
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

BUILDING A TEST COLLECTION FOR SIGNIFICANT-EVENT

DETECTION IN ARABIC TWEETS

BY

HIND ALI AL-MEREKHI

A Thesis Submitted to the Faculty of

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

January 2016

c© 2016 Hind Almerekhi. All Rights Reserved.

COMMITTEE PAGE

The members of the Committee approve the thesis of Hind A. Al-Merekhidefended on

the 22nd of February 2016.

Dr. Tamer Elsayed

Thesis/Dissertation Supervisor

Dr. Abdelkarim Erradi

Committee Chair

Dr. Joemon Jose

Committee Member

Dr. Somaya Al-Maadeed

Committee Member

Dr. Ali Jaoua

Committee Member

Approved:

Rashid Alammari, Dean, College of Engineering

ii

Abstract

With the increasing popularity of microblogging services like Twitter, researchers discov-

ered a rich medium for tackling real-life problems like event detection. However, event

detection in Twitter is often obstructed by the lack of public evaluation mechanisms

such as test collections (set of tweets, labels, and queries to measure the effectiveness of

an information retrieval system). The problem is more evident when non-English lan-

guages, e.g., Arabic, are concerned. With the recent surge of significant events in the

Arab world, news agencies and decision makers rely on Twitters microblogging service to

obtain recent information on events. In this thesis, we address the problem of building a

test collection of Arabic tweets (named EveTAR) for the task of event detection.

To build EveTAR, we first adopted an adequate definition of an event, which is a

significant occurrence that takes place at a certain time. An occurrence is significant if

there are news articles about it. We collected Arabic tweets using Twitter’s streaming

API. Then, we identified a set of events from the Arabic data collection using Wikipedias

current events portal. Corresponding tweets were extracted by querying the Arabic data

collection with a set of manually-constructed queries. To obtain relevance judgments for

those tweets, we leveraged CrowdFlower’s crowdsourcing platform.

Over a period of 4 weeks, we crawled over 590M tweets, from which we identified 66

events that cover 8 different categories and gathered more than 134k relevance judgments.

Each event contains an average of 779 relevant tweets. Over all events, we got an average

Kappa of 0.6, which is a substantially acceptable value. EveTAR was used to evalu-

ate three state-of-the-art event detection algorithms. The best performing algorithms

achieved 0.60 in F1 measure and 0.80 in both precision and recall. We plan to make

our test collection available for research, including events description, manually-crafted

queries to extract potentially-relevant tweets, and all judgments per tweet. EveTAR is

the first Arabic test collection built from scratch for the task of event detection. Addi-

tionally, we show in our experiments that it supports other tasks like ad-hoc search.

iii

TABLE OF CONTENTS

Abstract . iii

List of Tables . vi

List of Figures . viii

Acknowledgements . x

Dedication . xi

1 Introduction 1

1.1 Research Questions . 5

1.2 Contributions . 6

1.3 Thesis Outline . 7

2 Background and Related Work 8

2.1 Background . 8

2.1.1 Definitions of Event . 8

2.1.2 Event Detection . 10

2.1.3 Test Collections . 13

2.2 Event Detection in Microblogs . 17

2.2.1 Event Detection Applications in Microblogs 18

2.3 Test Collections for Event Detection in Microblogs 19

3 Building the Test Collection 23

3.1 Tweet Data Collection . 24

3.2 Identifying Events . 24

3.2.1 Wikipedia Current Events Portal (WCEP) 25

3.2.2 Selecting Candidate Events . 27

3.3 Gathering Relevance Judgments . 32

3.3.1 Tweet Collection Search . 33

3.3.2 CrowdFlower Labeling Job . 35

iv

3.3.3 Pilot Study . 36

3.3.4 Final Study . 38

4 Evaluation 41

4.1 Test Collection . 41

4.1.1 Events . 42

4.1.2 Annotations . 44

4.1.3 Qualitative Analysis . 48

4.1.4 Comparison With Other Test Collections 53

4.2 Using EveTAR . 53

4.2.1 SONDY’s Social Analysis Tool 53

4.2.2 Performance of Event Detection Algorithms 57

5 Conclusion and Future Work 71

5.1 Conclusion . 71

5.2 Future Work . 72

Bibliography 74

Appendix A Collection Keywords 83

Appendix B Events 85

Appendix C Event Statistics 87

v

LIST OF TABLES

2.1 Information on different data and test collections in microblogs (ED: Event

Detection) . 22

3.1 Examples of tweets from three different events that were labeled by Crowd-

Flower Workers . 40

4.1 Statistics about the collected tweets that were used to build EveTAR . . 41

4.2 Statistics about the number of tweets in our collection before and after

removing exact duplicates. 42

4.3 Examples of events from each category identified in EveTAR 43

4.4 The six Kappa categories according to the range of Kappa values 48

4.5 Kappa and confidence values across all events in the collection 52

4.6 Information on different data and test collections in microblogs (ED: Event

Detection) . 53

4.7 Precision, Recall, and F1 measure for the 30 minute time slice setting in

EveTAR . 61

4.8 Precision, Recall, and F1 measure for the 60 minute time slice setting in

EveTAR . 62

4.9 Precision, Recall, and F1 measure for the 30 minute time slice setting in

the English Test collection . 66

4.10 Precision, Recall, and F1 measure for the 60 minute time slice setting in

the English test collection . 67

4.11 Ad-hoc search performance with EveTAR 69

A.1 The tokens used for crawling the data collection through the streaming

API(1 of 2) . 83

A.2 The tokens used for crawling the data collection through the streaming

API(2 of 2) . 84

vi

B.1 List of Arabic and English event titles and categories (1 of 2) 85

B.2 List of Arabic and English event titles and categories (2 of 2) 86

C.1 List of event relevance judgment details and statistics (1 of 2) 87

C.2 List of event relevance judgment details and statistics (2 of 2) 88

vii

LIST OF FIGURES

1.1 Examples of three events and event-related tweets in Arabic. 2

1.2 The five main steps to build EveTAR for the task of event detection. . . 5

3.1 The three main stages of building a test collection for event detection. . . 23

3.2 The representation of the event of queen Khentakawess III as collected

from WCEP. 25

3.3 The news article of queen Khentakawess III tomb discovery from BBC

news website. 26

3.4 Wikipedia Current Events Portal page in Arabic for the month of January

2015. 27

3.5 Wikipedia Current Events Portal page in English for the 5th of January

2015. 28

3.6 Twitter Advanced Search Tool interface using the second query from the

event of queen Khentakawess III . 31

3.7 An example of a relevant tweet from the event of queen Khentakawess via

Twitter’s Advanced Search Tool . 32

3.8 Collection Search interface using Lucene 4.0.7 text search library with the

event of queen Khentakawess as an example 34

3.9 The job description for the event of queen Khentakawess on CrowdFlower

crowdsourcing platform . 38

3.10 The news article for the event of queen Khentakawess in the job description 39

3.11 Sample test question for the event of queen Khentakawess in the job in-

structions page . 40

4.1 The overall event distribution across the 8 categories that were identified

from WCEP . 43

4.2 The ratio of relevant to non-relevant tweets per event across all events . . 45

viii

4.3 Stacked view of the ratio of relevant to non-relevant tweets per event across

all events . 46

4.4 Relationship between the total number of judgments submitted to Crowd-

Flower and labeling time . 47

4.5 The relationship between Kappa values and the total number of judged

tweets per event . 50

4.6 Categories of Fleiss’ kappa Vs. overall confidence per event across all events 52

4.7 SONDY’s event detection interface, where MABED is applied to EveTAR 56

4.8 Messages view in SONDY that shows all the tweets associated with the

detected event . 56

4.9 Process of automatically evaluating the event detection algorithms using

EveTAR . 64

ix

Acknowledgements

My first words of gratitude goes towards my family for always keeping up with my antics.

I thank my mother Aisha, for her unconditional love and support throughout my academic

life. Her silent prayers and sleepless nights worrying about me have touched my heart

deeply. I thank my elder sisters Noor and Maha, for being great role models in life. I

thank my youngest sister Alanoud, for her assistance with my thesis completion. I thank

my elder brother Mohammad, for sharing his knowledge in computing and providing

assistance whenever I needed it. I would like to also thank my eldest brothers Hamad

and Jumaa for supporting my decisions and encouraging me to pursue a Masters degree.

The completion of this thesis was made possible through the efforts of my supervisor

Dr. Tamer Elsayed. His tremendous efforts during one of his famous “IR in a nutshell”

seminars fueled my interest in the field of information retrieval. I’m extremely thankful

to him for accepting to be my mentor. Over the past couple of years, I made a lot

mistakes and learned from them thanks to Dr. Tamer’s assistance. I’m grateful for all

the hints and tips that he tends to offer whenever I need them. I’m forever thankful

for all the time and effort that he dedicated to revise this work. The experience I had

when working with Dr. Tamer really helped me improve my research skills and I’m truly

honored to have him as my mentor.

I would like to also express my gratitude towards all the members of the Information

Retrieval group at Qatar University. Dr. Tamer, Dr. Marwan, Dr. Mucahid, Maram,

Mrs. Rana, Reem, Abeer, Nihal, and Fatima. Thank you for your great teamwork spirit

and kindness. Being a part of this team helped me improve my skills as a researcher and

a fellow member. I also thank my small group of friends for always being there when I

needed them the most.

