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Abstract: Aortic valve defects are among the most prevalent clinical conditions. A severely damaged
or non-functioning aortic valve is commonly replaced with a bioprosthetic heart valve (BHV) via the
transcatheter aortic valve replacement (TAVR) procedure. Accurate pre-operative planning is crucial
for a successful TAVR outcome. Assessment of computational fluid dynamics (CFD), finite element
analysis (FEA), and fluid–solid interaction (FSI) analysis offer a solution that has been increasingly
utilized to evaluate BHV mechanics and dynamics. However, the high computational costs and the
complex operation of computational modeling hinder its application. Recent advancements in the
deep learning (DL) domain can offer a real-time surrogate that can render hemodynamic parameters
in a few seconds, thus guiding clinicians to select the optimal treatment option. Herein, we provide a
comprehensive review of classical computational modeling approaches, medical imaging, and DL
approaches for planning and outcome assessment of TAVR. Particularly, we focus on DL approaches
in previous studies, highlighting the utilized datasets, deployed DL models, and achieved results. We
emphasize the critical challenges and recommend several future directions for innovative researchers
to tackle. Finally, an end-to-end smart DL framework is outlined for real-time assessment and
recommendation of the best BHV design for TAVR. Ultimately, deploying such a framework in future
studies will support clinicians in minimizing risks during TAVR therapy planning and will help in
improving patient care.

Keywords: cardiovascular hemodynamics; computational modeling; deep learning; graph convolutional
network; transcatheter aortic valve replacement; transcatheter aortic valve implantation

1. Introduction

In the last two decades, cardiovascular disease (CVD) has become the single and largest
cause of non-communicable disease deaths worldwide, which contributes to over 50% of
worldwide deaths. The World Health Organization (WHO) estimates that 17.6 million
people died of CVDs worldwide in 2012, proportionally accounting for an estimated
31.3% of global mortality [1]. Among CVDs, heart valve defects, particularly aortic valve
(AV) defects, are the most prevalent. AV regulates oxygenated blood flow exiting the left
ventricle through the aorta to the rest of the body. AV operates under complex and strong
hemodynamic forces. Defects in that valve can form congenitally, such as a bicuspid valve,
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or they might develop later in life, such as valve calcification. The incidence of AV defects
increases with age and reaches beyond 3% above the age of 65 [2].

A severely damaged or non-functioning aortic valve is replaced with a mechanical
heart valve (MHV) or a bioprosthetic heart valve (BHV). MHVs have enhanced durability
but are implanted via invasive surgery and require anticoagulant therapy upon implanta-
tion. BHVs can be implanted via open-heart surgery or via a less invasive transcatheter
aortic valve replacement (TAVR), which is also known as transcatheter aortic valve im-
plantation (TAVI); the former term is used for the remaining parts of this paper. In current
practice, MHVs are recommended for younger patients, and BHVs are recommended for
the elderly. With advancements in valve production technologies, BHVs are becoming more
popular and applicable to younger and lower-risk patients. With its minimally invasive
character, it is expected soon that the majority of valve replacements will be via TAVR.

For a successful TAVR, it is critically important to predict the performance of BHV
upon implantation. As there is no direct view or access to the affected anatomy, accurate
preoperative planning is crucial for a successful outcome. The most important decisions
during planning are selecting the proper implant type/size as well as positioning the
valve in the aortic root. Due to the wide variety in valve sizes and types and non-circular
annulus shapes, there is often no obvious choice for a given patient. Most clinicians base
their final decision on their previous experience. However, it is desirable to mechanically
assess selected BHV before implantation to ensure proper valve function with minimal
complications after implantation.

Mechanical assessment refers to being able to realistically simulate the opening and
closing of a valve to examine valve function. Such an assessment will prevent improper
valve selection that could lead to possible complications, such as paravalvular leaks or
conduction problems, which are major issues for TAVR. Assessment of mechanical stresses
using computational modeling, such as computational fluid dynamics (CFD) and finite
element analysis (FEA), offers a solution that has been increasingly utilized to evaluate
native and bioprosthetic valve mechanics. However, such patient-specific models usually
require complex procedures to set up and long computing times to obtain final simulation
results, preventing prompt feedback to clinicians in time-sensitive clinical applications.
A potential practical and effective solution for implementing engineering analysis to the
mechanical assessment of BHVs is to incorporate deep learning (DL)-based systems to
expedite and simplify the computational biomechanical analyses relevant to TAVR.

Recently, DL algorithms have been investigated as a fast and computational light alter-
native to traditional computational methods to compute patient-specific hemodynamics,
whereas only very few studies have considered TAVR as an application. Hence, there exists
a good room for improvement in addressing the current gaps in the literature. Therefore,
in this study, we conduct a comprehensive review of current DL approaches to predict
cardiovascular hemodynamics, providing a detailed comparison, highlighting current
limitations, and recommending some future directions. First, we introduce the classical
medical approaches for TAVR, and we focus on medical imaging modalities. Then, we
provide a brief overview of the end-to-end conventional computational modeling pipeline
for assessing TAVR outcomes, including geometry segmentation from cardiac computed
tomography (CT) or magnetic resonance imaging (MRI), hemodynamic prediction, and
derived parameters of clinical relevance. Next, we conduct a comprehensive review of
current DL alternative for each stage of the conventional approach, including segmentation,
hemodynamic prediction, and pre- and post-operative clinical assessments. Since hemo-
dynamic prediction is the key component in a DL-based system for TAVR, we provide
a detailed comparison of related studies, highlighting the utilized datasets, the achieved
results, and the deployed models.

The rest of the paper is organized as follows. Section 2 briefly reviews the classical
approaches for planning and assessing TAVR, highlighting important considerations for
successful procedures. Section 3 outlines and compares different medical imaging tech-
niques used for TAVR pre- and post-operative assessments. Section 4 overviews the usage
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of computational modeling for TAVR procedures, while Section 5 provides a comprehensive
review of recent DL approaches for TAVR procedures, starting from aortic segmentation
through hemodynamic prediction to treatment planning and TAVR outcome assessment.
The current limitations and future directions are discussed in Section 6, and a unified DL
framework is outlined for real-time assessment and recommendation of the best BHV
design for TAVR. Finally, the conclusions are drawn in Section 7. Figure 1 represents the
sections of this review.
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2. Important Considerations for a Successful TAVR

While conventional MHVs or BHVs are surgically implanted via invasive open-heart
surgery, TAVR has been introduced about two decades ago as an alternative for minimally
invasive implantation of new-generation BHVs [3]. For TAVR, a stented valve is inserted
into the aortic root using a catheter through the femoral, subclavian, or carotid artery.
The catheter is guided into the heart through moving X-ray images (fluoroscopy) and
echocardiogram. Transcatheter BHVs are implanted through the native leaflets. These
valves are implanted while diseased native valves are still in place. The Placement of
Aortic Transcatheter Valve (PARTNER) trials demonstrated TAVR superiority in short- and
medium-term mortality, which resulted in the establishment of this new revolutionary
treatment in the last decade with growing safety and efficacy [4]. Given its promises, TAVR
has recently been approved for the intermediate-risk patient population, who will benefit
from shorter hospital stays [5], and have even shown superior safety for low-risk patient
groups compared to surgical valve replacement [6,7]. In the near future, transcatheter
valves are expected to have comparable durability with surgical valves, resulting in the
complete replacement of surgical valve replacement therapy with TAVR, as foreseen from a
2006 poll in Europe [3].

