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Abstract: The frequency of heat events is likely to increase due to global climate change, posing
an increasing risk to wheat production. To optimize crop management strategies for coping with
future climates, it is crucial to quantify the high-temperature occurrence during cropping seasons.
Here, sixty-six years (1955~2020) of meteorological data during wheat reproductive growth were
collected from six meteorological stations in the Huaibei Plain of Anhui Province. These data
were analyzed to quantify the pattern and characteristics of post-anthesis heat stress for wheat crops.
Five levels of annual mean daily maximum temperature (Tmax) were defined, from normal to extreme
temperatures. Six crop developmental phases of winter wheat, i.e., phase i to phase vi, were divided
from flowering to maturity. The data suggest an annual mean temperature of 17~24 ◦C from flowering
to maturity, with an annual effective cumulative temperature ranging from 725 ◦C d to 956 ◦C d.
The mean temperature and effective cumulative temperature increased as crop growth progressed,
along with more frequent heat events during phase ii (8~14 days after anthesis) and phase iii
(15~21 days after anthesis). We also found that the frequency of extremely high temperatures
(≥33 ◦C) from 1990 to 2020 was significantly greater than that from 1957 to 1990. Interestingly, it was
found that the intensity of post-anthesis night temperatures also increased with crop growth, i.e., from
phase i to phase vi. Wheat grain yield increased with increasing effective accumulative temperature
and Tmax, but it started to decline when thresholds of effective accumulative temperature and Tmax
were reached. Overall, these findings could provide guidelines for winter wheat cropping in the
Huaibei Plain, China, or similar climate and cropping regions.

Keywords: Triticum aestivum L.; grain filling; heat stress; Huaibei Plain

1. Introduction

As one of the three major staple foods, wheat (Triticum aestivum L.) occupies 19.9% of
the total food sown area and 20.1% of total grain production in China [1], playing a vital role
in sustaining food security. In the wheat growing season, higher temperatures are likely
to reduce crop yield and thus food production [2]. According to IPCC (2022) reports, the
global atmospheric temperature has increased by 1.2 ◦C since the end of the 19th century
and will continue to rise further [3]. The extremely hot weather across the globe during
2022 has caused greater heat stress to food crops than ever [3]. It is projected that under
future global climate change, extreme heat will become more intense and frequent [3].
This will likely impact wheat growth and development, thus posing a risk to global
food security.

Research reports that high temperatures often occur during the reproductive stage,
greatly compromising wheat grain setting, grain filling, and quality [4]. Liu et al. [2] found
that heat stress during the flowering stage could reduce grain number and size, thereby
seriously affecting wheat grain yield. The optimum temperature for wheat flowering ranges
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from 12 ◦C to 22 ◦C [5]. Floret abortion and reduced spikelet and grain formation per
spike generally occur as the temperature exceeds these optimum limits [6]. For example,
when the post-anthesis temperature exceeds 30 ◦C, it inhibits pollen and microspore
development, and it may even lead to complete male sterility and wheat yield reduction. If
the high temperature lasts for 1 to 3 days during this period, the wheat yield is significantly
reduced [7,8].

High temperatures during grain development reduce final grain size by curtailing
grain-filling duration [9]. For instance, an increase of 5.4 ◦C above the optimal temperature
reduces the grain filling duration of wheat by 8 days [10]. Starch content, which accounts
for about 70% of wheat grain dry weight, is significantly reduced when high temperatures
occur during the grain-filling phase of the crop [11,12]. Soluble starch synthase, a key
enzyme regulating starch synthesis [13], is highly sensitive to heat stress. High temperatures
during grain filling can inhibit starch synthase, sucrose conversion to starch [14], and
ultimately starch accumulation in grains. Also, high temperatures accelerate leaf senescence,
reducing assimilation rate and duration and leading to poor grain filling. In contrast to
starch, which is correlated with grain size, protein is an important indicator of grain quality
in wheat. High temperatures reduce grain quality by impairing traits such as protein
synthesis, leaf nitrogen content [15], amino acid composition, and the precipitation index of
grain [16]. In recent years, heat stress has become one of the most important environmental
factors affecting wheat grain yield and quality. Despite efforts to cope with heat impacts
on wheat crops, there is a lack of quantitative research on the frequency and intensity of
high temperatures in the key wheat-producing regions in China. Therefore, quantifying
the spatiality and temporality of high-temperature occurrence is greatly significant for
guidance in grain cultivation and planting.

