppliers, we group suppliers based
on the industry they belong to and then assess their disruption
probability (step 2.1). If one of these suppliers is shut down,
others can enhance their capacity to accommodate if they are
operational. Therefore, if all suppliers from a particular industry
are operational, a firm’s supply remains undisrupted. Further, if
a firm has two suppliers that are both semi-operational (i.e.,
value = 0.5 + 0.5 = 1), this is equivalent to one supplier being
fully operational. Based on the value of operational statuses,
we obtain a probability of supply in a specific industry getting
disrupted in step 2 as

Prindustry_supp_disrup = 1− suppliers operational

total number of suppliers
.

(1)
For our model, we assume that industry-specific suppliers are

disrupted if their probability is greater than 0.33 for the product,
material or support service to be supplied to the firm; otherwise,
they are undisrupted. Similarly, a firm sources different ranges
of products, materials or services to ensure the supply chain
runs efficiently, with these suppliers however being in different
industries. We therefore also compute the disruption probability
for suppliers from all industries (step 2.2). Specifically, we define
the probability that the supply to a node gets disrupted as

Prsupp_disrup

= −number of industry specific supply operational

total number of supplier groups
.

(2)

To illustrate this within the context of our network, Apple has
200 suppliers from 42 industries, with 29 suppliers belonging to
the electronic equipment and parts industry. If the value of this
industry’s operational status is lower than ten, then the industry’s
supply is considered as disrupted. If 28 out of the 42 industries
are non-disrupted, the probability that the supply to Apple gets
disrupted is 33%.

Third, as discussed earlier, a firm faces disruption risks from
two sources, one being tied to stringent orders in the region
aimed to curb the spread and the other being supplier failures.
We therefore update the health status of a node/firm based on
these two attributes (step 3) (see Tables III and IV). We see from
Table III that the statuses are different than the ones previously
used (operational, semioperational and disrupted). This is done
to capture a firm being able to function. The ability to supply is
captured in Table IV. The final health status of a node is obtained
by taking the minimum value across the two tables.
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TABLE III
SI AND HEALTH OF FIRMS

TABLE IV
PROBABILITY OF SUPPLY GETTING DISRUPTED AND HEALTH OF FIRMS

Fourth, organizational size affects the ability to manage risk
[16], [60], with larger organizations generally having better ca-
pabilities, which can include information sharing and visibility
[60]. We take revenue as an indicator of firm size and based on
the log-transformed value we categorize firms into three groups:
large-size (28 firms), mid-size (718 firms) and small-size (137
firms). We use this to recalibrate the health statuses of all nodes
(step 4). For large firms, a downgrade in health status (e.g.,
from healthy to moderate) due to the above-discussed reasons, is
relaxed and therefore its status does not change (i.e., the healthy
status remains). In contrast, small firms are downgraded by one
level in this instance (i.e., from healthy to vulnerable). Unless
observed, mid-sized firms are not forced to change their health
status. We developed a time-series of health status values of the
883 firms over the 400 days, with all four steps being repeated
for the 833 firms for 400 days (step 5). The network is visualized
and analyzed in Gephi 0.9.2.

IV. ANALYSIS AND RESULTS

Our study deploys the dynamic aspect of SCNR in the network
through SI, which is an outcome of measures taken to curb the
spread of the pandemic. Given that a node/firm is disrupted,
it takes some time for the disruption to take effect. Ivanov [14]
aimed to predict the impact of an epidemic outbreak, considering
different disruption periods in different echelons of a lightning
equipment supply chain, considering a lead-time between 4 and
9 days. While lead-times vary significantly across industries,
integrating varying lead times would not be feasible in our
network due to its large size. We thus assume that there is no
time-lag between the SI and its effect on supply disruptions.

The SI unit for magnetic field strength H is A/m. However, if
you wish to use units of T, either refer to magnetic flux density
B or magnetic field strength symbolized as μ0H. Use the center
dot to separate compound units, e.g., “A·m2.”

A. Visualization

Basole and Bellamy [62] highlighted that visualization is an
effective tool that can provide insights into structures, dynamics
and strategies. In fact, visualization is considered an integral part
of the scientific approach and an effective method to transform

Fig. 4. Supply network structure.

data into knowledge [62], [63]. Against this backdrop, visualiza-
tion can achieve the two primary objectives of the article, i.e., the
investigation of changes in the supply chain network structure
during the pandemic and the associated network characteristics
that influence resilience.

