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A B S T R A C T   

Artificial intelligence (AI) is rapidly becoming an established arm in medical sciences and clinical practice in 
numerous medical fields. Its implications have been rising and are being widely used in research, diagnostics, 
and treatment options for many pathologies, including sickle cell disease (SCD). AI has started new ways to 
improve risk stratification and diagnosing SCD complications early, allowing rapid intervention and reallocation 
of resources to high-risk patients. We reviewed the literature for established and new AI applications that may 
enhance management of SCD through advancements in diagnosing SCD and its complications, risk stratification, 
and the effect of AI in establishing an individualized approach in managing SCD patients in the future. Aim: to 
review the benefits and drawbacks of resources utilizing AI in clinical practice for improving the management for 
SCD cases.   

1. Introduction 

Artificial intelligence (AI) or machine intelligence as a term was 
coined in 1956 [1]. As computing power continues to grow, AI is 
exerting an immense effect on today’s society, particularly in medical 
practice [2]. AI in simple language means transmitting human cognitive 
ability to machines [2]. As a programmed machine, AI can learn and 
distinguish patterns and correlations between inputs and outputs, then 
use this knowledge for decision-making on the new input data [1]. AI 
utilizes computational networks, i.e., neural networks, that emulate a 
biological nervous system. Based on functionality and capability, AI can 
be grouped into types 1 and 2. Type 1 is based on capabilities. This 
describes the AI method according to its ability to perform complex 
tasks, learn from previous input, and take appropriate decisions. Type 2 
is focused on functionality. This assesses the ability to exhibit human 

features like responding to human emotions, holding conversations, and 
being self-aware. An example of that is robots that display human-like 
features and functions [3]. 

AI can be actualized through machine learning and deep learning. 
Machine learning is a subfield of AI and deep learning is a specific subset 
of machine learning with a focus on deep neural networks [1]. Briefly, 
machine learning intends to develop algorithms that process the input 
data to detect patterns, through statistical analysis, and make inferences. 
Subsequently, the data sets are utilized to train the machine. Deep 
learning evolves from machine learning algorithms through the utili-
zation of hierarchical levels of neural networks, that obtain features 
from raw input [1,3]. Many reviews are now emerging with interest in 
Artificial Intelligence applications in certain hematological diseases 
[4,5]. The current clinical use of AI spans numerous specialties such as 
cardiology, orthopedics, rheumatology, oncology, and hematology [2]. 
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Sickle cell disease (SCD) is the most common inherited hematologic 
disease [2,6,7]. According to the Centers for Disease Control and Pre-
vention (CDC), SCD is prevalent in sub-Saharan Africa, Spanish- 
speaking regions in the Western Hemisphere, Saudi Arabia, India, and 
Mediterranean countries [8]. In SCD, sickle hemoglobin (HbS) replaces 
the normal healthy healthy hemoglobin (HbA). HbS has a life span of ten 
to twenty days compared to the life span of about 120 days in HbA [9]. 
Hemoglobin SS (HbSS) is the most common genotype in SCD, which 
indicates the presence of two copies of the HbS gene. There are several 
other heterozygous genotypes such as sickle cell plus thalassemia (HbS 
+ thal) in which an individual carries the HbS gene in addition to one or 
more thalassemia genes. Hemoglobin sickle cell disease (HbSC) geno-
type may also occur as a patient inherits a copy of the HbS gene and a 
copy of HbC gene. [10,11]. The red blood cells have a sickle shape 
because of the process of hemoglobin polymerization of the deoxygen-
ated molecule with HbS. The cell morphology is used to classify patients’ 
disease states [9]. The manifestations of SCD include vaso-occlusive 
crises, sepsis, ischemic strokes, acute chest syndromes, and aplastic 
crises. Painful vaso-occlusive crises are widely prevalent and are in fact 
the most common cause of hospitalizations in SCD patients. In vaso- 
occlusive episodes, sickle red blood cells stick to white blood cells that 
adhere to vessel endothelium, leading to microvascular occlusion, hence 
resulting in tissue ischemia and pain. This may lead to complications like 
arthritis, retinopathy, renal failure, and strokes according to the site of 
occlusion. Aplastic crises usually occur due to an infectious cause that 
leads to destruction of red blood cell precursors and a significant 
reduction in red blood cell formation [12–15]. The core management of 
patients with SCD reduces the risk of complications with the use of 
hydroxyurea. Although red blood cell transfusion reduces the burden of 
sickled cells, it is associated with iron overload [16]. Although the ge-
notype of SCD is widely known, disease manifestations and the pheno-
typical pictures vary widely among patients. It is caused by a point 
mutation of a single base pair in the beta-globin gene, resulting in the 
change of amino acid valine to glutamic acid when producing the beta- 
globin chain [8]. SCD is also the world’s most common monogenic 
disease. The objective of this review is to discuss the utilization of AI for 
the diagnosis of the disease and its complications, treatments, and risk 
stratification for SCD patients. It is important to note the increase in 
machine-readable data that has been published recently. The Sickle Cell 
Ontology (SCDO), a comprehensive domain that describes SCD concepts 
and terminology, is now represented in machine-readable formats. This 
means that such data may be used to improve the quality of results 
yielded in diagnostics, research, prediction of outcomes, and optimiza-
tion of SCD treatment [17]. 