Unlike surgical replacement valves in which the valve is sutured to the root and the
native valve is removed, in TAVR, a stented BHV is anchored to the aortic root while the
native valve is still in place. For this practice, the selection of a proper valve, as well as its
implantation position, is of utter importance for success. Major complications following
BHV implantations with TAVR include migration of the valve; paravalvular regurgitation
between native and implanted valves; excessive pressure from the stent on the root, which
may cause conduction anomalies or annular rupture; and coronary obstruction [8]. A small
BHV might migrate and result in paravalvular regurgitation, while a large BHV can cause
conduction problems and annular rupture. It has been shown that too low or high posi-
tioning can affect paravalvular regurgitation; too high positions can also result in coronary
obstruction, whereas too low positions can cause conduction problems [9]. An implanted
valve should also work properly with adequate leaflet coaptation and maximum effective
orifice area for maintaining smooth hemodynamics with no transvalvular regurgitation,
with normal levels of wall shear stress (WSS), and with normal levels of a transpulmonary
pressure gradient. Maintaining normal WSS levels on the leaflets and aorta is vital for
preventing degeneration of the tissue, as well as for preventing activation of platelets which
might result in the generation of microemboli and thrombus. Maintaining normal pressure
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gradients is important for preventing fatigue failure of the valve and preventing failure
risk of the left ventricle [10].

For a successful TAVR to prevent the complications listed above and to ensure the
proper functioning of the valve, it is critically important to predict the performance of BHV
upon implantation. As there is no direct view or access to the affected anatomy, accurate
preoperative planning is crucial for a successful outcome. The most important decisions
during planning are selecting the proper implant type/size and positioning of the valve.
Due to the wide variety in device sizes and types and non-circular annulus shapes, there is
often no obvious choice for a specific patient and most clinicians base their final decision
on their previous experience. However, it is desirable to mechanically assess selected
BHV before implantation to ensure proper valve function after implantation. Mechanical
assessment refers to being able to realistically simulate the opening and closing of the valve
to examine the valve function. Such an assessment will prevent improper valve selection
that can lead to possible complications. While current practice for clinicians is performing
an anatomical examination of the aorta geometry for optimal valve selection, more recently,
CFD approaches are being evaluated to look at different scenarios of valve operation before
implantation. Below, we explain the conventional medical image-based approach as well
as the new CFD approach for TAVR.

3. Medical Imaging for TAVR

A wide range of imaging technologies and techniques is used to access heart conditions
and obtain an accurate understanding of the cardiovascular pathology [11]. Cardiovascular
imaging can be categorized into invasive and non-invasive techniques. Invasive imagining
is a particularly relevant specialized modality during procedures and surgical interven-
tions, such as inter-cardiac echocardiography for catheter-based procedures, as it facilities
real-time tracking of catheter locations and early prediction of complications [12]. On the
other hand, non- or minimally invasive cardiovascular imaging is commonly used for heart
assessment and treatment planning of complex surgical interventions, including echocar-
diography, cardiac computed tomography (CT) scans, and cardiac magnetic resonance
imaging (MRI).

Echocardiography (ECHO) provides information on the size, morphology, and func-
tions of heart valves and chambers. Being cost-effective and safe, ECHO is often the starting
point in managing cardiovascular diseases. Doppler may also be combined with ECHO
to show heart regions of poor blood supply. However, the quantification of blood flow in
ECHO relies on simplified assumptions based on local 2D flow vectors from low-resolution
temporal and spatial image features. Thus, it is highly sensitive to noise, acquisition pa-
rameters’ values, and inter-operator variability [13,14]. Recently, 3D transesophageal (3D
TEE) and transthoracic echocardiography (3D TTE) are becoming widely available due
to advances in transducer technology. Three-dimensional TEE has proven beneficial in
real-time surgical guidance for procedures such as mitral valve repair [15,16]. Moreover, 3D
echocardiography can help in post-operative assessment where it can be used to calculate
mechanical strain, providing a mechanistic understanding of left ventricle dysfunction
before and after cardiac surgery [17].

In comparison with ECHO, cardiac CT facilitates the contrast differentiation between
blood and tissues with superior spatial resolution. However, CT scans are relatively ex-
pensive, and this limits their use in resource-constrained settings [18]. Besides, patients get
exposed to varying radiation levels depending on the CT protocol [19]. In terms of clinical
applications, cardiac CT is a routine test for planning TAVR [20]. Moreover, CT is widely
used for accurate 3D reconstruction of major heart valves and arteries [21–23]. Recently,
cardiac computed tomography angiography (CCTA), together with cardiac MRI, have been
utilized to generate high-fidelity virtual simulations for cardiovascular procedures, which
can help optimize the approaches for surgery before hospitalization [24]. Multidetector
CT along with transthoracic/transoesophageal echocardiography plays a key role in the
pre-operative assessment of suitability for TAVR in measuring the size of aortic annuals,
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assessing the amount of calcification in the aortic root, and predicting the angle of deploy-
ment. CT accurately detects the aortic root size to select the proper valve size to avoid the
complication of an undersized or oversized valve. Pre-operative CT also helps clinicians in
the selection of route access. Any incidental findings in the chest, abdomen, or pelvis, such
as a hidden malignancy, may affect the decision of TAVR.

During the procedure, accurate positioning of the valve during TAVR is achieved using
TEE echocardiography along with fluoroscopy. TEE is used immediately after deployment
to assess the location and severity of aortic regurgitation. TEE is also used to detect post-
operative complications, such as impairment of the coronary ostia, and also to detect any
suspicion of coronary compromise.

MRI is a rapidly advancing non-invasive imaging technique that enables precise eval-
uation of heart function. A cardiac MRI sequence provides enhanced temporal resolution
compared to CT scans but at the cost of a more extended scanning time [25]. A main
limitation of MRI is that it cannot be used for patients having electro-metal implants, such
as defibrillators, pacemakers, cochlear implants, and insulin pumps [25,26]. Modern pace-
makers and defibrillators have an MRI mode that can be turned on during MRI scanning
and turned off after MRI acquisition [27], thereby mitigating this limitation. MRI can also
be used as an alternative CT in pre-TAVR planning, specifically, for patients who have
contradictions to iodinated contrast medium due to severe allergic reaction or severely
impaired renal function. MRI can reliably assess the severity of aortic stenosis when there is
a discrepancy between clinical findings and ECHO due to poor autistic window, low flow,
or inability to perform stress echocardiography [28]. MRI can provide both 3D volumetric
visualization of a still heart and 4D blood flows of a moving heart. While capturing the
time-varying cardiac anatomy, MRI can also acquire images of intravascular hemodynam-
ics. Hemodynamics refers to the physical study of the blood flowing, together with solid
structures, through heart chambers, arteries, and veins. Recently developed MRI machines
enable full 4D mapping of intravascular flows, providing a crucial function to assess the
hemodynamics of CVD patients.

