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  ABSTRACT  Congenital heart defects (CHDs) are a leading cause of death in infants under 1 year of age. 
Prenatal intervention can reduce the risk of postnatal serious CHD patients, but current diagnosis is based on 
qualitative criteria, which can lead to variability in diagnosis between clinicians. Objectives:  To detect 
morphological and temporal changes in cardiac ultrasound (US) videos of fetuses with hypoplastic left heart 
syndrome (HLHS) using deep learning models. A small cohort of 9 healthy and 13 HLHS patients were enrolled, 
and ultrasound videos at three gestational time points were collected. The videos were preprocessed and 
segmented to cardiac cycle videos, and five different deep learning CNN-LSTM models were trained 
(MobileNetv2, ResNet18, ResNet50, DenseNet121, and GoogleNet). The top-performing three models were used 
to develop a novel stacking CNN-LSTM model, which was trained using five-fold cross-validation to classify 
HLHS and healthy patients. The stacking CNN-LSTM model outperformed other pre-trained CNN-LSTM 
models with the accuracy, precision, sensitivity, F1 score, and specificity of 90.5%, 92.5%, 92.5%, 92.5%, and 85%, 
respectively for video-wise classification, and with the accuracy, precision, sensitivity, F1 score, and specificity 
of 90.5%, 92.5%, 92.5%, 92.5%, and 85%, respectively for subject-wise classification using ultrasound videos. This 
study demonstrates the potential of using deep learning models to classify CHD prenatal patients using 
ultrasound videos, which can aid in the objective assessment of the disease in a clinical setting. 

  INDEX TERMS Congenital heart defects (CHDs), Fetal Echocardiogram, Deep Learning, CNN-LSTM, Stacking Machine 
Learning, Hypoplastic left heart syndrome (HLHS)

I. INTRODUCTION 

ongenital heart defects (CHDs) account for 1% 
of all live births worldwide[1]. Generally, 

hyperplasia refers to a condition of delayed or stunted 
development in which an organ or a part of it remains 
below its normal size or remains immature[2]. 
Hypoplastic left heart syndrome (HLHS) is a group of 
cardiac malformations characterized by 
underdevelopment of both the aorta and the left heart, 
resulting in significantly impaired blood flow into the 
systemic circusslation and inadequate support for the 
circulation by the left heart[3]. HLHS is a very severe 
form of CHD  characterized by an insufficient and non-
viable left ventricle (LV) caused by congenital 
abnormalities that compromise the LV's ability to 
perform its prefusion function[4]. The incidence of 
HLHS is estimated to be between 0.016% and 0.036% of 
all live births; the occurrence is estimated to be in 
approximately 2 out of every 10,000 pregnancie[5, 6]. 
HLHS accounts for 1 to 3.8 % of congenital cardiac 
malformations, 8–12% of heart defects of infants with 
critical heart disease,  and critically responsible for 25% 
to 40% of all neonatal cardiac mortality[7, 8].  

 

There is currently no definitive explanation for the 
etiology of HLHS. Higher incidence within families 
with disease history suggests genetic contribution. The 
higher incidence of HLHS in families with a disease 
history suggests a genetic contribution. In some 
children, isolated HLHS is known to have a genetic 
basis. These cases may be due to mutations in the GJA1 
gene with autosomal recessive inheritance or the NKX2-
5 gene with autosomal dominant inheritance [9,10]. 
However, in the majority of the cases, the disease is 
diagnosed without any genetic relevance. Clinically, 
disturbed hemodynamics have been shown as a major 
contribution to the fetal development of the disease [11–
13]. The growth of the left ventricle is hindered when 
there is a disturbance of blood flow or when the 
foramen ovale is affected during fetal development. 
Patients with HLHS have a diminution of the foramen 
ovale [14]. HLHS is also associated with anatomical 
abnormalities of the atrial septum when the superior 
edge of the septum and/or the primum, deviates 
posteriorly and leftward, resulting in obstruction of the 
atrial shunt[15]. The abnormal development in cardiac 
valves or the left ventricle itself may be caused by 
HLHS[16,17]. We have recently revealed evolving 

C
I 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3316719

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:hyalcin@qu.edu.qa
mailto:mchowdhury@qu.edu.qa


2 VOLUME 4, 2023 

 

 

hemodynamics in normally and HLHS diagnosed 
human fetuses and demonstrated severe hemodynamic 
abnormalities in fetal HLHS hearts [18,19]. Animal 
studies supported these observations, in which surgical 
interventions causing blood flow abnormalities 
resulted in ventricular hypoplasia in the developing 
embryo [20–22]. 

The main treatment for HLHS involves a series of 
surgical procedures aimed at establishing the right 
ventricle as the main pumping chamber of the heart 
after birth. These procedures, collectively known as 
surgical palliation for HLHS neonates, involve three 
steps: the Norwood Procedure, the Bi-directional Glenn 
Operation, and the Fontan Operation [23]. These 
procedures establish a new functional systemic circuit 
in patients with HLHS. [24]. During the initial days of a 
newborn's life, the Norwood Procedure is conducted to 
establish the right ventricle as the primary pump for 
pulmonary and systemic circulation throughout the 
body. This is achieved through a connection made 
between the left and right atria via atrial septectomy. 
Subsequently, the narrowed outflow track is 
reconstructed by creating a connection between the 
right ventricle and the aorta using tissue grafts from the 
distal main pulmonary artery. The final step in 
providing pulmonary blood flow is the 
aortopulmonary shunt, which connects the aorta with 
the main pulmonary artery [25]. After a six-month 
recovery period following the Norwood surgery, the 
bidirectional Glenn procedure is performed. [26].  
During this procedure, the shunt placed between the 
pulmonary arteries and the right pulmonary artery 
during the Norwood procedure is disconnected, and 
the right pulmonary artery is then connected to the 
superior vena cava (SVC). [26]. This allows for blood 
from the upper part of the body to enter the pulmonary 
artery directly, bypassing the ventricles. The Fontan 
operation is the third and final surgical procedure and 
is typically performed between 18 to 36 months after the 
Glenn procedure. During this procedure, a channel is 
created through or outside the heart to connect the vena 
cava to the pulmonary artery and direct blood flow to 
the pulmonary artery [26].  

