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Abstract  We consider maximum likelihood estimation 
for the parameters and certain functions of the parameters 
in the Inverse Weibull (IW) distribution based on type II 
censored data. The functions under consideration are the 
Mean Residual Life (MRL), which is very important in 
reliability studies, and Tail Value at Risk (TVaR), which is 
an important measure of risk in actuarial studies. We 
investigated the performance of the MLE of the parameters 
and derived functions under various experimental 
conditions using simulation techniques. The performance 
criteria are the bias and the mean squared error of the 
estimators. Recommendations on the use of the MLE in 
this model are given. We found that the parameter 
estimators are almost unbiased, while the MRL and TVaR 
estimators are asymptotically unbiased. Moreover, the 
mean squared error of all estimators decreased for larger 
sample sizes and it increased when the censoring 
proportion is increased for a fixed sample size. The 
conclusion is that the maximum likelihood method of 
estimation works well for the parameters and the derived 
functions of the parameter like the MRL and TVaR. Two 
examples on a real data set are presented to illustrate the 
application of the methods used in this paper. The first one 
is on survival time of pigs while the other is on fire losses. 

Keywords  Maximum Likelihood Estimation, Mean 
Residual Life, Tail Value at Risk, Inverse Weibull 
Distribution, Type II Censoring 

1. Introduction
The Weibull distribution is one of the most important 

distributions in reliability theory and survival analysis. It 
received and still receives considerable attention in the 
literature, see for example the recent contributions of Ikbal 
et al. (2022) and Mohamed et l. (2022). A closely related 
distribution is the Inverse Weibull (IW) distribution, it is 
useful for modeling in several important implementations 
in reliability engineering, infant mortality, product useful 
life, wear out periods, life testing, and service records 
(Alkarni and others 2020). The IW distribution and some 
related distributions have been recently studied by several 
authors from a Bayesian and likelihood perspectives. 
Kundu and Howlader (2010) had considered the Bayesian 
inference and forecast difficulties of the inverse Weibull 
distribution depending on type II censored data, while 
Kumar (2019) estimated parameters and reliability 
characteristics IW distribution depending on random 
censoring model by both Maximum likelihood and 
Bayesian estimation methods. The case of type 1 hybrid 
censored data was considered by Kazemi and Azizpoor 
(2021) where they studied the Bayesian and classical 
inference of this distribution. 

Cooray and colleagues (2010) compare the Weibull and 
Inverse Weibull Composite Distributions for modelling 
reliability data, while Bhattacharyya (1985) analyzed and 
studied maximum likelihood and associated estimators 
using type II censored data. In the inverse Weibull 
distribution, Calabria and Pulcini (1990) calculated and 
compared the maximum likelihood and least square 
estimations. Helu (2015), on the other hand, uses the 
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maximum likelihood, approximate maximum likelihood, 
and least squares methods to investigate the performance 
of parameters of the inverse Weibull distribution with 
progressively first-failure censoring. Sultan, Alsadat, and 
Kundu (2014) use Bayesian and maximum likelihood 
estimations to investigate the performance of the inverse 

Weibull parameters under progressive type-II censoring. 
The probability density function (pdf) of IW distribution 

for random variable 𝑋  and two parameters 𝛼𝛼  and 𝜆𝜆  is 
given by 

𝑓(𝑥;𝛼𝛼, 𝜆𝜆) = 𝛼𝛼𝜆𝜆 exp{−𝜆𝜆𝑥−𝛼}𝑥−(𝛼+1) 

where 𝑥 > 0 ,𝛼𝛼 > 0 , 𝜆𝜆 > 0 (1) 

Figure 1.  The pdf of IW distribution with different values of parameters 

The IW distribution's cumulative distribution function (CDF) is given by 

𝐹(𝑥;𝛼𝛼, 𝜆𝜆) = exp{−𝜆𝜆𝑥−𝛼}    (2) 

Figure 2.  The cdf of IW distribution with different values of parameters

The reliability (survivor) function (RF) of the IW distribution is given by 

𝑆(𝑥) = 1 − exp{−𝜆𝜆𝑥−𝛼}   (3) 
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Figure 3.  The RF of Inverse Weibull distribution with different values of parameters 

Mean Residual Life (MRL) is a function of time t 
calculating the expected additional lifetime given that a 
component has survived until time t. It plays an important 
role in reliability and life testing. This function is an 
attractive alternative to the survival function or the hazard 
function of a survival time in practice. It provides the 
remaining life expectancy of a subject surviving up to time 
t. 