Although 4D flow MRI images provide a full overview of blood flow inside the
cardiovascular system, there are a few limitations associated with spatiotemporal resolution,
velocity encoding, and signal-to-noise ratio (SNR). The current resolution for 4D flow MRI
images is limited, which leads to inaccurate calculation of some hemodynamic parameters,
such as WSS. To address this need, several studies have recently investigated the use of
CFD in combination with 4D flow MRI to compute hemodynamics. In a CFD simulation,
blood flow hemodynamic parameters, such as pressure and velocity fields, are computed
by solving the continuity equation and Navier–Stokes equations within the regions of
interest (ROI). Nevertheless, CFD simulations depend on the accurate geometry of the ROI
and personalized inlet and outlet boundary conditions. Therefore, 4D MRI can complement
CFD solutions to a certain extent. With an advantage over MRI, CFD can accurately
theoretically model blood flow with unlimited spatiotemporal resolution.

4. Computational Modeling for TAVR Procedures

The opening and closing of the aortic valve is a very dynamic and complex event
from a fluid mechanical perspective. Computational modeling is a powerful biomedical
research approach for simulating blood flow hemodynamics and tissue behavior, whereas
direct observations provide limited information. Relevant to TAVR, computational models
potentially allow the virtual implantation of multiple device sizes at different implantation
depths for a specific patient to provide useful insights that facilitate decision-making by
physicians. To obtain good accuracy and satisfy the conditions in the model boundaries,
such as blood pressure and velocity profile, the mechanical properties of the aortic root
and bioprosthetic valve need to be properly defined. The relevant physical differential
equations are then numerically solved to simulate the implanted valve. The simulation
results represent the possible operation outcomes and the predicted performance of the
implanted valve. To be valid, simulations should reveal mechanical stress on the tissue
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structures, such as contact pressure and WSS on the aortic wall, and principal stress on
the aortic leaflets and prosthetic valve, and should show blood flow profiles for assessing
heart function.

Numerical approaches are used to solve the equations of continuum mechanics for
leaflet deformation and hemodynamics of blood flow. Relevant computational models
can be categorized into three main classes: FEA, CFD, and fluid–structure interaction (FSI)
analysis [29]. FEA models include only the structural domain (i.e., aortic root, native and
prosthetic valve leaflets), and these analyses allow the investigation of the structures to be
performed by solving the continuum mechanical equations. For FEA models, the effect
of surrounding blood is considered by applying a transvalvular uniformly distributed
pressure load to the leaflets as a boundary condition. This simplified model type neglects
blood flow and, therefore, does not reliably simulate the dynamics of the valve. CFD
simulations provide information on the pressure and velocity fields within the fluid domain
by solving the continuity and Navier–Stokes equations. This approach excludes structural
fields and, hence, does not allow an assessment of structures, such as the movement of
leaflets. For an accurate dynamic analysis that incorporates blood flow during the cardiac
cycle coupled with the structural mechanics of the valve, FSI analysis is required as it
considers both the structural and the fluid flow domains. In these simulations, the load
applied to the leaflets is the result of coupling between two domains, as in the real case,
and, hence, FSI models are essential to accurately simulate the full dynamic behavior of a
BHV. Only such advanced models will enable a comprehensive assessment of implanted
(or to be implanted) BHVs. Due to the high complexities in computational modeling of FSI,
most relevant works have either adapted the FEA or CFD approaches.

FEA has been employed in the crimping procedure for virtual pre-deployment and
re-coiling during the virtual deployment process to assess mechanical stress on a BHV’s
stent structure [10,30–39]. FEA studies have also focused on determining the stent contact
areas on walls for assessment of anchoring [31,40]. FEA also has been used to determine
the contact pressures on aortic roots by the stent, and the degree of apposition between the
prosthesis stent and aortic root to assess the risk of conduction problems [31,32,38,39,41–47].
Moreover, FEA has been utilized to assess the risk of tissue degeneration by computing
the structural stresses on leaflets for different valve designs and different implant depth
positioning [31,33,37–39,45,46,48]. CFD studies, on the other hand, have revealed blood
flow dynamics, enabling assessment of valve function and identification of paravalvu-
lar leakages [10,35,39–41,49,50] for different valve designs and different implant depth
positioning.

While FEA and CFD studies provide limited information on structural stresses or
flow hemodynamics, FSI analysis works on a comprehensive assessment of mechanical
stresses on the BHV stent structure, aortic root, and the native and prosthetic leaflets caused
by changing blood flow dynamics owing to valve motion [30,32–34,36,38,39,47,51–53].
An end-to-end conventional computational modeling approach for assessing the TAVR
procedure is shown in Figure 2. Computational approaches are very powerful in assessing
different valves for specific patients prior to TAVR, but their models suffer from long
computational times and are not practical or readily available to clinicians. There is great
potential that machine learning (ML) or DL approaches can expedite these models, which
will be explained in the coming sections.



J. Clin. Med. 2023, 12, 4774 7 of 25
J. Clin. Med. 2023, 12, x FOR PEER REVIEW 7 of 26 
 

 

 
Figure 2. An end-to-end conventional computational modeling approach for assessing TAVR pro-
cedure: (I) patient-specific CT/MRI segmentation, (II) meshing, (III) CFD analysis, (IV) FEA mod-
eling, and (V) FSI analysis. The figure captions are taken from *1 to *4 where they represent the 
following references [31,33,34,38], respectively. 

5. Deep Learning for TAVR Procedures 
The immense development in DL techniques in recent years has led to state-of-the-

art performances in various computer vision tasks, such as object detection, image classi-
fication, and image segmentation. This breakthrough has led to increased deployment of 
DL-based solutions across multiple life science fields, including the domain of biomedical 
health problems and complications. Specifically, convolutional neural network (CNN) has 

Figure 2. An end-to-end conventional computational modeling approach for assessing TAVR proce-
dure: (I) patient-specific CT/MRI segmentation, (II) meshing, (III) CFD analysis, (IV) FEA modeling,
and (V) FSI analysis. The figure captions are taken from *1 to *4 where they represent the following
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5. Deep Learning for TAVR Procedures

The immense development in DL techniques in recent years has led to state-of-the-art
performances in various computer vision tasks, such as object detection, image classification,
and image segmentation. This breakthrough has led to increased deployment of DL-based
solutions across multiple life science fields, including the domain of biomedical health
problems and complications. Specifically, convolutional neural network (CNN) has been
proven extremely beneficial in numerous biomedical imaging applications, such as brain
tumor detection [54], skin lesion classification [55], breast cancer detection [56], Alzheimer’s
disease detection [57], and lung pathology screening [58].