The Huang-Huai-Hai Plain is an important grain production base in China. Located
in the south of the Huang-Huai-Hai Plain, it constitutes one of the main wheat produc-
tion areas of the country, with a temperate monsoon climate with four distinct seasons.
The Huaibei Plain covers 37,400 square kilometers, of which 2.14 million hectares are
cultivated land, accounting for 57.2% of the total area of the Huaibei Plain and 47.8% of
the province’s cultivated land. The grain-filling period for winter wheat in this region
generally ranges from mid-April to late May. High temperatures frequently occur during
this period and significantly impact grain filling and the yield of the crops [17]. Even
though most previous analyses examined the impact of increasing mean growing-season
temperatures on crop yields, a few recent studies combined temperature data with local
crop phenology. For example, Zhao et al. [18] analyzed and quantified the temperature
data in discussing the probability of extreme weather events in Anhui Province, along with
the detailed impacts of the long-term weather conditions recorded from the weather station.
However, the impacts of increasing growing-season mean temperatures and heat stress
events from the compounding impacts of temperatures and local crop phenology on crop
yield are yet to be resolved. Therefore, it is necessary to quantify the characteristics of heat
stress with reference to wheat grain filling and to provide guidelines for wheat cropping
systems [19,20].

The objective of this study is to analyze the characteristics of variation in daily tem-
perature data, including daily maximum temperature, daily minimum temperature, and
daily average temperature during the reproductive period of wheat crops over sixty-six
years, from six weather stations in Huaibei Plain, Anhui province. In the current study,
we not only quantify the frequency and intensity of high temperatures in Huaibei Plain
using historical meteorological data combined with crop phenology but also analyze the
occurrence probability of heat stress during different developmental phases, i.e., from
anthesis to maturity, of winter wheat. These findings would provide insights to manage
winter wheat cropping in climates and cropping regions similar to Huaibei Plain, China.
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2. Materials and Methods
2.1. Study Site and Data Source

All data related to temperature were obtained from the China Meteorological Data
Sharing Service System (CMDC, http://data.cma.cn/, accessed on 27 January 2021), in-
cluding annual, monthly, and daily temperature data. Six representative weather stations
were selected in the Huaibei Plain of Anhui Province, China: Bengbu (Bb), Fuyang (Fy),
Shouxian (Sx), Dangshan (Ds), Suzhou (Sz), and Bozhou (Bz). (Figure 1). Wheat production
data for Fuyang, Bozhou, Suzhou, and Bengbu were only available from 1999 to 2020.
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Figure 1. Map and location of weather stations in this study. Note: Red dots denote the location of
weather stations.

2.2. Division of Wheat from Flowering to Maturity

According to typical local farming practices, wheat cultivation is characterized by
crop sowing from late October to early November, jointing and booting from late Febru-
ary to mid-April, and grain filling and maturity from mid-April to late May. The wheat
grain-filling phase, a critical developmental period, usually occurs from 20 April to 31 May.
It is well documented that the period from flowering to maturity is an important period
for wheat yield and quality. Temperatures ranging 15~24 ◦C are considered optimal for
the early phases of grain developmental and filling, i.e., the phase of pollen tip growth
(0~7 days after anthesis (DAA)) and grain setting (8~14 DAA) in wheat crops [21]. A
temperature above 30 ◦C is detrimental to grain filling, particularly during 10~21 DAA [22].
The effects of high temperatures significantly differed for different phases of wheat devel-
opment, from flowering to maturity. Based on the results of the above study, we divided
the flowering-to-maturity period of wheat into six phases. Phase i, from 20 April to
26 April (1~7 DAA); phase ii, from 27 April to 3 May (8~14 DAA); phase iii, from 4 May
to 10 May (15~21 DAA); phase iv, from 11 May to 17 May (22~28 DAA); phase v, from
18 May to 24 May (29~35 DAA); phase vi, from 25 May to 31 May (36~42 DAA), as shown
in Table 1.

http://data.cma.cn/
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Table 1. Classification criteria and duration from flowering to maturity in wheat.