We utilized the Force Atlas2 algorithm, a force-based algo-
rithm that is used for large scale-free networks to spatialize
[54]. The algorithm positions the firms based on both attracting
and repulsing forces of associated node connections. The result
produces visual densities that denote structural densities and
the overall network structure of the supply chain. The resulting
network structure is captured in Fig. 4, with the associated
health status taken at the midpoint of a three-day interval in our
timeseries (which ranged from January 2020 to February 2021),
illustrated in Fig. 5. In February 2020, it is evident that the health
of almost all nodes had started deteriorating, and by March 2020,
most of the nodes had become vulnerable. However, the peak
of countries’ average SI (see Fig. 6) was in April 2020, with the
minimum value in September 2020. From November onward,
we observe only few nodes recovering from a vulnerable to a
moderate state, however reverting back to a vulnerable state in
February 2021 as a consequence of an increase in SI due to the
second wave of the pandemic. Also, from Fig. 5 we observe that
many firms are in a vulnerable (red) state but disconnected from
the network (especially in March 2020).

Jones et al. [36] noted that as supply chains becomes more
global, the uncertainty of product flows increases. We therefore
captured spatial complexity (which is sometimes also described
as supply base complexity, supply chain density, supply chain
complexity, and geographic dispersion complexity) as another
network attribute, illustrated in Fig. 7. As can be seen, many
suppliers are from the United States (more than 50%), followed
by China, Taiwan and the United Kingdom, making the supply
network more heavily dependent on the pandemic situation in
these countries. In addition, we can see that Microsoft had lost a
larger number of suppliers by February 2021 than Apple, which
may be due to Microsoft having the largest pool of suppliers
in the network to begin with. As such, with more suppliers
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Fig. 5. Network during the pandemic.

Fig. 6. Average SI progression.

Fig. 7. Network during the pandemic.

in the network, the frequency of disruptive situations, such as
inventory obsolescence and stock-outs, may increase. However,
our results suggest otherwise, siding with Craighead et al. [40],
who proposed that the effects of a supply distribution are not as
severely felt in a more dispersed supply chain. This is grounded
in the notion that if more nodes are concentrated in a region,
a single disruptive event can bring down more of these nodes.
Considering the ripple effect, Birkie and Trucco [64] observed
a similar behavior.

A small nuance to these studies is however that they are within
the context of supply chain disruptions, and not resilience, with
greater resilience often being associated with better performance
during times of crisis. As such, while supply chain disruptions
cause damage to a network, resilience captures the effective
response to these disruptions, offering an assessment of perfor-
mance. In this vein, Lu and Shang [46] showed that spatial com-
plexity exhibits a nonlinear influence on financial performance
within the context of disruptive events, with their direct effects
however being limited to specific regions that experienced a
disruption, for instance by a hurricane, forest fires, or floods.
This is quite different to the COVID-19 pandemic, which has
been causing disruptive effects worldwide. What also needs to
be recognized is that supply chain disruptions did not occur only
because of the pandemic itself, but also due to country-specific
policies aimed at curbing the spread. Therefore, countries that
were able to get the spread under control (i.e., countries that
exhibited more resilience) allowed trade to continue as much as
possible. To enhance the resilience of a supply chain network
we thus suggest a geographical dispersion of the supply base,
and formally propose the following.

P1: SCNR is positively affected by spatial complexity in the
event of a disruption.

In Section II-C, we highlighted several centralization metrics
that characterize a network. We compare and analyze some of
these metrics and visualize these in charts with respect to three
points in time: (a) Initial (t0) and (b) Mid-April, a time when
the SI was at its maximum (tx); and (c) mid-September, a time
when the SI was at its minimum after tx (ty). Fig. 8 shows how
node health varied with Average Degree across the three points
in time. Initially, at time t0, we observe many healthy nodes with
a high degree. As the network moves from t0 to tx, node health
deteriorates, as does the degree of the nodes. From tx to ty the
health of the nodes becomes somewhat better, and we observe an
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Fig. 8. Average degree versus node health (x-axis: Average degree, y-axis:
Node health).

