
Wave Motion 93 (2020) 102446

Contents lists available at ScienceDirect

WaveMotion

journal homepage: www.elsevier.com/locate/wamot

Wave propagation in double helical rods
Jamil Renno ∗, Sadok Sassi, Samer Gowid
Department of Mechanical & Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 21 May 2019
Received in revised form 6 October 2019
Accepted 14 October 2019
Available online 25 October 2019

Keywords:
Double helix
Wave propagation
Wave and finite element method
Fractal behaviour

a b s t r a c t

The propagation of waves in helical rods has been studied extensively. However,
studying the wave propagation in double helical rods have received less attention
although this can be useful in multiple fields of science and engineering. Obtaining
an analytical model for a double helical rod is challenging since the curvature and
tortuosity are not constant. Thus, resolving the wave behaviour analytically is nearly
impossible. In this paper, wave propagation in a double helical rod will be studied
using the wave and finite element method which is a technique that can be used to
model homogeneous and periodic one and two dimensional structures based on the
periodic structure theory. For modelling a double helical rod, the finite element model
of a single turn is processed using Bloch waves. The dispersion curves and wavemodes
are obtained and the similarities and differences of waves in helical and double helical
rods are highlighted.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of elastic waves in helical rods with canonical (i.e., square or circular) cross-sections have been
studied extensively in the literature starting with the classical work of Love [1]. The effect of shear deformation and
rotary inertia in a helical rod were added in [2] and formed the basis of the finite element model that was presented
in [3] and the pseudospectral model that was developed in [4,5]. Treyssèd used a semi-analytical finite element method
to study wave propagation in helical waveguides [6] and to examine the energy flux in these structures in the context
of non-destructive testing [7]. Sorokin used the model in [2] to investigate the wave propagation in helical rods using
asymptotic analyses [8] and then used the Green’s matrix and boundary integral equations to study the time-harmonic
dynamics of helical rods [9]. Liu et al. [10] used the scaled boundary finite element method to investigate the dispersion
properties of helical waveguides. Recently, Maurin et al. used Bloch’s theorem to study wave propagation in waveguides
with screw and glide periodicities [11].

The modelling of double helical rods has received less attention in the literature. A double helical rod is a rod whose
central axis is a secondary helix that is coiled around a primary helix. In other words, the aforementioned central axis of
the double helical rod is a fractal structure of the second order [12]. The vibration of a double helical rod is relevant at
the molecular level in biological structures [13,14]. The wave propagation in helices and hyperhelices was studied by [12]
who used a fractal regression approach to analyse wave propagation and show that they also have fractal attributes. One
of the motivations to study wave propagation of super and hyperhelices is that the study of the dynamics of such rods
might provide a useful analogy for advancing the understanding of string theory [15].

As for the governing equations of a helical rod, these can be obtained with varying degrees of complexity. A thorough
discussion of the suitability and frequency-range of applicability of the various modelling approaches is presented in [8].
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Nomenclature

E Young’s modulus, N/m2

N Number of turns of the primary helix, dimensionless
R1 Radius of the primary helix, m
R2 Radius of the double helix, m
ı Unit imaginary number,

√
−1

κ1 Curvature of the primary helix, 1/m
κ2 Curvature of the double helix, 1/m
ψ Pitch angle of the primary helix, rad
ρ Density, kg/m3

τ1 Tortuosity of the primary helix, 1/m
τ2 Tortuosity of the double helix, 1/m
θ Phase angle of the double helix, rad
c Speed of plane dilation wave in the rod’s material, m/s
d Diameter of circular rod, m
h Pitch of the primary helix, m
l1 Length of one turn of the primary helix, m
l2 Length of one turn of the double helix, m
p Number of turns of the double helix around one turn of the primary helix, dimensionless
s Curvilinear abscissa, m

Superscripts

± Positive/negative going wave

Subscripts

g Quantity expressed in the global coordinate system
I Quantity pertaining to internal nodes
L Quantity pertaining to left nodes (or boundary)
R Quantity pertaining to right nodes (or boundary)

However, the governing equations of a double helical rod are too cumbersome to develop (especially as shown later
since many of the geometric properties do not posses translational invariance). Even calculating the length of a double
helical path, which has applications in shape sensing of deformable cylinders [16], endoscopes [17] and multicore optical
fibres [18], cannot be performed analytically owing to its complexity [19].