Recently, alternative surgical approaches have been 
proposed for treating HLHS in the fetus. One such 
approach is fetal valvuloplasty (FV), which is aimed at 
improving left heart hemodynamics, promoting 
growth, and maintaining biventricular circulation at 
birth. [27]. FV may be performed to prevent the 
progression of severe mid-gestation US [28]. The FV 
procedure involves balloon dilation inflation of the 
aorta to reduce fetal aortic stenosis in utero [28–35]. In a 
pioneering study with this approach on 100 HLHS-
diagnosed fetuses and 43% of live-born patients had 
biventricular circulation, demonstrating the feasibility 
of the approach [33].  

The fetal diagnosis of HLHS is of utmost importance for 
therapy planning, as well as for the advancement of 
new approaches such as fetal surgeries, as mentioned 
earlier. There are multiple tools available for the 
diagnosis of HLHS, including Computed Tomography 
Angiography (CTA), Cardiac Catheterization, Chest X-
ray Radiography (CXR), Electrocardiography (ECG), 
and Echocardiography. However, all these techniques, 
except for Echocardiography, are difficult to apply to 
the fetus due to several limitations, such as 
invasiveness, radiation hazard, or acquisition of noise. 
Echocardiography, on the other hand, poses no danger 
to the fetus as it does not involve radiation and can 
provide accurate images and real-time measurements. 
A B-mode scan can be used to evaluate heart anatomy 
and ventricular position, while an M-mode and 
Doppler scan can be used for assessing valvular and 
vascular functionality [36]. The diagnosis of fetal HLHS 
through echocardiography relies heavily on qualitative 
criteria, which may lead to variations in diagnosis 
among clinicians. Despite this limitation, 
echocardiography remains a valuable tool for 
diagnosing fetal HLHS, as it allows for visualization of 
shunt flow, evaluation of the atrial and ventricular 
septum, assessment of vessel anatomy, and provision of 
functional information regarding the atrioventricular 
and outflow valves [37].  

Recent studies by Masaaki et al. [38] introduced SONO, 
an architecture that employs a CNN to identify cardiac 
substructures and anomalies within fetal ultrasound 
videos. The technique involves a timeline visualization 
for detection likelihood and the computation of 
anomaly scores. The assessment focuses on cardiac 
structural anomalies (specifically Heart and Vessels), 
using area under the curve-receiver operating 
characteristic (AUC-ROC) analysis, and demonstrates 
competitive performance compared to established 
methods. Gangadhar et al. [39] investigated the 
feasibility of utilizing deep learning algorithms, 
specifically Artificial Neural Networks, to predict 
coronary artery disease at an early stage. The research 
aimed to enhance cardiac diagnosis and preventive 
measures through effective analysis of data patterns. 
Gonsalves et al.[40] explored the utilization of medical 
data for CHD prediction through Naive Bayes, Support 
Vector Machine, and Decision Tree ML methods, 
highlighting the potential of Naive Bayes probabilistic 
models in enhancing CHD detection. 

Several computational approaches have been 
introduced in the medical field to advance diagnosis 
and therapy in severe clinical conditions. Computer-
Assisted Diagnosis (CAD), for instance, has 
revolutionized medical image analysis, from oncology 
to cardiology. CAD medical image analysis has been 
attempted since 1965, when J.M. Prewitt and others 
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published papers on the use of computerized image 
analysis of cell images [41,42]. The introduction of 
Machine Learning (ML) has revolutionized the image 
analysis field in medicine. Deep neural networks such 
as Convolutional Neural Networks (CNNs) [43] and 
Long Short-Term Memory (LSTM) [44] and their hybrid 
model CNN-LSTM have shown outstanding 
performance in different Computer Vision problems 
[45]. CNN has the advantage of automatically 
extracting useful spatial features from the image [46,47] 
while LSTM is popular for extracting important 
temporal features [48] from a sequence of images or 
frames or a video. Therefore, the combination of CNN 
and LSTM can offer spatial and temporal feature 
extraction on temporally varying image or video data. 
Architecture combined with CNN and LSTM has been 
successfully used in Natural Language Processing 
(NLP) applications [49], Speech Recognition [50], Video 
Description [51], Action Recognition [52], and so on.  

The importance of echocardiography in the diagnosis of 
CVDs is evident as it is the only imaging method that 
enables real-time imaging of the heart, thereby allowing 
for the immediate detection of various abnormalities. 
[53]. Combining clinician interpretation and machine 
learning (ML) has the potential to improve the accuracy 
of echocardiography by reducing inter- and intra-
operator variability. In addition, ML can provide 
predictive information that may be too subtle for 
humans to detect. [54]. Some limitations of using 
echocardiography include the heavy reliance on the 
operator's experience and the qualitative interpretation 
of the heart's anatomical features [55]. This limitation 
can be addressed by integrating ML into 
echocardiography, which can introduce more 
automated and quantitative parameters. [56–59]. The 
datasets generated from echocardiography, particularly 
with the advancements in techniques such as 3D 
echocardiography, are often underutilized, and vast 
amounts of data remain uninterpreted. To bridge the 
gap between clinical and echocardiographic data, the 
introduction of ML and deep learning algorithms can be 
of great assistance. [60–66].  