2. Materials and methods 

2.1. Literature search strategy 

An electronic literature search was performed on 1 November 2022 
using PubMed to identify primary literature. No language or date or 
language restrictions were applied to the search strategy. The search 
strategy was also transferred to other databases using Polyglot trans-
lator, them being Cochrane Library, Web of Science, Embase, and Sco-
pus. The following terms were used and combined using Boolean 
operators ‘AND/OR’: ‘artificial intelligence’, ‘machine learning’, ‘deep 
learning’, ‘convolutional neural network’, ‘sickle cell’, ‘diagnostics’, 
‘pathomics’, ‘radiomics’, and ‘radiogenomics’. The references of the 
identified studies, review articles, systematic reviews, and meta- 
analyses were manually screened to identify additional studies. The 
identified studies were grouped according to their objectives such as 
diagnosis of the disease, its complications, and determining the risk of 
patient clusters. The role of personalized medicine is also discussed, and 
papers were then critically appraised. Removal of duplicates was then 
done. All titles and abstracts were independently screened by the 
authors. 

2.2. Inclusion criteria 

Research articles were included if they met the following criteria, 1) 
The authors used a technique or method that relies on the usage of 
Artificial Intelligence to function, 2) The research showed conclusions 
regarding the reliability or accuracy of using such method, 3) Reports 
results useful to assess in the diagnostics or treatment of sickle cell 
diseases. 

2.3. Role of AI in diagnostics 

The challenge faced in the detection of SCD is that red blood cells 
have heterogenous shapes and may overlap in images. The traditional 
method used involves using microscopy to identify and count cells and 
outliers. There are several additional limitations, too. A recent publi-
cation by Douglass et al. investigated the use of a lensless encoding 
biosensor that could differentiate between sickle and healthy red blood 
cells. The samples collected and used were wet mounts of whole blood 
samples from human donors. The single random phase encoding (SRPE) 
system was able to detect the diseased samples. This system is a low-cost, 
lenseless approach that allowed the authors to identify cells. To elabo-
rate, the SRPE system exposes the sample to a laser light source. Sub-
sequently, the laser is tuned by intracellular structures. The light then 
travels to a diffuser that obtains details about spatial frequency. The 
intensity of the pattern is then recorded by a CMOS sensor. This offers a 
low-cost method for less developed healthcare systems to identify and 
diagnose the disease in a faster way. Another beneficial aspect was the 
ability of the developed system to detect differences and detect diseases 
other than the sickle red blood cell. However, a drawback was that using 
some crops, or images, was limited by the sensor dimensions. In addi-
tion, more data should be captured and used in order to further increase 
the accuracy of the classifications made. This reduced the ability to use 
some crops which were one-dimensional. The system that was devel-
oped had an accuracy of 88.7%. This is done by using a convolutional 
neural network, which is a network architecture for deep learning to 
recognize patterns, objects, or scenes. This was utilized in a SRPE system 
[18]. 

An interesting tool was also developed to be used on smartphones 
which helps aid in the diagnosis of SCD. That is a 3D-printed attachment 
that uses an RBC sample suspended in a paramagnetic medium and 
sodium metabisulfite, then differentiates sickle and healthy red blood 
cells using its magnets. This is used with a cell phone application that 
helps interpret those results. The steps are taken to get the results usually 
take under ten minutes to perform. Nonetheless, its limitation is that it 
could only be used to detect homozygous HbSS genotypes, which makes 
it unattractive in clinical practice. However, it could start newer waves 
of innovation to create a smartphone attachment to further differentiate 
different sickle cell disease subtypes. The developed methods so far still 
need specific human expertise, which is both costly and labor-intensive. 
The classifications are also still limited to the accuracy of the classifiers 
and their performance to make a diagnosis. Hence, more accurate 
classifications are also required which would include all patterns and 
types of RBCs in SCD patients [19]. On the other hand, the benefit 
gained from using deep convolutional neural networks (dCNNs) is the 
ability to test over a thousand RBCs in a few seconds. This has been 
outlined in a paper by Xu et al., in which they suggested the idea of using 
a convolutional neural network as it showed great performance even in 
deoxygenated datasets. In this method, the authors first extracted blood 
samples and performed RBC extraction. They then separated touching 
RBCs and applied RBC patch-size normalization methods to unify the 
RBC patches into a certain size. They then used their deep CNN system to 
extract information about the RBC sample. The main classification was 
based on the shape or type RBCs, in which CNN classified them into 
discocytes, echinocytes, elongated, granular, oval, reticulocyte, sickle, 
or stomatocytes. This may also be improved as the system is better 
trained. In addition, this will enable the creation of multiple 
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classifications in patients with heterogenous blood cells. They suggest 
that this method may also be used later to classify the severity of SCD 
using their framework. Moreover, new clustering techniques are also 
needed to cluster the cells automatically [20]. 