Fig. 9. Frequency versus betweenness centrality (x-axis: Frequency, y-axis:
Betweenness centrality).

increase in degree for some of the nodes. The degree of a node is
the total number of edges (buyer-supplier relationships), while
the average degree of a network is the ratio of the total number
of edges to the total number of nodes during the period. Based
on this observation, we suggest that the Average Degree of a net-
work influences the resilience of the network. This expectation
is in line with Li and Zobel [15], who used simulation to detect a
negative relationship between average degree and the number of
healthy nodes during a disruption. A large supply chain network
is generally scale-free where few nodes have high degrees, in
addition to many companies being the end-suppliers with the
least degrees. Increasing average degree indicates increasing
connections of these low-degree suppliers connecting a greater
number of firms within the network. Therefore, as the flow of
material increases through these nodes, the disruption becomes
more severe and consequently the resilience of the network
decreases.

We therefore propose the following.
P2: SCNR is negatively affected by the average degree of the

network.
While average network-level characteristics reflect the struc-

ture of the network, node-level characteristics, such as between-
ness centrality, also reflect the influence of the nodes in the
network [62]. Nodes with a high Betweenness Centrality would
thus have a greater influence in the disruption [62]. In Fig. 9,
we observe that compared to t0, when the network structure was
undisrupted, we have a few nodes showing high betweenness
centrality during the disruption (tx and ty). One might assume
that the more often the nodes connect with other nodes in a
network, the more resilient the supply network will be. However,
Kim et al. [13] suggested that there is no correlation between
resilience and average betweenness centrality. Nevertheless, it
can be argued that betweenness centrality is a node-level metric,
and therefore rather than the average value of the whole network,
few significant nodes may influence network resilience. The
betweenness centrality of a firm is defined by its control and
influence in the network [65]. In a large scale-free network,
this control and influence over material flow and information is

Fig. 10. Closeness centrality versus frequency (x-axis: Closeness centrality,
y-axis: Frequency).

skewed in favor of few, select firms, due to the greater number
of effective and reliable buyer-supplier relationships they have
garnered over time. If these firms remain healthy, the rest of the
network remains safe as well [65].

We therefore propose the following.
P3: SCNR is positively affected by the average betweenness

centrality of few significant nodes.
Similar to betweenness centrality, another metric at the node-

level that characterizes centralization is closeness centrality.
This is along the lines of Li and Zobel [15], who reported
that along with betweenness centrality, closeness centrality is
also influential in determining SCNR. Based on its definition,
we suggest that firms that are also connected closely to tier
2 suppliers can exert greater influence in the supply chain. In
the event of a disruption, firms with greater closeness centrality
are able to process information faster and can make quicker
decisions to resist the disruption. A firm with high closeness
centrality exhibits more freedom from the influence of others
[66], which is a property that also protects connected firms from
getting disrupted. We note that during a disruption (tx and ty),
few nodes exhibit greater closeness centrality, as can be seen in
Fig. 10.

Hence, we propose the following.
P4: SCNR is positively affected by the average closeness

centrality of few significant nodes.

B. Empirical Analysis

To investigate our propositions, we ran multiple regression
models on the simulated results of the network characteris-
tics obtained from the real-world data. Regression is generally
applicable when the underlying model is uncertain, and an
explanation of a variable is sought through other variables [67].
Previous efforts to understand different aspects of supply chain
disruptions have also used regression [2], [36] by simulating
network structure results [15], [16].

Data on network characteristics of the above model were
collected, setting the dependent variable as SCNR. As discussed
in Section II-C-7., there are a variety of approaches in measuring
SCNR. Based on the discussion in Section II-A, especially in
light of the definition by Wieland and Durach [6], we consider
resilience to be an attribute manifested by several characteris-
tics. As the network persists through a disruption, many nodes
become disrupted, while few remain active but disconnected to
the larger network. Network resilience is then reflected by the
ability to strongly connect to these active nodes. Therefore, we

Authorized licensed use limited to: Qatar University. Downloaded on June 12,2023 at 07:06:59 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

TABLE V
CORRELATION OF COVARIATES

∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001.

operationalize SCNR by the formula in

SCNR =
Number of strongly connected nodes

Total number of nodes existing
. (3)

We retrieved the values of the covariates spatial complexity
(SCX), average degree (AD) and other network characteristics
using Gephi 0.9.2. For Betweenness centrality (BC) and close-
ness centrality (CC), we calculated the average values of the
common firms that ranked in the top 15 on degree centrality,
betweenness centrality, closeness centrality and eigenvector cen-
trality in the initial network structure. They are Apple, Microsoft,
Huawei, IBM, and Amazon Web Services. It is suggested that
a high clustering coefficient increases the vulnerability of the
supply chain [36], which is why we used the average clustering
coefficient (ACC) as a control variable. Other studies have
considered organizational size [16] and network type [15] as
controls. The effect of organizational size is already incorporated
in the model, and the network under study follows a scale-free
form throughout the disruption. The full model is specified
in (4). After transforming the variables to adhere to linearity
assumptions, we applied a linear regression model. No strong
correlations are present among the covariates (see Table V)