Gupta (1981) offered a new theory to explain the MRL 
function, as well as some characterizations of the 
exponential distribution. Tang, Lu, and Chew (1999) 
investigated the overall behavior of the MRL in terms of 
failure rates for both continuous and discontinuous lifetime 
distributions, whereas Hall and Wellner (2017) expanded 
Yang's estimation of the mean residual life function 
(1978). 

TVaR is a statistical measure of risk associated with the 
more general value at risk (VaR) approach, which 
measures the maximum amount of loss that is expected 
with an investment portfolio over a specified period, with a 
degree of confidence. It is a measure of risk important on 
actuarial studies. 

Jorion (1996) presented statistical methods for 
measuring estimation error in VaR and demonstrated how 
to increase the accuracy of VaR estimates. Peng (2009) 
provided the risk measurement techniques value at risk 
(VaR) and tail value at risk (TVaR) under uncertainty, 
while Christoffersen, Hahn, and Inoue (2001) tested the 
VaR measure and chose the best among two models. 

The likelihood equations under type II Censored data are 
derived in section 2. In section 3, The MRL and TVaR 
functions and their MLE are derived. Methods of 
evaluating estimators are explained in Section 4. In Sect. 5, 
simulation studies are used to evaluate estimators. Two real 
data examples are studied at section 6. In section 7, the 

conclusions and suggestions are given. 

2. The Likelihood Function under Type
II Censoring

For type II censored data, suppose that 𝑛𝑛 items are put 
on a life testing, 𝑋1, … ,  𝑋𝑛, and we observe only the first r 
failure times, 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑟 . If 𝑋i  have pdf 𝑓(𝑥) 
and survival function 𝑆(𝑥), below the assumptions that the 
lifetime distribution of the items is random variable, the 
likelihood function of the observed data without the 
multiplicative constant are written as (Lawless, 2011): 

𝐿(𝜃) = {∏ 𝑓(𝑥𝑖)𝑟
𝑖=1 }𝑆(𝑥𝑟)𝑛−𝑟   (4) 

By substituting eq (1) and (3) in eq (4) the likelihood 
function for IW distribution will be: 

𝐿(𝑥|𝛼𝛼, 𝜆𝜆) = 𝛼𝛼𝑟𝜆𝜆𝑟 exp �−𝜆𝜆�𝑥𝑖−𝛼
𝑟

𝑖=1

��𝑥𝑖
−(𝛼+1)

𝑟

𝑖=1

(1 − exp{−𝜆𝜆𝑥𝑟−𝛼})(𝑛−𝑟)    (5) 

and the log likelihood function will be: 

𝑙(𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎|𝛼𝛼, 𝜆𝜆) = 𝑟𝑟 log𝛼𝛼 + 𝑟𝑟 log 𝜆𝜆 − 𝜆𝜆∑ 𝑥𝑖−𝛼𝑟
𝑖=1 −

(𝛼𝛼 + 1)∑ log 𝑥𝑖𝑟
𝑖=1 + (𝑛𝑛 − 𝑟𝑟) log(1 − exp{−𝜆𝜆𝑥𝑟−𝛼}) (6) 

with derivatives 

𝑙𝛼(𝑥|𝛼𝛼, 𝜆𝜆) =
𝑟𝑟
𝛼𝛼

+ 𝜆𝜆�(𝑥𝑖−𝛼 log 𝑥𝑖)
𝑟

𝑖=1

−� log𝑥𝑖

𝑟

𝑖=1

 

+(𝑛𝑛 − 𝑟𝑟) 𝜆𝑥𝑟−𝛼 log𝑥𝑟
exp{𝜆𝑥𝑟−𝛼}−1

    (7) 

𝑙𝜆(𝑥|𝛼𝛼, 𝜆𝜆) = 𝑟
𝜆
− ∑ 𝑥𝑖−𝛼𝑟

𝑖=1 + (𝑛𝑛 − 𝑟𝑟) 𝑥𝑟−𝛼

exp{𝜆𝑥𝑟−𝛼}−1
   (8) 
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3. Deriving MRL and TVaR Functions

Deriving MRL Function 

MRL function of IW distribution can be derived using 
eq (1) and (3) and doing some calculation to become as the 
following: 

𝑚(𝑡𝑡) = ∫ 𝑥𝑓(𝑥)
𝑆(𝑡)