In this paper, the wave propagation in a double helical rod is considered using the wave and finite element (WFE)
method. TheWFE method applies the periodicity theory to the finite element (FE) model of a small segment of a waveguide
to formulate an eigenvalue problem whose solution provides the wavenumbers and wavemodes of the waveguide [20–
23]. The WFE method have also been used to investigate the scattering of waves in two-dimensional structures [24]
and to study the wave behaviour of pipes with helical characteristics [25] and helically orthotropic cylindrical shells and
lattices [26].

The remainder of this paper is organized as follows. The geometric characteristics of a double helix are discussed in
Section 2. This forms the basis for obtaining the finite element model of a single turn of the double helical rod and the WFE
model. To this end, Section 3 presents free and forced wave propagation. Numerical examples are presented in Section 4.
Conclusions for this work are drawn in Section 5.

2. Geometry of a double helix

The formulation starts with a discussion of the geometry of a double helix. The primary helix can be parametrized by
the following position vector

r⃗1(s) = R1 cos (ϵ1s) î + R1 sin (ϵ1s) ĵ +
h
l1
sk̂ , (1)

where î, ĵ and k̂ are the unit vectors of the global coordinate system (x, y, z) and

ϵ1 =
2π
l1

, l1 =

√
h2 + 4π2R2

1.
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Fig. 1. A double helix with R1 = 6.5 cm, R2 = R1/3, ψ = 0.13 rad, θ = π/4 rad; only half a turn of the primary helix is shown.

Fig. 2. Different views of the double helix shown in Fig. 1.

The pitch of the primary helix h is related to the helix angle ψ by

h = 2πR1 tan(ψ) . (2)

A complete turn of the primary helix is described by the curvilinear abscissa s varying from 0 to l1.
The double helix is parametrized by

r⃗2(s) = r⃗1(s) + R2 cos (ϵ2s + θ) n̂1(s) + R2 sin (ϵ2s + θ) b̂1(s) , (3)
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Fig. 3. Geometric properties of the double helix shown in Fig. 1.

where

ϵ2 = p ϵ1 , p ∈ R>0 .

Fig. 1 shows a plot of a double helix along with the primary helix. Fig. 2 shows different views of the double and primary
helices with annotations showing the radius of the primary helix, R1, the radius of the double helix, R2, the phase angle
of the double helix, θ , and the helix angle, ψ , which is related to the pitch of the helix h defined in Eq. (2). Vectors n̂1
and b̂1 in Eq. (3) are the normal and binormal unit vectors of the primary helix. For both the primary and double helices,
the tangential, normal and binormal unit vectors are defined as

t̂i(s) =
1 dr⃗i
ds

 dr⃗i
ds

, n̂i(s) =
1 dt̂i
ds

 dt̂i
ds

=
1
κi(s)

dt̂i
ds

and b̂i(s) = t̂i(s) × n̂i(s) , (4)

with i = 1, 2 corresponding to the primary and secondary helix, respectively. The normal vector, n̂i(s), (in Eq. (4)) is
defined by one of the three Frenet–Serret formulae; the other two formulae are

dn̂i

ds
= τi(s)b̂i(s) − κi(s)t̂i(s) and

db̂i
ds

= −τi(s)n̂i(s) . (5)

The curvature and tortuosity of the primary helix are constants

κ1 =
4π2R1

l21
, τ1 =

2πh
l21

.

However, for the double helix, the curvature and tortuosity (κ2 and τ2, respectively) are functions of the curvilinear coordi-
nate s. The expression of κ2 and τ2 can be obtained using symbolic manipulation software packages, e.g.Mathematica [27].
The expression of κ2(s) is presented in Appendix; the expression of τ2(s) is too cumbersome to be included herein. Both
the curvature and tortuosity of the double helix, however, are periodic with respect to the curvilinear coordinate s. Figs.
3a and 3b show the curvature and tortuosity of a double helix with R1 = 3R2, θ = π/4, p = 4 and ψ = 0.13 over two
turns of the double helix.

