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Abstract
A wide range of biological processes, including regulation of gene expression, protein syn-

thesis, and replication and assembly of many viruses are mediated by RNA-protein interac-

tions. However, experimental determination of the structures of protein-RNA complexes is

expensive and technically challenging. Hence, a number of computational tools have been

developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA

interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the

protein sequences. The computational efforts needed for generating PSSMs severely limits

the practical utility of protein-RNA interface prediction servers. In this work, we experiment

with two approaches, random sampling and sequence similarity reduction, for extracting a

representative reference database of protein sequences from more than 50 million protein

sequences in UniRef100. Our results suggest that random sampled databases produce bet-

ter PSSM profiles (in terms of the number of hits used to generate the profile and the dis-

tance of the generated profile to the corresponding profile generated using the entire

UniRef100 data as well as the accuracy of the machine learning classifier trained using

these profiles). Based on our results, we developed FastRNABindR, an improved version of

RNABindR for predicting protein-RNA interface residues using PSSM profiles generated

using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our

knowledge, FastRNABindR is the only protein-RNA interface residue prediction online

server that requires generation of PSSM profiles for query sequences and accepts hun-

dreds of protein sequences per submission. Our approach for determining the optimal

BLAST database for a protein-RNA interface residue classification task has the potential of

substantially speeding up, and hence increasing the practical utility of, other amino acid

sequence based predictors of protein-protein and protein-DNA interfaces.

Introduction
Protein-RNA interactions play key roles in many biological processes including protein synthe-
sis, DNA repair, DNA replication, regulation of gene expression, and viral replication [1–5].
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Because of the high cost and the technical difficulties associated with experimentally solving
the 3D structure of protein-RNA complexes [6, 7] the number of solved structures represent a
small fraction of possible protein-RNA complexes [8]. Hence, several tools have been devel-
oped for computational prediction of protein-RNA interfaces [8–10]. These methods are
broadly categorized into: i) Structure-based methods (e.g., [11–15]); and Sequence-based meth-
ods (e.g., [9, 16–22]). Structure-based methods take as input the (solved or predicted) unbound
structure of a query protein whereas sequence-based methods take as input the primary
sequence of a query protein. Two recent comparative studies [8, 9] have shown that the state-
of the-art sequence-based protein-RNA predictors (e.g., those trained using machine learning
methods using position specific scoring matrix (PSSM) based representation of protein
sequences) are competitive with their structure-based counterparts. A recent comparative
study [23] suggested that the performance of PSSM based methods is better than that of meth-
ods based on physio-chemical characteristics of amino acid residues.

PSSM profiles of proteins are generated using the PSI-BLAST program, which is part of the
NCBI BLAST package [24]. Given a query amino acid sequence, PSI-BLAST searches the
query sequence against a reference database of protein sequences, called BLAST database, to
determine homologs of the query sequence (e.g., hits) and uses multiple sequence alignment of
the collected hits and the query sequence to generate a PSSM profile. Unfortunately, PSSM pro-
file generation is time consuming and hence limits the practical utility of existing sequence-
based methods on large-scale data. In fact, the vast majority of protein-RNA interface predic-
tion methods, implemented as online web servers, limit submissions to only one protein
sequence at a time (see for example, BindN+ [19] and PPRInt [20]). One approach to reducing
the run time of PSI-BLAST is to use a parallel implementation of NCBI BLAST (e.g., mpi-
BLAST [25]) which could be executed on high performance computing platforms consisting of
tens of thousands of processors. However, not all researchers have access to such high perfor-
mance computing platforms.