Accurate fetal diagnosis of CHDs is particularly an 
important area that will benefit from adopting ML 
approaches to advance echocardiography-based 
diagnosis. As in the case of HLHS, it is challenging to 
obtain an accurate diagnosis with conventional 
echocardiography approaches. Here, the structure and 
function of the fetal heart can be assessed through a 
variety of Ultrasound (US) techniques, including 
conventional 2-D imaging, M-mode imaging, and tissue 
Doppler imaging among others. However, it remains 
difficult to assess the fetal heart due to the involuntary 
movements of the fetus and its small size, in addition to 
some sonographers' lack of expertise in fetal 

echocardiography [67]. Despite the great potential, to 
date, there is no study on the application of ML for the 
advancement of fetal diagnosis of CHDs. In this study, 
we are aiming to develop a deep learning technique for 
the automatic diagnosis of HLHS from fetal B-mode 
echocardiography. The main contributions of the paper 
are: 

1. Several CNN-LSTM deep learning 
architectures with different state-of-the-art pre-
trained encoders (such as MobileNetv2, 
ResNet18, ResNet50, DenseNet121, and 
GoogleNet) were investigated.  

2. A novel CNN-LSTM architecture is used to 
extract spatial and temporal features from the 
B-mode Ultrasound during a cardiac cycle to 
identify the spatial and temporal abnormalities 
among healthy and HLHS patients. 

3. Comparing the performance of CNN-LSTM 
architectures, a novel stacking CNN-LSTM 
model is developed to diagnose the HLHS early 
and precisely. Finally, classification results are 
reported for video-wise and subject-wise 
decisions. 

 
II. METHODOLOGY 

A. Study Population 

Qatar's Women's Wellness and Research Center at 
Hamad Medical Corporation (HMC) is the largest fetal-
maternal unit in the country, treating almost all 
congenital birth defects. The HMC and Qatar University 
Ethics Committees approved the study (HMC IRB 
MRC-03-17-0015). Pregnant women who were referred 
for an early fetal ultrasound and met the study's 
eligibility criteria were invited to participate. 
Participants in the control group provided written 
consent and were given an initial evaluation and two 
follow-up appointments during the study. The initial 
evaluation was conducted during the beginning of the 
second trimester, between 16-19 weeks of gestation, and 
the follow-up evaluations were conducted between 23-
26 weeks and 31-34 weeks of gestation. During the same 
study period, women with fetuses diagnosed with 
congenital heart disease of the single ventricle (either 
hypoplastic left or right ventricle) were included in the 
study after obtaining verbal consent, as the initial and 
follow-up evaluations were part of their routine follow-
up. Almost all cases of congenital heart disease in the 
study were referred and diagnosed during the last 
weeks of the second trimester. The study included 13 
subjects with HLHS and 9 healthy control subjects. 

B. Patient Selection Criteria 

Women in the control group were deemed eligible if 
they had a scheduled routine fetal ultrasound 
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examination between weeks 16 and 18 of pregnancy.  

Women referred for determining gestational age or 
growth discrepancy, experiencing preceding 
miscarriage, unable to detect a fetal heartbeat, or other 
miscellaneous reasons were also eligible to be part of 
the control group, provided the fetus was determined 
to be normal. Patient selection diagram is presented in 
Figure 1. In Figure 1(A) number of CHD subjects 
illustrated, trimester refers to one of the three distinct 
periods into which a pregnancy is divided. In Figure 
1(A) number of healthy subjects illustrated. 

C. Acquisition of Echocardiography VideosAll 
examinations were conducted by a specific and 
experienced fetal cardiologist with ample background 
in fetal echocardiogram examination, using the 
Voluson E10 (General Electric) Ultrasound System. The 
Ultrasound examinations were performed with the GE 
RAB6-D 4D convex probe and following the guidelines 
issued by the American Society of Echocardiography 
and standards for the performance of fetal 
echocardiography. A detailed evaluation of all essential 
components of the fetal echocardiogram, including the 

four-chamber view, diameters of the mitral and 

tricuspid valve annuli, and the lengths of the left and 
right ventricle, were obtained. Flow patterns across the 
atrioventricular and semilunar valves were evaluated 
using color Doppler. Doppler indices were obtained by  

placing the sample volume distal to the respective 
valves and angled within 15-20° of the direction of 
blood flow. Doppler waveforms were obtained 
multiple times during fetal apnea, and color Doppler 
was used to direct the placement of the sample volume. 
Doppler images were used for the diagnosis of patients. 
However, only B-mode Ultrasound images extracted 
from mp4 videos were used for the ML model 
development in this study. 

FIGURE1 . Patient Selection Diagram. 
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FIGURE2 . Overview of the methodology. 
                                                                                                  

C. Machine Learning Model Development 

In this study, CNN-LSTM deep learning architectures 
with five different encoders (such as MobileNetv2, 
ResNet18, ResNet50, DenseNet121, and GoogleNet) were 
investigated to extract useful temporal and spatial 
features. These features were used to train a fully 
connected network (FCN)/multilayer perceptron (MLP) 
classifier. Out of the five encoders, the three best encoder-
based CNN-LSTM models' predictions were used to train 
a meta-classifier, a novel stacking model for the early and 
precise detection of CHD patients. The classification 
results are reported both video-wise and subject-wise. 
Figure 2 illustrates the schematic overview of the 
methodology.   

 

D. Dataset Description 

There was a total of 13 HLHS and 9 control subjects 
included in the study, and multiple B-mode Ultrasound 
videos were available for each subject in the dataset. 
Echocardiography was conducted at three time points: 1) 
16-19 weeks gestation, 2) first follow-up at 23-26 weeks 
gestation, and 3) second follow-up at 31-34 weeks 
gestation. Each video was segmented into short videos 
based on the cardiac cycle. Table 1 presents the number 
of available videos with corresponding time points and 
the number of segmented videos for each patient. 