Lastly, I offer my deepest appreciation to the office of Education, Training and De-

velopment of Qatar Foundation for their continuous support. Thank you for giving me

this opportunity to follow my dreams and continuing my education.

x

Dedication

To my dear mother. I cannot find the right words to express my gratitude and appreciation

towards you. Your kind advice and encouraging words saved me from despair. So thank

you from the bottom of my heart for always believing in me when I doubted myself. I

couldn’t have completed this thesis without you.

xi

CHAPTER 1. INTRODUCTION

Over the past few years, online microblogging services like Twitter1gained an immense

growth in popularity among users. Twitter’s microblogging service allows users to com-

municate through short messages, commonly known as tweets. Unlike regular messages,

tweets are very limited in length and cannot exceed 140 characters. The power of Twitter

comes from the fact that tweets are shared in real-time. With the aid of Twitter’s online

web service and mobile application, users can post and retweet (i.e, repost) messages

instantaneously [30]. This allows different kinds of messages to be shared (e.g, personal,

opinion, earthquakes, disasters, sports, and political tweets) [61]. However, this leads

Twitter’s microblogging service to witness a surge in the volume of posted tweets. Re-

cent statistics from April of 2015 show that the total number of tweets posted per day

is about 500 million tweets2. This number might indicate that most of these tweets are

either spam [24], repetitive, or uninteresting, which causes the problem of information

overload [50].

Naturally, the overwhelming popularity of Twitter led several parts of the world such

as the Arab region to use it as a medium for exchanging messages. To update people

on critical events, news agencies like Al Jazeera and Al Arabiya often rely on Twitter’s

microblogging service to post their latest news. Furthermore, both news agencies are

highly interested in tracking events that are not yet published. In this context, an event

is an important happening that occurs at a particular point in time. For example, Al

Jazeera journalists need to know the events associated with the revolutions in the Arab

world, so they use Twitter as an information source to update their reports. Another

scenario might consider using Twitter as a guide to save lives. As life-threatening disas-

ters like hailstorms occur, it is important for rescue squads to get quick information on

the situation and send help to save people. In this case, rescue squads could get their

1https://www.twitter.com
2http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-

twitter-stats/

1

https://www.twitter.com
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/
http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-amazing-twitter-stats/

information from live Twitter feeds that discuss the disaster. Examples of such events

from the Arab world are given in Figure 1.1. The events are given on the left side of the

figure, while some corresponding tweets that discuss those events are on the right. The

first event in the figure discusses the death of two Saudi men near the Iraqi borders. The

second event translates to Cristiano Ronaldo winning the FIFA Ballon d’Or 2014. The

third event is about the resignation of Italy’s president Giorgio Napolitano.

مقتل رجلي أمن سعوديين

العراقبهجوم قرب حدود

فوز كريستيانو رونالدو

بجائزة الكرة الذهبية لعام

2014

استقالة الرئيس الإيطالي

جورجو نابوليتانو من

منصبه

Figure 1.1. Examples of three events and event-related tweets in Arabic.

The increasing popularity of Twitter led several researchers to explore the problem

of event detection in different ways. Event detection techniques can be either online

or offline. Online detection deals with streams of tweets and detects events as tweets

arrive, whereas offline detection finds events using variety of complex techniques that

are not efficient for online settings. One of the most prominent event detection tech-

niques is clustering. To detect events, clustering attempts to group several tweets that

discuss an event together in groups (called clusters). Clusters are later classified as either

event-related or not event-related [7, 48, 6, 39, 29]. The other technique used to detect

events is based on anomaly detection. Anomaly stands for any witnessed abnormality

2

or difference in tweets. For instance, anomalies can be found when sentiment-related

words are distributed in a different way than normal [40]. Furthermore, anomalies can

be associated with terms that were trending in the consecutive or fixed time windows

[22, 20, 62, 53, 56, 8]. Almost all anomaly-based event detection techniques depend on

spatial analysis, which requires the usage of timestamps on tweets to detect spikes in the

activity on Twitter.

Another popular event detection technique looks into the problem of first story detec-

tion (FSD). In this case, systems are expected to identify the first event that occurs in a

stream of tweets[45, 46]. By using the nearest neighbor distance to other documents as a

similarity measure, FSD uses the distance with a certain threshold and determines if the

tweet is new and novel to be considered a first story. The last event detection technique

is about predefined event types. Unlike the previous event detection techniques that tar-

get all types of events, this technique looks into specific event categories. For example,

earthquakes [51], criminal and disastrous events [30], disruptive events [6], sports [66],

and brands [36].

Evidence from the Arab social media report3 show that as of March 2014, an average

of 17 million tweets are posted every day. Such tweets are extremely noisy, full of typos

and redundancy. Hence, it is difficult to use Twitter’s stream to manually identify events

in the Arab world due to information overload [35]. It is evident that we need tools that

can automatically identify events from Twitter streams. More importantly, we need an

automatic way of evaluating the performance of such tools, which calls for a test collection.

A test collection consists of a set of documents, topics, and relevance judgments (i.e,

labels) that specify if documents are relevant to particular topics or not. Sometimes it

is difficult to build a full set of relevance judgments due to time constraints, size of data

collection, or lack of resources to judge documents [52]. The goal behind creating test

collections is to help researchers with the evaluation of their event detection systems.

With the aid of test collections, different event detection systems can be compared in

3http://www.arabsocialmediareport.com

3

http://www.arabsocialmediareport.com

performance and improved to enhance the quality of their output. The problem with

the existing event detection test collections is that most of them focus on English [35].

Moreover, the only work that tackles the problem of event detection in Arabic tweets

does not provide any data that could be used in further research [6]. Therefore, this study

aims at building a test collection (named EveTAR) for the task of event detection. More

specifically, the collection was designed for the problem of detecting significant events.

A significant event is defined as an occurrence that happens at a particular time in a

specific location and is discussed by the media. For instance, a significant event has a

news article written about it on the web.

The adopted method to build EveTAR consists of five main steps, as illustrated in

Figure 1.2:

1. Collect tweets: obtaining the tweet stream that will be used to build the collection.

The stream was obtained for a period of one month (January 2015).

2. Identify events: finding events from the tweet stream that spanned a single month.

3. Gather event-related tweets: using the events to search the tweet stream for poten-

tially event-related tweets.

4. Obtain relevance judgments: getting labels for the potentially event-relevant tweets

that determine if they are actually relevant to each event or not.

5. Evaluate label quality: analyzing the obtained labels and determining their quality

across events, then using the test collection by applying some state-of-the-art event

detection systems on the collection [21].

The resulting test collection contains relevance judgments of more than 135,000 tweets

that span 66 events during the month of January 2015. The built test collection can be

used for evaluating existing event detection techniques. Moreover, it can be used to

4

support other information retrieval tasks such as ad-hoc search, summarization, Tweet

Timeline Generation (TTG), and filtering 4.

Collect
Tweets

Identify
Events

Gather
Event-
related
Tweets

Obtain
relevance
judgments

Evaluate
Label

Quality

Figure 1.2. The five main steps to build EveTAR for the task of event detection.

1.1 Research Questions

In building a test collection for event detection in Arabic tweets, we address two main

research questions:

• RQ1: How can we design a test collection that is reusable and supports multiple

tasks?

To support different information retrieval tasks, a test collection must take into

consideration the requirements of each task. Here, we try to answer the following

sub-questions:

– Can the test collection be used to evaluate systems built for different tasks?

– How can topics and judgments be collected to serve multiple tasks?

4https://sites.google.com/site/microblogtrack/

5

https://sites.google.com/site/microblogtrack/

• RQ2: How can we use crowdsourcing in building the test collection?

Using a crowdsourcing platform to obtain relevance judgments can save a lot time

and effort. However, research shows that using such platforms can be a challenging

task [35]. To get the best out of crowdsourcing, we believe that it is important to

benefit from the platform resources to obtain relevance judgments of high quality.

In this case, Learning how to use a crowdsourcing platform is not enough. We are

also interested in answering a few improtant questions such as:

– What makes a labeling job good? And what are the components of a good

labeling job for the task of event detection?

Since crowdsourcing deals with a heterogeneous network of workers (i.e, label-

ers), we think it is important to incorporate a good job design to boost the

quality of the obtained labels.

– Are the obtained labels through crowdsourcing reliable?

Furthermore, we look into the quality of the obtained test collection by examining

the labels and computing several statistics on the obtained results.

1.2 Contributions

We have three major contributions out of our study:

1. To our knowledge, EveTAR is the first test collection for the task of event detection

in Arabic tweets. The collection supports other tasks like ad-hoc search. Addition-

ally, it can be extended to support tasks like filtering, summarization, and Tweet

Timeline Generation (TTG).

2. We make the full test collection available for research, including:

• The list of 66 events that were identified by the study.

• The detailed design of the crowdsourcing task.

6

• The relevance judgments and tweet ID’s of 134,069 tweets.

• The queries for the 66 events for ad-hoc retrieval tasks.

• The full output of the crowdsourcing tasks, including the statistics of each

event.

• Different representations of the test collection to support ad-hoc search and

filtering.

3. We show that our test collection can be used to evaluate existing state-of-the-art

automatic event detection systems.

1.3 Thesis Outline

The reminder of this thesis is organized as follows. First, in Chapter 2 we present some

background information on event detection along with a detailed study on test collections

and microblog event detection systems. The details given in Chapter 3 describe how

candidate events were generated and selected to build the test collection, in addition

to the pilot and full evaluations that were conducted using crowdsourcing. Information

about the dataset and the evaluation results conducted on the test collection are given

in Chapter 4. Final concluding remarks and future directions are given in Chapter 5.