In recent years, DL has been widely investigated for various cardiac imaging ap-
plications, including diagnostic, prognostic, risk stratification, and therapeutic/surgical
treatment planning [11]. Consequently, DL algorithms have been utilized across every
aspect of cardiac image analysis, starting from efficient acquisition, segmentation, motion
tracking, and disease classification to modeling genotype–phenotype interactions. Several
studies have used deep architectures to enhance and reconstruct high-quality CT scans
from lower-quality ones so that patients do not need to receive high radiation doses during
the scanning process [59,60]. In a similar approach [61], encoder–decoder (E-D) CNN has
been deployed for MRI super-resolution, enabling faster acquisition while maintaining
low acquisition time. Besides, several studies have used DL algorithms for automatic
segmentation of the heart [62], heart chambers [63], and major blood vessels (such as the
aorta) [64]. Moreover, DL has been used for diagnosis, anomaly detection, and calcification
scoring [65–69]. The authors in [65] proposed a three-stage DL system for early diagnosis
of myocardial infarction from ECHO images. Velzen et al. [66,67] utilized a deep CNN
model to automatically score coronary artery calcium in low-dose CT. Lessmann et al. [68]
proposed a two-stage CNN architecture to detect coronary, thoracic aorta, and valvular
calcification from low-dose CT. In [69], multi-task recurrent CNNs were deployed to detect
and characterize coronary plaque types. In addition to diagnostic capabilities, machine
learning (ML)/DL algorithms can assist clinicians in predicting mortality risk [70,71],
intra-operative online prediction [72], longitudinal post-intervention monitoring of pa-
tients [73,74], and providing feedback and expediting rehabilitation [72,75,76]. On the
contrary, just recently, DL algorithms have been investigated as a fast and computational
light alternative to traditional CFD methods to compute patient-specific hemodynamics.
In this section, we will provide a comprehensive review of current DL alternatives for
each stage of the conventional approach, including aorta geometry segmentation from
CT/MRI volumes, hemodynamic prediction, and pre- and post-operative clinical assess-
ment. Figure 3 illustrates a graphical representation of related studies on DL alternatives
for each stage of the conventional TAVR procedure planning approach, including (A)
aorta segmentation, (B) hemodynamic prediction, and (C) pre- and post-operative clinical
outcome assessments.
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Figure 3. Graphical representation of related studies on DL alternatives for each stage of the con-
ventional TAVR procedure planning approach including, (A) aorta segmentation, (B) hemodynamic
prediction, and (C) pre- and post-operative clinical outcome assessments. The figure captions high-
lighted with “*1” are cited from the following study [77].

5.1. Aorta Segmentation Using Deep Learning

In recent years, DL algorithms have been widely investigated for automatic segmenta-
tion of the heart [62], heart chambers [63], and major blood vessels such as the aorta [64].
Cardiac and aorta image-based segmented models derived from MRI/CT scans are being
used clinically to simulate blood flow in the coronary arteries of individual patients to
aid in the diagnosis of disease and in planning treatments and procedures, such as TAVR.
Cheung et al. [78] utilized a compact variant of U-Net architecture to segment the aorta and
coronary artery network from CTCA scans, achieving a dice similarity coefficient (DSC) of
91.2%. Shen et al. [79] optimized a 3D U-Net with an attention gate module to enhance the
vessels’ segmentation while suppressing irrelevant regions, and their results achieved a
90.5% DSC.

Moreover, numerous studies have investigated full heart segmentation by stratifying
the seven heart substructures, including the ascending aorta (AA). The majority of these
studies trained and evaluated DL models using the MM-WHS Challenge 2017 dataset [80],
which comprises 20 labeled and 40 unlabeled CT volumes, as well as 20 labeled and
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40 unlabeled MRI volumes. Liu et al. [81] utilized a two-stage 3D U-Net to first segment
the whole heart by removing irrelevant lung and rib regions and then segment the heart’s
main substructures. Superior aorta segmentation performance was achieved, with a 95.5%
DSC. Ye et al. [82] incorporated multi-depth fusion with 3D U-Net to better extract context
information, reaching a 96.7% DSC. Wang et al. [83] introduced different modified attention
mechanisms to lead 3D U-Nets to focus on more salient information. The joint attention
gate (AG) and U-CliqueNet (UCNet) modules showed the best performance for aorta
segmentation, with a 96.8% DSC.

On the other hand, creating ground-truth cardiac segmentation masks to train DL
models is a tedious task, which also suffers from high inter- and intra-observer variability.
Therefore, Vesal et al. [84] proposed a novel unsupervised domain adaptation method
(UAD) based on adversarial learning to leverage source-domain labeled CT data to generate
labels (masks) for unlabeled target-domain MRI data. Wang et al. [62] proposed a few-shot
learning framework where semi-supervised approaches are utilized along with a self-
training strategy for whole heart segmentation, with only 4 labeled CT scans being used for
training and 16 CT scans being used for testing. The model showed a DSC value of 94.3%
to segment the aorta region. A brief comparison of related studies on aorta segmentation is
shown in Table 1.

Table 1. Comparison between studies on aorta segmentation using deep learning methods in terms
of utilized datasets, deployed models, and achieved results.

Ref.
Dataset

DL Model Results
3D CT/MRI Scans 2D Slices

[78] 69 CT Scans 14,597 2D U-Net DSC 91.2%

[79] 70 CT Scans 11,200 Attention Gate 3D U-Net DSC 90.5%

[81] 20 CT and 20 MRI
(MM-WHS Challenge 2017) _ Two-Stage 3D U-Net DSC 95.5%

[82] MM-WHS Challenge 2017 _ Multi-Depth Fusion U-Net DSC 96.7%

[83] MM-WHS Challenge 2017 _ AG-UCNet DSC 96.8%

[84] MM-WHS Challenge 2017 _ UAD DSC 81.3%

[62] MM-WHS Challenge 2017 _ Few-Shot Learning Framework DSC 94.3%

5.2. Cardiovascular Hemodynamic Prediction Using Deep Learning
5.2.1. Utilized Dataset

Although CFD is a primary tool to model cardiovascular hemodynamics, the high
computational costs and the complex operation of patient-specific computational analysis
hinder its application. Recently, numerous studies started to deploy DL to predict the
hemodynamics of various parts of the cardiovascular system [77,85–91], such as the aorta,
coronary arteries, and left atrial appendage. DL models need a large and diverse amount
of data to ensure good generalization performance on unseen data and to model the
complex relationship between blood vessel shapes and hemodynamics. Most of these
studies utilized limited clinical data from a cohort with only a few hundred CT/MRI
records from patients/healthy subjects. Consequently, to increase the dataset size, synthetic
cardiac geometries have been generated using statistical shape modeling (SSM) based on
principal component analysis (PCA); the full approach is detailed in [92,93]. By varying
the most meaningful eigenvalues with SSM models, synthetic geometries are ensured to
capture significant shape variations, such as the overall size change, diameter variation,
and curvature vibration. Liang et al. [85,86] generated 729 synthetic aorta geometries
using SSM based on 25 CT scan records from ascending aortic aneurysm (AsAA) patients.
The authors in [87,88] generated 300 left atrial appendage (LAA) virtual geometries using
103 real cardiac CT records. The authors in [89] created 3000 geometries based on 228 3D
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MRI records. Additionally, the flow boundary conditions from 87 4D MRI records were
utilized with statistical distribution modeling (SDM) to obtain the inlet vector field for
synthetic geometries. Li et al. [77] synthesized 1110 aorta geometries based on 110 CT scans
for patients with LAD stenosis before and after coronary artery bypass surgery. A brief
comparison of the utilized datasets in related studies is tabulated in Table 2.