Phases Growth Period Time

Phase i Day after anthesis 1st to 7th 20–26 April
Phase ii Day after anthesis 8th to 14th 27 April–3 May
Phase iii Day after anthesis 15th to 21st 4–10 May
Phase iv Day after anthesis 22nd to 28th 11–17 May
Phase v Day after anthesis 29th to 35th 18–24 May
Phase vi Day after anthesis 36th to 42nd 25–31 May

2.3. Kriging Interpolation Quantifies the Probability of Spatial Distribution of Thermal Stress

The Kriging method is one of the most widely used spatial interpolation methods.
Compared with the inverse range-weighted interpolation (IDW) method, the Kriging
method considers the spatially related attributes of descriptive objects in the process of
data meshing, which makes the interpolation results more scientific and closer to the actual
situation. By giving the interpolation error (Kriging variance), the reliability of interpolation
becomes clearer [23]. ArcGIS Desktop 10.7 software (Environmental Systems Research
Institute (ESRI) Inc.; Redlands, CA, USA. www.zhanshaoyi.com/15142.html, accessed on
2 October 2022) was used to analyze the spatial distribution of temperature data and to
determine the probability of thermal stress occurrence in the Huaibei Plain by quantifying
temperature data.

2.4. Frequency of High Temperature

The thermal stress index, or heat stress index, is used to comprehensively test the
occurrence and impact of heat stress between anthesis and maturity. In this study, we
selected three thermal stress indices, including accumulated heat stress days (AHSD), heat
stress intensity (HSI), and heat degree days (HDD). AHSD is defined as the number of
days when Tmax ≥ 30 ◦C after anthesis; HSI is defined as the average Tmax for days when
Tmax ≥ 30 ◦C after anthesis; and HDD is defined as total heat degree-days after anthe-
sis [24].

3. Results
3.1. Mean Temperature, and Daily Maximum and Minimum Temperatures from Flowering to
Maturity in Wheat

The average annual temperature during wheat developmental phases, i.e., flowering
to maturity, across the six studied sites from 1955 to 2020 is presented in Figure 2. The
annual temperature ranged between 17 ◦C and 24 ◦C, showing an upward trend over the
years across all the studied sites. This temperature trend was further fitted by positive linear
functions (Figure 2), with the maximum slope for Suzhou and the lowest for Dangshan,
indicating that Suzhou and Dangshan sites were most and least affected by climate change,
respectively.

The daily maximum temperatures for developmental phases from flowering to ma-
turity in wheat crops across the six sites from 1955 to 2020 are presented in Figure 3.
The daily average maximum temperature during these crop developmental phases for
Fuyang, Suzhou, Bozhou, Bengbu, Shouxian, and Dangshan was 25.7 ◦C, 25.7 ◦C, 26.0 ◦C,
25.6 ◦C, 25.3 ◦C, and 25.7 ◦C, respectively. The daily average maximum temperature across
these sites increased most significantly for phase ii, followed by phase iii. While phases ii
and iii represent the rapid grain-filling stage of wheat, it suggests that high temperatures
were most likely to occur during the most sensitive growth phase of the crop. The slope
of the first-order equation was the highest for the average daily maximum temperature in
Shouxian and the lowest in Bengbu. This shows that the increasing trend of daily maximum
temperature for flowering to maturity phases of the wheat crop was greatest in Shouxian
and relatively gentle in Bengbu.

www.zhanshaoyi.com/15142.html
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The daily minimum temperature showed an upward trend with years across these
sites, as presented by positively linear functions (Figure 4). The minimum line slope was
highest for Suzhou and lowest for Dangshan, indicating that wheat crops during flowering
to maturity were most affected by climate change in Suzhou and least in Dangshan.
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3.2. Effective Accumulated Temperature from Flowering to Maturity in Wheat