González-Hidalgo et al. demonstrated a method to analyze erythro-
cyte shape and quantify the number of healthy and abnormal cells using 
an algorithm that has the ability to accurately and efficiently find 
overlapping clusters and minimize the noise in images. They have done 
that by using ellipse adjustments to the input as well as designing a 
system that only detects remarkable points. A positive remark was that 
they verified this system by testing its efficacy with real images, artificial 
images, and synthetic images. Their results showed an efficiency of 98% 
or greater in all those image types, with real images showing the best 
results. In addition, the methods used were all automated. However, 
diagnosis still may not be entirely dependent on this method and should 
be confirmed via additional analyses. In order to validate their results, 
they held five experiments using real, synthetic, and artificial images. 
When comparing their method to others, they had the highest efficacy as 
they minimized mistakes in object detection with an efficacy of 100%. 
They also had impressive efficiency in detecting all different shapes 
including elongated and circular objects. When comparing their method 
to another study that used the ellipse fitting technique and concavity 
detection, they had a significantly higher efficacy, and no cells were 
detected as sickle or normal wrongly. Hence, this method would be 
perfect to count the number of normal and deformed cells [21]. Active 
Appearance Models (AAM) were another method for segmentation to 
separate erythrocytes from the background in a precise manner. This set 
of models can help distinguish cells from the background noise. AAM 
may also describe the shape and texture of cells accurately by applying a 
shape variation and texture variation model. This ultimately leads to 
better segmentation of RBCs to give rise to more accurate analyses to be 
performed. Another benefit is that since AAM uses closed form of 
boundary, performing boundary tracking to count cells would be un-
necessary [22]. Another recent paper by Darrin et al. uses a combination 
of convolutional and recurrent neural network machine learning algo-
rithms to analyze certain red blood cell videos in SCD patients. Using 
this information, they deduced that this technique could be used to 
assess the red blood cell dynamics and differentiate between normal and 
sickled cells with high accuracy. They trained their network by 
providing a large number of videos from a predefined dataset to allow 
the network to identify features to differentiate between the different 
red blood cell types. They suggest that the study may be used to monitor 
the disease and development of new treatments by identification of 
certain therapeutic targets and monitoring the effects of treatment on 
cell morphology. These results prove the effectiveness of AI methods in 
determining biological dynamics and the uses that could be gained from 
these variables [23]. 

Other clustering methods were used like k-means and DBSCAN, 
which are methods that aid in automatic cellular classification. DBSCAN 
is one of the most widely used and cited clustering algorithms in sci-
entific literature. Simply, it works by grouping points that are closer and 
packed together in a group and identifies outliers that are in low-density 
areas and are farther than any other points. On the other hand, k-means 
is a centroid-based clustering algorithm as clusters are assigned ac-
cording to their proximity to a certain mean (the centroid). It then 
identifies the number of clusters (K) found in the dataset classification 
[24]. Classification techniques also included some that used deep con-
volutional neural networks with Hep-2 cells [25]. Nonetheless, all the 
aforementioned techniques share some disadvantages including the 
need for human expertise and could be time consuming [20]. Alagu S 
et al. used images from a public database called erythrocyte IDB to 
extract their features and use that information to build a system that is 
accurate in detecting SCD and differentiating them from healthy cells. 
This might also help in the detection of sickle cell SCD-like disorders. 
After they optimized InceptionV3, an already established system, they 
had results that showed a sensitivity of 98% and specificity of 99%. 

Inception V3 is an image-recognition model that helps in the recognition 
of different components in an image. The authors showed improvement 
of the results when introducing Multi-Objective Binary Grey Wolf 
Optimization (MO-BGWO), which is a feature selection tool, in addition 
to KNN and SVM, which are machine learning algorithms used for 
classification of images. This might help in early detection of sickle cell 
disease, which would prevent further complications and may improve 
disease course [26]. 