E. Dataset Preprocessing 

Four steps were used to process echocardiogram  

 

videos of healthy and CHD patients: 1) cleaning and 
cropping the videos, 2) improving the video quality, 3) 
segmenting the videos, and 4) training test subject-wise 
splitting for five-fold cross-validation for CNN-LSTM 
model development, validation, and testing.  

 

1) Video Cleaning & Cropping  

All static information, such as text or color, was 
removed from the US videos. To remove text and color 
from videos, firstly, we have detected fixed text and 
color marking regions in each frame using canny edge 
detection approach. Then, we replaced the identified 
regions with corresponding background content from 
the same frame or neighboring frames to achieve the 
removal effect. The videos were cropped by 10% from 
each side to eradicate unnecessary segments. 
Cropping eliminates unimportant elements, such as 
black areas, enhancing visual focus while preserving 
aspect ratios for uniformity. The cleaned videos were 
then cropped by 10% from each side to reduce 
unnecessary parts (black areas) of the ultrasound 
videos. Then, all frames of each RGB video were 

resized to 224224, which is applied as input to the 
model. Figure 2 shows a sample of raw ultrasound 
frames, static information cleaned frames, and 
cropped frames. 
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FIGURE3 . Sample raw, cleaned, and cropped frames of the echocardiogram 

videos. 
2) Video Enhancement 

For each frame of the videos, gamma correction was 
applied to enhance the video quality. Typically, linear 
operations are performed on individual pixels in image 
normalization, such as scalar multiplication, addition, 
and subtraction [1]. In gamma correction, pixels in the 
source image are subjected to a non-linear operation. 
Gamma correction alternates the pixel value to improve 
the image using the projection relationship between the 
value of the pixel and the value of the gamma according 
to the internal map. If P represents the pixel value inside 
the [0,255] range, Ω represents the angle value, Ґ is the 
symbol of the gamma value set, x is the grayscale value 

of the pixel (x ϵ P) in equation (1-4). Let  𝒙𝒎 be range 
midpoint [0, 255]. The linear map 𝝋 from group P to 
group Ω is defined as: 

𝝋: 𝑷 → 𝜴, 𝜴 = {𝝎|𝝎 = 𝝋(𝒙)}, 𝝋(𝒙) =
𝝅𝒙

𝟐𝒙𝒎

       (𝟏) 

The mapping 𝒉 from Ω to Ґ is defined as: 
 
 

𝒉: 𝜴 →  Ґ, Ґ = {𝜸|𝜸 = 𝒉(𝒙)}              (𝟐) 

                  {
𝒉(𝒙) = 𝟏 + 𝒇𝟏(𝒙)                      (𝟑)

𝒇𝟏(𝒙) = 𝐚𝐜𝐨𝐬(𝝋(𝒙))                    (𝟒)
 

where a ϵ [0, 1] denotes a weighted factor.  
Based on this map 𝒉, group P can be related to Ґ group 
pixel values. The arbitrary pixel value is calculated in 
relation to a given Gamma number. Let 𝜸 (x) = h(x) and 
the Gamma correction function is shown in Equation 5. 

𝒈(𝒙) = 𝟐𝟓𝟓 (
𝒙

𝟐𝟓𝟓
)

𝟏/𝜸(𝒙)

                                  (𝟓) 

where g(x) represents the output pixel correction value in 
the grayscale.  

 

Table 1: Summary of the echocardiogram videos for (A) CHD subjects and (B) Healthy subjects. 

CHD Subjects (A) Healthy Subjects (B) 

Subject Id # of 

week 

No. of full 

videos 

No. of 

segmented 

videos 

Subject 

Id 

# of 

week 

No. of full 

videos 

No. of 

segmented 

videos 

1 (DCM) 35W 1 6 1 16W 3 51 

2 (HLHS) 23W 3 27 24W 4 60 

27W 3 64 2 24W 7 87 

31W 2 21 3 25W 4 130 

3 (HLHS) 28W 13 252 4 26W 3 85 

31W 2 23 5 16W 2 16 

4 (HLHS) 25W 4 74 23W 4 57 

5 (HLHS) 24W 5 79 6 17W 8 144 

28W 6 74 24W 4 76 

32W 2 54 33W 1 2 

6 (TOF) 17W 5 104 7 19W 3 71 

18W 5 331 27W 4 57 

7 (HLHS) 22W 5 88 8 19W 5 132 

25W 3 91 31W 2 36 

8 (HLHS) 23W 3 80 9 17W 6 110 

9 (HLHS) 24W 6 186 Total 60 1114 

28W 6 104 
    

10 (HLHS) 22W 11 168 
    

26W 3 75 
    

33W 8 344 
    

11 (HLHS) 25W 2 60 
    

12 (HLHS) 24W 5 266 
    

32W 5 38 
    

34W 3 40 
    

13 (HLHS) 19W 2 74 
    

25W 4 46 
    

30W 3 65 
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Total 120 2834 
  

  

FIGURE4 . Pre-processing of the Ultrasound video to up-sample to 20 frames by adding the last frame.

 

3) Video Segmentation 

The US videos were segmented into individual heart 
cycle video segments using expert medical annotation. 
To feed these segments into the deep learning model, a 
fixed number of frames per video was required. The 
average frame-per-second (fps) of the videos are made 
to 33. However, some videos has much less than 20 fps 
while some videos have much higher than 20 frames. 
Therefore, each video data was pre-processed to have a 
maximum length of 20 frames. The choice of using 20 
frames per video segment was likely determined based 
on a combination of factors such as the expected 
duration of a heart cycle, computational efficiency, and 
model requirements. Videos with less than 20 frames 
were adjusted to 20 frames by replicating the last frame, 
ensuring a uniform length of 20 frames across all videos. 
The process of video upsampling using padded frames 
is illustrated in Figure 4 and videos with more than 20 
frames were downsampled to 20 fps.  