Against this background, we explore an alternative approach to reducing the run time of
PSI-BLAST, namely, reducing the size of the BLAST database used to construct the PSSM pro-
files. In this work, we address the following questions: (i) Given D, a BLAST database of protein
sequences (e.g., UniRef database [26]), is there a subset of D that could be used by PSI-BLAST
instead of D without an appreciable deterioration in the predictive performance of the resulting
protein-RNA interface predictors?; (ii) If so, how can one obtain the smallest possible subset of
D that meets our criterion?; (iii) How does the decrease in the size of the reference database of
sequences used by PSI-BLAST translate into corresponding reductions in the memory and run
time needed by PSI-BLAST (and hence, protein-RNA interface predictors that rely on PSI--
BLAST)? To the best of our knowledge, this is the first work that systematically studies the
pairwise relations between the size of the BLAST database and the performance of PSI-BLAST
(in terms of memory usage and run time), the quality of the generated PSSM, and the accuracy
of the developed PSSM-based protein-RNA interface predictor (respectively). Based on our
results, we developed and implemented FastRNABindR, an improved version of the original
RNABindR protein-RNA interface prediction server [9]. FastRNABindR is two orders of mag-
nitude faster than RNABindR without any drop in predictive performance. FastRNABindR has
been made available to the scientific community as an online web server accessible at: http://
ailab.ist.psu.edu/FastRNABindR/. Unlike RNABindR which limits submission to a maximum
of 20 sequences, FastRNABindR accepts up to 500 proteins per submission and returns predic-
tion results within approximately an hour. This research sets the stage for significantly speed-
ing up a broad range of protein sequence classification and sequence labeling tasks that make
use of PSSM based representation of the query sequences, including protein-DNA interface
residue prediction [27, 28], protein solvent accessibility prediction [29–32], protein dynamics
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prediction [33, 34], and prediction of vaccine candidates [35, 36] to facilitate high throughput
analyses of very large numbers of proteins.

Materials and Methods

Data
Protein-RNA datasets. For cross-validation experiments, we used the benchmark dataset,

RB198 [9]. RB198 dataset was derived from PDB [37] in May 2010 by extracting all protein-
RNA complexes in PDB and filtering out complexes that do not meet the following criteria: i)
Structures resolution is less than 3.5 Å; ii) The length of the protein chain has to be at least 40
amino acid; iii) The length of the RNA chain has to be at least 5 nucleotides; iv) The number of
interface residues in the protein chain has to be at least 3 residues. An amino acid residue was
considered an interface if it contains at least one atom within 5 Å of any atom in the bound
RNA; v) Protein chain should share at most 30% sequence identity with all other chains in the
dataset. The dataset and its identified interfaces are publicly available at: http://ailab1.ist.psu.
edu/RNABindR/rb198seq.txt. For running 5-fold cross-validation experiments [38], we split
sequences in RB198 dataset into five subsets of almost equal size (see S1 Text). Table 1 lists the
number of interfaces and non-interfaces in each RB198 subset.

For independent test evaluations, we used the benchmark test set, RB44 [8, 9]. RB44 is a
dataset of 44 RNA-binding proteins released between January 1st and April 28th 2011 from the
PDB. No two protein chains in this dataset share more than 40% sequence identity [8, 9]. Our
analysis of the RB44 using the CD-HIT program [39] shows that RB44 is non-redundant at a
sequence similarity threshold of of 30%. RNA-binding residues in protein sequences have been
identified using the same cutoff distance used with RB198 dataset. The dataset annotated with
the identified interface residues is publicly available at: http://ailab1.ist.psu.edu/
RNABindRPlus/rb44.txt.

For comparing our final model, FastRNABindR, with other protein-RNA interface predic-
tion servers, we used the RB111 benchmark dataset [17]. Like RB44, RB111 is also non-redun-
dant at a sequence identity threshold of 30% (using the CD-HIT program [39]). It consists of
111 protein chains extracted from protein-RNA complexes deposited in the PDB between June
2010 to December 2010, and May 2011 to March 2014. The number of interface and non-inter-
face residues in RB44 and RB111 datasets are provided in Table 1.

It is worth noting that although the two independent test sets, RB44 and RB111, are non-
redundant at 30% sequence identity, the sequence identity between any test sequence from
RB44 or RB111 and the sequences in our training dataset, RB198, is less than 40% [17]. In
order to to allow direct comparisons with previous studies [9, 17], we used the same settings as
those used in [9, 17].

Table 1. Number of interface and non-interface residues in RB198, RB44, and RB111 datasets.