2.4. Role of AI in diagnosing complications 

A common complication of SCD is proliferative sick cell retinopathy 
(PSR). This is a condition in which retinal microvasculature is occluded 
causing ischemia, which in turn leads to proliferation and ultimately 
leads to retinal detachment [27,28]. Cai S et al. reviewed the benefits of 
using AI to interpret retinal imaging in a faster and more easily acces-
sible manner when compared to human expertise. The study’s limita-
tions were due to its being a single-institution design using a limited 
number of images. The population studied, however, was reflective of 
the population with a higher risk to develop SCD, as they included 
mostly patients of Black or African descent [27]. The study showed a 
97.4% sensitivity and 97% specificity for AI interpreting retinal photo-
graphs compared to retinal specialists. AI was used in another study to 
create a retinal vessel mask on fluorescein angiography (FA) images, 
which are usually used for staging SCD. This helps compute qualities 
including the length and area of the vessel in addition to the ischemic 
index. However, there remain several challenges that hinder the possi-
bility to implement those techniques in clinical practice. Generaliz-
ability is a challenge as these systems and CNNs developed must be 
tested on the target population. This is due to the discrepancy in the 
images acquired in different health systems around the world. Hence, 
more open access datasets are required and could be very helpful. There 
is also a medicolegal aspect that must be considered when relying on 
these diagnoses [29]. Many studies have also shown that in the future, 
using several types of imaging to be interpreted by AI and deep learning 
could further enhance current performance [30]. As a next step, both 
staging and interpretation of more data may help personalize and 
determine each individual’s risks [31,32]. 

Machine learning methods may also be able to predict organ 
dysfunction occurring in patients with SCD. A multilayer perceptron 
model was used in a study done by Mohammed A et al. In this study, they 
tried to test the accuracy of predictions made by machine learning 
regarding organ dysfunction in ICU admitted SCD patients. It showed 
accurate predictions for organ failure with 96% sensitivity and 98% 
specificity [33], which demonstrates more promising results by machine 
learning techniques. Their model was also able to predict organ 
dysfunction up to 6 h before onset. Another study by Hankins JS et al. 
showed that significantly enhanced clinical outcomes would be present 
if the applications were implemented on the levels of both the providers 
and the patients. For instance, enhancing both hydroxyurea prescribing 
behaviors and compliance by patients simultaneously would further 
improve outcomes [34].They used physiological data including blood 
pressure and respiratory and heart rates. This could be beneficial since 
early detection of the occurrence of organ failure may lead to earlier 
treatment and improved outcomes [35]. This can be enhanced further by 
creating models that may predict the organ system that has the highest 
risk of failing in patients with SCD. 

AI has also been used as systems in wearable devices to detect and 
diagnose painful crises as early as possible. However, a common limi-
tation in these types of studies is the great difficulty in accurate identi-
fication and diagnosis of vaso-occlusive crises. Since SCD vaso-occlusive 
crises are related to peripheral vasoconstriction due to triggers like 
obstructive sleep apnea, a machine learning algorithm described in a 
paper by Ji Y et al. was developed to use non-invasive measurements to 
predict the occurrence vaso-occlusive crises. These measurements 
include finger photoplethysmogram (PPG) and heart rate. The aim of the 
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study was to explore the possibility of having a wearable device that 
detects susceptibility of each SCD patient to experiencing more painful 
vaso-occlusive crises. To elaborate, PPG would detect the severity of 
vasoconstriction during sleep, which is associated with higher frequency 
of vaso-occlusive episodes. They used this association to build a tool that 
uses machine learning to predict the frequency of the episodes based on 
PPG findings. This might help clinicians plan long-term therapy for SCD 
patients and anticipate painful episodes using non-invasive mesures 
[36]. Other studies have also shown that current wearable technology 
has the ability to report objective data that can be used to predict a 
patient’s pain score. In one study, researchers used the physiologic data 
recorded on these devices and used machine learning to score the pain 
and to create a prediction model for each patient. The study showed that 
the wearable device that was used recorded physiologic markers during 
the occlusive episode that could be matched with pain scores and used in 
a machine learning model that may predict patient pain scores in future 
patients. Due to the opioid crisis we are currently facing, this objective 
measure of pain could be of great use to evaluate the necessity of adding 
opioid doses in ptients experiencing painful crises [37,38]. Other tech-
nological apparatuses are being utilized to spread helpful information to 
patients and recommend healthy lifestyles and health advice catered to 
SCD patients as a way to promote the prevention of further complica-
tions [39]. The benefits of digital health technologies are still not fully 
utilized. It has been found to be of great importance to include patients’ 
opinions and suggestions when trying to create technological devices 
and applications that may compute to the patient’s day-to-day needs and 
provide suitable individualized advice to patients based on their infor-
mation [40]. Some mobile health applications are attempting to 
improve outcomes by another method which is improving hydroxyurea 
prescribing behavior in physicians as well as compliance with the 
medication in patients [41,42]. In many cases, there are also low usage 
rates of these applications due to insufficient infrastructure, technology 
gaps, inability to use the features continuously and persistently, and 
poor interface. With the clear evidence that such digital health in-
terventions are associated with improved patient outcomes, an effort 
must be made to overcome those obstacles and increase access to these 
applications. 