SCNR = β0 + β1 ∗ SCX + β2 ∗AD + β3 ∗ BC
+ β4 ∗ CC + β5 ∗ACC+ ∈ . (4)

We obtained 57 unique values of SCNR, which is sufficient
to effectively run a regression [67]. Table VI gives the results
of regression model We considered influential network charac-
teristics that can impact SCNR. We see from the results that
three of the four variables under investigation, i.e., average
degree, closeness centrality and spatial complexity, significantly
explain the dependent variable SCNR. Betweenness centrality
was less significant and showed a negative influence on SCNR,
contradicting our expectation. Spatial complexity had a higher
beta coefficient. We also found the average clustering coefficient,
a control variable, to be significant and having a positive effect
on resilience. Three out of the four propositions are supported,
and all have strong implications, which are discussed later.

TABLE VI
REGRESSION RESULTS

∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. [Note: The dependent variable SCNR was trans-
formed into an exponential form. All independent variables were transformed to
logarithmic forms].

V. IMPLICATIONS

A. Theoretical Implications

Our study addressed several important questions. First, recog-
nizing the pandemic as a special type of supply chain disruption
due to its global reach and repercussion, we aimed to explore
what happens to a global supply chain structure as the pandemic
progressed. The answer is more complex than just acknowledg-
ing that “it gets disrupted.” The disruption of a supply chain
network during the pandemic was captured through pandemic
control measures in the firms’ countries of operation. Based on
our agent-based model, we find that the network-type remained
scale-free throughout the event, even when the total number
of existing nodes came down to 115 (at the highest point of
disruption) from an initial 883 nodes. As such, the disruption
did not affect the network-type. This phenomenon adds to the
literature that has discussed the influence of network-type on
disruptions [2], [13], [34].

We also visualized the disruption as a time-series, offering
enhanced insights on the health of nodes and their spatial com-
plexity over time. We further addressed the important question
on what characteristics influence SCNR. We find that the average
degree has a negative influence, spatial complexity has a positive
influence, the betweenness centrality of important firms has a
negative influence, and the closeness centrality of important
firms has a positive influence. We also found the control variable
average clustering coefficient to positively influence SCNR.
Our theoretical contribution lies particularly in extending the
literature on SCRes, by adapting the view of supply chains as
CAS [8] and incorporating the ripple effect [3].

While operationalizing the variable SCRes using elements of
network theory, we underline the debate on SCRes perspectives
related to “engineering” and “social-ecological” resilience [6].
This has been particularly lacking in previous studies. For exam-
ple, Kim et al. [13] definition of SCRes, based on the number
of nodes/edges disrupted, considered a network disruption to
be binary. As evident from our study, a large network does not
become totally disrupted. In addition, Ojha et al. [55] resilience
index is based completely on “engineering resilience” assuming
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the initial level of measurement as the optimal level. Similarly,
Li and Zobel [15] developed multiple metrics considering an
initial level as the optimal state. Other metrics, like time-to-
survive and time-to-recover [68], follow the same view. Our
conceptualization of the network and its progression through the
pandemic captures both perspectives. In our model, the supply
chain network at all stages of the pandemic aims to get back
to the full health status of all firms, allowing all established
buyer-supplier relationships to operate, being only hindered by
pandemic control measures. This aligns with the engineering
thought of resilience whose capability enables firms to bounce
back to their original state.

However, we measure SCNR as the ratio of the number of
firms that are connected to the largest forming network relative
to the total nondisrupted firms in a time interval, rather than all
initially existing firms. This encapsulates the social-ecological
way of resilience, which is demonstrated by the ability to persist
in the optimal possible manner in the face of change. One may
argue that a firm may try to replace a disrupted supplier to adapt
to a new optimal state as modelled by Zhao et al. [16]. This is
valid, but during a prolonged disruption like the pandemic, new
suppliers are difficult to on-board and buyer-supplier relation-
ships take time to develop [69]. This is also evident from the
focal company in the article (Apple): only 12 new small-sized
firms out of a total of more than 200 suppliers were added in
2020. We do however concede that SCNR is just one attribute
[5], and our way of operationalization captures only the outcome
of resilience, and not the resilience capability itself.