Due to the variation in the curvature and tortuosity, a double helical rod cannot be considered as a homogeneous
waveguide. It is rather a periodic waveguide where the period is a single turn of the double helix whose length is

l2 =

∫ s2

0

√
dr⃗2
ds

·
dr⃗2
ds

ds where s2 =
2π − θ

ϵ2
. (6)

Using Eqs. (4) and (5), Eq. (6) can be simplified to

l2 =

∫ s2

0

√
[1 − R2κ1 cos (ϵ2s + θ)]2 + [R2(ϵ2 + τ1)]2ds . (7)

The integral in Eq. (7) cannot be solved in closed-form although this can have many useful applications. Recently,
a numerical approach that uses a Maclaurin-type series expansion was proposed to calculate the length of a double
helix [19]; however, the convergence speed could be further improved.
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Eq. (1) can be parametrized in terms of the curvature and tortuosity of the primary helix since the following holds

R1 =
κ1

κ2
1 + τ 21

, ϵ1 =

√
κ2
1 + τ 21 , h =

τ1

ϵ1
. (8)

Using Eq. (1) through Eq. (4) along with Eq. (8), transformation matrices can be obtained between the local coordinate
systems and the global coordinate system⎧⎨⎩ t̂i

n̂i

b̂i

⎫⎬⎭ = Ri

⎧⎨⎩
î
ĵ
k̂

⎫⎬⎭ . (9)

The transformation matrix between the (t̂1, n̂1, b̂1) coordinate system and the global coordinate system is

R1(s) =
1
ϵ1

[
−κ1 sin (ϵ1s) κ cos (ϵ1s) τ1
−ϵ1 cos (ϵ1s) −ϵ1 sin (ϵ1s) 0
τ1 sin (ϵ1s) −τ1 cos (ϵ1s) κ1

]
.

Symbolic manipulation software packages, e.g. Mathematica [27], can be used to obtain R2(s); however, similar to τ2(s),
the expressions of the elements of R2(s) are too cumbersome to present herein.

3. Wave propagation

Given the complexity of the geometry of the double helical rod, it is a formidable task to develop the governing
equations and hence resolve the wave behaviour analytically. Thus, the wave and finite element (WFE) will be used to
analyse the wave behaviour of a double helical rod. The WFE method has been used to model the free [22] and forced
vibration [23,28] of straight and curved [29] waveguides. The WFE have also been used to model wave propagation in
helical rods [30] and to model the power flow and scattering in helical waveguides [31].

The location of any point on the centreline of the double helical rod is described by Eq. (3) and the local displacements
(u, v, w) and rotations (α, β, γ ) are defined along and about the (t̂2, n̂2, b̂2) coordinate system, respectively.

3.1. Review of the wave and finite element method

In this section, the WFE method for waveguides will be briefly reviewed based on the developments of [22,23] and
adapted to the current treatment. First, free and then forced wave propagation will be reviewed followed by forced
vibration.

3.1.1. Free wave propagation
Since the double helical rod is a periodic waveguide, the WFE model starts with obtaining the FE model of a single

turn of the double helical rod (whose length is given in Eq. (7)). Straight beam elements are used to obtain the FE model
of this periodic substructure. If ns elements are used with increment ∆s in the curvilinear coordinate, then the position
vector of a point on the substructure is given as

r⃗2 ((i − 1)∆s) = r⃗1 [(i − 1)∆s] + R2 cos [(i − 1)ϵ2∆s + θ ] n̂1 [(i − 1)∆s]

+R2 sin [(i − 1)ϵ2∆s + θ ] b̂1 [(i − 1)∆s] ,
(10)

where i = 1, . . . , ns + 1. Note that the length of the ith element will be given as

∆ei = ∥r⃗2(i∆s) − r⃗2 ((i − 1)∆s) ∥ . (11)

The number of segments ns used to discretize one turn of the double helical rod must be chosen such that
ns+1∑
i=1