7

CHAPTER 2. BACKGROUND AND RELATED WORK

To build a test collection for the task of event detection, it is essential to provide some

background information on the problem of event detection. Hence, we provide a detailed

survey of the most prominent work done in event detection. First, we focus on the

definition of event detection in different scopes (including microblogs), then we look at

the efforts done in building test collections for different information retrieval tasks. We

also look at the research studies that focused on event detection in microblogs and we

discuss some of the applications of event detection in microblogs. Finally, we analyze

some of the few works that attempted to build test collections for the task of event

detection in microblogs.

2.1 Background

2.1.1 Definitions of Event

Starting from the general definition of an event that was adopted by the TDT project,

and ending with a very specific definition of what is known as a sub-event. The following

definitions are meant to show how the definition of an event changes based on the context

of usage.

• The Topic Detection and Tracking (TDT) task defines an event as something that

happens at some specific time and place, and the unavoidable consequences, such

as accidents, crimes, natural disasters, and presidential elections [4, 45, 26].

• The New Event Detection (NED) task states that NED is concerned with developing

systems that can detect the first story on a topic of interest, where a topic is defined

as a “seminal event or activity, along with directly related events and activities”[45].

Examples of an activity is the sinking of an oil tanker, first story is the article that

discusses the sinking of the tank, and other stories with the same topic discuss

environmental damage, the commercial effort and so on.

8

• An event in the context of Twitter [9] is defined as a real world occurrence with the

following properties: (a) it is associated with a time period Te and (b) a substantial

stream of tweets that discuss the event that occurred at the time period Te.

• Another definition of an event in Twitter [35] states that an event is a significant

thing that happened at some specific time and place. As for significance, an event

is significant if it is discussed in the media (i.e, there is a news report or article

written about it).

• As for disastrous event detection in Twitter [51], an event is an arbitrary classifi-

cation of a spacetime region. Moreover, an event might have actively participating

agents, passive factors, products, and a location in space/time. Examples of dis-

asters include earthquakes, typhoons, and traffic jams, which are visible through

tweets.

• News event detection in Twitter has a similar definition to [51], however, it focuses

on specific events rather than generic ones (in particular, fire-in-factory and labor-

strike). Furthermore, [2] defines a structured set of event-objects that contain

precise information about each event.

• Events in Twitter are defined in [25] as interest-driven activities that occur at a

specific time and location. While sub-events are specific information about location

or time, which are assumed to be co-located with the major event.

• Sub-events in crisis situations in Twitter are events during a disaster which are

separated from other events w.r.t. time or location [47, 1]. For example, during an

earthquake, in one place a bridge might collapse, while at the same time in another

location some buildings might be critically damaged.

• Sub-events in soccer games in Twitter are the live tweets that occur during an

event which describes those sub-events (e.g, the goals or penalties during a soccer

game)[16].

9

Our definition of a significant event is similar to the many definitions in [35]. However,

we emphasize on the significance of an event, which is often neglected in most of the event

definitions in [6, 9, 45]

2.1.2 Event Detection

The problem of event detection is relatively old in the realm of information retrieval. In

fact, it was one of the classical tasks that was supported by the U.S. Government’s Defense

Advanced Research Projects Agency (DARPA), under the project of Topic Detection and

Tracking (TDT)[4].The TDT project involves five tasks that allow researchers to explore

a variety of problems related to broadcasting news media. Each year, the National

Institute of Standards and Technology (NIST)monitors the evaluation of the TDT project

[18]. One of the five TDT tasks focuses on New Event Detection (NED) and event

tracking, which was heavily discussed by Allan et al.[5]. The new event detection task

aims at verifying if events exist in a stream of broadcasting documents. For this task,

the document streams were constructed from newswire websites and speech recordings

that were transcribed by humans from several CNN news shows.

Over the course of the TDT task, several researchers attempted to solve the prob-

lem of new event detection. One of the earliest attempts was by Allan et al.[42]. In

this work, the researchers aimed at simulating an online setting to detect new events

by looking at the first document that discusses the event in an incoming stream. The

proposed approach relies on a single pass clustering algorithm and considers the char-

acteristics of an event as a threshold model. Implementation of the proposed algorithm

relied on a combination of the ranked-retrieval technique of Inquery, which consists of

selection and feature extraction based on relevance feedback[28]. All the feature vectors

were represented by Term Frequency Inverse Document Frequency (TFIDF) weights. To

evaluate the performance of the single pass online clustering technique, a corpus of 15863

documents was used. The data was obtained between early July 1994 and late June 1995

10

from CNN news show transcriptions and Reuters newswire documents [42]. A total of

25 events were selected and used to evaluate the performance of the algorithm against

previous work from the TDT task. The proposed evaluation method considered recall,

precision, F1-measure, miss rate, false alarm rate, and distance from the origin as eval-

uation metrics. By running the algorithm on 11 passes, the results show that adding a

time penalty on the data increases the overall performance.

In a similar work, Yang et al. [65, 64] attempted to solve the problem of online

event detection through clustering. However, unlike the approach that was discussed

previously, this work considered a hierarchical and non-hierarchical clustering technique

to detect events in streams of documents. The hierarchical clustering is performed by first

classifying documents into a set of comprehensive topics, then looking for new unseen

topics in each topic. The feature computation relies on the TFIDF representation of

documents. Moreover, the considered features were computed by removing topic-specific

stop words and giving weights to named entities [65]. By leveraging the same corpus that

was used by Allan et al.[42], the researchers in this work focused on both temporal and

content based features to perform the clustering. Resulting hierarchies from the clustering

approach showed that it was possible to identify unknown events that occurred in the

past. Moreover, the underlying temporal characteristics of document clusters can show

some interesting patterns that aid in detecting events in the past or online. To evaluate

the performance of the hierarchical clustering technique, a set of 25 manually labeled

events were used in a similar fashion to what was done in [42]. Results showed that

the hierarchical technique scored 82% in past event detection. However, the technique’s

performance derogates in online clustering, achieving an F1 score of 42% [64].

To view the problem of NED from a different perspective, Brants et al. [10] introduced

a technique that relies on an incremental TFIDF model. The methodology builds up on

the previous work [42, 65] and extends the usage of the TFIDF model. The new additions

to the model are: generalization of models specific to particular sources, normalization

of similarity scores based on the averages of particular documents, segmentation of docu-

11

ments, normalization of similarity scores based on the averages of particular source pairs,

and usage of inverse event frequencies to reweight terms. The authors of this work eval-

uated their technique on TDT3 and TDT4 test data. Furthermore, instead of using the

well-known cosine distance, the proposed technique replaced it with Hellinger distance.

Interestingly, the researchers in this work discussed two proposed additions to the TFIDF

model that failed to improve it. The failed techniques are based on time information and

the usage of the vocabulary in the look-ahead data in the TFIDF model. Evaluation re-

sults show that the new additions to the TFIDF model were able to collectively improve

the detection by 18% [10].

Efforts to improve the task of NED were further exploited by Kurman and Allan [26].

This work introduced two main modifications to the classic NED approaches: the usage

of text classification approaches and incorporating named entities in the classification

process. Enhanced NED looked at different representations of documents in the vector-

space model of NED systems. In this work, the classic NED system model was replaced

by three representations of each document. The motivation behind this approach is to

account for prominent terms and named entities that occur in new events. Moreover,

weight scores were assigned after classifying stories into broad category types to improve

the influence of individual terms. Hence, a document was represented by three vectors: a

vector α that accounts for all terms (after removing stop words), a vector β that accounts

for named entities only, and a vector γ that accounts for non-named entity terms. To

discover named entities, this work relied on the BBN identifier [26]. Evaluation results

show that the system contributed to significant improvement in event detection when

compared with baselines. However, the authors emphasized that their rules for including

named entities require further research to be utilized in NED tasks.

As for other media types, the Social Event Detection (SED) task [41] aims at iden-

tifying events from image metadata. The task was designed as part of the MediaEval

2011 benchmark to study the diffusion of multimedia content in social media platforms.

By using social media streams from popular photo sharing platforms, like Instagram and

12

Flickr, systems are expected to identify associations between multimedia content and

events. Video retrieval is also addressed by TRECVid evaluation benchmark initiatives

[55]. In fact, two of the campaigns held by TRECVid tackle the problem of event de-

tection in surveillance video footage. Using high-level feature extraction, events can be

identified from different surveillance cameras. In this case, the targeted events are cases

in which luggage is left behind by passengers in airports or subways.

2.1.3 Test Collections

The typical requirements for evaluating an information retrieval system include having

a test collection, which consists of a collection of documents, a set of topics, and rele-

vance judgments that specify if documents are relevant to particular topics. Creating a

test collection for evaluating modern information retrieval systems is an expensive task

because such systems require millions of documents to be evaluated. However, Cormack

et al. [15] attempted to solve this problem by introducing two techniques to build large

test collections efficiently. The first technique, Interactive Searching and Judging, was

introduced to improve the quality of the produced judgments. Instead of providing anno-

tators with a set of random documents to label, the first technique allows small research

groups to use their limited resources to interactively select which documents to judge.

The second technique, Move-to-Front Pooling aimed at improving on the classic pooling

technique that was used to get relevance judgments. In a normal pooling scenario, the top

k documents from each retrieval system are added to a pool for judgment. However, the

Move-to-Front pooling technique improves on this approach by getting a different num-

ber of documents from each retrieval system based on it’s performance. Hence, allowing

the efficient creation of high quality test collections with minimum efforts.

When building test collections for information retrieval tasks, it is common to fol-

low the well-established Cranfield evaluation paradigm, which assumes the completeness

of the relevance judgments. However, Buckley et al. [11] argued that it is difficult to

13

strictly satisfy the completeness condition. Since pooling techniques that conferences

like the Text REtrieval Conference (TREC) follow are difficult to achieve within short

periods of time. Many users submit runs to the pool, which requires a lot assessor time.