 

4) Train-Test Fold Creation and Augmentation n 
Five different CNN-LSTM models were investigated 
along with a novel stacking model.  

 
Five-fold subject-wise cross-validation was used in this 
study, where 80% of the videos used for training (10% of 
which were used for validation) and 20% for testing. To 
avoid overfitting, the training data classes were made 
balanced since the HLHS, and healthy classes are not 
equal [2]. We used three popular image augmentation 
techniques (rotation, scaling, and translation) to make the 
training set balanced. Each image in the video was 
rotated by an angle of 5 to 10 degrees clockwise and 
counterclockwise for image augmentation. Each frame of 
the videos was scaled (magnified or reduced) by 2.5% to 
10%. The images were translated horizontally and 
vertically by 5% to 10%. The weighted average of the five-
folds is reported for each performance metric. Table 2 
shows the details of the number of training, validation, 
and test data sets used in this study. 

 

 

Table 2: Details of the dataset used for training, validation, and testing

Classes 
Videos (Total Video Samples with one heart 

cycle) 

Train video 
Samples 

(Subjects) 

Train video 
Samples 

(Subjects) 

Validation video 
Samples 

(Subjects) 

Test video 
Samples 

(Subjects) 

CHD 120 (2834) 1870 (8) 1870 (8) 404 (2) 560 (3)  

Healthy 60 (1114) 750 (6) 1870 (6) 154 (1) 210(2) 

F. Development of Classification Model 

US videos are composed of spatial and temporal 
features. The spatial feature of an US video is the shape 
of the heart chamber, while the changes in the chamber 
shape during systolic and diastolic events constitute the 
temporal feature. In this study, CNN and LSTM layers 
were utilized for the extraction of spatial and temporal 
features, respectively. Deep CNNs have been widely 
employed for image classification due to their superior 
performance in comparison to other machine learning 
methods. These networks are capable of automatically 
extracting spatial features of an image. The approach of 
transfer learning has been successfully incorporated in 

many applications [3-7], especially where a large dataset 
can be hard to find.  Thus, it opens the opportunity of 
utilizing a smaller dataset and reduces the time required 
to develop a deep learning algorithm from scratch [8-9]. 
In this study, we used five deep learning pre-trained 
CNN models such as ResNet18, ResNet50 [10], 
DenseNet201 [11], MobileNetV2 [12], and GoogleNet 
[11], which were predominantly used in the literature. 
The feature vector after flattening the layer of CNN was 
fed to the LSTM layers and then it is fed to the fully 
connected network (FCN) or MLP for classification. 

In Ultrasound videos, there is a degree of temporal 
connection between consecutive frames which contains 
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the information about systolic and diastolic events. 
Neural networks such as vanilla recurrent the temporal 
connections in video data. LSTM [13] layers are widely 
used in different Ultrasound video classification [14-15]. 
LSTM performs better than va- 

nilla RNN in this task where previous frames can 
preserve information in understanding the present 
frame [16].  LSTM layer has cell states and hidden 

FIGURE 5. Architecture of LSTM block. 

 
states which enables LSTM to add or remove information 
by regulating gates using cell states. Moreover, LSTM 
resolves the vanishing gradient problem of vanilla RNN 
by possessing the additive gradient mechanism [16]. Two 
layers of LSTM with 256 hidden states with a 20% 
dropout rate were used in this study for temporal feature 
extraction. Figure 5 represents the architecture of the 
LSTM module in the CNN-LSTM. 
In this study, the stacking approach was deployed with 
the top-performing three CNN-LSTM models (with three 
different pre-trained encoders) as base learners and a 

logistic regression classifier was used as meta learners to 
identify the CHD patients. If a single dataset A, which 
consists of input vectors (𝒙𝒊) and their classification score 
(𝒚𝒊). At first, a set of base-level CNN-LSTM classifiers 
𝑴𝟏, … … , 𝑴𝒑  is trained and the prediction of these base 

learners is used to train the logistic regression-based 

meta-level classifier 𝑴𝒇  as illustrated in Figure 6. 

 
 

FIGURE 6. Stacking model architecture. 

We used five-fold cross-validation to generate a training 
set for the meta-level classifier. Among these folds, base-
level classifiers were trained on four-folds, leaving one-
fold for testing. Each base-level classifier produces a 
probability value for the possible classes. Thus, using 

input x, a probability distribution is created using the 
predictions of the base-level classifier set, M: 
                           𝐏𝐌(𝐱) = (𝐏𝐌(𝐜𝟏|𝐱), 𝐏𝐌(𝐜𝟐|𝐱), … … . , 𝐏𝐌(𝐜𝐧|𝐱))                ( ) 
where (𝒄𝟏, 𝒄𝟐, … … , 𝒄𝒏) is the set of possible class values n, 

m denotes the number of subjects and 𝑷𝑴(𝒄𝒊|𝒙) denotes 
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the probability that example, x belongs to a class 𝒄𝒋 as 

estimated (and predicted) by the classifier, 𝑴  in Equation 
(6). The class 𝒄𝒊 with the highest-class probability 

𝑷𝑴𝒋(𝒄𝒊|𝒙) is predicted by a classifier, 𝑴 . The metalevel 
classifier 𝑴𝒇 , and attributes are thus the probabilities 

predicted for each possible class by each of the base-level 
classifiers, i.e., 𝑷𝑴𝒋(𝒄𝒊|𝒙) for I = 1,…., n and j = 1,…., p where 
n, p denotes the number of classes and the number of 
base learners. The pseudo-code for the stacking approach 
is shown in Algorithm 1. 
 