A study by Alambo A et al. tried using machine learning to classify 
SCD related pain by creating two classifications: pain relevance and pain 
change. They applied different methods of machine learning to patient 
notes in order to classify the pain described in these notes in terms of 
relevance and change. The pain relevance classifier categorized notes 
into either pain relevant or irrelevant clinical notes. The pain change 
classifier then categorized the pain relevant notes into one of the 
following categories: 1) pain increase, 2) pain uncertain, 3) pain un-
changed, and 4) pain increased. The rationale behind the study is to test 
those machine deep learning techniques and their abilities to predict 
pain in the future using only clinical notes. This is an attempt to later 
develop systems that may predict the progression and patterns of pain in 
patients with SCD [43]. Another study by Yang F et al. also showed a 
promising ability to predict pain scores in an intra-individual and inter- 
individual level analysis. Intra-individual analysis is used when patients 
have sufficient recorded data that enables them to have an individual-
ized model. The inter-individual model, however, is a general model 
that was created using data from all other patients, so it could be applied 
to any new patients. The intra-individual level showed a higher level of 
accuracy, but both were close. The objective is to create an objective 
way of scoring and predicting pain despite the subjective description of 
pain. This paper also suggested the use of demographic data in future 
models, which was done in other studies as aforementioned. This might 
result in more satisfactory pain control which would improve patient’s 
quality of life [44]. 

CKD was also investigated by Derebail VK et al. They studied the 
ability of machine learning to predict eGFR decline, as a marker for 
kidney function. They also found the best indicators for kidney function 
decline in SCD patients, which included age, baseline eGFR, and eGFR 

slope. The predictive ability of the machine learning models was less 
accurate when trying to predict decline over 12 months when compared 
to predicting decline over shorter periods like 6 months [45]. Never-
theless, this showed the effectiveness of machine learning to predict a 
rapid decline of kidney functions, which is defined as a loss of more than 
3/mL/min/1.73 m^2/ year [46]. This detection might help in risk 
assessment and modification since this is one of the leading causes of 
mortality in SCD patients [47]. The ability of AI to predict the occur-
rence of disease complications serves as a major role in determining 
individualized disease prognosis and progression. Hence, AI can be used 
to predict disease prognosis and the specific types of complications that 
may recur in SCD patients, allowing clinicians to be more aware of po-
tential harm and giving them the ability to predict the disease course 
more accurately. 

2.5. Role of AI in risk stratification 

Several studies have also been conducted showing the effect of AI in 
accurately predicting the risk that SCD patients face based on numerous 
parameters. Prediction of hospital readmissions and preventing them is 
an effective way to cut healthcare costs and improve patients’ quality of 
life. Machine-learning algorithms including Logistic Regression, 
Support-Vector Machine, and Random Forest were used to predict 
readmissions in patients with SCD. This was compared to the standard 
readmission scoring systems, including LACE and HOSPITAL indices, 
and it showed machine-learning superiority over the standard systems 
[48]. This superiority has been shown over LACE as it can only be used 
in populations with few comorbidities, which does not match the typical 
clinical picture of SCD patients. In addition, standard scores usually use 
a number of predictive features without taking into account disease- 
specific predictors which may impact the possibility of readmission. 
For these reasons, readmission scores are not currently routinely used in 
clinical practice. This might help pinpoint high-risk patients. The study 
also showed that Random Forest and Logistic Regression algorithms 
performed the best. This might help in the reallocation of resources to 
patients who are expected to be readmitted and provide them with 
sufficient resources to prevent readmission [49]. This helped identify 
the strongest predictors for readmission [50]. In addition, it was also 
demonstrated that machine learning methods identified more variables 
that were associated with SCD patients that were absent in traditional 
scoring systems for hospital readmissions. For instance, patients living in 
low-income areas were more susceptible to readmission. Such infor-
mation will also help adjust any modifiable risks. The predictors used 
were collected by data-driven methods and clinical knowledge. The 
most important predictors were also reported. Those included the 
number of inpatient visits in the past year, the number of days since the 
last visit, ED visits in the past 6 months, and age. The study also reported 
those predictors in order according to their importance [49]. 

Grouping patients in clusters according to their phenotype would 
provide us with a deeper understanding of the disease pathophysiology 
and prognosis [51]. The most common cause of hospitalization and 
morbidity in SCD patients is pain [52]. Using cluster analysis, a study in 
Brazil was able to categorize patients into five subgroups using ten 
laboratory tests, showing that hemolytic and inflammatory biomarkers 
have the greatest influence in the grouping [53]. Clustering algorithms, 
which is a type of unsupervised machine learning, have also been used to 
categorize patients into groups according to similarities in clinical data 
and hence, in prognosis. A study using this technique was able to cate-
gorize patients in ICU into three clusters based on disease severity. The 
grouping of those patients would help in decision-making regarding the 
risk for each patient group. It would also enhance the coordination in the 
ICU since it would be more reassuring to transfer less severe patients out 
of ICU [54]. 