Therefore, the authors proposed an evaluation metric that shows robust performance

when relevance judgments are incomplete. The new measure, named bpref, which stands

for binary preference, looks at the fraction of non-relevant documents that were retrieved

before the relevant documents. The evaluation metrics that were used in the study were

mean average precision (MAP), precision at 10, and R-precision. The conducted experi-

ments measured the change in systems rankings using Kendalls τcoefficient. Furthermore,

experiments measured the effect of judgments completeness in all judgments, incomplete

judgments, and imperfect judgments.

To further address the challenges associated with building large test collections,

Carterette et al. [13] presented a new perspective on average precision (AV) to con-

nect evaluation with test collection construction. The study shows that it is possible

to gain high confidence when ranking a set of systems with a minimal set of relevance

judgments. Building a test collection with average precision can be done through an al-

gorithm that selects documents based on the available relevance judgments. This means

that average precision is normally distributed across all the potential relevance judgments

in the entire unjudged collection. The data used for the study was from the Aquaint cor-

pus and TREC 4 & 5 disks. With the assistance of real annotators, the authors show

that it took only six hours for the ranking confidence to reach 90%. This proves that the

algorithm can work in different retrieval environments when small amounts of relevance

judgments are available. To evaluate the algorithm, the authors conducted several tests

to compare the mean average precision (MAP) with εMAP, the effect of the number of

relevance judgments, how time affects confidence, and how reusable a test collection can

be.

All of the work that was discussed earlier focused on minimizing the efforts to build

test collections. However, none of them thought about reusing relevance judgments like

14

Carterette[12]. The idea behind this work is to help researchers with limited resources to

construct low cost test collections to evaluate new retrieval systems. While the judgments

produced by this technique might be useful for a single evaluation of a system, this might

not be the case when reusing them with a new system. However, it is still useful when

there is a few relevance judgments of a new system. Which means that this technique

values the smallest number of judgments and uses it to build the test collection. A small

number such as five judgments from two systems can be used to evaluate ten systems. The

introduced model estimates the confidence in the set of few judgments based on a formal

definition of reusability. The proposed algorithm combines techniques from Minimal Test

Collection (MTC) construction and Robust Test Collection (RTC). Results show that the

RTC confidence estimates are more accurate when compared to MTC [12].

What Carterette’s work failed to address was the problem of evaluating a new unseen

system at a low budget. Yet, Hosseini et al. [23] proposed a method to achieve this goal.

The technique relies on two stages to build the test collection. The first stage starts

with some queries and adopts a traditional pooling technique. However, only part of

the budget is used to get the relevance judgments for some of the participating systems.

The second stage involves refining the test collection by analyzing the available relevance

judgments and adding priority to queries and documents. The aim of doing this is to

improve the effectiveness of the test collection for comparative evaluations with other

systems. Prioritizing of the query was formulated as a convex optimization problem,

which allowed the authors to experiment with different constrains. The second part of

the test collection construction budget was used to evaluate query-document pairs based

on their priority score. Hence, reducing the cost of the test collection construction by

only expending it to participating systems in the second phase. Results show that the

proposed technique improved the reusability of the test collection and was cost efficient

[23].

On a similar note, Rajput et al [49] investigated the reusability of test collections.

The work relied on a small number of valuable information ”nuggets” that get manually

15

extracted by assessors. In this work, the authors emphasized on the importance of im-

portance of using nuggets in building high quality test collections. Issues like reusability,

applicability, and scalability were addressed by this work. By using a TREC collection

to test their methodology, the authors were able to build SampleAdHoc and SampleWeb

collections in one sixth and half the time that TREC used to build the same collection

respectively. Moreover, Kendall τ values of pilot studies were above 0.9 when compared

to the relevance judgments of TREC systems. Such results proves the efficiency of the

nugget based approach [49].

Test collection reliability is an important factor that affects the cost of building the

collection. Urbano et al.[58] presented a work that aimed at filling the gap between the

techniques used to measure the reliability of test collections. To build a reliable test

collection, having a sufficient number of queries is essential. The Generalizability Theory

(GT) that was used to provide statistical reliability indicators is too complex to interpret.

To compare data-related reliability measures and GT measures, the authors looked at

more than 40 TREC collections. Experimental results show that having 50 queries is

not sufficient to achieve the desired reliability. Although GT reliability measures are

powerful in assessing reliability, they have their own drawbacks. The first issue is that

they are extremely sensitive to specific systems when assessing the reliability of other

systems. The second drawback is that it requires a large number of systems and queries

to assess system reliability. Therefore, the authors advice against using GT techniques

to build test collections from scratch. The better reliability assessment approach is to

look at interval estimates of stability indicators [58].

The research works discussed previously focused on techniques used for building test

collections efficiently with limited resources. In fact, most of the work on building test

collections tends to focus on classical information retrieval tasks, like ad-hoc search.

However, we discovered that a few research efforts addressed the problem of building test

collections for tasks like event detection. One of the earliest attempts was by Yang et al.

[63], where they looked at issues pertaining the lack of labeled event-related relevance

16

judgments. In cases where the number of unlabeled data is more than the labeled data,

or when events are too short, the work explored text categorization techniques based on

k Nearest Neighbor (kNN) algorithm and Rocchio method. The goal behind using kNN

is to improve the rate of tracking events.

2.2 Event Detection in Microblogs

The problem of event detection in microblogging services like Twitter is not new, as many

researchers tackled this problem. Starting with the Topic Detection and Tracking (TDT)

project that was discussed in the event detection section[26]. The TDT project focused

on the problem of organizing newswire stories based on the events that were discussed in

those stories. In microblogs, event detection is quite similar to the detection task from

the TDT project. Because in both cases, a system is given a chronological stream of

documents and asked to put each document into a proper cluster based on the events

in that document. However, the difference between both tasks is evident in the huge

volume of data that comes from Twitter compared to TDT task. This issue causes many

challenges associated with event detection in microblogs.

The first issue with event detection in microblogs is that tweets tend to be short, noisy,

and full of grammatical and spelling mistakes. This makes it important to handle these

issues and consider them in the event detection system. The second major problem is the

huge size of microblogging data, which exceeds orders of magnitudes the data used in the

TDT task. Therefore, it is important for event detection systems in microblogs to cope

with the increasing volume of data efficiently. The third issue is that most microblog posts

are ordinal. Hence, an event detection system for microblogs must discover event-related

posts and filter-out necessary posts. Furthermore, all of the event detection systems in

the TDT task are not designed to cope with the real-time nature of Twitter. As tweets

exhibit different characteristics when compared to regular lengthy documents, such TDT

event detection systems would perform poorly and slowly on tweets.

17

The upcoming section describes some of the prominent event detection applications in

microblogs. Followed by a section that surveys different event detection test collections

in microblogs.

2.2.1 Event Detection Applications in Microblogs

The work done by Petrovic et al. [45] benefits from Locality Sensitive Hashing (LSH)

to detect events in Twitter. The idea behind LSH is that similar documents are placed

together in the same bucket of a hash table. The proposed method shows that with high

probability, it is possible to reduce the size of the candidate set to a fixed number that

consists of the nearest neighbors. By doing that, the clustering task performs in O(1)

time, when a method is deployed to reduce the variance when no neighbors exist within

a particular distance. The authors evaluate their system on tweets and show that it is

one of the state-of-the-art approaches in event detection in microblogs.

Another similar work by Aggarwal and Subbian [3] shows that it is possible to detect

events in microblogs through clustering. By selecting a fixed number to represent the

total number of clusters, the authors rely on cluster summaries to reduce the number of

comparisons needed to cluster documents. The contribution of this work is in a novel

similarity score that leverages the graph-based structure of Twitter to create a metric

that supports content-based similarity. By considering bursty clusters as events, the

proposed technique detects events by following the growth rate of clusters.

The methodology of Weng et al. [62] views the statistics of terms, then transforms

them into wavelets that can be used to compute the cross-correlation of each term. This

technique considers the changes in the usage of a term over time by mapping those changes

into the cross-correlations. Given a set of terms, the proposed technique constructs a

graph of many correlation values to those terms. Then, the technique splits this graph

to construct several clusters of terms that discuss similar events. The problems with this

18

approach is that any slight parameter tuning causes significant changes in the effectiveness

of the approach. Which means that the technique is quite sensitive to parameter tuning.

In a similar manner, Becker et al. [9] proposed a clustering technique that was

proposed in the TDT task on microblog data. The approach then deploys a manually

trained classifier to discover features like hashtags and retweets. Such features could be

later used in detecting event clusters.

One of the recent works by Parikh et al.[43] aimed at detecting events from tweets

using a different approach. Instead of relying on clustering of full tweets, they look at

event representative keywords that consist of bigrams. Such terms are selected based

on content and pattern similarity scores, which are then used to cluster those terms.

By applying a hierarchical clustering approach, the proposed technique favors content

similarity of terms and gives it higher weights when compared to apperance similarity

patterns. Then, the hierarchical clustering technique is applied with a threshold to get

the final number of clusters. The output of the technique consists of a set of ordered

clusters in decreasing order. Clusters that contain the largest number of keywords appear

at the top of the final list[43].

The study of Alsaedi and Burnap [6] is the first on event detection in Arabic tweets,

with focus on detecting events in Abu Dhabi. Around 1M Arabic tweets were collected

and labeled by 3 annotators, however, the dataset is not made publicly available for

research. Additionally, the dataset is restricted to events in Abu Dhabi, which introduces

a bias towards types of events that happen in that location.