The effective accumulated temperature for developmental phases, i.e., flowering to
maturity, in wheat across six sites from 1955 to 2020 is presented in Figure 5. The effective
accumulated temperature varied between 725 ◦C d and 956 ◦C d, showing an upward
trend across the studied sites, and it was fitted by positive linear functions (Figure 5). It can
be seen that the maximum line slope was in Suzhou while the lowest was in Dangshan,
indicating that the flowering to maturity period of wheat crops was most affected by climate
change in Suzhou, while Dangshan was relatively stable under changing climate.
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3.3. Spatial Variation of Heat Stress from Flowering to Maturity in Wheat

The heat stress indices (AHSD, HSI, and HDD) relating to the time from flowering
to maturity in wheat at six sites from 1955 to 2020 are presented in Figure 6. The heat
stress intensity decreased from northwest to southeast, and AHSD, HSI, and HDD values
gradually decreased in the same direction (Figure 6). Across the studied sites, the heat stress
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indices of AHSD and HDD were the largest for Dangshan and the smallest for Bengbu.
During the developmental phases from flowering to maturity, the heat stress index of
AHSD for Dangshan was 4 days higher than that for Shouxian, and the mean value of
HDD for Bozhou was 17.5 ◦C higher than that for Shouxian. Our results suggest that the
northern part of the Huaibei Plain is relatively more susceptible to heat stress compared to
the southern part.
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3.4. Stage Variation of Daily Maximum and Minimum Temperatures from Flowering to Maturity
in Wheat

The probability of occurrence of daily mean maximum and minimum temperatures
was approximately 50% for each developmental phase of the wheat crop, but the daily
mean maximum and minimum temperatures showed an increasing trend from phase i to
phase vi (Tables 2 and 3). The percentage of temperature ≥ 3 ◦C for daily mean maximum
and minimum temperatures was highest in phase ii, followed by phase iii. The probability
of temperature ≥ 5 ◦C for daily mean maximum and minimum temperature was highest
for phases i, ii, and iii, which indicates that the temperature is most likely to fluctuate
during these phases.

Table 2. Probability of average value of the daily maximum temperature (Tmax) occurrence between
flowering and maturity from 1955 to 2020.

Phases Tmax (◦C) ≥Tmax
Percentage (%)

≥Tmax 3 ◦C
Percentage (%)

≥Tmax 5 ◦C
Percentage (%)

Phase i 22.50 48.56 25.47 13.92
Phase ii 24.11 49.28 28.14 13.49
Phase iii 24.83 49.82 25.83 13.85
Phase iv 25.74 51.55 24.39 11.87
Phase v 27.79 52.24 24.28 10.79
Phase vi 29.06 53.28 24.24 9.42

Note: Tmax denotes the average value of the daily maximum temperature for this period; ≥Tmax 3 ◦C means greater
than 3 ◦C than the average. ≥Tmax 5 ◦C indicates that the value is greater than 5 ◦C than the average value.

Table 3. Probability of average daily minimum temperature (Tmin) occurrence between flowering
and maturity from 1955 to 2020.

Phases Tmin
(◦C)

≥Tmin
Percentage (%)

≥Tmin 3 ◦C
Percentage (%)

≥Tmin 5 ◦C
Percentage (%)

Phase i 22.50 48.56 25.47 13.92
Phase ii 24.11 49.28 28.14 13.49
Phase iii 24.83 49.82 25.83 13.85
Phase iv 25.74 51.55 24.39 11.87
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Table 3. Cont.

Phases Tmin
(◦C)

≥Tmin
Percentage (%)

≥Tmin 3 ◦C
Percentage (%)

≥Tmin 5 ◦C
Percentage (%)

Phase v 27.79 52.24 24.28 10.79
Phase vi 29.06 53.28 24.24 9.42

Note: Tmin denotes the average value of the daily minimum temperature for this period; ≥Tmin 3 ◦C means greater
than 3 ◦C than the average. ≥Tmin 5 ◦C indicates that the value is greater than 5 ◦C than the average value.