∆ei ≈ l2

where l2 is given in Eq. (6). These elements are not of equal length (due to the dependence of the curvature and tortuosity
of the double helix on the curvilinear coordinate s). Indeed, if R2 = 0 (i.e., the centreline of the rod follows that of a
standard helix), ∆ei simplifies to ∆s (after using Eq. (3) and applying small angle approximation). The mass and stiffness
matrices of these individual elements can be used to assemble the global mass and stiffness matrices of the single turn of
the double helical rod in the global coordinate system. Each node in the beam element has 6 degrees of freedom (DOFs);
thus, the model of the single turn will have 6 × (ns + 1) DOFs.



6 J. Renno, S. Sassi and S. Gowid / Wave Motion 93 (2020) 102446

The resulting FE model (in the global coordinate system) under time harmonic motion of the form exp(−ıωt) can be
expressed in terms of the global dynamic stiffness matrix Dg =

[
K − ω2M

]
g as⎡⎣D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR

⎤⎦
g

{qL
qI
qR

}
g

=

{fL
fI
fR

}
g

, (12)

where, the dynamic stiffness matrix has been partitioned to reflect the contribution of the left, right and internal DOFs. If
no external forces are applied to the internal nodes (fI = 0), the dynamic stiffness matrix can be condensed (dynamically)
as [

DLL DLR
DRL DRR

]
g

{
qL
qR

}
g

=

{
fL
fR

}
g
, (13)

where[
DLL DLR
DRL DRR

]
g

=

[
D̃LL D̃LR

D̃RL D̃RR

]
g

−

[
D̃LI

D̃RI

]
g

[
D̃II

]−1
g

[
D̃IL D̃IR

]
g
. (14)

The dynamic stiffness matrix of Eq. (13) is of the size 12 × 12. Static condensation can also be used as discussed in [22];
however, static condensation is accurate only at low frequencies since the inertia associated with D̃II is excluded. To
transform the condensed model of the segment of Eq. (13), the rotation matrix R2 presented in Eq. (9) is used as{

qL
qR

}
g

=

[
ΘT

2(0) 06×6
06×6 ΘT

2(s2)

]{
qL
qR

}
2
and

{
fL
fR

}
g

=

[
ΘT

2(0) 06×6
06×6 ΘT

2(s2)

]{
fL
fR

}
2
, (15)

where

Θ2(s) =

[
R2(s) 03×3
03×3 R2(s)

]
,

and s2 is given in Eq. (6). Note that only R1 is presented in Section 2; R2(s) can be obtained using mathematical
manipulation software [27] and its elements are too cumbersome to present in this paper. Using the transformation of
Eq. (15) in Eq. (13) results into[

DLL DLR
DRL DRR

]
2

{
qL
qR

}
2

=

{
fL
fR

}
2
, (16)

where[
DLL DLR
DRL DRR

]
2

=

[
Θ2(0) 06×6
06×6 Θ2(s2)

][
DLL DLR
DRL DRR

]
g

[
ΘT

2(0) 06×6
06×6 ΘT

2(s2)

]
.

In the sequel, the subscript ‘‘2’’ will be dropped for brevity. If a wave is propagating freely along the double helical rod,
the propagation constant λ = e−ıkl2 governs the relationship between the right and left nodal DOFs and forces as follows:

qR = λqL , fR = −λfL . (17)

Substituting Eq. (17) into Eq. (16) yields an eigenvalue problem in λ. The eigenvalue problem can be cast in several forms,
e.g.,

λ

{
qL
fL

}
= T

{
qL
fL

}
where T =

[
−D−1

LR DLL D−1
LR

−DRL + DRRD−1
LR DLL −DRRD−1

LR

]
, (18)

where T is referred to as the transfer matrix. Numerical problems might be encountered when solving this eigenvalue
problem [22] and in that case, better-conditioned forms can be used [32].