2.3 Test Collections for Event Detection in Microblogs

To build a test collection for event detection in Twitter, it is important to look at existing

corpora that serve event detection and study their characteristics. Doing that will aid in

identifying the usage of such corpora and suitability for the purpose of evaluating and

analyzing event detection.

19

The first event detection collection in Twitter was produced by Becker et al. [9]. The

problem with the collection is that it only contained tweets that were posted by users in

New York. This issue causes a bias in the type of events that could be extracted from

the collection due to geographical restrictions. Furthermore, the number of documents

in the collection itself is small, as it contains around 2.6 million tweets, which may not be

sufficient for event detection. The authors made their data collection publicly available

for research purposes.

The collection that Petrovic et al. [45] focused on the task of First Story Detection.

The constructed collection in this work is huge and consists of 50 million tweets that were

collected between July 2011 and mid-September 2011. However, the authors identified

27 events only, which means that it is difficult to use the collection for conducting large-

scale tests and comparisons. Furthermore, given a small number of events might cause

misleading results when systems that reuse this collection fail to detect those events.

In a similar manner to [9], the authors made their data collection publicly available

for research purposes. To address the issues with the test collection in [45], Petrovic et

al.[46] tried to follow an approach similar to the one that NIST follows in TREC. The

methodology relies on expert annotators that read descriptions about events and use

event-related keywords to search for relevant documents. Although this method seems

promising, it is still expensive because it requires expert annotators in event detection.

Moreover, the methodology does not scale well when the size of the collection exceeds

a particular limit. Hence, it is better to consider different inexpensive approaches like

crowdsouring to get the relevance judgments.

Another relatively small test collection was constructed by Tsolmon and Lee [57]. The

authors collected tweets from November 2010 until March 2011. The collection consists

of a total of 683 K tweets that revolve around four major events. Apparent issues with

this collection is that it is too small to actually perform event detection. Not to mention

that the collected tweets were in Korean only, so this makes the chosen events biased

to Korean tweets only. Furthermore, the authors did not release their test collection for

20

research, which further supports the fact that the collection is clearly not suitable for

event detection in twitter.

On a larger scale, McMinn et al. [35] built a publicly available test collection for

evaluating event detection. The authors crawled around 120M English tweets, covering

more than 500 events identified using automatic and manual ways, and collected labels for

over 150K tweets. We consider their approach to be a good starting point to our work as

it was based on similar goals to ours. However, we followed a slightly different approach

to construct EveTAR by using a manual method to identify events. On average,EveTAR

has more tweets per event when compared to their collection. Additionally, we prepared

our test collection to be generic enough to support additional tasks like ad-hoc search.

One evident trait that we found in all the literature that discusses event detection

in microblogs was in the data. Most of the work that was surveyed reports information

about the data that was used in the study. Some researchers go a step further and offer

their data sets and relevance judgment labels for future research. Hence, we make the

distinction between the notion of a data collection and a test collection. A test collection

is a collection of tweets and relevance judgments that researchers made available to the

public either free or in exchange for money. On the other hand, a data collection is a

collection that was reported in the literature but was not made available to the public.

Table 2.1 includes information about some of the reported data and test collections in

the literature. The range of collection size that we identified ranges between thousands

and millions of tweets. As for the availability part, we consider all available collections

to be test collections, while all non-available collections to be data collections.

21

Table 2.1. Information on different data and test collections in microblogs (ED: Event Detection)

Collection size Number of events Language Usage Availability

50M tweets 27 events English Compare FSD systems[45] No

120M tweets 796 events English Evaluate ED systems[35] Yes

65M tweets 1000 events Dutch ED with term pivoting[27] Yes

60M tweets 6 event categories English Unsupervised ED & categorization [67] Yes

7.5M tweets 8 event categories English Sub ED [37] No

135K tweets 28 events English ED using word similarity [43] Yes

More than 1.1M tweets 7 event categories Arabic Disruptive ED [6] No

35M tweets per month 73 K events English Large-scale ED [6] No

683K tweets 4 topics Korean ED based on LDA [57] No

345.1M tweets 883 events Multilingual Patterns of emerging events [14] No

25K tweets 2 events English Temporal influence on hot topics[19] Yes

51M tweets 27 events English Simulate scalable ED[34] No

Over 10 datasets 20 events English Temporal event mining[31] No

31K tweets 961 events English Attribute extraction of planned events[59] No

1.4M tweets 5 events Arabic ED with location, time, and text[60] No

341K tweets 57 events English Analyze events with Twitter network[48] No

12K tweets 3 events Chinese Real time ED[17] No

More than 53.4M tweets 2 events English ED using graphical model[68] No

12K tweets 3 events Chinese Real time ED[17] No

More than 60M tweets 1049 events English Large-scale credibility detection[38] Yes

22

CHAPTER 3. BUILDING THE TEST COLLECTION

Recall that in Chapter 1.3, we briefly introduced the five main steps in the process of

building EveTAR in Figure 1.2. In this Chapter, we explain the details of those steps

in three main stages, which are given in Figure 3.1. The first stage is collecting Arabic

tweets to build the Arabic test collection 3.1. The output of this stage is a stream of

tweets that is used to identify events in the second stage 3.2. The result of identifying

events from the stream of tweets is a list of events and potentially event-relevant tweets.

Then, those events and tweets are used in the third stage to obtain relevance judgments

through crowdsourcing. The final output of this stage is the relevance judgments for each

event in the data collection.

Getting the Data
Collection

• Using Twitter’s
streaming API
to fetch tweets

Identifying Events

• using Wikipedia Current
Events Portal (WCEP) to
identify events

• Finding potential event-
related tweets

Gathering
Relevance
Judgments

Streaming API

Labeled Tweets

Tweet stream

Events +

tweets

• Collecting relevance
judgments through
CrowdFlower

Figure 3.1. The three main stages of building a test collection for event detection.

23

3.1 Tweet Data Collection

The data collection that was used to construct EveTAR was obtained through Twitter’s

streaming API1. The tweets were collected using a pre-filtering sampling technique using

the top N most frequent Arabic words. The most frequent Arabic words were extracted

from a previously crawled collection by taking the most frequent non-processed tokens.

The list of tokens was processed to remove any special characters like *,’, and ”.

The computed frequency of tokens is the document frequency (i.e, the total number of

tweets that contain the token). In the tracking process, the maximum number of allowed

terms to track is 400. For the full list of terms that were used in the sampling process,

please refer to the Appendix A. To ensure the coverage of the collection for a full month,

tweets were gathered three days before the month of January 2015 and two days after

it. The reason behind including additional days on the intended period is to ensure that

events were discussed beyond the days that they were reported on.

3.2 Identifying Events

Instead of randomly producing a list of events that might not be relevant to our data col-

lection, we manually constructed a list of events after careful investigation of the circum-

stances that surround Arabic microblog posts. When McMinn et al. [35] built their test

collection, they followed two approaches to create candidate events. The first approach

relied on automatic event detection techniques like Locality Sensitive Hashing (LSH) and

Cluster Summarization (CS). While the second approach leveraged Wikipedia’s Current

Events Portal (WCEP) to obtain a predefined list of candidate events. The goal behind

following multiple approaches was to obtain a pool of candidate events for building the

test collection. Our approach in identifying candidate events was adopted from McMinn

et al. [35]. The difference is that instead of using automatic event detection techniques,

we opted to use the WCEP approach with a few modifications to obtain a list of can-

1https://dev.twitter.com/streaming/overview

24

https://dev.twitter.com/streaming/overview

didate events. In the next section, we describe the details of using WCEP to identify

events from our data collection. Next, we discuss the filtering process that was adopted

to select candidate events with the aid of Twitter’s advance search tool.

3.2.1 Wikipedia Current Events Portal (WCEP)

To help users gain access to current events from all around the world, Wikipedia estab-

lished a page called the Wikipedia Current Events Portal2. The portal shows a list of

current events in a particular month, along with a category type, a short description that

explains the event and a reference hyperlink to a news article (or more) that discuss the

event. The example in Figure 3.2 is an event from our list of events that will be used

as a running example throughout this chapter. This event representation is sufficient to

evaluate event detection systems that represent events by any combination of date/time,

location, and set of keywords.

ID E12

Title Discovery of tomb of Egyptian queen Khentakawess III

Date January 04, 2015

Location Abusir, Egypt

Category Arts and Culture

Reference http://cnn.it/1O6grQK

Keywords Khentakawess, Egyptian queen, archaeologist

Description An archeological team from Czech discovered the tomb
of an Egyptian queen named Khentakawess III who
lived during the fifth dynasty.

Figure 3.2. The representation of the event of queen Khentakawess III as collected from WCEP.

2https://en.wikipedia.org/wiki/Portal:Current events

25

https://en.wikipedia.org/wiki/Portal:Current_events

Figure 3.3 shows a snippet from the news article in the reference field that discusses

the event. The article in this example is in English but there is an Arabic version of it

with fairly similar content.

Figure 3.3. The news article of queen Khentakawess III tomb discovery from BBC news website.

Since we are working with Arabic tweets, we found a similar page to the English

WCEP in Arabic3. Figure 3.4 shows the Arabic WCEP for our desired time period,

which is the month of January 2015. Unfortunately, the Arabic WCEP is not as rich as

the English counterpart. We believe that this might be due to the lack of dedicated editors

for the Arabic WCEP. Figure 3.5 clearly illustrates the lack of events when compared

with the Arabic version in Figure 3.4. For a single day in January, the English WCEP

documents more events than the entire Arabic WCEP for a period of a full month. Thus,

we could not rely on it as a main source for events. To solve this issue, we relied on both

the English WCEP and the Arabic one to construct a list of events from both sources.