Table 2. Comparison between studies for predicting hemodynamics using deep learning approaches
in terms of utilized datasets, synthetic datasets, and whether the dataset is available publicly.

Ref. Dataset Synthetic Dataset Availability

[85] 25 CT scans from AsAA patients 729 geometries created using SSM
based on PCA [92,93]

√

[86] Similar to [85] Similar to [85]
√

[94] NA
6000 geometries based on different
parameters (i.e., AsAA length and
curvature)

[87] 103 cardiac CT scans 300 LAA geometries created using
SSM based on PCA

√

[88] Similar to [87] Similar to [87]
√

[95] 127 coronary artery CT scans
3302 modified bifurcation
geometries based on generic shape
change [96]

[89]
- 143 3D MRI scans from CoA Patients
- 85 healthy 3D MRI scans
- 87 4D MRI scans to obtain flow boundary conditions

3000 aortic geometries and inlet
vector fields created using SDM

[90] 120 coronary arterial geometries (with/without stenosis)

[97] NA
4000 AsAA and carotid bifurcation
2D geometries created using
in-house software [98]

[77] 110 CT scans from patients with LAD stenosis 1110 geometries

[91] - 256 synthetic and real LAA geometries
- 114 real LAA geometries

[99] 90,941 valve closure simulations

[100] 3500 mechanical aortic valves with varying opening
angles in randomly generated aortic root geometries

5.2.2. Achieved Results

A detailed comparison between available studies for predicting hemodynamics using
DL approaches is presented in Table 3. Liang et al. [85] proposed a DL model to directly
estimate the stress distributions of the aorta for AsAA patients. They developed a fully
connected neural network (FCN) with an autoencoder structure, which can be used as a
surrogate to FEA where it can compute stress distributions a few orders of magnitude faster
than FEA, with an average error of 0.891% and 0.492% in the peak von Mises stress and
von Mises stress distributions, respectively. In a continuation of the previous work [85],
Liang et al. [86] trained and evaluated an FCN to estimate the steady-state distributions of
pressure and flow velocity inside the thoracic aorta as a fast alternative to CFD. The trained
model was capable of predicting the pressure field with an average error of 1.427% and
the velocity magnitude field with an average of 1.961%. Filipovic et al. [94] investigated
different regressor models to predict maximal wall shear stress (MWSS) for AsAA patients,
including multilayer perceptron (MLP), multilinear regression (MLR), partial least square
(PLS), and recursive partitioning and regression trees (RPART), where MLP achieved the
best results with a 0.001 RMSE value.
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Table 3. Comparison between studies for predicting hemodynamics using deep learning approaches in terms of computational modeling used to generate the target
results to train DL models, the input and output of the DL models, the deployed DL models, and the achieved results.

Ref Computational
Modeling

Input
Geometry Output DL Model Predicted Hemodynamic Results Derived Parameter Results

[85] FEA Aorta geometries Aortic wall stress
distributions PCA + MLP

Estimated stress distribution:
NMAES11 of 0.492%,
NMAES22 of 0.492%, and
NMAES12 of 0.492%
- Estimated peak stress value:
NMAES11 of 0.891%,
NMAES22 of 0.891%, and
NMAES12 of 0.891%

Estimated stress
distribution:
NMAEVon Mises of
0.492%
- Estimated peak stress
value:
NAEVon Mises
of 0.891%

[86] CFD Aorta geometries Pressure field and velocity
field magnitudes MLP

- Pressure field:
NMAE of 1.427%
- Velocity magnitude:
NMAE of 1.961%

[94] CFD Aorta geometries MWSS

(1) MLR
(2) PLS
(3) RPART
(4) MLP

- MLP:
MAE of 0.001%

[87] CFD LAA geometry ECAP map (1) MLP
(2) PCA + MLP

- MLP:
MAE of 0.646% and
NMAE of 4.720%
- PCA + MLP:
MAE of 0.649% and
NMAE of 5.756%

Binary classification based
on ECAP values (subject at
risk or safe)

[88] CFD LAA geometry ECAP map (1) PCA + MLP
(2) ED-CNN

- PCA + MLP:
MAE of 0.73%
- E-D CNN:
MAE of 0.63%

Binary classification based
on ECAP values:
- PCA + MLP
MAE 81.7%
- E-D CNN
MAE 87.9%

[95] CFD Coronary artery TAWSS CNN NMAE of 10.38%

[89] CFD Center-line based shape model
and flow boundary conditions

WSS, SFD, and KE along the
centerline

Encoder NN
+LSTM
+1D DenseNet

[90] CFD
Hand-crafted features for each
node in the coronary artery
geometry

Pressure field and velocity
field magnitude at a specific
node

MLP

- Pressure field
accuracy of 98.7%
- Velocity magnitude
accuracy of 93.2%
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Table 3. Cont.

Ref Computational
Modeling

Input
Geometry Output DL Model Predicted Hemodynamic Results Derived Parameter Results

[97] CFD 2D geometry of AsAA and
carotid bifurcation WSS GCRF

- AsAA
coefficient of determination of 0.93
- Carotid bifurcation
coefficient of determination of 0.95

[77] CFD
Geometry containing aorta,
coronary arteries, and bypass
graft

3D pre-operative and
post-operative velocity and
pressure field

PointNet

Aorta and superior aortic branch artery
- Pre-operative values:
NMAEPressure of 4.30% and
NMAEVelocity of 6.01%
- Post-operative values:
NMAEPressure of 4.28% and
NMAEVelocity of 6.02%

[91] CFD LAA geometry ECAP
(1) PCA + MLP
(2) E-D CNN
(3) Geometric PointNet

- PCA-MLP
MAE of 0.608%
- ED-CNN with Cartesian mapping
input:
MAE of 0.651%
- ED-CNN with Bull’s eye mapping
input:
MAE of 0.654%
- Geometric CNN:
MAE of 0.521%

[99] FEA

- Aorta geometry with
undeformed heart valve
- Aortic pressure
- Valve material property

- Deformed, closed shape of
the heart valve
- Coaptation area

Autoencoder-CNN

- Valve deformation:
Euclidean distance of 0.0649 cm
- Coaptation area:
CC of 0.933
- RMSE of 0.117 cm2