A study by Sachdev et al. studied the possibility to create a risk score 
that integrates clinical, laboratory, and imaging results to stratify and 
assess the risk in patients with SCD. They used data from 600 patients 
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with SCD and used machine learning techniques to select the best pre-
dictors out of 70 variables that were tested. They then performed tests to 
identify the optimal number of variables to be included. Eventually, they 
identified nine variables as key independent variables that predict 
mortality using a multivariable risk model. Those variables were age, 
body weight, heart rate, left ventricular septal thickness, mitral E-wave 
velocity, tricuspid regurgitant velocity, right atria pressure, blood urea 
nitrogen, and alkaline phosphatase. These variables showed the effect of 
the disease on hepatic, renal, and cardiac functions. The study, however, 
lacked identification of other important disease severity variables like 
the frequency of vaso-occlusive crises and the need for chronic treat-
ment. The study was also done in a single center and included a rela-
tively small sample size, which reduces its generalizability and external 
validity. In conclusion, the study was able to provide a risk score to 
predict mortality that performed well compared to other currently 
accepted scores [55]. 

3. Future considerations 

In addition, the rise of precision medicine and the increasing popu-
larity of individualizing medicine to each patient instead of according to 
symptoms signifies the importance of artificial intelligence. It has been 
shown that artificial intelligence will play an important role as one of the 
pillars of modern medicine as we move towards precision medicine, 
especially in genetic diseases like SCD [56,57]. A recent study by El Hoss 
S et al. has tried to use artificial intelligence in personalized medicine by 
collecting patient specific pO2 that starts the process of sickling of the 
red blood cells (PoS), in addition to red blood cell deformability at 
normoxia (EImax) and during deoxygenation (EImin). They found that 
there were significant differences in PoS and EImin between patients 
with the SS genotype and other patients. 

Significant differences in all parameters are found between patients 
on hydroxyurea and patients taking no treatment. A conclusion was 
reached that these findings can be used to generate AI models that might 
help in more effective delivery of precision medicine to SCD patients 
[58]. Currently, it is difficult to use precision medicine in cases of SCD 
due to the difficulty of classifying patients into groups and the limited 
availability of treatment [59]. 

4. Conclusion 

Artificial Intelligence use in medicine, and specifically in hemoglo-
binopathies and SCD, has been on the rise. This review showed the ad-
vancements done in diagnostics and risk stratification of sickle cell 
disease with the help of AI. Moreover, we reviewed the tools being 
developed to aid clinicians in quantifying and detecting specific disease 
complications early. We also discuss applications and software that were 
developed to improve clinical outcomes by enhancing adherence and 
compliance with treatments. This is directing us towards a new era of 
faster and more accurate diagnosis, in addition to precise treatment and 
follow-up according to each SCD patient’s specific risks and needs. 
Through this review, it became clear that AI will inevitably be part of 
SCD diagnosis and management in clinical practice soon. We recom-
mend further testing of these AI methods on wider populations before 
they are widely applied. In addition, properly detailed clustering of SCD 
patients based on clinical and biochemical criteria should be enforced to 
establish the practicality of using AI. Currently, the main limitations of 
the application of AI in clinical practice include medicolegal and 
financial aspects. In addition, generalizability is still in question as more 
studies on various populations are still required. New fields of medicine, 
including proteomics, genomics, microbiomes, and metabolomics, are 
providing large amounts of new information that can be used by artifi-
cial intelligence algorithms to further classify patients to provide 
personalized therapy according to their predicted complications, out-
comes, and risk, as this seems to be the future of AI and its applications 
[59]. Tables 1, 2, and 3 discuss the advantages each gadget or 

Table 1 
Purpose, advantages, and disadvantages of papers about AI in SCD diagnosis.  

Papers Purpose Advantages Limitations 

Douglass 
et al. 

Automated sickle 
cell disease 
identification 
using lensless 
single random 
phase encoding 
biosensor (SRPE)  

- Low cost  
- Fast and portable  
- Can detect diseases 

other than SCD  

- limited by sensor 
dimensions.  

- Cannot use 1D 
crops (not all image 
types are eligible to 
be used)  

- Lack of comparison 
with existing 
methods  

- Lack of diversity in 
the dataset used 

Xu et al. Uses deep 
convuluational 
neural networks 
for the 
classification of 
RBCs in SCD  

- showed great 
accuracy even in 
deoxygenated 
datasets  

- may improve 
further when the 
system is better 
trained.  