Dataset No. of Interface residues No. of Non-interface residues

RB198_1 1666 7618

RB198_2 1636 11456

RB198_3 1496 8805

RB198_4 1452 8365

RB198_5 1700 9466

RB44 1956 4521

RB111 3305 34255

Data for RB198 is provided for each cross-validation fold.

doi:10.1371/journal.pone.0158445.t001
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Interface residue definition
To the best of our knowledge, there is no gold standard for defining interface residues in a pro-
tein-RNA complex. Computational methods reported in the literature for predicting protein-
RNA interface residues have used a range of distance cutoffs from 3.5 to 7 Å for determining
whether an atom from a protein molecule (and hence an amino acid residue) interacts with an
atom from some RNAmolecule (and hence a nucleic acid residue) [9]. Following previous
studies [9, 13, 16, 17], we used a distance cutoff of 5 Å in defining interface residues. This
allows for direct comparisons of our method with RNABindR v2 [9] and previously reported
results using RB44 and RB111 datasets [9, 17].

UniRef databases. For extracting evolutionary features of protein sequences (i.e., posi-
tion-specific scoring matrices (PSSMs), we ran PSI-BLAST [24] against several variants of the
UniProt Reference Clusters (UniRef) database [26]. First, we downloaded UniRef100 (UR100)
and UniRef50 (UR50) as of January 14, 2015. UR100 contains all UniProt Knowledgebase rec-
ords plus selected UniParc records. In this database, all identical sequences and sub-fragments
with 11 or more residues are placed into a single cluster and a representative protein sequence
is selected. UniRef90 (UR90) is derived from UR100 using a 90% sequence identity threshold
using the CD-HIT algorithm [39]. Similarly, UR50 is derived from UR90 using CD-HIT algo-
rithm and a 90% sequence identity cutoff. We also generated UR40 and UR30 from UR50 and
UR40 (respectively) using KClust program [40] and 40% and 30% sequence identity cutoffs.
Using a dual octa-core processors machine (Intel Xeon E5-2690) with 128 GB RAM and each
processor has a speed of 2.9 GHz and 20 MB cache, KClust took 8 and 15 days to extract UR40
and UR30 sequences (respectively). Finally, we generated six random databases from UR100
(UR50R, UR40R, UR30R, UR10R, UR5R, and UR1R). For the first three random datasets, we
randomly extracted sequences from UR100 such that the number of sequences in the random
database equals the number of sequences in the corresponding similarity reduced database
(i.e., UR50 and UR50R have the same number of sequences). For the last three random data-
bases, URkR (for k = 10, 5, and 1), we randomly extracted k% of UR100 sequences from
UR100. Table 2 shows the number of protein sequences in UR100 and its variants.

Distance between two profiles
PSI-BLAST takes as input a query protein sequence and compares it to a protein database,
using the gapped BLAST program [41]. The output of PSI-BLAST is simply a 2-D matrix with
rows corresponding to residues in the query protein sequence and 20 columns corresponding
to the standard 20 amino acids.

Table 2. Number of protein sequences in UniRef100 database and its variants.

Database No. of sequences

UR100 50,371,270

UR50 11,992,242

UR50R 11,992,242

UR40 9,893,262

UR40R 9,893,262

UR30 8,888,952

UR30R 8,888,952

UR10R 5,037,127

UR5R 2,518,564

UR1R 503,713

doi:10.1371/journal.pone.0158445.t002
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Let Q denote a query protein of L amino acids, P1 and P2 be two profiles of the query pro-
tein Q generated by running PSI-BLAST to compare Q to databases D1 and D2, any two
BLAST databases considered in our experiments. We can define the distance between proteins
P1 and P2 we use the distance between their respective PSSM profiles [42, 43]. In our study, we
used the Normalized Sum of Squared Distance (NSSD) and Normalized Kullback-Leibler
(NKL) divergence which are defined as follows:

NSSDðP1; P2Þ ¼ 1

20� L
SL

i¼1S
20
j¼1ððP1ði; jÞ � P2ði; jÞÞ2

NKLðP1; P2Þ ¼ 1

2� ð20LÞS
L
i¼1S

20
j¼1P1ði; jÞlog

P1ði; jÞ
P2ði; jÞ þ P2ði; jÞlog P2ði; jÞ

P1ði; jÞ

Feature extraction
For each protein sequence in the data set, we generated a PSSM profile by applying PSI-BLAST
to carry out three iterations of search (using an e-value of 0.001) against the UR100 database.
Then, we normalized values in the PSSMmatrix using the logistic function. Specifically, each ele-
ment in the PSSMmatrix, x, is replaced with f ðxÞ ¼ 1

1þe�x. Then, each residue in a given query

protein sequence, is encoded using a contiguous window of 25 residues (as done in RNABindR
[9]) with the target residue at the center of the window flanked by 12 sequence neighbors to the
left and right. We encoded each residue in the sequence window with a 20-element vector
extracted from its normalized PSSM profile. Thus, the input to the protein-RNA interface predic-
tor is a target residue encoded by a vector of 25 × 20 = 500 numeric features. The corresponding
label (the desired output of the classifier) is 1 if the target residue is an interface residue and 0 oth-
erwise. We experimented with nine alternative representations of the data by repeating the above
procedure using nine different variants of UniRef database (e.g., UR50, UR50R, UR40,..etc).