[100] CFD Aortic root with mechanical
valve

Pressure field and velocity
field magnitude U-Net MSE < 0.06
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Morales et al. [87] investigated the hemodynamics of more complex geometry, LAA,
where the prediction of endothelial cell activation (ECAP) could help assess the risk of
thrombosis. Two DL models were proposed: a naïve neural FCN and a PCA-FCN model,
where PCA helped to reduce the dimensionality and produce a more compact model. Both
models predicted the ECAP reliably, with an average error of 4.72% and 5.75% for FCN and
PCA-FCN, respectively. To further enhance the performance and accelerate the inference
time, Pinilla [88] utilized CNNs to predict the hemodynamics of LLA geometry. An encoder–
decoder (E-D) CNN was deployed, showing higher performance with an average error of
0.63% when compared to 0.73% for the PCA-FCN model [87] over a dataset of 206 synthetic
LAA geometries. Moreover, the E-D CNN exhibited better classification performance
with 87.9% accuracy when compared to 81.7% for the PCA-FCN [87]. Gharleghi et al. [95]
proposed a deep CNN model to estimate the time-averaged wall shear stress (TAWSS)
in coronary artery geometry, achieving an NMAE of 10.38%. Yevtushenko et al. [89]
proposed a deep architecture that combines MLP, long short-term memory (LSTM), and 1D
DenseNet to model the hemodynamics of patients with aortic coarctation using centerline
aggregated (i.e., locally averaged) geometries. Farajtabar et al. [90] proposed an artificial
neural network (ANN) to predict the velocity and pressure fields inside a coronary arterial
network with the presence and absence of abnormalities, such as stenosis. The model
showed reliable performance with average prediction accuracies of 98.7% and 93.2% for
the pressure and velocity magnitudes, respectively. However, unlike previous studies
where the hemodynamics of the entire geometry is predicted in a single forward pass, the
proposed model in [90] predicts the hemodynamics for a single point in the arterial network
one at a time; hence, it needs a larger inference time, thus making it less applicable for time-
sensitive applications. Besides, hand-crafted features are used as the input to the network,
unlike previous approaches where the model learns the optimum set of features from the
input geometry throughout the training process. Jordanski et al. [97] investigated different
alternatives for transient analysis of WSS distribution at different time points during the
cardiac cycle for AsAA and carotid bifurcation geometries. Gaussian conditional random
field (GCRF) achieved the best results, with a 0.93 and 0.95 coefficient of determination for
the AsAA and carotid bifurcation models, respectively.

Li et al. [77] proposed a modified version of PointNet [101] to model the internal
hemodynamics of aorta geometries for patients with LAD stenosis before and after coronary
artery bypass surgery. The deployed architecture showed a high agreement with the CFD
results, with an average prediction accuracy of 90% and a high computational efficiency by
predicting the hemodynamics within one second, which was 600-fold faster than CFD for
high-resolution aorta geometries with over 2 million nodes. The modified PointNet could
effectively resolve the disorder of point clouds and introduce spatial relationships.

Ferez et al. [91] compared a set of popular DL approaches to predict ECAP in LAA
geometry, including FCN, E-D CNN, and graph convolutional network (GCN). GCN
showed superior performance with a 0.521% mean absolute error (MAE) compared to
0.608%, 0.651%, and 0.654% MAE for PCA-FCN, ED-CNN with Cartesian mapping input,
and ED-CNN with Bull’s eye mapping input, respectively.

BHVs are commonly utilized for heart valve replacement, but they are prone to fatigue
failure. Balu et al. [99] proposed an alternative DL-based finite element analysis to learn
the deformation biomechanics of bioprosthetic aortic valves. An autoencoder-CNN was
utilized to predict the final deformed, closed shape of the heart valve from the input
aorta geometry with the original undeformed heart valve. The input boundary condition,
together with the valve material property, was fused with the geometry embedded in the
bottleneck layers. Additionally, the coaptation area, a key parameter to determine BHV
health, was predicted directly using a single MLP (neuron) connected to the bottleneck
path. With further development, the proposed tool can provide fast decision support
for designing surgical bioprosthetic aortic valves. Oldenburg et al. [100] used a U-Net
architecture to predict simplified 2D flow during peak systolic steady-state blood flow
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through mechanical aortic valves with varying opening angles in randomly generated
aortic root geometries, achieving MSE values less than 0.06.

5.2.3. Deployed Models

The deployed DL architectures are described below, including MLP, PCA+ MLP, E-D
CNN, and GCN.

ANN or FCN is the key algorithm at the heart of DL algorithms, which uses an
aggregate of MLP to understand and map the input data of one form into the desired
output form. Different variants of FCN have been considered for hemodynamic prediction
from cardiac geometries, including vanilla architecture with multiple hidden layers and
autoencoder (AE)-NN. In the AE-NN architecture, the geometry data are first compressed
into an encoded representation passing through several dense layers, followed by a max-
pooling operation. Next, the shape code is mapped to the stress/pressure/velocity code
using a few dense layers. Finally, the decoder network constructs the full stress distribution
using the latent stress representation through consecutive dense layers and upsampling
layers.

Additionally, full geometry and PCA-reduced geometry data have both been consid-
ered for training DL models. PCA remains a key algorithm for dimensionality reduction of
data, thereby increasing interpretability while minimizing information loss. Nevertheless,
PCA requires all geometries to be registered to a common template. Therefore, in [91],
a non-rigid volumetric registration was applied to 3D cardiac geometries, following the
approach in [102], to register all meshes to a fixed number of nodes. Afterward, non-linear
mapping between the low dimensional representation of cardiac morphology and the cor-
responding CFD results was computed through FCN models. The PCA-FCN approaches
showed slightly lower results compared to the conventional neural network (NN) while
providing a much shallower architecture, which significantly reduced the computational
burden.

Moreover, CNN has also been investigated to predict cardiac hemodynamics [88].
Convolutional filters are the main building blocks of CNNs, having several advantages
when compared to conventional NN, such as limited connections and weight sharing,
which provides increased learning capabilities, enabling the network to automatically
extract useful features without any human supervision. However, CNNs deal with 1D, 2D,
or 3D Euclidian structured data, such as acoustic signals, images, or videos. Therefore, to
train CNN models on non-Euclidean structured data (3D geometries), the data must be
first transformed to Euclidean representation (2D planes) [88].

Furthermore, a state-of-the-art DL algorithm, graph convolutional network (GCN),
has been compared with the aforementioned DL approaches to predict ECAP in LAA ge-
ometry [91]. The recently emerged GCN operates over non-Euclidean irregular geometries
with a varying number of nodes, while FCN and E-D CNN require previous registration
or 2D mapping of the input to a common template with a fixed number of mesh nodes.
Consequently, GCN predicts the overall ECAP distribution based solely on anatomical
features and shows superior performance compared to the counterpart DL approaches.