The eigenvalues can be found in reciprocal pairs (i.e., λ+

i and λ−

i = 1/λ+

i ), which have wavenumbers k+

i and k−

i = −k+

i
corresponding to the positive and negative going waves, respectively. The positive and negative going eigenvectors φ+

i
and φ−

i (also called the wavemodes) are associated with the aforementioned eigenvalues. Each of the wavemodes can be
partitioned as

φi =

{
φq
φf

}
i

where i = 1, . . . , 6 . (19)

Positive going waves are characterized by⏐⏐λ+

i

⏐⏐ ≤ 1 ,
ℜ

(
fTL q̇L

)
= ℜ

(
ıωfTL qL

)
< 0 if

⏐⏐λ+

i

⏐⏐ = 1 ,
(20)

where the diacritic point is used to indicate a derivative with respect to time. Eq. (20) states that if the wave is travelling
in the positive direction, then its amplitude should decrease or if the amplitude remains constant, then there must be
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time-averaged power transmission in the positive direction. Eq. (20) includes evanescent waves that decay with increasing
distance. Although these waves do not transfer energy, they contribute to the input response and they could give rise to
propagating and evanescent waves when impinging on a discontinuity [33].

The following matrices can be used to group the wavemodes:

Φ±
=

[
φ±

1 · · · φ±

6

]
, Φ =

[
Φ+ Φ−

]
.

The left wavemodes, which are (1 × 12) vectors can also be partitioned as

ψi =
[
ψf ψq

]
i where i = 1, . . . , 6 .

They can be grouped further as:

Ψ =

[
Ψ+

Ψ−

]
where Ψ±

=

⎡⎢⎣ψ
±

1
...

ψ±

6

⎤⎥⎦ .

The left and right wavemodes can be normalized such that Ψ±Φ±
= I. Further matrices can be formed from the partitions

of the left and right wavemodes:

Φ±

q =
[
φ±

q,1 · · · φ±

q,6
]

, Ψ±

q =

⎡⎢⎣ψ
±

q,1
...

ψ±

q,6

⎤⎥⎦ .

Similar expressions exist for Φ±

f and Ψ
±

f . These matrices, alongside the orthogonality relations, define the transformations
between the physical domain and the wave domain as:{

qL
fL

}
= Φa with a =

{
a+

a−

}
. (21)

3.2. Forced wave propagation

A point load fe that acts on the double helical rod generates positive- and negative-going waves of amplitudes (e+ and
e−) that propagate away from the point load to the right and left, respectively. The amplitude of the excited waves can
be calculated as

e+
= Ψ+

q fe and e−
= −Ψ−

q fe . (22)

For spatially distributed loads, the amplitudes of the excited waves can be obtained analytically via the WFE model along
with contour integration [23]. The knowledge of the excited waves can be further used to find the forced response of a
finite double helical rod as laid out in the next subsection.

3.3. Forced response of finite double helical rod

The approach presented in [22] can be used to relate the travelling, incident and reflected waves to the excited waves
of Eq. (22). Fig. 4 shows a schematic of a finite waveguide (e.g. the double helical rod considered herein) where e+ and
e− are the amplitudes of the excited waves that were computed in Eq. (22). The length of the double helical rod is Npl2
where N is the number of turns of the primary helical path around which the centreline of the double helical rod is coiled
and p and l2 where introduced in Section 2. The double helical rod is excited at location se and the response is observed
at sr .

In general, the boundary conditions at the right and left boundaries can be expressed in terms of the DOFs and internal
forces as

AL,Rf + BL,Rq = 06×6 , (23)

where matrices are A and B are matrices that may include stiffness, damping, etc. and may be complex and frequency
dependent. For example, if the double helical rod is fixed at the left end, then AL = 06×6 and BL = I6×6. Using the form
of Eq. (23) and writing the internal forces and DOFs in the wave basis of Eq. (21), the incident and reflected waves at the
boundaries can be related as

d+
= rLd− and c−

= rRc+ ,

where

rL = −
(
ALΦ

+

f + BLΦ
+

q

)−1 (
ALΦ

−

f + BLΦ
−

q

)
,

rR = −
(
ARΦ

−

f + BRΦ
−

q

)−1 (
ARΦ

+

f + BRΦ
+

q

)
.
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Fig. 4. Schematic of a waveguide excited by a point load showing the wave amplitudes at the excitation location se , the response location sr and
along with the incident and reflected waves at the boundaries.