Performance evaluation
We experimented with three machine learning algorithms that have been widely used for
developing biomolecular sequence labeling tools: Naive Bayes (NB) [44]; Random Forest [45]
with 100 trees (RF100), which integrates bagging [46] with the random selection of subset fea-
ture for training decision trees; and Support Vector Machine [47] with linear (SVML) and
radial basis function (SVMRBF) kernels. The three algorithms are implemented as part of the
WEKA machine learning workbench [48], which was used in our experiments. We assessed
the predictive performance of the classifiers using Accuracy (ACC), Sensitivity (Sn), Specificity
(Sp), and Mathew Correlation Coefficient (MCC) measures defined as follows [49, 50]:

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð1Þ

Sn ¼
TP

TP þ FN
ð2Þ

Sp ¼
TN

TN þ FP
ð3Þ

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTN þ FNÞðTN þ FPÞðTP þ FNÞðTP þ FPÞp ð4Þ
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where TP, FP, TN, and FN are the numbers of true positive (correctly classified interface resi-
dues), false positive(non-interface residues classified as interfaces), true negative(correctly clas-
sified non-interface residues), and false negative(interface residues classified as non-interfaces).

The above metrics depend on the classification threshold used to convert predicted class
probabilities into binary class labels. In contrast, the Receiver Operating Characteristic (ROC)
curve [51] describes the performance of the classifier over all possible thresholds. The ROC
curve is a two-dimensional plot in which the true positive rate is plotted on the Y axis and the
false positive rate is plotted on the X axis. Each point on the ROC curve represents the behavior
of the classifier at a specific choice of the threshold. The area under ROC curve (AUC) is equiv-
alent to the probability that a randomly chosen positive example will be ranked higher than a
randomly chosen negative example. Any AUC score higher than 0.5 is considered better than
random guessing. The ideal classifier will have an AUC equals 1. In the Results section, we
limit our discussion to the AUC and report other threshold-dependent metrics in the Support-
ing Information (S2 Text).

We assessed the performance of the PSI-BLAST program by recording the total running
time taken to generate PSSM profiles for a given dataset (e.g., RB198 and RB44) and the maxi-
mum amount of memory used during the entire execution period for a given dataset. Time and
memory measurements are taken using the Linux utility commands, time and top. All profile
generation experiments (as well as sequence similarity reduction using KClust [40]) were con-
ducted using a single processor on a dual octa-core processors machine (Intel Xeon E5-2690)
with 128 GB RAM. Each processor has 2.9 GHz clock speed and 20 MB cache.

Results and Discussions

PSSM profile generation limits the applicability of existing methods
Table 3 summarizes the existing protein-RNA interface residue prediction methods that meet
the following criteria: i) the method is available in the form of an online web server; ii) the
method uses PSI-BLAST to generate PSSM profiles for submitted query protein(s). Out of the
7 servers listed, only 3 allow batch submission (i.e., submission of more than a single query pro-
tein). RBScore [52] accepts up to 5 query sequences while RNABindR v2 [9] and RNABindR-
Plus [17] accept up to 20 query sequences. The available documentation for many of these
servers acknowledge that the computational requirements of PSI-BLAST search impact the
usability of the servers. Servers often limit the number of query sequences allowed per user
over a specified timeframe or disallow batch submissions that contain more than a single query
protein at a time. For instance, BindN+ server [19], which limits the submission to one

Table 3. List of existing Protein-RNA interface residue prediction servers that requires generation of PSSM profiles for query sequence(s).