3.5. Distribution of Heat Stress Occurrence in Six Phases

The increasing trend for temperatures from phase i to phase vi is presented in Figure 7.
From 1955 to 2020, temperatures ≥ 24 ◦C accounted for more than half of the total time
across the six locations, and the probabilities of temperatures ≥ 27 ◦C, ≥ 30 ◦C and
≥33 ◦C were 37.95~43.72%, 16.85~20.11%, and 3.93~7.36%, respectively. In recent years,
the frequency of temperature ≥ 24 ◦C tends to increase, and temperatures ≥ 30 ◦C during
each phase across six locations in the Huaibei Plain mainly occurred during phases v and
vi, and heat stress may also occur during phases iii and iv.
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Figure 7. Distribution of the average temperature of the daily maximum in six phases from 1955 to
2020. Note: Going from green to red denotes increasing temperature; green color denotes minimum
temperature; reseda color indicates mild heat stress; yellow-green color denotes maximum medium
temperature; orange color indicates severe heat stress; and red color denotes maximum temperature.
A, B, C, D, E, and F denote the six developmental phases of the wheat crop (A, phase i; B, phase ii;
C, phase iii; D, phase iv; E, Phase v; F, Phase vi) across six sites, i.e., Shouxian, Bengbu, Fuyang,
Suzhou, Bozhou, and Dangshan, on Huaibei.

The probability pattern of the occurrence of post-flowering high temperatures was
similar across the six sites (Fuyang, Suzhou, Bozhou, Bengbu, Shouxian, and Dangshan).
From phase i to phase vi, the probability of occurrence of T0 ≤ 24 ◦C continuously decreased,
and for T4 ≥ 33 ◦C, it gradually increased. Further, T0 ≤ 24 ◦C mainly occurred during
phases i and ii, 30 ◦C ≤ T3 ≤ 33 ◦C and 33 ◦C ≤ T4 mainly occurred in phases v and vi
(Figure 8). In addition, extremely high temperatures, i.e., ≥30 ◦C and 33 ◦C, also occur
during phases i, ii, iii, and iv, with a significantly higher probability of occurrence of these
temperature extremes for phase iii than that for phases i, ii, and iv.
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3.6. Relationship between Wheat Grain Yield and Mean Daily Maximum Temperature (Tmax)

Analyzing the relationship between wheat grain yield and post-flowering effective
accumulative temperature, daily mean maximum temperature (Tmax), and the days of
Tmax > 30 ◦C for 22 years in the Huaibei Plain (Figure 9), the yield per unit area of wheat
ranged from 2 to 8 t/hm2. The relationship between wheat yield, effective accumulated
temperature, and Tmax showed an increasing and then decreasing trend as the temperature
reached a certain threshold. For example, grain yield increased with increasing effective
accumulated temperature up to about 860 ◦C and then decreased as accumulated temper-
ature exceeded 860 ◦C. The higher the Tmax threshold, the more significant grain yield
losses were observed. Therefore, we speculate that the effective accumulated temperature
of 860 ◦C d and Tmax of 26 ◦C may be the temperature threshold for normal grain filling of
wheat, beyond which yield loss of wheat may occur. In addition, the analysis suggests that
the grain yield decreases with increasing temperatures (Tmax > 30 ◦C).



Agronomy 2023, 13, 2149 10 of 14Agronomy 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 9. The relationship and linear fitting between wheat grain yield and Tmax between flowering 
and maturity, including six phases, i~v. Note: Black dots denote wheat grain yield, and red lines 
denote the fitting of the relationship between wheat grain yield and Tmax ≥ 30 °C. 