Algorithm 1:  Stacking Technique 

Input: training data 𝑨 = {𝒙𝒊, 𝒚𝒊}𝒊=𝟏
𝒎  

Output: a stacking classifier 𝑴𝒇  

1: Step 1: learn base-level classifiers 
2: for t=1 to T do 
3:     learn 𝒉𝒕 based on A 
4: end for 
5: Step 2: construct new data set of predictions 
6: for i =1 to m do 
7:     𝑨𝒉 = {𝒙𝒊

′, 𝒚𝒊}, where 𝒙𝒊
′ = {𝒉𝟏(𝒙𝒊), … . . , 𝒉𝑻(𝒙𝒊)} 

8: end for 
9: Step 3: learn a meta-classifier 
10: learn 𝑴𝒇  based on 𝑨𝒉 

11: return 𝑴𝒇  

 
G. Decision Function 
A decision function was used in this study to take the 
decision on the final classification. The decision was 
taken using two different approaches:  Ultrasound 
video-wise and subject-wise. For video-wise decisions, 
the average of the prediction probability scores was 
calculated for the segmented short videos of 20 frames 
individually and made one final decision for full video 
from all the short videos. Similarly, for subject-wise 
decisions, the average of the prediction probability scores 
of different Ultrasound videos of the subject was used to 
produce the final decision. Equation 6 shows the final 

decision function: 

𝜎 =
1

𝑛
∑ 𝑃𝑖(𝑥)𝑛

𝑖=1                   (7) 

where 𝜎 is the decision function of n number of 
segmented or full videos. 𝑃𝑖(𝑥) is the probability scores 
for each segmented or full video.  
The mean probability scores of all segmented videos 
were used to take the decision for the full Ultrasound 
video. Similarly, this study also produced the final 
decision of the subject by taking the mean of the 
probability scores of all videos of the subject 

 
H. Experimental Setup 
This study was carried out with the Pytorch package and 
Python 3.7. Google ColabPro was used to train all the 
models and the specification was 16GB Tesla T4 GPU and 
120GB High RAM. Table 3 shows the training settings 
that were employed in this experiment. 
 
I. Evaluation Metrics 
Precision, Sensitivity, Specificity, Accuracy, F1-Score, 
and receiver operating characteristic (ROC) with the area 
under the curve (AUC), were used to evaluate the 
performance of different classifiers. Weighted metrics 
per class and overall accuracy were used as both classes 
had different numbers of instances. The area under the 
curve (AUC) was also analyzed as a metric for 
evaluation. Equations (8-12) show the mathematical 
expression of five evaluation measures (weighted 
sensitivity or recall, specificity, precision, overall 
accuracy, and F1 score): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐y =
𝑇P+𝑇𝑁

𝑇𝑃+𝑇N+𝐹𝑃+𝐹N
              (8) (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇P

𝑇P+𝐹P
                (9) (9) 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇P+𝐹N
               (10) (9) 

𝐹1_𝑠𝑐𝑜𝑟e = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡y
            (11) (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇N+𝐹P
               (12) (11) 

 

 

TABLE 3. Details of training parameters of CNN-LSTM models 

Training 
Parameters 

LSTM 
Hidden 

Size 

LSTM 
layer 

Input 
Dimension 

Frames 
per video 

Batch 
Size 

Learning 
rate 

Max 
Epochs 

Epoch 
Patience 

Optimizer 

256 2 224 20 4 0.0001 50 5 ADAM 

 
Here, true positive (TP), true negative (TN), false positive 
(FP), and false-negative (FN) were used to denote the 
number of HLHS videos or subjects were identified as 
HLHS, the number of healthy videos or subjects were 
identified as healthy, the number of healthy videos or 
subjects incorrectly identified as HLHS and the number 
of HLHS videos or subjects incorrectly identified as 
healthy, respectively. We report the weighted 
performance metric, with a 95 % confidence interval, for 
Sensitivity, Specificity, Precision, and F1-Score, and the 
overall accuracy with a 95 % confidence interval for the 
accuracy. 

 
 
III . RESULTS AND DISCUSSION  
The heart is the first functional organ of the fetus. 
Therefore, the heart continues to function and develop at 
the same time. Since blood flows constantly through a 
developing heart, it has been suggested that 
hemodynamic forces (i.e. forces on cardiac tissue by 
flowing blood) are an important epigenetic factor 
governing cardiogenesis. Congenital heart disease 
(CHDs) form during the very complex events of heart 
development. These defects affect about 1% of newborn 
children and are the leading cause of death in infants 
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under 1 year of age. CHDs can be detected prenatally via 
medical imaging whereas echocardiography is the most 
widely used technique for this purpose. Real-time 
imaging via echocardiography enables the assessment of 
heart morphology (i.e., the size of the heart chambers and 
valves etc.) whereas Doppler echocardiography enables 
the measurement of blood flow velocities through the 
heart (i.e., inflow through heart chambers and flow 
through heart valves etc.), hence evaluation of heart 
function. For example, prenatal echo can detect one of the 
most serious types of CHDs, ventricular hypoplasia 
(under development), as early as the 18th week of 
gestation, with high accuracy. Echocardiography 
revealed the presence of disturbed hemodynamics in 
hypoplastic fetal hearts, and associated abnormal forces 
are thought to contribute to the development of this 
condition. However, this evaluation is highly subjective 
while computer-aided-diagnosis can help here 
significantly. This work used echocardiography videos of 
a small healthy and CHD (mainly HLHS) patients cohort 
to develop deep learning-based detection system to 
automatically classify the HLHS and healthy subjects 
automatically and reliably. Figure 7 shows the sample of 
healthy and HLHS patients’ 4-chamber view of the heart 
to show the difference in the morphology of the heart 
chamber in unhealthy groups during the different 
gestational weeks.  