Method BLAST database BLAST database size No. of sequences URL

BindN+ UniProtKB 50371270 1 http://bioinfo.ggc.org/bindn+/

PPRInt NCBI nr 78002046 1 http://www.imtech.res.in/raghava/pprint/

PRBR NCBI nr 78002046 1 http://www.cbi.seu.edu.cn/PRBR/

RBScore Swiss-Prot 462,819 �5 http://ahsoka.u-strasbg.fr/rbscore/

RNABindR v2.0 NCBI nr 78002046 �20 http://ailab1.ist.psu.edu/RNABindR/

RNABindRPlus NCBI nr 78002046 �20 http://ailab1.ist.psu.edu/RNABindRPlus/

SNBRFinder NCBI nr 78002046 1 http://ibi.hzau.edu.cn/SNBRFinder/

BLAST database size refers to the size of the database as of February 2016 and not the precise size of the database used by the servers. No. of sequences

refers to the maximum number of protein sequences that can be processed by the corresponding server in a single submission.

doi:10.1371/journal.pone.0158445.t003
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sequence, states in its submission page that “Because of the PSI-BLAST search, BindN+ runs
more slowly than BindN. Please be patient”. Table 3 also shows that 6 out of 7 methods run
PSI-BLAST against databases of more than 50 million protein sequences. In the remainder of
this Section, we empirically show that that the use of extremely large BLAST databases has
severe implications for the computational requirements of PSI-BLAST (in terms of run time
and memory usage) without commensurate improvements in the predictive performance of
the classifiers built using the resulting PSSM profiles.

More data is not always better
Table 4 shows the AUC of four classifiers estimated using 5-fold cross-validation on ten differ-
ent PSSM based representations of RB198 dataset generated using UR100 and its variants. It is
striking that none of the four classifiers achieves its best AUC (estimated using cross-valida-
tion) when the classifiers are trained using the PSSM representation obtained by running PSI--
BLAST against the largest database, UR100. The same conclusion holds when the four
classifiers are trained using RB198 and tested using RB44 test set (see Table 5).

Table 4. Performance comparison using cross-validation tests.

Features NB RF100 SVML SVMRBF

UR100 0.75 0.75 0.77 0.79

UR50 0.73 0.77 0.79 0.80

UR50R 0.73 0.76 0.78 0.80

UR40 0.70 0.77 0.78 0.80

UR40R 0.73 0.76 0.78 0.80

UR30 0.70 0.76 0.78 0.80

UR30R 0.73 0.76 0.78 0.80

UR10R 0.76 0.77 0.78 0.80

UR5R 0.75 0.77 0.78 0.80

UR1R 0.74 0.77 0.78 0.79

AUC of different classifiers using 5-fold cross-validation and 10 different variants of PSSM based encodings generated using UR100 database and its

variants.

doi:10.1371/journal.pone.0158445.t004

Table 5. Performance comparison using independent tests.

Features NB RF100 SVML SVMRBF

UR100 0.69 0.72 0.77 0.78

UR50 0.74 0.78 0.78 0.80

UR50R 0.70 0.76 0.79 0.80

UR40 0.73 0.77 0.78 0.80

UR40R 0.71 0.76 0.78 0.80

UR30 0.73 0.78 0.79 0.80

UR30R 0.72 0.77 0.79 0.80

UR10R 0.78 0.80 0.79 0.81

UR5R 0.76 0.78 0.79 0.81

UR1R 0.75 0.78 0.78 0.79

AUC of different classifiers trained using RB198 and tested using RB44 for 10 different variants of PSSM based encodings generated using UR100

database and its variants.