3https://ar.wikipedia.org/wiki/ �
éK
PAg.

�
H@Yg

@ :

�
éK. @ñK.

26

To do this, we had to translate the events from English to Arabic. This process was done

manually and resulted in a list of 357 potential events. We then applied our significance

criteria over two phases. In the first, we only kept events for which we found at least one

online Arabic news article discussing the event; only 71 events satisfied that condition.

Figure 3.4. Wikipedia Current Events Portal page in Arabic for the month of January 2015.

3.2.2 Selecting Candidate Events

Combining the outcomes of both the English and Arabic WCEP was not a straight

forward task. After examining both WCEP pages, we discovered that the events in the

English WCEP are interpreted differently from the Arabic version. For instance, the

event of discovering the ancient Egyptian tomb of queen Khentakawess III was reported

on the 5th of January in Figure 3.5. However, the Arabic version of WCEP in Figure

3.4 reports the same event on the 4th of January. Hence, we had to revise our initial list

27

of events and improve it to compensate for those inconsistencies. As an initial step, we

considered the Arabic WCEP our main source of events, so we reported the date of the

event in the example as the 4th of January. The reason behind this choice is because we

were dealing with Arabic tweets, so it was natural to rely on an Arabic source to obtain

information about events. The second step in the selection process involved checking if

there are sufficient Arabic tweets that discuss the events of the Arabic and English WCEP.

Performing this checking process will help in filtering out insignificant events that might

not be important for the test collection. For instance, the English WCEP reports an

event on the 4th of January about the collapse of a building in Nairobi. While the event

seems catastrophic, there were no actual Arabic tweets that discuss the incident. Hence,

we considered this event insignificant (i.e, it was not discussed by a sufficient number of

Figure 3.5. Wikipedia Current Events Portal page in English for the 5th of January 2015.

28

Arabic tweets on Twitter). More details about the process of filtering insignificant events

are given in the upcoming section.

Twitter Advanced Search

The main idea behind selecting candidate events lies behind their significance. If many

people discuss an event then it is significant. However, how many tweets is enough to

say that a tweet is significant? Is it enough to find a single news article that discusses

the event to say that it is significant? To answer these questions, we had to experiment

with the events from WCEP and identify their importance. Before looking at our data

collection, we decided to use Twitter’s Advanced Search Tool 4 and test the initial list of

candidate events. To do that, we manually constructed 6 simple queries per event and

used them to search for tweets. In our running example about the discovery of the tomb

of queen Khentakawess in Egypt, we constructed the following set of Arabic queries:

1. �
éJ

	
Kñ«Q

	
¯

�
éºÊÓ

2. �
é
�
JËA

�
JË @ �ðA¾

�
J
	
J

	
k

3. Q�
� ñK.

@

�
é
�
®¢

	
JÓ

4. �ðA¾
�
J
	
J

	
k

�
éºÊÖÏ @

5. Q�
� ñK.

@

�
éºÊÓ

6. PA
�
K
�
@ ZAÒÊ«

The queries listed above were used along with our own criteria to verify if an event is

discussed by users on Twitter (i.e, the event is significant). The criteria for the importance

of an event are given as follows:

• At least 20 different Arabic tweets discuss the event on Twitter. We chose this

number because the work done by McMinn et al. [35] established a minimum of

30 tweets per event. Yet, we found that this number was good as a minimum for

4https://twitter.com/search-advanced?lang=en&lang=en

29

https://twitter.com/search-advanced?lang=en&lang=en

English tweets. Since our collection consists of Arabic tweets, we had to account

for the difference in volume between English and Arabic tweets. So we chose a

minimum of 20 tweets after several experiments to determine a suitable minimum

value.

– Duplicate tweets are not included in the 20 tweet count. This criteria was

enforced mainly because we noticed a huge amount of duplicate tweets in

Twitter. The importance of an event should not be solely based on duplicate

tweets. Thus, if an event is mentioned by a very small number of non-duplicate

tweets, then it is not considered significant.

• The search period on Twitter is two days before publishing the event on WCEP

and 2 days after (including the day of publishing the event). McMinn et al. [35]

chose a filtering period of one day before the event and one day after the event.

In the case of Arabic events, we had to alter this choice to account for the fact

that event propagation on the Arabic side of Twitter is different from the English

side. Some events might be reported earlier or later depending on the nature of the

event. Thus, the new filtering period was expanded to two days instead of one.

The process of applying the above filtering criteria on the event of queen Khentakawess

using Twitter’s Advanced Search tool is shown in Figure 3.6. The interface of Twitter’s

Advanced Search tool allows users to specify the filtering period as well. Since the event

of queen Khentakawess happened on the 4th of January, the filtering period was set to

the 2nd of January as a starting date and the 5th of January as an ending date. Due

to space limitations, we chose to show a subset of the actual Twitter Advanced search

fields in Figure 3.6. A sample of the output from the search process is given in Figure

3.7, where the tweet translates to “Khentakawess the third, a new pharaoh queen”. The

same process was applied to the 71 events that were initially identified from WCEP, which

means that for each event, 6 queries were constructed and used to search Twitter for at

30

least 20 tweets that talk about the event. The result of this rigorous manual process was

a list of 66 events for the month of January 2015.

Figure 3.6. Twitter Advanced Search Tool interface using the second query from the event of queen
Khentakawess III

In designing EveTAR, we elected to enrich the event representation in Figure 3.2 by

adding a list of tweets related (or relevant) to each event. That serves two purposes;

first, it helps evaluate several event detection systems that represent an event by a list

of tweets, and second, it enables the evaluation of other types of retrieval systems such

as ad-hoc search or filtering systems that rely on producing lists of tweets per topic.

We obtained those tweets over two main steps. We first extracted a list of potentially-

relevant tweets for each event from our dataset, then used crowdsourcing to obtain rele-

vance judgments on them; both are described in the following sections.

31

Figure 3.7. An example of a relevant tweet from the event of queen Khentakawess via Twitter’s Advanced
Search Tool

3.3 Gathering Relevance Judgments

Before obtaining relevance judgments, it is essential to obtain all the potential event-

related tweets that can be later judged for their relevance. To achieve this goal, we used

the list of 66 events obtained from WCEP and the local data collection. The idea is that

events can be used to create keywords for searching the collection. The resulting tweets

obtained from using such keywords could potentially be event-related, which qualifies

them for the step of gathering relevance judgments. An integral part of any test collection

is the relevance judgments, which is a set of labels that indicate if a data unit is relevant

to a certain information retrieval topic or not. In the case of our collection, the relevance

judgment labels should indicate if a tweet discusses a given event or not. Since we

obtained about 626,247 tweets for all the events, it would be extremely difficult and time

consuming to generate relevance judgments using conventional methods. A typical way

of getting relevance judgments would be to ask a few volunteers or hire people to read

about each event, then label all the tweets associated to that event as either relevant

32

or not. In this case, getting a single label from one user is not enough to judge the

tweet accurately. In most studies, at least three labels are required to cast a judgment

on a data item, which means that at least three users must read more than 626,247

tweets and label them accordingly. Such a requirement is impossible to achieve with the

manual labor of a few volunteers, which is why we had to resort to crowdsourcing. The

upcoming section explains how we gathered potential event-related tweets by searching

the tweet data collection 3.3.1. Then, in section 3.3.2 we introduce CrowdFlower; the

crowdsourcing platform of our choice, and explain in detail how we used it to obtain

relevance judgments.

3.3.1 Tweet Collection Search

To obtain event-related tweets, we had to apply the event verification criteria that was

introduced in section 3.2.2 on our local data collection to get tweets. However, searching

our collection was not as straight forward as searching Twitter with the Advanced Search

tool. The raw collection had to be preprocessed and prepared for searching. To achieve

this, we used Lucene Java Library [33] to build an index from our collection to speed

the search process. Then, we built an interface to facilitate querying and to simulate

Twitter’s Advanced Search tool. The major difference between the search approach on

Twitter and on our local collection is in the queries. Previously, we constructed around

6 simple queries per event. Those queries were generally obtained from reading articles

about the event or from WCEP event description. We discovered that querying our

collection locally with the same queries is not sufficient to obtain reasonable results.

Therefore, we used Lucene query syntax [33] to modify our queries and prepare them for

search. The most useful syntax rules that we applied were the quotation marks (“ ”) for

phrase queries, the distance sign (∼) for proximity queries, and the minus sign (−) for

term exclusion. An example of Lucene queries for the event of queen Khentakawess III is

33

given as follows: �
éJ

	
Kñ«Q

	
¯

�
éºÊÓ “ �

é
�
JËA

�
JË @ �ðA¾

�
J
	
J

	
k” “Q�
� ñK.

@

�
é
�
®¢

	
JÓ” “�ðA¾

�
J
	
J

	
k

�
éºÊÖÏ @” ∼ 4“Q�
� ñK.

@

�
éºÊÓ”

“PA
�
K
�
@ ZAÒÊ«”

The proximity symbol in the query ∼ 4“Q�
� ñK.

@

�
éºÊÓ” means that the terms must be

within the distance of 4 words from each other. The search result of Lucene queries in the

previous example are performed using the OR operation. In other words, when queries

are written like the example above, they are always ORed together, unless otherwise

specified. The interface used for searching our local collection is given in Figure 3.8. The

additional criteria that we had to set in this search process was the maximum number

of tweets. In Twitter Advanced Search tool, there was no need to specify a value for

the maximum number of results, but in the case of the collection search interface, a

maximum value must be specified. To ensure maximum coverage of tweets, we set the

default value to be 10000. Some events might not be covered by 10000 tweets like the

one in Figure 3.8, which is totally fine as long as the event is covered by more than 20

non-duplicate tweets. The result of this final search process was a list of 66 events, with

a total of 626,247 tweets. The full list of events can be found in Appendix B.