5.3. Outcome Assessment of TAVR Procedures Using Machine/Deep Learning

Several studies have investigated DL algorithms for assessing the outcomes of TAVR
procedures, predicting post-operative complications such as late major bleeding, and
predicting long-term mortality risk. Table 4 compares these studies in terms of the utilized
datasets, targeted problems, deployed DL models, and achieved results. Wang et al. [103]
proposed a compact 3-layer CNN classification model to predict paravalvular leak (PVL)
post TAVR, which is a major complication of the TAVR procedure. The proposed model
predicted PVL from post-operative CT data, achieving sensitivity and specificity values of
76.91% and 86.88%, respectively. Jia et al. [104] introduced BLeNet, a risk prediction model,
to predict major or life-threatening bleeding complications (MLBCs) after TAVAR. BLeNet
outperformed two standard survival analysis models, the traditional Cox proportional
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hazard (Cox-PH) and the random survival forest models, achieving a value of 0.84 for
the area under the curve (AUC) compared to 0.72 and 0.70 AUC for the Cox-PH and
survival forest models, respectively. BLeNet was developed with 56 baseline procedural and
post-procedural characteristics, including lab tests, CT characteristics, echocardiographic
features, procedural details, and antithrombotic medications. Moreover, Pesno et al. [105]
used a DL approach to predict the 5-year mortality risk after TAVR based on several
clinical and echocardiographic variables, achieving 0.79 AUC and 71% sensitivity values.
Agasthi et al. [106] utilized a gradient boosting (GB) classifier to predict 1-year mortality
after TAVR. Baseline demographics, ECG, CT scans, and ECHO data from 1055 patients
were used to train the ML model, where it achieved an AUC of 0.72, outperforming two
traditional surgical risk scores, TAVR-SCORE and CoreValve, which had AUC of 0.56 and
0.53, respectively.

Table 4. Comparison between studies for outcome assessment of TAVR procedures using deep learning
methods in terms of the utilized datasets, targeted problems, deployed models, and achieved results.

Ref. Dataset Targeted Problem DL Model Results

[103] 168 CT scans PVL prediction 3-layer CNN
Sens. 76.9%
Spec. 86.9%
Acc. 78.6%

[104] 668 imaging scans and clinical data MLBC prediction 2-layer FCN
(BLeNet)

AU 0.84
3-Year Sens. 67%
3-Year Spec. 89%

[105] 471 ECHO scans and clinical data 5-year mortality prediction FCN AU 0.79
Sens. 71%

[106] Demographics, ECG, CT scans, and
ECHO data from 1055 patients 1-year mortality prediction Gradient boosting AUC 0.72

[107] 151 CT scans Conduction abnormality prediction
and best valve design recommendation

Ensemble of ML
models

AU 0.84
Sens. 100%
Spec. 62%

[108] 453 CT scans Aortic annulus perimeter and area U-Net Area MSE 0.1089 cm2

Perimeter MSE 0.6 cm

On the other hand, Galli et al. [107] proposed combined mechanistic modeling and
an ML approach for patient-specific prediction of conduction abnormalities after TAVR.
Virtual valve implementation for several valve designs was performed for 151 patients using
FEA, and then the derived mechanistic variables along with the anatomical variables and
procedural variables (prosthetic valve type and size) were used to train multiple ML models.
The homogenous ensemble of all models using bootstrap aggregation showed the best
performance for predicting post-operative conduction abnormalities with AUC, sensitivity,
and specificity of 0.84, 100%, and 62%, respectively. This shows the potential of the
synergetic approach for personalizing procedure planning, allowing the selection of optimal
prosthetic valve and implantation strategy and avoiding new conduction abnormalities.
Moreover, Astudillo et al. [108] proposed an automated DL-based method to predict aortic
annulus perimeter and area from plane aortic annular CT images. A U-Net model was used
to predict aortic annulus regions, followed by a post-processing step to compute the area
and perimeter. The proposed method showed similar results compared to two independent
medical observers, proving that it could be incorporated into pre-operative TAVR planning
routine as a fast and accurate device size selection method.

6. Future Directions

After analyzing critically and concisely earlier research in the literature, it can be seen
that DL approaches have recently been utilized in the cardiovascular biomechanics field;
more specifically, a few works only targeted pre-operative planning and post-operative
assessment of the TAVR procedure. Consequently, there is room for improvement to
overcome the current gaps and limitations. Individual works have targeted specific tasks,
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such as aorta geometry segmentation from cardiac imaging, hemodynamic prediction, or
pre- and post-operative clinical assessments. However, no work has proposed an end-
to-end DL pipeline that integrates all three stages in a single framework. Besides, the
work performed for each stage has several limitations, which can be further improved, as
described in the upcoming paragraphs.

Medical image segmentation is a well-matured domain where rapid advancements
during the last few years with DL segmentation models, specifically the variants of ED-
CNNs such as U-Net models, have yielded state-of-the-art results (>95%) for cardiac and
aorta segmentation problems. On the other hand, DL approaches have just recently been
proposed as a surrogate for hemodynamic modeling. Among several DL alternatives, it
has been proven that GCNs exhibit the best performance, empowered by their capability to
operate directly over non-Euclidean irregular geometries with a variable number of mesh
nodes. Thus, GCNs can learn solely based on anatomical features and present the best
performance among various DL approaches. With GCNs being a new DL domain, there is
room for investigating different variants of the model with the aim of proposing modified
architectures tailored for the computational modeling process. Furthermore, numerous
studies have investigated DL and classical ML approaches for assessing TAVR outcomes,
predicting post-operative complications, and predicting prosthetic valve defects. However,
GCNs are yet to be investigated for the sole outcome prediction stage.

Nonetheless, more compact architectures can be developed at each stage of the TAVR
DL pipeline to speed up the inference process while minimizing the computational com-
plexity. This can be achieved using the new generation of heterogeneous models based on
self-organized operational neural networks (Self-ONNs) [109,110]. As a future direction,
non-linear operational neurons can be incorporated with GCN architectures to enhance
learning capabilities and further boost performance.

On the other hand, to enhance the generalization performance of DL models, there is
a need for larger and more diverse cohort aorta CT/MRI datasets that encapsulate various
aorta shapes and sizes from different age groups, genders, and ethnicities around the
world. As mentioned in the previous sections, current studies have used up to a few
hundred cases only, where it goes up to a few thousand by augmentation. The majority
of current studies have utilized the SSM approach for data augmentation to generate
synthetic aorta geometries. However, advanced approaches such as deep generative
models (i.e., generative adversarial networks and denoising diffusion probabilistic models)
can be utilized for the data augmentation tasks, which can significantly enhance the
performance [111–114]. Moreover, high-resolution meshed aorta geometries with a few
million nodes are needed to generate reliable computational modeling results. Surface
nodes, which can go up to a few hundred thousand nodes, can be used to train DL models
to generate CFD/FEA results. However, the entire solid geometry with millions of nodes
must be used to train a DL FSI surrogate model. Therefore, none of the previous studies
have investigated DL for FSI analysis due to the significant computational burden. The
patch-based approach is a potential solution where the input geometry is divided into
smaller geometry patches before being fed to a DL model, while the final FSI result is created
by merging the individual patch results. Furthermore, the concept of super-resolution [115]
can be deployed using a two-stage DL approach, where, first, a DL model generates FSI
results from lower-resolution input geometries, and then a second DL model increases
the resolution of the generated FSI result. To overcome the huge computation burdens
of processing large mesh data, Strönisch et al. [116] proposed a multi-GPU approach for
training GCNs. This approach scales the state-of-the-art computational modeling surrogate
DL models from the domain of graph-based machine learning to industry-relevant mesh
sizes for numerical flow simulation.