- May be used to 
identify severity of 
SCD  

- no definite way to 
automate the 
inspection and 
recognition of RBC 
patterns found in 
SCD blood samples.  

- time consuming 

Knowlton 
et al. 

smartphone-based 
sickle cell 
detection  

- fast  - Can only detect 
HbSS phenotypes  

- Technical 
limitations limiting 
accessibility and 
applicability 

González- 
Hidalgo 
M et al. 

use of digital data 
analysis to 
separate RBC 
clusters in SCD  

- reduces 
surrounding noise 
in images.  

- completely 
automated.  

- higher efficiency 
(100%) compared 
to other methods.  

- Still cannot be used 
to diagnose. It can 
only support 
diagnosis as a 
method for 
complementary 
analysis  

- Technical 
limitations: images 
must meet specific 
criteria which may 
not always be 
feasible in clinical 
settings. 

Cai R et al. use of active 
appearance model 
(AAM) for RBC 
segmentation  

- reduces image 
noise and 
separates RBCs 
from background.  

- No need to perform 
boundary tracking 
when counting 
cells as the system 
developed 
provides a closed 
form of the 
boundary.  

- Incorporates and 
detects shape and 
texture, allowing 
precise 
segmentation of 
images of cells.  

- Lack of clinical 
validation 

Alagu S 
et al. 

An approach to 
detect SCD using 
human RBCs and 
deep learning with 
feature selection 
algorithms.  

- Improved 
Inception V3 
model results  

- Will help in early 
detection and 
diagnosis of SCD  

- Interpretability: it 
is hard to 
understand the 
method used for the 
model to make its 
predictions.  

- Larger sample size 
needed to capture 
all variations and to 
increase 
generalizability 

Shekhar 
et al. 

use of ACCENSE 
algorithm and k- 
means and  

- DBSCAN is well 
studied and widely 
cited  

- Only tried on mice. 

(continued on next page) 
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application provides as well as the drawbacks in each. This is separated 
into applications in diagnostics, complications diagnosis, and prognosis. 

Practice points  

- AI has features allowing it to learn, distinguish patterns, and make 
decisions. It does that by utilizing computational networks like CNN. 
Machine and deep learning are used in detection of patterns from 
input data. SCD patients can greatly benefit from the research and 
algorithms being developed through AI.  

- Several AI applications has been developed to aid in SCD diagnosis. 
This includes usage of a lensless approach called SRPE system to 
detect and differ sickle cells from healthy cells. dCNNs have also been 
suggested to classify different shapes or types of RBCs in SCD patient.  

- Some methods try to improve accessibility by implementing the 
utilization of cell phones to aid in diagnosis. Active Appearance 
Models (AAM) can help in clarifying images and distinguishing cells 
from background noise.  

- AI can be used to analyze retinal imaging and detection of organ 
dysfunction.  

- Medicolegal aspects must be considered when relying on AI for 
diagnosis.  

- Wearable technology is being developed and incorporated to detect 
vaso-occlusive crises and to predict them. Machine learning can also 
be used to analyze pain scores during these episodes.  

- Machine learning can predict eGFR decline in SCD patients with 
CKD. It can also help personalize treatments and determine indi-
vidual risks for patients with SCD.  

- Several machine learning algorithms have shown superiority over 
standard systems in predictions of readmissions. 

- Clustering patients according to phenotype provides deeper under-
standing of the disease pathophysiology and prognosis. This can 
enhance decision-making and coordination in healthcare. 

Research agenda  

- Increasing the amount of research using AI in diverse populations in 
order to enhance generalizability of results.  

- Development and refinement of machine learning algorithms to 
accurately predict prognosis, diagnosis, and complications based on 
given parameters. 

- Exploration of the use of AI and comparing it with established sys-
tems and testing its ability to individualize more precise therapies for 
SCD.  

- Investigation of ethical, legal, and social implications of of AI in the 
context of SCD. 

Table 1 (continued ) 

Papers Purpose Advantages Limitations 

DBSCAN to 
analyze datasets  

- Optimizes mass 
cytometry, which 
can measure a 
large number of 
parameters in 
individual cells.  

- Help in 
automation of 
classifying 
subpopulations of 
cells  

- Robust algorithm 
with ability to 
perform high- 
dimensional data 
nalysis  

- Requires significant 
computational 
resources  

- designed 
specifically for 
transcriptomic data  

Table 2 
Purpose, advantages, and disadvantages of papers about AI in SCD 
complications.  

Cai S et al. using deep learning to 
detect sea fan 
neovascularization 
from fundus 
photographs of 
patients with sickle 
cell retinopathy  

- Study includes a 
representative 
population  

- Fast detection of 
retinal 
manifestations  

- Highly sensitive 
and specific  

- study has single 
institution 
design.  

- small number of 
images used.  