∞
𝑡 𝑑𝑑𝑥 = 𝜆𝛼

−1
�Γ�1−𝛼−1�−Γ�1−𝛼−1,𝜆𝑡−𝛼��

1−exp{−𝜆𝑡−𝛼}
 (9) 

The MLE of the MRL is given by: 

𝑚�(𝑡𝑡) = 𝜆�𝛼�
−1
�Γ�1−𝛼�−1�−Γ�1−𝛼�−1,𝜆�𝑡−𝛼���

1−exp�−𝜆�𝑡−𝛼��
,   𝛼𝛼 > 1  (10) 

Deriving TVaR Function 

The Tail Value-at-Risk with confidence level 𝑝𝑝  is 
defined as: 

𝑇𝑉𝑎𝑎𝑅𝑝(𝑋) =
∫ 𝑥𝑓(𝑥)𝑑𝑥∞
𝑉𝑎𝑅𝑝(𝑋)

1−𝑝
        (11)

After we found the integration, the function of TVaR 
will be: 

𝑇𝑉𝑎𝑎𝑅𝑝(𝑋) = 𝑉𝑎𝑎𝑅𝑝(𝑋) + 𝑚�𝑉𝑎𝑎𝑅𝑝(𝑋)�    (12) 

For the continuous distribution, the VaR with 
confidence level 𝑝𝑝 is usually defined as follows: 

𝑃𝑟𝑟𝑜𝑏 �𝑋 > 𝑉𝑎𝑎𝑅𝑝(𝑥)� = 1 − 𝑝𝑝  (13) 

By doing some calculation 𝑉𝑎𝑎𝑅𝑝(𝑥)  for IW 
distribution become: 

𝑉𝑎𝑎𝑅𝑝(𝑥) = � −𝜆
ln𝑝
�
𝛼−1

(14) 

And 

𝑚�𝑉𝑎𝑎𝑅𝑝(𝑥)� = 𝜆𝛼
−1
�Γ�1−𝛼−1�−Γ�1−𝛼−1,𝜆𝑉𝑎𝑅𝑝(𝑥)−𝛼��

1−exp�−𝜆𝑉𝑎𝑅𝑝(𝑥)−𝛼�
(15) 

then by substituting  eq (14) and (15) in eq (12) and doing 
some calculus TVaR function of IW distribution will be: 

𝑇𝑉𝑎𝑎𝑅𝑝(𝑥) =  � −𝜆
ln𝑝
�
𝛼−1

+ 𝜆𝛼
−1
�Γ�1−𝛼−1�−Γ�1−𝛼−1,− ln𝑝��

1−𝑝
 (16) 

and the MLE of the 𝑇𝑉𝑎𝑎𝑅 is given by: 

𝑇𝑉𝑎𝑎𝑅� = � −𝜆
�

ln𝑃
�
𝛼�−1

+ 𝜆�𝛼�
−1
�Γ�1−𝛼�−1�−Γ�1−𝛼�−1,−ln𝑃��

1−𝑃
(17) 

4. Methods of Evaluating Estimators

Bias 

The bias of an estimator 𝜃�  of a parameter 𝜃  can be 
defined by the difference between the expected value of 𝜃� 
and the rale value 𝜃 as the following 

𝐵𝑖𝑎𝑎𝑠�𝜃� �  =  𝐸� 𝜃�� − 𝜃   (18) 

If the bias for estimator is equal to 0, then it will be 
unbiased and satisfies 𝐸�𝜃��  =  𝜃 for all 𝜃. 

Mean Square Error 

The mean square error (MSE) of 𝜃� of 𝜃, which also 
called the risk function of an estimator or the quadratic loss 
function, can be defined as the following 

𝑀𝑆𝐸𝜃� = 𝐸� 𝜃�  −  𝜃�2    (19) 

The MSE measures the average squared difference 
between the estimator and the parameter, a rather 
acceptable measure of performing for the estimator. 
Although, the mean absolute error function 𝐸��𝜃� −
𝜃�� can be used to measure the estimator as an acceptable 
option, MSE has at least two improvements more than 
other distance measures, it is analytically tractable and has 
the interpretation. 