The overall wave amplitude in the waveguide, a±, is the sum of the travelling waves g± and the excited waves e± as

a+
= e+

+ g+ and g−
= e−

+ a+ . (24)

However, the amplitude of waves g+ contains the contribution of the left boundary as

g+
= F(se)rLF(se)g− ,

where F is the wave flight matrix given as

F(s) = diag
(
e−ık1s, . . . , e−ık6s

)
. (25)

Combining Eqs. (25) and (24), one obtains

a+
= [I6×6 − F(se)rLF(Npl2)rRF(Npl2 − se)]−1 [

e−
+ F(se)rLF(se)e−

]
,

a−
= F(Npl2 − se)rRF(Npl2 − se)a+ . (26)

The response at any point can be subsequently obtained by finding the wave amplitudes at the location of interest and
then using the wave basis of Eq. (21). For example, at sr , the wave amplitudes are

b+
= F(sr − se)a+ and b−

= F(Npl2 − sr )rRF(Npl2 − sr )b+ . (27)

4. Numerical examples

4.1. Benchmark example

Consider a double helical rod with R1 = 6.5 cm, d/R1 = 0.184, ψ = 0.13 rad, θ = 0, R2 = R1/10 and p = 10. The
non-dimensional frequency is introduced as

Ω =
ωd
c

where c =

√
E
ρ
.

The FE model of a single turn of the double helical rod is obtained using 41 BEAM188 elements of ANSYS. BEAM188 is a
two-noded element with six degrees of freedom per node that is based on the Timoshenko beam theory which includes
shear-deformation effects. The length of one turn of the double helical rod can be obtained using Eq. (7); for the values
used herein, one can obtain l2 = 4.12 cm. Thus, the obtained stiffness and mass matrices are 252 × 252. However,
when these matrices are reduced as elaborated in Section 3.1.1 , the WFE method is applied to a 12 × 12 system which
represents the degrees of freedom of the end nodes of the turn. The WFE model will have six positive going and six
negative going waves. All the waves will be retained in the wave basis presented in Section 3.1.1.

The wavenumbers of a helical rod can be obtained analytically using either the Euler–Bernoulli or Timoshenko beam
theories [8]. If R2 = 0, the formulation presented in Section 3.1 will yield the wavenumbers of a helical rod and these can
be compared to the analytical dispersion curves of [8]. For this case, the WFE model is obtained using the same segment
introduced above (i.e., its length is also l2). Fig. 5 shows that the WFE computation of the dispersion curves is in very good
agreement with the analytical dispersion curves in the low-frequency range. At higher frequencies, Fig. 6, the difference
between the WFE model and the analytical dispersion curves becomes more visible. This is due to discretization errors
since the size of the segment used in the WFE model is relatively large [22].

Now consider the double helical rod introduced at the beginning of this section. The primary helical path around
which the centreline of the double helical rod is coiled has six turns (i.e, N = 6) and thus, the double helical rod has
60 turns. The dispersion curves are presented in Figs. 7 and 8. In the low-frequency range, the dispersion curves exhibit
clear similarities with the dispersion curves of the helical rod, Fig. 7. At higher frequencies, the double helical rod exhibits
stop-pass band behaviour, Fig. 8 that is typical of periodic structures. This is expected since the double helical rod (as
elaborated in Section 2 and illustrated in Figs. 3a and 3b) is a periodic rather than a homogeneous waveguide.
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Fig. 5. Dispersion curves of a helical rod with R1 = 6.5 cm, d/R1 = 0.184, ψ = 0.13 rad and R2 = 0 in the low-frequency range.

Fig. 6. Dispersion curves of a helical rod with R1 = 6.5 cm, d/R1 = 0.184, ψ = 0.13 rad and R2 = 0 in the high frequency range.

Fig. 7. Dispersion curves of a double helical rod with R1 = 6.5 cm, d/R1 = 0.184, ψ = 0.13 rad and R2 = R1/5 in the low-frequency range. The
annotated wavenumber branches will be discussed in Section 4.2.