- model was 
trained to detect 
sea fans only 
(does not detect 
another sickle 
cell retinopathy)  

- cannot detect 
stage 4 and 5 
sickle cell 
retinopathies 

Mohammed 
A et al. 

predictions are made 
by machine learning 
regarding organ 
dysfunction in ICU 
admitted SCD patients  

- -Early organ 
failure detection 
and treatment 
can reduce 
mortality rates.  

- Aids clinical 
decision making 
and allows for 
goal-directed 
therapy  

- study addresses 
a critical issue in 
the healthcare 
industry by 
predicting early- 
onset acute 
organ failure in 
critically ill 
sickle cell dis-
ease patients. 
The early iden-
tification of 
these patients 
can significantly 
improve the 
treatment and 
outcomes  

- Cannot detect 
failure of specific 
organs  

- Model was built 
on a small subset 
of patients  

- Data used was 
highly 
imbalanced 
(more non-organ 
failure cases 
included)  

- Only patients 
with at least 24 h 
of continuous 
high-frequency 
physiologic data 
available before 
organ failure  

- Patients who are 
too sick may not 
have been 
connected to 
monitors  

- single-center 
dataset, which 
may limit the 
generalizability 

Ji Y et al. identify elevated risk 
for future pain crises in 
sickle cell disease 
patients using 
photoplethysmogram 
patterns measured 
during sleep via a 
machine learning 
approach.  

- Highly sensitive 
and specific  

- Detection and 
prediction of 
painful episodes  

- study uses a 
non-invasive 
and convenient 
method of col-
lecting PPG data 
during sleep, 
making it more 
accessible for 
patients.  

- Patients who are 
too sick may not 
have been 
connected to 
monitors.  

- Small dataset  
- Unbalanced 

ratios between 
subjects in each 
group  

- It is a single 
center study, 
which may limit 
generalizability. 

Hankins 
et al. 

integrating mobile 
health into sickle cell 
disease care to 
increase hydroxyurea 
utilization  

- Has potential to 
increase patient 
engagement in 
hydroxyurea 
utilization, 
leading to better 
outcomes.  

- Uses data from a 
diverse 
population  

- study is limited 
to patients who 
have access to 
and are 
comfortable 
using mobile 
health 
technology  

- study only 
focuses on 
hydroxyurea 
utilization and 
does not 
consider other 
factors that may 
affect the 
patient’s overall 
health outcomes. 

(continued on next page) 
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Contribution to the field statement 

The authors created a comprehensive review to guide clinicians and 
hematologists. This is one of the first reviews to discuss, compare, and 
contrast different novel methods that utilize AI in the diagnosis and 

treatment of SCD. We also discuss the future implications of AI in the 
field of hematology and specifically in SCD. We believe that this paper 
would help clinicians and researchers in decision making and critical 
appraisal of all the published data on AI methods in SCD and would aid 
in the appraisal of future methods, too. 
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Table 3 
Purpose, advantages, and disadvantages of papers about AI in SCD Risk 
Stratification.  

Patel 
et al. 

utilizes machine 
learning algorithms 
to predict hospital 
re-admissions in 
SCD patients  

- The approach has the 
potential to improve 
patient outcomes and 
reduce healthcare 
costs.  

- study uses a large 
dataset 

study does not 
account for social 
determinants of 
health, which may 
influence hospital 
re-admissions. 
accuracy of the 
machine learning 
algorithms may be 
affected by missing 
data and incomplete 
medical records. 

Padrão 
EMH 
et al. 

uses an 
unsupervised 
machine learning 
approach to identify 
phenotypes of sickle 
cell intensive care 
admissions.  

- improve 
understanding of 
sickle cell disease 
progression and 
guide personalized 
treatment strategies.  

- study uses a large 
dataset 

study does not 
account for social 
determinants of 
health, which may 
influence hospital 
re-admissions. 
accuracy of the 
machine learning 
algorithms may be 
affected by missing 
data and incomplete 
medical records. 

Dutra 
et al. 

utilizes hierarchical 
cluster analysis to 
identify clinical 
profiles in a cohort 
of sickle cell anemia 
patients in Brazil  

- The approach may 
help identify patient 
subgroups and guide 
personalized 
treatment strategies 

sample size is 
relatively small  

A.A. Elsabagh et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0005
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0005
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0005
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0010
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0010
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0015
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0015
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0020
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0020
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0020
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0025
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0025
http://refhub.elsevier.com/S0268-960X(23)00063-2/rf0025


Blood Reviews 61 (2023) 101102

8

[6] Busnatu Ș, Niculescu AG, Bolocan A, Petrescu GED, Păduraru DN, Năstasă I, et al. 
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[21] González-Hidalgo M, Guerrero-Peña FA, Herold-García S, Jaume-I-Capó A, 
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