doi:10.1371/journal.pone.0158445.t005

FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues

PLOS ONE | DOI:10.1371/journal.pone.0158445 July 6, 2016 7 / 16



What is an optimal UniRef database?
In light of the results presented in the previous section, it is natural to ask whether we can iden-
tify an optimal UniRef database, i.e., the one with the smallest number of protein sequences,
and hence the fastest time for running PSI-BLAST and computing PSSMs that could be used to
develop a classifier with the best predictive performance. Results in Table 4 suggest that there is
no single database that is optimal across all the classifiers. The AUC for the NB ranges from
0.70 to 0.76 and the best AUC is reached when the database UR10R is used to generate the
PSSM profiles. RF100 has AUC values in the range 0.75–0.77 and the best AUC is observed
using 5 variants of UniRef database (the smallest database, UR1R, is one of them). SVML has
AUC values in the range 0.77–0.79 and the best performance is achieved using UR50 database.
Finally, SVMRBF has AUC scores between 0.79 and 0.80 and the best performance is observed
using 8 out of the 10 UniRef databases (UR5R is the smallest database that leads to the best
AUC). However, if we consider both the cross-validation results (Table 4) and independent
test results (Table 5), we can identify a single database that appears to be optimal across all the
classifiers. The best performance of all classifiers using RB44 test set is reported using UR10R.
On the cross-validation experiments, all classifiers (except SVML) have the highest AUC
reported using UR10R database. On the other hand, the best performance of SVMRBF
observed using UR10R on both cross-validation and independent test evaluations is also
reported using UR5R. Next, we show how different database size reduction approaches affect
the performance of PSI-BLAST and the quality of the generated PSSM profiles.

Similarity reduced versus random sampled databases
So far, we have shown that using UR100 database for extracting proteins PSSM profiles does
not provide classifiers with the best predictive performance in terms of AUC estimated using
both cross-validation and independent test experiments and there exist subsets of UR100 data-
base that lead to improvements in classifiers performance. In this section, we address two inter-
esting research questions: i) What is the best way to generate subsets of UR100?; ii) How does
the decrease in the database size affect the computation performance of PSI-BLAST (in terms
of computation time and memory)? To address the first question, we generated subsets of Uni-
Ref database (see Methods section) using two approaches: i) Standard tools for reducing
sequence similarity; ii) Random sampling. To address the second question, we ran all PSI--
BLAST experiments on a dedicated single machine (single run at a time) and recorded the time
taken by the PSI-BLAST run (in hours), the maximum used memory (in gigabytes) for each
run.

Fig 1A shows a monotonic decrease in PSI-BLAST run time used to generate PSSM profiles
for sequences in RB198 dataset when searching against UniRef databases with different
sequence identity cutoffs (UR100, UR50, UR40, and UR30). Fig 1B shows a similar pattern
when searching against UR100 and randomly sampled variants (UR50R, UR40R, UR30R,
UR10R, UR5R, and UR1R). Interestingly, the PSI-BLAST run time drops from 66.34 hours to
5.22, 2.47, and 0.46 hours, when UR10R, UR5R, and UR1R (respectively) are used as the refer-
ence database for PSI-BLAST runs.

Another interesting observation from Fig 1 is that PSI-BLAST run time using UniRef simi-
larity reduced databases (UR50, UR40, and UR30) is better than that using randomly sampled
UniRef databases with the same number of sequences (UR50R, UR40R, and UR30R). Table 6
shows another difference between similarity reduced UniRef variants and random sampled
UniRef variants. Similarity reduced UniRef variants consume less memory than their corre-
sponding random sampled UniRef variants. In addition, Table 7 shows that the number of hits
used to build the PSSM profiles using random sampled UniRef variants is higher than those
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Fig 1. PSI-BLAST run time. The total PSI-BLAST run time (in hours) for generating PSSM profiles for
RB198 sequences using UniRef100 versus its sequence similarity reduced variants (A) and its random
sampled variants (B).

doi:10.1371/journal.pone.0158445.g001

Table 6. PSI-BLASTmemory usage.

Database RB198 RB44

UR100 12.00 12.00

UR50 3.50 3.50

UR50R 4.20 4.20

UR40 2.80 2.70

UR40R 3.50 3.50

UR30 2.40 2.40

URF30R 3.10 3.10

UR10R 1.80 1.80

UR5R 0.91 0.89

UR1R 0.21 0.20

Maximum computation memory (in gigabytes) allocated for PSI-BLAST during the generation of PSSMs

profiles for RB198 and RB44 datasets using UniRef100 and its variants.

doi:10.1371/journal.pone.0158445.t006
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returned when using similarity corresponding reduced UniRef variants. These observations
collectively suggest that random sampled databases are more representative than the similarity
reduced databases of the same size (in terms of the number of sequences). In fact, Fig 2 shows
that, using RB198 dataset, the average pairwise distances between PSSMs generated using
UR100 and random sampled UniRef databases is smaller than the average pairwise distances
between PSSMs generated using UR100 and similarity reduced UniRef databases.