To ensure that the developed model is robust, the double helical rod is fixed at one end and a time harmonic force in

the global z direction is applied at the free end. The input mobility obtained by Sections 3.2 and 3.3 is compared to a full
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Fig. 8. Dispersion curves of a double helical rod with R1 = 6.5 cm, d/R1 = 0.184, ψ = 0.13 rad and R2 = R1/5 in the high-frequency range. The
annotated wavenumber branches will be discussed in Section 4.2.

Fig. 9. Input mobility of the double helical rod in the low-frequency range.

FE prediction in Figs. 9 and 10. At low and high frequencies, the predictions of the WFE method are in excellent agreement
with the full FE predictions. The WFE uses only six pairs of waves to obtain the solution whereas the computational cost of
the FE model is certainly higher (even if modal superposition is used). The computation time will depend on the number
of turns of the double helical rod. As the double helical rod becomes longer, its FE model will increase in size whereas
the WFE model will remain the same. In particular, the only modification to the WFE predictions will be in Eqs. (26) and
(27) which does not add any computational cost to the WFE model. The effect of the band gaps presented in Fig. 8a can
be observed in Fig. 10 where the input mobility is lower at the band gaps (e.g. when Ω ≈ 4×10−2 and when Ω ≈ 0.13).

4.2. Analysis of wavemodes

In this section, the wave behaviour of the double helical rod will be analysed and the wavemodes will be examined.
Figs. 11 and 12 show the dispersion curves of the double helical rod with varying values of R2. Fractal effects are evident
in Fig. 11 where the behaviour of the helical rod is indicated by R2 = 0 and forms the original pattern that is followed
and scaled down by the dispersion curves of the double helical rod with varying R2 values. Thus, as the double helical rod
is a helix coiled around another helix, the dispersion curves of the double helical rod follow the same shape of those of
the helical rod but at lower values. The component of the wave modes will be similar; however, the three-dimensional
behaviour of the double helical waveguide will be different than that of the helical waveguide under the same wavemode
and at the same frequency due to the markedly different geometric coupling in the double helical rod.
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Fig. 10. Input mobility of the double helical rod in the high-frequency range.

Fig. 11. Demonstration of the fractal effect in the dispersion curves of a double helical rod — real part of the nondimensional wavenumber.

As for the wavemodes, these can be obtained from the eigenvalue problem of Eq. (18) where the vector of DOFs under
the ith wave is q(i)

L = {φq}i (Eq. (19)). The motion of each turn of the double helical rod under the ith wave can be obtained
as

q(i)
R = exp(−ık+

i l2)q
(i)
L and q(i)

I = −D̃−1
II

[
D̃ILq

(i)
L + D̃IRq

(i)
R

]
. (28)

Fig. 13 shows the wavemodes of the helical rod and double helical rod under wavenumber branches 1h and 1d (which
are annotated in Fig. 7). Fig. 13a is a bending wave that propagates along the helical rod. The same bending behaviour is
observed in Fig. 13b where the bending wave propagates along the double helical rod.

The wavemode obtained in Eq. (28) is a vector of DOFs comprising three displacement DOFs and three rotational DOFs
along and about the local coordinates (t̂1, n̂1, n̂1) (for the helical rod) and (t̂2, n̂2, n̂2) (for the double helical rod) that were
introduced in Section 2. Fig. 14 shows the time history (over one period at Ω = 0.015) of the displacement DOFs of
q(i)
L exp(−ıωt). The vector of the three displacements is normalized to the maximum displacement in order to compare

the displacements in Fig. 14 can be easily compared. Although the displacement DOFs of these two wavemodes are not
very different from each other as demonstrated in Fig. 14, the wavemodes are quite different as demonstrated in Fig. 13.
Branch 1h (for the helical rod) is primarily a bending wave that propagates along the helical rod with components in all
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Fig. 12. Demonstration of the fractal effect in the dispersion curves of a double helical rod — imaginary part of the nondimensional wavenumber.