 

 

(A) 

‘  

(B) 

FIGURE 7. Sample snapshot for (A) healthy, and (B) HLHS patient’s 

echocardiogram videos for two timepoints of each subject. LA is left atria, LV is 
left ventricle, RA is right atria, RV is right ventricle. Snapshots are for ventricle 
diastole in the cardiac cycle. 

This study investigated and compared five different deep 
learning CNN-LSTM architectures using 5 pre-trained 
models, such as MobileNetv2, ResNet18, ResNet50, 
DenseNet121, and GoogleNet, for the purpose of 
developing a novel stacking model to predict the HLHS 
patients from Ultrasound videos. The results are reported 
using video-wise and subject-wise evaluations. 

 
A. Video-Wise Classification 
As discussed above, this study analyzed different deep 
learning LSTM models and stacking models to classify 
HLHS or healthy patients using echocardiogram videos. 
This study yielded the best performance with 
MobileNetv2-LSTM architecture which produced the 
accuracy, precision, sensitivity, F1 score, and specificity 
of 88.9%, 92.4%, 90.3%, 91.6%, and 86%, respectively. 
The stacking model was developed using the 
probability scores of Top-3 performing models 
(MobileNetv2-LSTM, ResNet18-LSTM, and GoggleNet-
LSTM) which improve the result by ~2% with the 
accuracy, precision, sensitivity, F1 score, and specificity 
of 89.5%, 92.5%, 91.8%, 92.5%, and 86.2%, respectively. 
Table 4 shows the comparisons of different CNN-LSTM 
models and the stacking model for video-wise HLHS 
and healthy patient classification. 
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         TABLE 4. Comparison of different CNN-LSTM performances for video-wise classification

Networks Accuracy Precision Sensitivity F1_score Specificity 

MobileNetv2+LSTM 88.9 92.4 90.3 91.6 86.0 

ResNet18+LSTM 86.4 85.2 85.8 85.8 83.8 

ResNet50+LSTM 83.7 84.9 85.8 85.4 83.2 

DenseNet121+LSTM 82.8 82.1 84.3 83.1 82.3 

GoogleNet+LSTM 84.8 84.3 85.1 84.7 84.5 

Stacking Model    90.5 92.5 91.8 92.5 86.2 

Figure 8 shows the area under the curve 
(AUC)/receiver-operating characteristics (ROC) curve 
(also known as AUROC (area under the receiver 
operating characteristics)) for video-wise HLHS 
classification using Ultrasound videos, which is one of 
the most important evaluation metrics for checking any 
classification model’s performance. This is apparent 
from the ROC curves that the stacking CNN-LSTM 
model outperformed other networks for classification 
with 93.7% AUC whereas the AUC of the best 
performing CNN-LSTM (MobileNetv2-LSTM) model is 
92.2%. 

 
FIGURE 8. ROC curve for video-wise binary classification using 

different CNN-LSTM and stacking CNN-LSTM models. 

 

FIGURE 9. Confusion matrix for video-wise classification using (A) 

the best performing CNN-LSTM model, (B) and the best performing 

stacking CNN-LSTM model. 

Figure 9 shows the confusion matrix for the best 
performing CNN-LSTM (MobileNetv2-LSTM) model 
and the stacking model for video-wise classification 
using echocardiogram videos. Figure 9(A) shows the 
confusion matrix of the best performing CNN- LSTM 
(MobileNetv2-LSTM) model and Figure 9(B) shows the 
confusion matrix of the best performing stacking CNN-
LSTM model. The best performing MobileNetv2-LSTM 
network detects 109 videos out of 120 Ultrasound videos 
correctly for CHD patients while 51 videos out of 60 
Ultrasound videos are correctly detected for healthy 
patients. On the other hand, stacking the CNN-LSTM 
model slightly improves the performance, where 112 
videos out of 120 Ultrasound videos are detected 
correctly for CHD patients and 51 videos out of 60 
Ultrasound videos are correctly classified as healthy. 
 
B. Subject-Wise Classification 

This study also investigated different deep learning 
CNN-LSTM models and stacking models for subject-wise 
CHD or healthy patient classification using 
echocardiogram videos. In subject-wise classification, 
this study made the decision for each subject which is the 
average of the predicted scores of all videos of this 
subject. This study produced the best performance with 
MobileNetv2-LSTM architecture which produced the 
accuracy, precision, sensitivity, F1 score, and specificity 
of 86.4%, 85.7%, 90.9%, 88.9%, and 80.1%, respectively. 
The stacking model was developed using the probability 
scores of Top-3 performing models (MobileNetv2-LSTM, 
ResNet18-LSTM, and GoogleNet-LSTM), which 
improved the result by ~2% with the accuracy, precision, 
sensitivity, F1 score, and specificity of 91%, 86.7%, 97.9%, 
92.9%, and 81.4%, respectively. Table 5 shows the 
comparisons of different CNN-LSTM models and the 
stacking model for subject-wise classification. 
Figure 9 shows the AUC/ROC/AUROC for subject-wise 
classification of HLHS and healthy subjects using 
Ultrasound videos. This is evident from the ROC curves 
that the stacking CNN-LSTM model outperformed other 
networks for classification with 94.5% AUC whereas the 
AUC of the best performing CNN-LSTM (MobileNetv2-
LSTM) model is 88.4%. A significant margin of 
improvement in AUC (~6%) was observed in using the 
novel stacking technique in the final subject-wise 
classification. 
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TABLE 5. Comparison of different CNN-LSTM performances for subject-wise classification

  
Networks Accuracy Precision Sensitivity F1_score Specificity 

MobileNetv2+LSTM 86.4 85.7 90.9 88.9 80.1 

ResNet18+LSTM 84.8 80.0 90.5 85.7 75.9 

ResNet50+LSTM 73.9 78.6 77.8 78.6 71.7 

DenseNet121+LSTM 77.3 78.6 82.9 81.5 69.6 

GoogleNet+LSTM 84.8 80.0 90.5 85.7 75.9 

Stacking Model 91.0 86.7 97.9 92.9 81.4 

 
FIGURE 10. ROC curve for subject-wise classification using different CNN-

LSTM networks and stacking CNN-LSTM model. 