𝑀𝑆𝐸𝜃� = 𝐸� 𝜃�  −  𝜃�2 = 𝑉𝑎𝑎𝑟𝑟�𝜃�� + �𝐸�𝜃�� − 𝜃�2 

= 𝑉𝑎𝑎𝑟𝑟�𝜃�� + �𝐵𝑖𝑎𝑎𝑠�𝜃� ��
2

  (20) 

Therefore, MSE has two parts, one measure the 
estimator variability and the other measures its bias. If the 
estimator has small variance and bias together, it will have 
good MSE properties. Moreover, the unbiased estimator 
has MSE equal to its variance. 
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Figure 4.  The MRL of Inverse Weibull distribution with different values of parameters 

Table 1.  Bias and MSE when 𝛼𝛼 = 3 and 𝜆𝜆 = 1 

𝒏 𝒓 𝜶 = 𝟑 𝝀 = 𝟏 𝒕 = 𝟑 𝒑 = 𝟎.𝟗𝟓 

𝜶 𝝀 𝑴𝑹𝑳 𝑻𝑽𝒂𝑹 

50 30 Bias 0.1554 0.0039 10.031 -0.1015 

MSE 0.2372 0.0273 763.89  4.3665 

40 Bias 0.0927 0.0123 6.01567 0.0409 

MSE 0.1601 0.0262 372.396 3.5447 

50 Bias 0.0812 0.0140 4.90653 0.0521 

MSE 0.1342 0.0241 247.491 3.1406 

80 48 Bias 0.0927 0.0018 5.48199 -0.0446 

MSE 0.1352 0.0166 265.205  2.8826 

64 Bias 0.0587 0.0109 3.23551 0.0462 

MSE 0.0909 0.0147 122.998 2.1294 

80 Bias 0.0593 0.0095 2.99512 -0.0007 

MSE 0.0760 0.0147 102.461 1.8340 

100 60 Bias 0.0768 0.0017 4.25582 -0.0479 

MSE 0.1032 0.0132 170.291 2.2294 

80 Bias 0.0603 0.0081 2.94169 -0.0074 

MSE 0.0744 0.0120 91.5138 1.7257 

100 Bias 0.0392 0.0138 1.98704 0.0750 

MSE 0.0583 0.0122 65.3629 1.6088 
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Table 2.  Bias and MSE when 𝛼𝛼 = 3 and 𝜆𝜆 = 2 