We find spatial complexity as a strong factor that positively
affects SCNR (P1). The result is not surprising and supports
recent findings by Birkie and Trucco [64] via our modeling
of a real-world network. The result however causes some con-
cern over recent calls for reshoring or back-shoring to enhance
resilience. Average degree is another factor affecting SCNR.
Li et al. [37] find that average degree and network type did
not explain SCNR of a network better than other influential
characteristics, with however Li and Zobel [15] contradicting
this. We highlight here that the mentioned studies have simulated
networks of a maximum size of 500 across four average degrees:
2; 4; 6; and 8. In this article, based on a real-world network with
a network size of 883, the Average Degree does not go beyond
2 at any point during the disruptive event. This is where our
contribution lies, with the Average Degree exhibiting a negative
influence on SCNR in a scale-free network (P2).

Among previous studies, Kim et al. [13] did not find any
correlation with SCNR and either Betweenness Centrality or
Closeness Centrality. However, Li et al. [37] and Basole and Bel-
lamy [62] suggested that influential nodes affect the network’s
heath. We establish the role of influential nodes in SCNR, with
our finding suggesting that in a scale-free network, betweenness
centrality of influential firms adversely affects SCNR, while it is
the opposite for closeness centrality. It is important to note that
the relationship between SCNR and the discussed variables is
not linear, and we fitted a regression model only by transforming
them.

Our results have also important implications for supply chain
management. As such, our first proposition captures that when

firms are located in separate geographical regions, the risk of a
disruption is spread out. In scenarios like hurricanes, floods, or
even a pandemic, one supplier becoming non-operational does
not necessarily affect the whole network. However, other factors,
like supplier redundancy or ramp-up capacity in the supply
network, do play a role. In a supply chain network, there are
often “key players” that are boundary spanners between the end
consumers and higher-tier manufacturers [65]. Firms with high
betweenness centrality scores highlight the significance of these
entities, which possess considerable influence and control over
the flow of materials and information.

If they get disrupted and their production slows down or, in
the worst case, they disappear, other firms are likely impacted
greatly. It is thus critical for these key players to remain healthy,
so that the rest of the network can stay healthy as well, which
is the essence of proposition 3. With this understanding, if we
now imagine a supply chain network having the same nodes, but
a lesser degree of influence over few organizations, it indicates
that higher-tier manufacturers are connected with several other
firms. While this scenario is rarely observed in practice, since
higher-tier manufacturers generally only have a select number
of buyers [70], it would reflect an increase in average degree.
In light of our results, this would not favor the resilience of the
network. In a supply chain network, there also exist firms that are
close but not directly connected. This attribute is indicated by
high closeness centrality, allowing firms to have independence
and freedom from influence by other firms’ actions [66], high-
lighting the significance of proposition 4. The average clustering
coefficient also plays a role in the disruption and the associated
robustness [35]. In the context of a supply chain network, it offers
speed, information access and resource pooling capacity within
the clusters [71], thereby aiding in developing the structural
resilience of the network. While the influence of clustering in a
supply chain network is highlighted in the literature [34], [72],
the reasons for organizations to cluster is an avenue worthy
of future research. Regional proximity could be noted as one
factor favoring clustering, with however our results in Fig. 7 not
providing any evidence for this conjecture.

We also provide a methodological contribution by using visu-
alization as a technique to explore network structure dynamics.
Basole and Bellamy [62] had called supply chain researchers
to use visualization and network analysis to develop deeper
insights. We find a combination of visualization tools and em-
pirical analysis to be a meaningful process to understand supply
chain network problems.

B. Managerial Implications

The Global Risk Report 2021, a compilation by the World
Economic Forum [73], lists infectious diseases as the risk having
highest impact; a significant increase in perception compared
to earlier reports. Clearly, epidemics/pandemics are significant
disruptive events compared to other supply chain disruptions,
and it has been the COVID-19 pandemic that has brought
resilience to the fore for many managers. Based on a survey
report [74] of 1000 organizations in 2020, only a small minority
have been taking necessary actions to be resilient to crises,
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with as many as 44% of the organizations not mapping their
supply chain network. Our article indicates how the mapping
of a supply chain network can highlight the positions of other
firms in the network, allowing potential proactive mitigation
and intervention strategies. Advanced digital technologies can
enable this transparency and the ensuing collaboration in the
network, to address for instance the repercussions of the ripple
effect.