The majority, if not all previous TAVR DL approaches, have focused on steady-state
analyses of CFD parameters, such as velocity, wall shear stress, and pressure, or FEA
parameters, such as mechanical stress on the aortic native and prosthetic aortic valve, aortic
root, and BAH stent, whereas transient assessment of these parameters has barely been
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obtained with DL methods. Steady analysis is non-practicable in time-dependent and
complex FSI analyses, such as aortic valve analysis with moving leaflets, owing to the
cardiac cycle and the moving nature of the prosthetic valve. Besides that, more complex
analyses, such as virtual BAH implantation and valve movements associated with the
FSI analysis of the implanted BAH, have never been investigated using DL approaches.
Moreover, derived parameters obtained by these complex analyses, such as paravalvular
leakage, flow velocity, and mechanical stress on the native and prosthetic aortic valves,
aortic root, and BAH stent, have barely been investigated using DL techniques.

As a future direction, an end-to-end smart DL framework is outlined for real-time
assessment and recommendation of the best prosthetic valve design for the TAVR procedure,
as shown in Figure 4. This framework summarizes and builds on the individual efforts of
earlier studies. It provides a unified solution that can be implemented and further enhanced
in future studies. First, during the training phase, FEA can be performed for the virtual
deployment of different valve designs using segmented patient-specific cardiac imaging
data (i.e., CT/MRI) and BHV geometries. Next, FSI analysis can be performed by combining
CFD and FAE analyses. Afterward, numerous critical mechanical and hemodynamic
parameters that help in selecting the optimal BHV design can be derived from the transient
FSI analysis. Finally, a three-stage DL framework can be trained using the generated data
where, first, a compact ED-CNN segments the aorta and BHV geometries from the input
CT scan. Next, three different regression GCNs can be utilized to generate CFD, FEA, and
FSI results. Finally, a compact classification GCN can be trained to automatically generate
critical mechanical/hemodynamic parameters and to recommend the best valve design.
Moreover, an additional model can be deployed to predict any potential complications of
the TAVR procedure for each selected valve design. The final DL system can automatically
assess different BHV designs to identify the optimal BHV for specific clinical TAVR cases,
thereby supporting clinicians in minimizing risks during TAVR therapy planning.
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tion techniques, deployed DL models, and achieved results. Based on the conducted re-
view, among different DL models, GCN can be the most appropriate alternative for as-
sessing TAVR procedures’ outcomes, given it is ability to operate directly on irregular 
non-uniform aorta geometries. Previous studies have utilized GCN to regress hemody-
namics in various parts of the cardiovascular system, such as the aorta. However, GCN 
deployment can be extended in future studies to classification tasks to recommend the 
best valve design or to predict any possible post-operative complications. Moreover, data 
scarcity is a key issue for DL-based TAVR assessment systems. Therefore, creating larger 
and more diverse datasets with pairs of CT/MRI images and their corresponding compu-
tational modeling simulation results can ease the training process and further enhance the 
generalization performance of DL models. Moreover, advanced deep generative models, 

Figure 4. The proposed end-to-end smart DL framework for real-time assessment and recommenda-
tion of the best prosthetic valve (BHV) design for the TAVR procedure. (A) Admitted patient waiting
for TAVR surgery, (B) CT scans for aortic root, showing the location of the valve to be implanted, and
(C,D) virtual implementation and assessment of different valve designs [117] using the DL-based
system to recommend the best valve for the surgery.
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7. Conclusions

BHVs are commonly used as heart valve replacement via the TAVR procedure; how-
ever, BHVs are prone to fatigue, and estimating their remaining life directly from medical
imaging is difficult. Besides, it is of utmost importance to select the optimal valve design
among several alternatives for each specific TAVR case. In recent years, CFD, FEA, and FSI
analysis have emerged as effective tools to analyze valve performance, providing better
guidance for personalized valve design. Nevertheless, such patient-specific computational
modeling requires long computational time and complex procedures. On the other hand,
DL can offer a computationally light surrogate that can render the hemodynamic parame-
ters in a few seconds, providing a real-time clinical solution. In this work, we provided
a comprehensive review of medical imaging, conventional computational modeling, and
DL approaches for TAVR planning and outcome assessment. We mainly focused on DL
approaches, comparing related studies in terms of the utilized datasets, augmentation
techniques, deployed DL models, and achieved results. Based on the conducted review,
among different DL models, GCN can be the most appropriate alternative for assessing
TAVR procedures’ outcomes, given it is ability to operate directly on irregular non-uniform
aorta geometries. Previous studies have utilized GCN to regress hemodynamics in various
parts of the cardiovascular system, such as the aorta. However, GCN deployment can be
extended in future studies to classification tasks to recommend the best valve design or to
predict any possible post-operative complications. Moreover, data scarcity is a key issue for
DL-based TAVR assessment systems. Therefore, creating larger and more diverse datasets
with pairs of CT/MRI images and their corresponding computational modeling simulation
results can ease the training process and further enhance the generalization performance of
DL models. Moreover, advanced deep generative models, such as generative adversarial
networks and denoising diffusion probabilistic models, can be utilized for further data
augmentation. Furthermore, we outlined an end-to-end smart DL framework that can be
implemented in future studies for real-time assessment and recommendation of the best
BHV design for TAVR.
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Abbreviations

TAVR Transcatheter Aortic Valve Replacement
TAVI Transcatheter Aortic Valve Implantation
AV Aortic Valve
BHV Bioprosthetic Heart Valve
CFD Computational Fluid Dynamics
FEA Finite Element Analysis
FSI Fluid–Solid Interaction
DL Deep Learning
ML Machine Learning
GCN Graph Convolutional Network
CNN Convolutional Neural Network
E-D CNN Encoder–Decoder CNN
CVD Cardiovascular Disease
WHO World Health Organization
MRI Magnetic Resonance Imaging
CT Computed Tomography
CCTA Cardiac Computed Tomography Angiography
ECHO Echocardiography
3D TEE 3D Transesophageal Echocardiography
3D TTE Transthoracic Echocardiography
PARTNER Placement of Aortic Transcatheter Valve
AA Ascending Aorta
AsAA Ascending Aortic Aneurysm
CoA Coarctation of the Aorta
LAD artery Left Anterior Descending artery
LAA Left Atrial Appendage
SSM Statistical Shape Modeling
SDM Statistical Distribution Modeling
PCA Principal Component Analysis
MWSS, Maximal Wall Shear Stress
TAWSS Time-Averaged Wall Shaer Stress
WSS Wall Shear Stress
SFD Secondary Flow Degree
KE Kinetic Energy
ECAP Endothelial Cell Activation Pressure
AG-UCNet Attention-Gate U-CliqueNet
UAD Unsupervised Domain Adaptation
MLP Multilayer Perceptron
MLR Multilinear Regression
FCN Fully Connected Neural Network
PLS Partial Least Square
RPART Recursive Partitioning and Regression Trees
LSTM Long Short-Term Memory
Self-ONN Self-Organized Operational Neural Network
GAN Generative Adversarial Networks
GPU Graphics Processing Units
DSC Dice Similarity Coefficient
MAE Mean Absolute Error
NMAE Normalized Mean Absolute Error
RMSE Root Mean Squared Error
MSE Mean Squared Error
PVL Paravalvular Leak
MLBCs Major or Life-Threatening Bleeding Complications
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