𝒏 𝒓 𝜶 = 𝟑 𝝀 = 𝟐 𝒕 = 𝟑 𝒑 = 𝟎.𝟗𝟓 

𝜶 𝝀 𝑴𝑹𝑳 𝑻𝑽𝒂𝑹 

50 30 Bias 0.1371 0.0747 3.9560 -0.0504 

MSE 0.2268 0.1205 133.71 6.7936 

40 Bias 0.0985 0.0629 2.6629 -0.0054 

MSE 0.1571 0.1153 67.635 5.6399 

50 Bias 0.0798 0.0686 2.0157 0.0685 

MSE 0.1266 0.1066 44.203 4.8844 

80 48 Bias 0.0930 0.0473 2.3099 -0.0729 

MSE 0.1296 0.0642 47.333 4.1338 

64 Bias 0.0585 0.0361 1.5465 0.0116 

MSE 0.0936 0.0625 30.347 3.6004 

80 Bias 0.0528 0.0414 1.2788 0.0270 

MSE 0.0796 0.0624 22.969 3.0685 

100 60 Bias 0.0637 0.0328 1.6621 -0.0144 

MSE 0.0970 0.0489 32.936 3.4572 

80 Bias 0.0500 0.0442 1.1272 0.0421 

MSE 0.0689 0.0513 19.522 2.7110 

100 Bias 0.0420 0.0419 0.9458 0.0611 

MSE 0.0598 0.0487 16.608 2.4701 

Table 3.  Bias and MSE when 𝛼𝛼 = 4 and  𝜆𝜆 = 1 

𝒏 𝒓 𝜶 = 𝟒 𝝀 = 𝟏 𝒕 = 𝟑 𝒑 = 𝟎.𝟗𝟓 

𝜶 𝝀 𝑴𝑹𝑳 𝑻𝑽𝒂𝑹 

50 30 Bias 0.2072 0.0041 50.383 -0.0767 

MSE 0.4084 0.0270 24848 1.5921 

40 Bias 0.1499 0.0105 33.053 -0.0272 

MSE 0.2974 0.0260 9417.95 1.2653 

50 Bias 0.1041 0.0182 22.882 0.0403 

MSE 0.2392 0.0246 5581.064 1.1035 

80 48 Bias 0.1289 0.0001 27.239 -0.0509 

MSE 0.2449 0.0168 6245.5 1.0660 

64 Bias 0.0889 0.0091 17.596 0.0064 

MSE 0.1737 0.0161 3158.0 0.8618 

80 Bias 0.0708 0.0093 13.168 0.0079 

MSE 0.1366 0.0146 1843.0 0.6880 

100 60 Bias 0.0881 0.0057 17.527 -0.0073 

MSE 0.1711 0.0130 3289.7 0.7624 

80 Bias 0.0733 0.0066 13.435 -0.0041 

MSE 0.1340 0.0121 1918.5 0.6368 

100 Bias 0.0517 0.0073 9.6997 0.0096 

MSE 0.1043 0.0118 1266.0 0.5467 
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Table 4.  Bias and MSE when 𝛼𝛼 = 4 and  𝜆𝜆 = 2 

𝒏 𝒓 𝜶 = 𝟒 𝝀 = 𝟐 𝒕 = 𝟑 𝒑 = 𝟎.𝟗𝟓 

𝜶 𝝀 𝑴𝑹𝑳 𝑻𝑽𝒂𝑹 

50 30 Bias 0.1496 0.0568 16.025 -0.0716 

MSE 0.3253 0.1007 3287.1 1.5976 

40 Bias 0.1406 0.0608 13.872 -0.0471 

MSE 0.2952 0.1771 1638.0 1.8115 

50 Bias 0.1157 0.0679 10.584 0.0003 

MSE 0.2335 0.1093 1076.0 1.5376 

80 48 Bias 0.1446 0.0368 13.015 -0.1227 

MSE 0.2503 0.0654 1277.7 1.4162 

64 Bias 0.0969 0.0459 7.7929 -0.0349 

MSE 0.1604 0.0663 549.52 1.0979 

80 Bias 0.0574 0.0370 5.1540 0.0212 

MSE 0.1258 0.0583 367.54 0.9567 

100 60 Bias 0.0883 0.0303 7.9176 -0.0375 

MSE 0.1688 0.0471 622.40 1.0865 

80 Bias 0.0843 0.0455 6.4937 -0.0114 

MSE 0.1356 0.0499 434.22 0.8968 

100 Bias 0.0606 0.0329 4.6457 -0.0162 

MSE 0.1014 0.0498 272.12 0.7237 

5. Simulation Study
Simulation studies are very important because they used 

to obtain experimental results to estimate the efficiency of 
statistical methods. For that, researchers can study several 
properties of statistical methods. 

In this paper, simulation of 2000 iterations are used to 
estimate bias and mean square error (MSE) for parameters, 
MRL, and TVaR with different sample size 𝑛𝑛 
( 50, 80, 100 ), first r faller times 𝑟𝑟  ( 0.6𝑛𝑛 , 0.8𝑛𝑛,𝑛𝑛 ), 
confidence significant level 𝑝𝑝 = 0.95, and time t = 3. 

Tables 1 to 4 present bias and MSE with different values 
of shape and scales. These tables conclude that the 
estimated parameters and TVaR are approximately 
unbiased. However, estimated MRL is bias for small 
sample size. But when sample size increase, bias decrease 
until it is approximately unbiased. These tables show same 
inference about MSE. For parameters, MSE are very small, 
less than 0.5, and became smaller when the sample size 
increased. Which mean that, the variances estimators for 
parameters are small. Also, TVaR's MSE for small sample 
size are small, and they decrease when the sample size 
increase. However, MSE for MRL are very huge for the 
small sample size. But then, they are decreased remarkably 
when the sample size increased. 

6. Real Data Analysis
The methods in this paper are applied in Two real data 

analysis. The first real data, showed in Table 5, is from 
Bjerkedal (1960) represents the survival times of 72 guinea 
pigs (in days) injected with different amounts of tubercle 
bacilli. 

Table 5.  The survival times (in days) of guinea pigs injected with 
different doses of tubercle bacilli. 