Figure 3.8. Collection Search interface using Lucene 4.0.7 text search library with the event of queen
Khentakawess as an example

34

3.3.2 CrowdFlower Labeling Job

Our study is not the first one that used crowdsourcing efforts to generate relevance

judgments. In fact, McMinn et al. [35] relied on Amazon Mechanical Turk (AMT) to

obtain their relevance judgments. Since our data collection is in Arabic, we looked at

what AMT had to offer in terms of Arabic support. We discovered that AMT has a

limited amount of channels (countries) that labeling tasks could be published to. So,

we couldn’t specify target countries where the dominant language is Arabic (e.g, Gulf

countries). Therefore, we decided to go with another crowdsourcing platform known as

CrowdFlower5. Similar to AMT, CrowdFlower is a crowdsourcing platform that connects

customers with workers and facilitates the process of obtaining relevance judgments from

workers. To begin working with CrowdFlower, customers are asked to create a labeling

job by uploading their data and designing the job to match their needs. The labeling

job can be thought of as a task that can be customized to match a specific labeling

requirement. Once the job is designed and launched, workers (i.e, users that label data)

will be able to begin labeling the data. The platform estimates the costs needed for a

labeling job based on the number of data items in the job and the effort required to

finish labeling. However, the user can control the job payment to some extent and define

a payment price for each worker per job page, which typically contains 10 rows (or 10

tweets). When the number of data items to be labeled increases, labeling costs increase as

well, so we had to do something about our huge collection of 626,247 tweets. The simplest

approach that we followed was the removal of exact duplicates. Upon closer inspection

of our collection, we noticed that some events contained a large number of duplicate

tweets. This increase might be caused by the huge amount of retweets. Moreover, we

observed that some automatic news subscription accounts propagate duplicate tweets

from different user accounts. Thus, we processed the collection to remove all the exact

5http://www.crowdflower.com/

35

http://www.crowdflower.com/

duplicate tweets. Exact duplicate removal proved to be useful in reducing the number of

tweets from 626,247 to 134,069, which were sent for labeling.

3.3.3 Pilot Study

Before launching a full labeling job, it was essential to understand how CrowdFlower can

be used for this specific labeling task. Therefore, we conducted a set of pilot studies on a

sample subset of our full collection. For the task of creating pilot studies, we launched a

total of four labeling jobs on CrowdFlower. Each job corresponded to a particular event,

so we used four events in the pilot studies. The setup of each pilot study was conducted

as follows: First, we built a common job description for each of the four events. We tried

to simplify the job description as much as possible to simplify the task on CrowdFlower

workers. The job description consisted of the title of the event, the date of the event,

a sentence describing the event, and hyperlink to an external Arabic news article that

discusses the event. Second, we created a few test questions for each event to prevent

spam workers from degrading the quality of the labeling task. So, each worker would be

given a quiz (using the test questions) before beginning the labeling task. Once workers

pass the quiz with an accuracy of 80% or above, they can proceed with the labeling task.

A label is obtained if three workers agree on the label. For example, in Figure 3.11, if

three annotators agree that the tweet is not relevant to the event of queen Khentakawess

III, then the label will be set to not relevant. Due to our simplistic approach in the job

design of the pilot studies, we were able to identify the following issues with the launched

jobs:

• The choice of test questions affects the quality of the obtained labels. After trying

different types of test questions, we discovered that it is best to keep them simple

and straightforward. Complicating test questions in a particular pilot study caused

a high error rate among workers and caused the job cost to increase due to contin-

36

uous failures. To avoid this problem, we decided to simplify the test questions in

all the jobs that were launched for the full evaluation task.

• Most workers will not bother with reading news articles that describe events. Un-

fortunately, this fact is even true for the entire job description. Some workers join

CrowdFlower to earn easy cash, so they do not take the time to read descriptions

or provide accurate labels. Hence, instead of just providing a link to a news article

for the workers, we designed our full evaluation jobs so that the actual article is

included in the job description. This way, workers will not need to click on any

external hyperlinks to read because the job description includes all the information

that they need.

• Choice of news article that describes the event makes a difference. This issue was

discovered while comparing different news articles to include in the job description.

We observed that for the same event, some news articles are more informative than

others. The richness of the news article contributes to the quality of the obtained

labels; since workers are supposed to use them as resources to select relevant labels.

Hence, in the full evaluations, we avoided brief news articles and focused on articles

from respectable sources like Alarabiya or Aljazeera.

• The overall job design and description affects the quality of the resulting labels.

Our simplistic approach towards a seamless and clean job design was useful for the

most part. However, it was missing a comprehensive set of examples that illustrates

to annotators the difference between relevant and non-relevant tweets. Therefore,

in full evaluations, we provided a set of tweet examples that showcase what we

consider non-relevant tweets per event.

37

3.3.4 Final Study

After resolving the issues that were encountered in the pilot studies, we launched a total

of 66 jobs for all the events in our collection. The total number of tweets that were

labeled without test questions is 134,069 tweets. In reference to our running example

of queen Khentakawess, the job design for the event is given in Figure 3.9. The job

description shows all the information that workers need to begin labeling in Arabic. The

full inline news article that users can click on in the event description is given in Figure

3.10. The design of the job was done using CrowdFlower Markup Language (CLM) and a

combination of CSS styling. Thus, the news article in Figure 3.10 was embedded between

two collapsible containers. This allows users to show or hide the article whenever they

desire.

Figure 3.9. The job description for the event of queen Khentakawess on CrowdFlower crowdsourcing
platform

38

Figure 3.10. The news article for the event of queen Khentakawess in the job description

As for the validation test questions, workers were given a simple question in Arabic

that asks if the tweet is relevant to the tweet or not. The sample test question in Figure

3.11 illustrates how test questions are given to workers. The answer to the test question

is given as two radio buttons that users can click on either one of them (but not both).

The first option is yes (i.e, the tweet is relevant to the event), while the second option

is no (i.e, the tweet is not relevant to the event). Workers were given a total of 10 test

questions as a quiz before labeling and a few additional test questions within each page

of the labeling job. This ensures that workers do not randomly select answers without

carefully reading the tweet or the description. To showcase the results obtained from

the labeling task of each event, Table 3.1 shows examples of relevant tweets from three

different events. For each tweet, three annotators agreed that it was relevant to the event

after reading the event description and the news article related to the event.

39

Figure 3.11. Sample test question for the event of queen Khentakawess in the job instructions page

Table 3.1. Examples of tweets from three different events that were labeled by CrowdFlower Workers

Event Tweet

Tripoli Terrorist bombings in a cafe in Lebanon �
é
	
JK
YÖÏ @

�
èYK
Qk. - 	á�m× ÉJ.k.

�
é
�
®¢

	
JÖß. ø

PAj

�
J
	
K @ Q�
j.

	
®
�
K ú

	
¯ úÎ

�
J
�
¯ 7 :

	
àA

	
JJ. Ë

Bahrain protests for the detention of opposition leader 	
àAÒÊ� ú

Î« qJ

�
�Ë@ ©Ó

�
A
	
JÓA

	
�

�
� ø

Q�
ëAÔg

.
©

�
Òj.

�
JË ñ«YK
 QK
@Q�.

	
¯ 14

	
¬C

�
J

K @

�
éÓA

	
JÖÏ @# 	áK
QjJ. Ë @#

Launch of Qatar Handball tournament for Men Q¢
�
¯ ú

	
¯ 2015 YJ
Ë @

�
èQ» hA

�
J
�
J
	
¯ @ ú

	
¯ ú

	
æ

	
ªK
 QëA�Ë@ Ñ

	
£A¿ . . @Y

	
«

40

CHAPTER 4. EVALUATION

To explain the process of analyzing and using the test collection, the first part of this

chapter gives specific details on EveTAR itself in section 4.1 in terms of the gathered

tweets, events, and annotations performed on event-related tweets. The second part of

this chapter discusses the usage of the test collection in section 4.2 in terms of applying

some existing event detection systems on the collection and evaluating the performance

of those systems.

4.1 Test Collection

In Chapter 3, we dedicated section 3.1 for describing the process of gathering the data

collection. Here, we provide the statistics associated with the obtained data collection.

The information depicted in Table 4.1 shows the total number of tweets in the entire test

collection, the duration of the collection, and the disk space. The duration period was

extended to 3 days before January 2015 and 2 days after to ensure event coverage. As for

the tweets, Table 4.2 provides statistics that show the maximum and minimum number of

tweets per event in the entire collection. The first column indicates the original number

of tweets before removing duplicates, while the second column shows the decrease after

removing exact duplicates. The third column shows the time spent during labeling as it

was reported by CrowdFlower in hours. As for the last two rows in Table 4.2, the values

show the total and average numbers of all tweets in all events.

Table 4.1. Statistics about the collected tweets that were used to build EveTAR

Tweets Duration (from - to) Disk Space(GB)

590,066,789 29/12/2014 - 02/02/2015 240

41

Table 4.2. Statistics about the number of tweets in our collection before and after removing exact
duplicates.

Statistic Tweets (before processing) Tweets (after processing) Labeling time(hours)

Maximum 10000 5767 371

Minimum 400 83 3

Total 626247 135887 3916

Average 9489 2059 59

4.1.1 Events

In section 3.2, we discussed our approach at acquiring candidate events. However, we left

out some important information about the nature of the events and the number of tweets

found in each event. To get a general overview about the overall tweet distribution across

events, Figure 4.2 shows the total number of labeled tweets and events in the collection.