In light of our findings, the geographical dispersion of firms
in a large supply chain enhances the ability to tackle widespread
disruptions, such as a pandemic. The advice for practitioners is
to thus select suppliers with similar capabilities from distant ge-
ographies, which would prevent the ripple effect and the spread
of the disruption through the network, since a direct supplier
that sources from a single origin may have the chance to disrupt
the network. Similarly, too many buyer-supplier relationships
within a concentrated network increase flow complexity, which
is indicated by the average degree. Mapping the flow of a supply
chain for all products and services separately [7] should allow
managers to disentangle this complexity. Another important
aspect highlighted by our study was the role of few, important
firms. These firms are powerful intermediaries and are the supply
network lynchpins for many firms. Too much influence associ-
ated with these firms makes the network vulnerable.

Similarly, few firms in the supply chain are proactively man-
aging indirect suppliers, which may decrease the resilience of
the network. Both described situations indicate the necessity
of collaboration and visibility, the degree of which could be
determined by the identified factors (betweenness centrality and
closeness centrality). As such, when firms further develop their
supply chain network, betweenness centrality and closeness
Centrality metrics can be updated over time. Overall, the idea of
a network-level analysis of SCRes through SCNR is to comple-
ment firm-level understanding, but the described factors alone
are not sufficient to provide resilience for a supply chain—they
are however a critical element that should not be overlooked.
While these discussed parameters are uncommon in resilience
assessment practices, we encourage their application, and hope
that our illustration of their value and relevance in this work
provides motivation to do so.

VI. CONCLUSION

Taking a network perspective and considering the ripple effect
when considering SCRes was an intriguing context, which we
addressed in this article. In doing so, we answered the call for
more research on conceptualizing resilience beyond the firm
[17]. The pandemic has proven to be a costly affair for supply
chains [12], but also offered researchers an opportunity to revisit
theories of resilience [6]. Our article captures the essence of
this opportunity and offers a practical measure of SCRes in a
network. Our motivation to capture the disruption of a real supply
chain network as the pandemic progresses was accomplished
through visualization, offering a richness to the SCRes literature
not commonly present. The work in [12] considered premonition
to be careful when drawing linear associations between SCRes
and other variables and found this caveat to be true—we directly

addressed it while empirically testing our propositions. We
believe our study as being one of the first to analyze a real
disruptive event and the associated SCNR with empirical data.
Our contribution to practice also holds ground as we observe
most of the global firms finding issues with compliance of tier
2 suppliers and beyond [12].

Nevertheless, our study was not void of limitations. First,
while we considered the heterogeneity of nodes, we did not con-
sider the heterogeneity of edges. We viewed all buyer-supplier
relationship as equally weighted. Our logic was that the network
disruption due to pandemic control measures was not affected
by the strength of the buyer-supplier relationship. However,
strong buyer-supplier relationships was invaluable in helping
firms manage disruptions. In this vein, research was encouraged
to identify appropriate secondary data with which buyer-supplier
relationship strength can be assessed, and to incorporate this in
our model. Second, our disruption model was based on decision-
making logic that reflects our knowledge of supply chain dis-
ruptions, as it is difficult to obtain data on actual network mode
disruptions. Future research could endeavor to find applicable
data to capture this more directly, such as complementing the
current dataset with press releases or reports of actual disruptions
faced by the firms in the network.

Third, there should be some lag from the time SI increases
and when the node gets disrupted. Since the lag could vary
significantly depending on country and industry, we simplified
the model in this vein. A potential avenue to address this
shortcoming was to compare the time when restrictions were
implemented to the time when firms in that country first started
to experience challenges. Similar as above, this could be derived
from press releases or other reports about supply difficulties of
firms in the network. Finally, we assumed firms in the supply
chain network to be only disrupted at their headquarter location.
This assumption should be aimed to be relaxed in future research
by taking a more granular firm-level perspective.

Since availability of data on outsourced projects to firms in
other countries is extremely limited, this makes the associated
network construction rather complex. However, looking back
over the last two decades and the abundance of secondary data
that has become available, we are confident that such more
detailed data will become available in the future, enabling this
finer-grained investigation. Another fruitful avenue for future re-
search was the further investigation of the clustering coefficient.
What would be particularly intriguing was insight explaining or-
ganizations forming clusters in a supply chain network. Overall,
we believe that there was significant future scope in exploring
how organizational and network level characteristics influence
supply network resilience. It is our hope that the present article
provides motivation and inspiration to do so.
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