12 15 22 24 24 32 32 33 34 38 

38 43 44 48 52 53 54 54 55 56 

57 58 58 59 60 60 60 60 61 62 

63 65 65 67 68 70 70 72 73 75 

76 76 81 83 84 85 87 91 95 96 

98 99 109 110 121 127 129 131 143 146 

146 175 175 211 233 258 258 263 297 341 

341 376 

By applying the above data in R program, after divided 
each of them by 1000 to make calculation easier, the 
estimators for first faller time 𝑟𝑟 = 43  are 𝛼𝛼� = 1.29 , 
�̂�𝜆 = 0.025 , 𝑀𝑅𝐿� = 27.88 , and 𝑇𝑉𝑎𝑎𝑅� = 3.93 . When 
𝑟𝑟 = 58  estimators would be 𝛼𝛼� = 1.36 ,  �̂�𝜆 = 0.019 , 
𝑀𝑅𝐿� = 30.77 , and 𝑇𝑉𝑎𝑎𝑅� = 3.15 . For 𝑟𝑟 = 72 , the 
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estimators become 𝛼𝛼� = 1.41,  �̂�𝜆 = 0.016, 𝑀𝑅𝐿� = 33.74, 
and 𝑇𝑉𝑎𝑎𝑅� = 2.81. Table 6 present values of MRL and 
TVaR with different initial shape and scale values. 

Table 6.  Values of MRL and TVaR 

t 𝒑 𝜶 𝝀 MRL TVaR 

3 0.95 3 1 26.22 21.74 

3 2 16.78 27.39 

4 1 72.05 19.72 

4 2 43.06 23.45 

The second real data, showed in Table 7, is from 
Cummins, J., Dionne, G. and McDonald, J. (1990) 
represents the data on aggregate fire loss at a major 
university reported in Cummins and FreiFelder (1978). 

Table 7.  Fire loss experience of a major university 

Year Total losses Year Total losses 

1950 71280 1962 14790 

1951 3671 1963 9480 

1952 18664 1964 8676 

1953 8784 1965 114198 

1954 3966 1966 5150 

1955 30892 1967 105864 

1956 631626 1968 32814 

1957 11464 1969 41340 

1958 127194 1970 46284 

1959 4950 1971 12230 

1960 30452 1972 19418 

1961 8028 

If the above data is entered into the R software without 
modification, the shape estimator will be �̂�𝛼 = 0.93. To 
calculate MRL and TVaR functions, �̂�𝛼 should be bigger 
than 1, see section 2.2. To avoid this problem, the lower 
term for shape was modified to 1.001 instead of 0.001 in 
the optima function used to maximize likelihood function. 

The MRL and TVaR values are 26.22 and 21.74, 
respectively, after applying the data in R software and 
dividing each of them by 10000 to make calculation easier, 
with shape = 3, scale =1, first failure time 𝑟𝑟 = 14, and 
significant level 𝛾𝛾 = 0.05, 0.1. The estimated parameters 
are also 𝛼𝛼� =  1.001  𝑎𝑎𝑛𝑛𝑑𝑑 �̂�𝜆  =  1.215  , with the MRL 
estimator 𝑀𝑅𝐿� = 3645.06 and TVaR estimator 𝑇𝑉𝑎𝑎𝑅� =
24201.58. 

Our estimators' values would be 𝛼𝛼� = 1.001, �̂�𝜆 = 1.207, 
𝑀𝑅𝐿� = 3640.75, and 𝑇𝑉𝑎𝑎𝑅� = 24050.69 for 𝑟𝑟 = 19. The 
estimators' values for 𝑟𝑟 = 23 would be 𝛼𝛼� = 1.001 , 
�̂�𝜆 = 1.207, 𝑀𝑅𝐿� = 3640.62, and 𝑇𝑉𝑎𝑎𝑅� = 24046.11. 

7. Conclusion
The performance of the maximum likelihood estimators 

for parameters, Mean Residual Life (MRL), and Tail Value 
at Risk (TVaR) of the Inverse Weibull (IW) distribution are 
derived and studied in this paper using type II censored 
data. 

We may conclude from simulation and real data that the 
parameters are approximately unbiased for small and big 
sample sizes. However, MRL and TVaR appear to be 
unbiased estimators with a large sample size, that is, they 
are asymptotically unbiased. 

The mean squared error (MSE) of the estimators tend to 
decrease when the sample size increases. On the other hand, 
the MSE of all estimators increases as the proportion of 
censoring increases with a fixed sample size. 

The suggestion for future research is to apply these 
methods to different forms of censoring data, such as 
hybrid censoring or progressive type II censoring. 
Researchers could also investigate the impacts of different 
values of Times 𝑡𝑡 on MRL, as well as the effects of 
confidence levels 𝑝𝑝 = 0.99,0.995 on TVaR, and their 
estimators. 
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