4. Discussion 
4.1. Characteristics of High-Temperature Occurrence and Its Effect on Wheat Growth and 
Development 

With a warming climate, heat events occur more frequently, especially during the 
reproductive growth period (flowering to maturity) of wheat crops. Extremely high tem-
peratures during the winter wheat growing season in Huaibei Plain show an increasing 
trend with an obvious yield-reducing effect [17]. Accurate assessment of crop develop-
ment stages is crucial to assessing the intensity of heat stress, and the Biologische Bun-
desanstalt, Bundessortenamt und CHemische Industrie (BBCH) scale is the most accurate 
scale to assess crop growth and development [25]. The wheat flowering to maturity stages 
selected in this study belong to the 6th to 9th stages of the BBCH scale. In this study, the 
annual mean temperature, annual effective cumulative temperature, daily maximum tem-
perature, and daily minimum temperature all showed a fluctuating upward trend from 
1957 to 2020, with the probability of heat stress risk increasing between 1990 and 2020 
compared to the period 1957 to 1990. The thermal stress indices, including AHSD, HSI, 
and HDD, progressively decreased in the Huaibei Plain from the Northwest to the South-
east, with the highest thermal stress index in Dangshan in the north. The frequency of 
extremely high temperatures increased from phase i to phase vi, with a marked increase 
in the frequency of extremely high temperatures during phases ii and iii. 

Warmer temperatures can accelerate crop growth and development, resulting in 
lower grain yields in temperate and tropical regions due to a shorter crop duration [26]. 
Liu et al. [24] used a multiple linear regression model to assess the mean temperature 
change from heading to maturity, showing that the change in average temperature and 
frequency of heat stress from heading to maturity can explain approximately 29% of grain 
yield variation in Chinese winter wheat. Another study suggested that 30% of wheat 
yields were affected by temperature extremes [27]. Lesk et al. [28] found that heat stress 
from 1964 to 2007 reduced the grain production of Canadian wheat by 10%. Model pro-
jections of future climate change indicated that the heat stress intensity index will increase 
significantly in most parts of the world during sensitive periods (BBCH 6) of crop growth, 
and the negative effects of heat stress on wheat reproduction will be further amplified, 

y = −0.0001x2+0.2001x−81.421
R² = 0.0302

0

2

4

6

8

10

700 750 800 850 900 950 1000

Bz

y = −0.0002x2+0.2895x−120.24
R² = 0.1675

0

2

4

6

8

700 750 800 850 900 950 1000

Sz

y = −0.0051x+5.53
R² = 0.0004

0

2

4

6

8

10

0 5 10 15 20

Bb

y = −0.1588x2+8.3646x−104.48
R² = 0.10330

2

4

6

8

20 22 24 26 28 30

Bb

y = −0.0001x2+0.2408x−99.01
R² = 0.1191

0

2

4

6

8

700 750 800 850 900 950 1000

Bb

Effective accumulated temperature

Tmax

Tmax＞30℃ days

y = −0.0207x+5.8212
R² = 0.0069

0

2

4

6

8

10

0 5 10 15 20

G
ra

in
 y

ie
ld

(t/
hm

2 )

Fy

y = −0.0156x+5.6919
R² = 0.0051

0

2

4

6

8

10

0 5 10 15 20

Sz

y = −0.0001x2+0.1882x−75.711
R² = 0.0821

0

2

4

6

8

700 750 800 850 900 950 1000

G
ra

in
 y

ie
ld

(t/
hm

2 )

Fy

y = −0.1784x2+9.2423x−113.69
R² = 0.2132

0

2

4

6

8

20 22 24 26 28 30

G
ra

in
 y

ie
ld

(t/
hm

2 )

Fy

y = −0.1475x2+7.7638x−96.235
R² = 0.2040

2

4

6

8

10

20 22 24 26 28 30

Sz

y = −0.1754x2+9.2001x−114.1
R² = 0.0704

0

2

4

6

8

10

20 22 24 26 28 30

Bz

y = −0.0187x+6.3299
R² = 0.0026

0

2

4

6

8

10

0 5 10 15 20

Bz

Effective accumulated temperature Effective accumulated temperature Effective accumulated temperature

Tmax Tmax Tmax

Tmax＞30℃ days Tmax＞30℃ days Tmax＞30℃ days

Figure 9. The relationship and linear fitting between wheat grain yield and Tmax between flowering
and maturity, including six phases, i~v. Note: Black dots denote wheat grain yield, and red lines
denote the fitting of the relationship between wheat grain yield and Tmax ≥ 30 ◦C.