Fig. 13. Wave modes at Ω = 0.005 (solid line is un-deformed rod, and dashed line represents the deformed rod).

local coordinates. However, due to the varying spatial variation of the tortuosity and curvature of the double helical rod,
wavemode 1d is demonstrated as expansion of the turns of the helical rod.

At higher frequencies, Fig. 8a, the wavemodes of the double helical rod will have periodic and localized behaviour.
Fig. 15 shows a section of the double helical rod where each turn of the double helical rod will undergo localized radial
motion.

5. Conclusion

Although the modelling of wave propagation in double helical rods did not receive enough attention, it can be
useful in multiple fields of science and engineering ranging from understanding biological structures to advancing the
understanding of string theory. In this paper, a double helical rod is modelled using the wave and finite element (WFE).
The double helical rod is not a homogeneous waveguide; it is rather a periodic waveguide whose period is a single turn
of the secondary helix. A single turn of the double helical rod is modelled using beam elements from a commercial FE
software package. Bloch waves are used to formulate an eigenvalue problem whose solutions are the dispersion curves
and wavemodes of the double helical rod. Compared to the dispersion curves of a helical rod, the dispersion curves of the
double helical rod demonstrate fractal effects. Despite the similarity in the dispersion curves, the wave modes are quite
different even in the low-frequency range. This is mainly due to the spatial variation of the curvature and the tortuosity
of the double helical rod. In the high-frequency range, the wavemodes are localized (i.e., in each turn of the double helical
rod) which reflects the periodic nature of the double helical rod. The work presented herein can be extended to study the
wave behaviour of double helical waveguides which can be more representative of molecular structures.



J. Renno, S. Sassi and S. Gowid / Wave Motion 93 (2020) 102446 13

Fig. 14. Normalized displacement of wavemodes simulated over one period.

Fig. 15. Motion of the helical rod under wavenumber branch 3d at Ω = 0.1 (Fig. 8a).
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Appendix. Curvature of the double helix

The curvature of the double helix can be obtained as

κ2(s) =

√
N(s)
D(s)

. (A.1)

The numerator, N(s), is

N(s) = 4c2,2κ2
1R

2
2N1 − 8c2,1κ1R2N2 + N3 − 8c2,3κ3

1R
3
2τ1ϵ2 + c2,4κ4

1R
4
2τ

2
1

−8c2,3κ3
1R

3
2τ

2
1 − c2,4κ4

1R
4
2ϵ

2
2 + c2,4κ6

1R
4
2 − 8c2,3κ5

1R
3
2

(A.2)

where

c2,i = cos [i(ϵ2s + θ )] and s2,i = sin [i(ϵ2s + θ )] i = 1, 2, . . . .
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The constants N1, N2 and N3 are

N1 = 3κ2
1

(
2R2

2τ1ϵ2 + R2
2τ

2
1 + R2

2ϵ
2
2 + 2

)
+ κ4

1R
2
2

− (τ1 + ϵ2)
(
−4R2

2τ
2
1 ϵ2 − R2

2τ1ϵ
2
2 − 2R2

2τ
3
1 + R2

2ϵ
3
2 − 5τ1 − 3ϵ2

)
,

(A.3)

N2 = κ2
1

(
15R2

2τ1ϵ2 + 7R2
2τ

2
1 + 8R2

2ϵ
2
2 + 4

)
+ 3κ4

1R
2
2

+2 (τ1 + ϵ2)
2
(
4R2

2τ1ϵ2 + 2R2
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2
1 + 2R2

2ϵ
2
2 + 1

)
,

(A.4)

N3 = 8κ2
1 + 24κ4
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(A.5)

The denominator in Eq. (A.1), D(s), is given as

D(s) = 2
(
c2,2κ2

1R
2
2 − 4c2,1κ1R2 + κ2

1R
2
2 + 4R2

2τ1ϵ2 + 2R2
2τ

2
1 + 2R2

2ϵ
2
2 + 2

) 2 (A.6)

If R2 = 0 (i.e., the double helix is reduced to the primary helix), then N(s) = 8κ2
1 and D(s) = 8, which retrieves the

curvature of the primary helix with κ2 = κ1.
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