 
Figure 11 shows the confusion matrix for the best 
performing CNN-LSTM (MobileNetv2-LSTM) model 
and the stacking model for subject-wise classification 
of HLHS and healthy subjects using echocardiogram 
videos.  
 

 
 

FIGURE 11. Confusion matrix for subject-wise classification using (A) the 

best performing CNN-LSTM model, and (B) the best performing stacking 

CNN-LSTM model. 
Figure 11(A) shows the confusion matrix of the best 
performing CNN-LSTM (MobileNetv2-LSTM) model 
and Figure 11(B) shows the confusion matrix of the 
best performing stacking CNN-LSTM model. The best 
performing MobileNetv2-LSTM network detects 12 

out of 13 subjects correctly as CHD patients while 7 out 
of 9 subjects are detected correctly as healthy patients. 
On the other hand, the stacking CNN-LSTM model 
improves the performance where all subjects are 
detected correctly as CHD patients, and 7 out of 9 
subjects are correctly classified as healthy patients. The 
Ultrasound videos in three time-points of the two 
healthy subjects which were miss-classified by the 
model are shared as supplementary materials.   
It is evident from this study that the presented novel 
framework that was developed using the stacking 
CNN-LSTM model is capable of detecting CHD 
patients reliably. The performance of this model can be 
further enhanced by increasing the sample size in the 
training process. For this study, there were only 9 
healthy and 13 CHD patients’ data available where 
some of the Ultrasound videos were significantly 
corrupted by the motion artifacts and could not be 
included in the analysis. Moreover, the number of 
videos (e.g., 60) at different time points for healthy 
patients was half of the CHD patients’ videos (e.g, 120). 
Due to the limitations of healthy subjects’ data, the 
model was not learning enough about the healthy 
cardiac cycle in Ultrasound videos, this might be the 
reason for the misclassification of the two healthy 
patients by the algorithm. Otherwise, the model 
performed outstanding in case of HLHS patient 
detection using Ultrasound videos. To the best of the 
authors’ knowledge, this is the first study using 
Ultrasound videos to reliably classify the HLHS 
patients using the deep learning technique. This study 
can be extended with a larger patient cohort with the 
more longitudinal time point of Ultrasound videos to 
identify at which time point (i.e., gestational week) 
typically the deep learning model can detect the HLHS 
patients reliably. This will allow us to identify the 
more useful temporally distinctive feature(s) in the 
cardiac cycle of the Ultrasound videos in the different 
gestational week time points.  
Even though, patient cohort size was low for the study, 
number of video samples that were used to train and 
test the algorithm was quite high (as shown in Table 
2). For each patient, echocardiography was performed 
at up to three different timepoints (different gestation 
weeks). For a specific patient and a specific timepoint, 
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several different echocardiography b-mode videos 
were collected from different orientations. This way, 
total number of full videos reached up to 180. These 
videos were then segmented to involve different 
cardiac cycles. Segmented videos were not just 
repetition since in most cases, fetus was moving 
during imaging and also operator was moving the 
probe for better signal. Therefore, segmented videos 
were treated as more sample videos in this study. The 
number of video samples reached to 2834 for CHD 
class and 1114 for healthy class which we believe, 
sufficient to train a deep learning model. Future work 
will involve testing the algorithm in larger cohorts 
involving different types of CHDs that are more 
prevalent. 
 
III. CONCLUSION 
Congenital heart disease (CHDs) affect 0.6-0.8 % of the 
population and are the leading cause of death in 
infants under 1 year of age. Current treatment of 
serious CHDs involves a serious of high-risk 
operations shortly after birth. Recently, prenatal 
intervention to treat these conditions has emerged as a 
potential therapy alternative emphasizing the 
importance of diagnosis of the condition in utero.  
Echocardiography is the gold standard for CHD 
diagnosis in utero. A severe CHD type is hypoplastic 
left heart syndrome responsible for 25% all prenatal 
deaths. Recently, some pioneering works showed the 
potential of applying ML into fetal CHD diagnosis. 
The objective of this study was to detect the 
morphological and temporal changes in the cardiac 
Ultrasound videos of the fetus due to HLHS using ML 
approaches. For this purpose, we collected 
echocardiography videos at different stages of 
gestation from fetal HLHS patients. These videos were 
preprocessed and used to train 5 different deep 
learning CNN-LSTM models and a novel stacking 
CNN-LSTM model. Our results suggest that the 
stacking CNN-LSTM model, which is developed using  
MobileNetv2-LSTM, ResNet18-LSTM, GoogleNet-
LSTM models with different pre-trained encoders is 
very effective for differentiating the HLHS patients 
from the healthy patients using Ultrasound videos. 
The model could distinguish the healthy and HLHS 
human fetal heart differences during the gestational 
development stages in terms of cross-sectional heart 
chamber dimensions, and flow hemodynamics. This 
pioneering study has demonstrated that the deep 
learning framework is capable of distinguishing the 
unhealthy heart in the early gestational week using 
Ultrasound videos which can help in applying 
potential prenatal therapy rather than postnatal 
therapy to increase the chance of the patient survival.    
 
 

SUPPLEMENTARY MATERIALS 
Sample de-identified Ultrasound videos of healthy 
and HLHS patients are available for three acquisition 
time points at Supplementary Material 1 (S1). Two 
healthy subjects which were miss-classified by the 
model are shared as supplementary materials at 
Supplementary Material 2 (S2). 
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