4. Discussion
4.1. Characteristics of High-Temperature Occurrence and Its Effect on Wheat Growth
and Development

With a warming climate, heat events occur more frequently, especially during the
reproductive growth period (flowering to maturity) of wheat crops. Extremely high tem-
peratures during the winter wheat growing season in Huaibei Plain show an increasing
trend with an obvious yield-reducing effect [17]. Accurate assessment of crop development
stages is crucial to assessing the intensity of heat stress, and the Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie (BBCH) scale is the most accurate scale to
assess crop growth and development [25]. The wheat flowering to maturity stages selected
in this study belong to the 6th to 9th stages of the BBCH scale. In this study, the annual
mean temperature, annual effective cumulative temperature, daily maximum temperature,
and daily minimum temperature all showed a fluctuating upward trend from 1957 to
2020, with the probability of heat stress risk increasing between 1990 and 2020 compared
to the period 1957 to 1990. The thermal stress indices, including AHSD, HSI, and HDD,
progressively decreased in the Huaibei Plain from the Northwest to the Southeast, with the
highest thermal stress index in Dangshan in the north. The frequency of extremely high
temperatures increased from phase i to phase vi, with a marked increase in the frequency
of extremely high temperatures during phases ii and iii.

Warmer temperatures can accelerate crop growth and development, resulting in lower
grain yields in temperate and tropical regions due to a shorter crop duration [26]. Liu
et al. [24] used a multiple linear regression model to assess the mean temperature change
from heading to maturity, showing that the change in average temperature and frequency
of heat stress from heading to maturity can explain approximately 29% of grain yield
variation in Chinese winter wheat. Another study suggested that 30% of wheat yields were
affected by temperature extremes [27]. Lesk et al. [28] found that heat stress from 1964 to
2007 reduced the grain production of Canadian wheat by 10%. Model projections of future
climate change indicated that the heat stress intensity index will increase significantly
in most parts of the world during sensitive periods (BBCH 6) of crop growth, and the
negative effects of heat stress on wheat reproduction will be further amplified, particularly



Agronomy 2023, 13, 2149 11 of 14

during the heat-sensitive period of grain development [24]. In our study, the frequency of
extremely high temperatures showed a marked increase during phases ii and iii, which
belong to the rapid grain filling period in wheat. Rapid grain filling is an important pe-
riod for the formation of wheat grain yield. During this period, wheat photosynthates
are constantly transported to the grain, and the speed of photosynthate transportation
directly affects the final grain weight and yield. Studies have shown that when the tem-
perature is over 35 ◦C in the rapid grain filling stage of wheat, different green organs of
wheat become yellowing and degreening, chlorophyll degrades rapidly, photosynthetic
organs pro-senescenc, and the grain filling duration and life cycle of wheat crops are
shortened [29,30]. As a result, the amount of assimilate accumulated in leaves transferred
to the grain decreased, and the grain weight and yield decreased. At the same time,
temperatures exceeding a certain threshold level will lead to oxidative stress, excessive
accumulation of reactive oxygen species, and membrane damage [31]. The peak of en-
dosperm development is 10 to 15 days after flowering, which is also known as the rapid
filling period of wheat. The Tmax > 33 ◦C during this period can also inhibit photosyn-
thetic capacity, metabolic activity, and dry matter accumulation in wheat crops [5]. More
importantly, heat stress suppresses assimilate deposition in endosperm and reduces starch
accumulation in grain, resulting in poor grain filling [32]. Additionally, heat stress later
during grain filling shortens filling duration [33] and inhibits protein accumulation [15],
thereby reducing grain quality.

In addition to increases in daily mean and maximum temperatures, increases in min-
imum temperatures have a significant impact on wheat yield. It was reported that the
increase in global daily minimum temperature was more than twice the daily maximum
temperature [34], with a relatively stronger negative correlation of daily minimum temper-
ature with grain yield than daily maximum temperature [35]. In Mexico, wheat grain yield
decreases by 10% for every 1 ◦C increase in nighttime temperature, but the same increase
in daytime temperature has no significant effect [35]. When the night temperature is above
20 ◦C, spikelet fertility decreases, reducing grain number and size. If this temperature
occurs after flowering, it shortens the grain-filling period by 3–7 days [36]. In this study, the
probability that the daily minimum temperature was 50% higher than the optimum, while
the probability that Tmin > 20 ◦C was 11% to 14%. The extreme temperature during grain
development can impair grain set through ultrastructural modifications in the endosperm
cells, seed shrinkage, and poor grain filling.