In summary, we have shown that the run time as well as the maximummemory used mono-
tonically decrease with the decrease in the size of the reference database used by PSI- BLAST.
We also showed that reference databases obtained by randomly sampling UniRef data yield
larger number of hits for constructing PSSM profiles, and hence yield more representative
PSSM profiles than those obtained from similarity reduced UniRef databases of the same size.

FastRNABindR method and web server
The results summarized in the preceding section set the stage for implementing a protein-RNA
interface prediction web server that can process large numbers of query sequences and return
predictions in a reasonable amount of time. Our experimental results (See Tables 4 and 5 and
Fig 1) suggest that we should use the SVMRBF classifier trained using UR5R PSSM profile
representation to implement FastRNAbindR because this classifier (i) has the highest AUC on
both cross-validation data and independent test data and (ii) yields more than one order of
magnitude reduction in PSI-BLAST run time for generating PSSM profiles (from 66.3 hours to
2.5 hours for 198 sequences). Also, the amount of memory needed by PSI-BLAST is decreased
from 12 GB to 0.89 GB (Note that we could use UR100 with restricted amount of memory (i.e.,
less than 12 GB) but this might increase the run time). Compared with RNABindR v2.0 server
[9], this is a significant improvement in computation time. RNABindR v2.0 takes 10–15 min-
utes per sequence while our recommended classifier takes less than one minute per sequence.
Also, the RNABindR v2.0 server which also implements a classifier trained using RB198 data-
set, has a reported AUC of 0.82 on the RB44 test set [9], whereas our recommended classifier
has an AUC of 0.81 on the RB44 test set.

Our results show that switching from UR5R to UR1R database would reduce the PSI--
BLAST run time for generating PSSM profiles for the 198 protein chain sequences in RB198
from 2.5 to less than 0.5 hours but the AUC of the SVMRBF classifier would drop from 0.81 to
0.79 when evaluated using RB44 test set. It is interesting to explore if we could further reduce

Table 7. Average number of hits used for generating PSSM profiles.

Features RB198 RB44

UR100 453 492

UR50 362 331

UR50R 422 433

UR40 318 261

UR40R 415 416

UR30 295 239

URF30R 413 416

UR10R 393 371

UR5R 336 291

UR1R 166 99

Average number of hits found by PSI-BLAST when generating PSSMs profiles for RB198 and RB44 datasets

using UniRef100 and its variants.

doi:10.1371/journal.pone.0158445.t007
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the run time of our server, by using UR1R instead of UR5R, without sacrificing the predictive
performance. To achieve this goal, we used UR1R to generate the PSSM profiles and replaced
the single SVMRBF classifier with consensus classifier that returns the average of predicted
probabilities from SVMRBF and RF100 classifiers. The consensus classifier, which has the
advantage of reduced run time for PSI-BLAST, has an AUC of 0.81 when tested using RB44
dataset. An online web server, FastRNABindR, for fast prediction of protein-RNA interfaces
using the consensus classifier is freely accessible at: http://ailab.ist.psu.edu/FastRNABindR/. In
addition to the web server, a stand-alone version of FastRNABindR has been made freely avail-
able to the scientific community. The stand-alone version is hardware and operating system
independent since it is implemented in Java. However, to run FastRNABindR on one’s own
machine, two third party freely available programs need to be installed: WEKA machine learn-
ing workbench [48]; and NCBI BLAST+ [24].

Fig 2. Average pairwise distances between different PSSM profiles of RB198 sequences. Average pairwise NSSD (A) and NKL (B) distances over
RB198 PSSM profiles. Random sampled UniRef variants are more representatives of UR100 than similarity reduced UniRef variants.

doi:10.1371/journal.pone.0158445.g002
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Comparison with existing protein-RNA interface prediction servers
Table 8 reports the results of comparing FastRNABindR with 3 protein-RNA interface predic-
tion servers that utilize PSSM profiles for representing interface and non-interface residues in
amino acid sequence (RNABindR v2 [9], BindN+ [19], and PPRInt [20]) and 2 structure-based
protein-RNA interface prediction servers (KYG [11] and PRIP [13]) using RB111 as an inde-
pendent test set. Interestingly, FastRNABindR outperforms RNABindR v2 based on 3 out of
the 4 reported metrics of performance. We notice that no single method outperforms all other
methods using the four observed metrics of performance. Due to data imbalance (RB111 data
has 34255 non-interface residues and 3305 interface residues), higher accuracy might be associ-
ated with predictors that have low sensitivity (e.g., low true positive rate). In this case, MCC
often provides a more balanced evaluation of performance than ACC [49]. Among the 6 pre-
diction servers, FastRNABindR and BindN+ have the highest MCC of 0.24. However, due to
the long run time of PSI-BLAST search against the extremely large NCBI nr database used by
BindN+, BindN+ server limits user submission to only one sequence per submission. On the
other hand, FastRNABindR server accepts up to 500 sequences per submission.