Although in this study we primarily analyzed the possible effects of post-flowering
high temperatures on the grain yield of wheat, the effect of high temperatures on grain yield
during the vegetative period should not be overlooked [24], because the effects of heat were
superimposed on the vegetative period and reproductive stage. According to previous
studies, when the diurnal temperature difference is 30 ◦C/25 ◦C, the vegetative period is
prolonged, sharply reducing the green leaf area and effective tiller number in wheat [37].
During the early stages of wheat development, heat stress inhibits seed germination and
seedling establishment [38]. The high temperature also inhibits leaf photosynthesis, which
decreases source activity, resulting in different morphological changes in vegetative and
reproductive organs.

4.2. Countermeasures against Thermal Risks

With the increasing frequency and intensity of extreme heat events caused by climate
change, wheat production is confronted with increasing risks. For example, it advances
phenological stages, accelerates senescence, and shortens grain filling duration [39,40].
Therefore, breeding varieties with superior heat tolerance could be the most effective way
to combat heat stress [41]. However, it takes years or decades to produce varieties with high
heat tolerance, high overall resistance, and high grain yields. Early sowing or breeding
cultivars with early heading will help wheat flower sooner and avoid heat stress. While
this method may shorten the overall growth cycle of crops, it is not conducive to biomass
accumulation or grain yield formation. Prolonging flowering to maturity duration could



Agronomy 2023, 13, 2149 12 of 14

be beneficial to the grain filling, which reduces the adverse effects of temperature on wheat,
yet there will be a probability of wheat experiencing heat risk during the late grain filling
stage [24]. Liu et al. [24] found that selecting varieties with a long growing period (late
heading but long grain filling period) could compensate to some extent for yield losses
due to elevated temperatures. Studies show that adaptation to high temperatures can be
achieved by regulating photosynthesis and respiration in wheat, for example, by identifying
the biochemical mechanisms that confer heat tolerance and adaptation to chloroplasts and
mitochondria [42]. In addition, exogenous application of plant growth regulator [43],
improvement of irrigation system [44], adjustment of fertilization method [45], change
of tillage system [46], and other measures may protect crops from post-flowering high
temperatures. The above mitigation measures need to be tailored to the specific time and
spatial area in which the heat occurs to achieve the maximum benefit of mitigating the
effects of heat.

With the development of information technology, wheat growth models are available
to incorporate different heat stress events and the effects of heat stress on wheat phenology,
leaf senescence, biomass growth, biomass partitioning, and yield formation. These models
provide guidelines and references for wheat management. Also, these models provide
good technical support for wheat regions where thermal stresses occur [24,47,48].

5. Conclusions

High post-flowering temperatures are detrimental to wheat grain setting and develop-
ment, causing significant grain yield losses. We analyzed sixty-six years of temperature
data from 1955 to 2020. The multi-year post-flowering average temperature ranged from
17 ◦C to 24 ◦C, with the annual effective cumulative temperature ranging from 724.5 ◦C d
to 956.0 ◦C d. The annual average temperature, annual effective cumulative temperature,
daily maximum temperature, and daily minimum temperature all showed a fluctuating
increasing trend over the years, and the probability of heat stress risk increased for the
1990–2020 period compared with 1957–1990. The heat stress indices, including AHSD,
HSI, and HDD, in the Huaibei Plain decreased from the Northwest to the Southeast, with
the highest in Dangshan. The frequency of high-temperature occurrence was higher for
phases ii and iii than for other phases. Wheat yield increased with increasing effective
accumulated temperature and Tmax. However, after a certain threshold temperature,
high accumulated temperatures and Tmax significantly reduced wheat grain yield. Our
study provides practical guidance for sustaining wheat production and food security under
climate change.
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