Results in Table 8 should be viewed as comparisons between different protein-RNA inter-
face prediction servers. Such comparisons are interesting from users’ perspectives and for
understanding the strengths and weakness of different tools. The predictors reported in
Table 8 have been developed using different training data and different design decisions (e.g.,
distance cutoff for defining interface residues) have been made by the developers of these tools.
Therefore, it is inappropriate to interpret these results as direct comparisons between the
underlying methods for these servers. Fair and direct methods comparisons require unified
experimental settings, which is satisfied only for comparing RNABindR v2 and
FastRNABindR.

Conclusions
Ever since the advent of the first biomolecular sequence databases in the 1980s, homology
search has become one of the most common and important tasks in bioinformatics. The
sequence databases used for homology search (i.e., NCBI BLAST databases) are regularly
updated to improve their coverage. Currently, NCBI nr BLAST database has more than 78 mil-
lion protein sequences and this number is expected to further increase as ongoing sequencing
projects generate additional data. The generation of PSSM profiles is an important application
of homology search and PSSM encoding of protein sequences is a widely used feature represen-
tation for developing protein functional site predictors. Due to the large size of the BLAST
databases, generating PSSM profiles is a computational bottleneck for many bioinformatics
tools. In this work, we experimented with two approaches to reduce the size of the BLAST data-
base, random sampling and similarity reduction, and showed that random sampled databases
provide better PSSM profiles in terms of number of hits used to generate the profile and the

Table 8. Evaluation of servers using RB111 test set.

Method ACC (%) Sn Sp MCC

FastRNABindR 75.1 0.61 0.76 0.24

RNABindR v2 72.0 0.63 0.73 0.22

BindN+ 83.5 0.43 0.87 0.24

PPRInt 76.1 0.48 0.79 0.18

KYG 77.5 0.47 0.80 0.19

PRIP 75.2 0.45 0.78 0.15

doi:10.1371/journal.pone.0158445.t008
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distance between that profile and the corresponding one generated using the full BLAST data-
base. Based on our findings, we developed and implemented FastRNABindR, a tool for accu-
rate and fast prediction of protein-RNA interface residues. FastRNABindR uses only 1% of
UniRef100 data to generate PSSM profiles. With this substantial reduction in the size of the
BLAST database, we report more than 100-fold improvement in computation time while the
predictive performance is better than that obtained using the entire UniRef100 data or at least
as good as the best performance observed using eight more variants of UniRef100 considered
in our experiments.

In this work, we assessed the quality of the PSSM profiles generated using PSI-BLAST
search against UR100 database and its variants using three performance metrics: PSI-BLAST
run time; PSI-BLAST memory usage; and the predictive performance of the resulting protein-
RNA interface predictor developed using PSSM profiles as input features. It would be interest-
ing to analyze the protein sequences (PSI-BLAST hits) used to generate the PSSM profiles.
Such analysis might help inform the development of methods to improve the quality of the
PSSM profiles to be used as input features for protein-RNA interface predictors. Work in prog-
ress is aimed at: i) Exploring more sophisticated approaches (e.g., based on clustering analysis
of protein sequences) to determine the optimal BLAST database for a given classification task;
ii) Applying the proposed methodology to develop reliable yet computationally efficient meth-
ods for related amino acid sequence labeling (e.g., protein-DNA interface residue prediction)
and sequence classification (e.g., identifying RNA-binding proteins). (iii) Exploring whether
there is a single optimal BLAST database that can be used across multiple tasks (e.g., protein-
RNA, protein-DNA, and protein-protein interface prediction) or whether the optimal BLAST
database is task-dependent; iv) Developing parallel or distributed implementations and/or
advanced data structures to further reduce the run time and memory usage of the methods in
order to support very high throughput analyses.

Supporting Information
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