Each bar in the figure stands for a single event, which leads to a total of 66 bars for all the

events. The number of tweets was sorted to illustrate the distribution across all events.

Further inspection of the events that we had lead us to believe that they actually fall

into different categories. Using Wikipedia’s current events portal, which was discussed

in section 3.2.1, we were able to identify 8 different event categories. Actually, the portal

includes a wide selection of categories to cover all types of events. However, we identified

8 categories only due to the limited number of events that we had, which is only 66

events. Examples of events from each category are given in Table 4.3. For the full list of

events per category and the events English translation, please refer to Appendix B. In

Figure 4.1, we show the distribution of tweets across the 8 different categories that we

got from Wikipedia’s current events portal. The pie-chart shows that most of our events

fall into the category of “armed conflicts and attacks”, with an staggering 68%. On the

other hand, the category with the lowest number of events is the “business and economy”

category, with only 1% of the events falling under it. Such observations show that our

collection is skewed to a single category, which might be related to the time period of the

42

collection. We specifically chose the time period beforehand because we knew from news

outlets that the month of January was full of interesting events. However, the events

were not planned to fall under a certain category, so we believe that this distribution is

limited to our collection and the time period that it fell under.

Table 4.3. Examples of events from each category identified in EveTAR

Event Category Event title

Armed conflicts and attacks AªJ.
�

� ¨P@ 	QÓ ú

	
¯ ú

ÎJ

K @Qå�B@

�
��
j. ÊË É

�
KP úÎ« é<Ë @ H.

	QmÌ Ðñj. ë ú

	
¯

	á�
K
Y
	
Jk. É

�
J
�
®Ó

Business and economy ðPñJ
ÊË Õæ
	
�

	
J
�
Kð �A

�
JJ
ÊË @

	á« úÎ
	

j
�
J
�
K AJ

	
K @ñ

�
JJ
Ë

International relations ú

	
Gñ� úÎ« Ðñj. êË @ YªK.

�
éJ
ËAÒ

�
�Ë@ AK
Pñ» úÎ«

�
éJ

	
¯A

	
�@

�

HAK. ñ
�
®«

	
�Q

	
®
�
K A¾K
QÓ

@

Law and crime " ÐC�B

@
�
é
	
K Aë@

\

�
éÒî

�
DK.

	áK
X

@ ø

Xñª�

	
àðYÓ

�
�m�'

.

�
A
	
JÊ« YÊm.

Ì'@
�
éK. ñ

�
®«

	
YJ

	
®

	
J
�
K

Politics and elections 	
�PAªÓ Õæ

« 	P ÈA

�
®
�
J«@

�
éÊ�@ñÓ I. �. ��.

	áK
QjJ. Ë @ ú

	
¯

	á�
j.
�
Jm× ¼AJ.

�
�

�
�@

Sports AJ
�
�
@

�
HAJ

KAî

	
E hA

�
J
�
J
	
¯ @ ú

	
¯ 1 4

�
IK
ñºË@ úÎ« AJ
Ë @

Q�
��@ 	Pñ

	
¯

Disasters and accidents " AJ
�
�
@ QK
 @\

�
èQ

KA£ ÐA¢k 	áÓ

�
èXAJ

�
®Ë @

�
èQÔ

�
¯ Éj. �Ó ÈA

�
�

�
�
	
K @

Arts and culture 	
àQ

�
¯

	
Y

	
JÓ ÈñJ.

	
J¢�@

ú

	
¯

�
é��

	
J» Èð

@ ZA

	
JK.

Armed conflicts and
attacks

68% (45 events)

Business and economy
1% (1 event)

International relations
4% (3 events)

Law and crime
3% (2 events)

Politics and elections
8% (5 events)

Sports
8% (5 events)

Disasters and
accidents

5% (3 events)

Arts and culture
3% (2 events)

Figure 4.1. The overall event distribution across the 8 categories that were identified from WCEP

43

4.1.2 Annotations

An integral part of the test collection is the annotations, which are basically the labels

that were obtained from CrowdFlower workers for each event in the collection. Recall that

in section 3.3.4, annotators were asked to label a tweet as either relevant to a given event

or non- relevant. The results that we obtained from the annotators after this process were

quite interesting. Initially, we thought that when events had a large number of tweets,

then such events would produce a high number of relevant tweets and vice versa. This

assumption seemed logical at the time of launching the jobs for labeling. Yet, the results

that we obtained were different. The results depicted in Figure 4.2 show a deviation in

the total number of tweets and relevant tweets for some events. The most obvious cases

are shown in the right-most-event, which is event 62. Notice that the total number of

judged tweets is much more than the actual relevant tweets. This means that many of

the tweets in that particular event were labeled as “non-relevant”. This is mainly caused

by the queries that were used to obtain the tweets for this event. In some cases, if queries

are not carefully chosen, they produce a huge number of noisy tweets.

The uneven distribution of relevance judgments in events is given in Figure 4.2. The

stacked view of the columns that represent events shows a different side of the issue.

Notice that the deviations at the top of the stack represent the total number of non-

relevant tweets, while the bottom part of the column stack is the relevant tweets. The

event with the least amount of relevant tweets is shown in the last column from the

right side. The event number 62 on the Figure, which is about Houthi’s control over

military camp in south Sana’a in Yemen, had 12 relevant tweets only and a total of

3,346 non-relevant tweets. For annotators, this particular event was tricky because of

the different noisy discussions that revolve around Yemen but not necessarily about the

event itself. On the other hand, event 66 in Figure 4.2 has the highest number of relevant

tweets. With a total of 3,619 relevant tweets and 517 non-relevant tweets; the event was

discussing the death of the second Japanese hostage by ISIS. Upon further examination of

44

the annotated event, we noticed that most of tweets were actually discussing the incident.

This is perhaps due to the popularity of events that discuss ISIS in the Arab world. The

majority of the events shown in Figure 4.2 tend to have a higher number of non-relevant

tweets. For instance, event 11 talks about the death of several Houthi’s because of a

bombing in Dhamar Governorate in Yemen. The total number of relevant tweets is 622,

while the total number of non-relevant tweets is 1,227. While the difference between the

number of relevant and non-relevant tweets is not large, we noticed a similar pattern in

most of the events. The reason behind the increased number of non-relevant tweets is

the amount of noise that was present in the tweets. Although exact duplicate tweets

were removed from tweets, we did not attempt any further processing to remove tweets

that do not belong to events. Regardless of such results, we obtained a total of 51,424

relevant tweets across all events and 82,645 non-relevant tweets.

0

1000

2000

3000

4000

5000

6000

T
o
ta

l
n

u
m

b
e
r

o
f
tw

e
e
ts

Events

Total number of relevant tweets Total number of non-relevant tweets

سقوط قتلى من الحوثيين في

انفجار عبوة بمحافظة ذمار

66 62

يعلن إعدام " داعش"تنظيم

الرهينة الياباني الثاني

الحوثيون يستولون على

معسكر الحرس الجمهوري

بالعاصمة صنعاء

11

Figure 4.2. The ratio of relevant to non-relevant tweets per event across all events

45

As a final remark on the distribution of relevance judgments across all events, we

show the stacked view distribution in Figure 4.3. The overall number of relevant and

non-relevant tweets are given per column in the figure. The top part of the column

stack represents the % of non-relevant tweets, while the bottom half depicts the relevant

tweets. Figure 4.3 shows that at 50%, the majority of tweets for 22 events are relevant.

This indicates that more than half of the judgments obtained for 33% of the events are

relevant.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
o
ta

l
n

u
m

b
e
r

o
f
tw

e
e
ts

Events

Total number of relevant tweets Total number of non-relevant tweets

Figure 4.3. Stacked view of the ratio of relevant to non-relevant tweets per event across all events

The relationship between the number of judgments per event and the total time spent

judging each event are depicted in Figure 4.4. Outliers in the plot are identified by red

circles around the event. The Figure shows that the time spent during a labeling job of

an event is not solely related to the number of tweets in that event. Actually, there is

a somewhat linear trend showing in Figure 4.4, where the labeling time increases with

the number of relevance judgments. However, this is not the case for all events. For

instance, the outlier with the highest labeling time is an event took 371 hours to finish

labeling. The event is about the recapturing of at least 90% of Koban, Syria by Kurdish

46

fighters. The total number of judgments in this event is 2,720, which is much lower than

the first outlier above the line that has 3,704 judgments. Moreover, the first outlier above

the line took 202 hours to finish labeling, while the outlier below the line took 34 hours

only to finish labeling 3,854 tweets. This particular event is about a bombing in a Shiite

mosque in Shikarpur District of Pakistan. The reason behind such numbers is that the

event about Koban was more challenging to CrowdFlower workers when compared to the

event of Shikarpur bombings. Workers reported several issues with the test questions of

the event about Koban, so more test questions were supplied to speedup the labeling

process. CrowdFlower reported that 54 annotators gave this particular event a rating of

3.3 out of 5 for the ease of the job, while the Shikarpur bombings event got a rating of

3.8 out of 5 by 35 annotators. This shows that event difficulty plays a critical role in the

labeling time of an event, where difficulty is mostly associated to the clarity of the tweets

associated with the event.

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

L
a
b
e
li
n

g
 t

im
e
 (
h

o
u

rs
)

Total number of judgments per event

Figure 4.4. Relationship between the total number of judgments submitted to CrowdFlower and labeling
time

47

4.1.3 Qualitative Analysis

Based on section 3.3.3, the annotations that we obtained through CrowdFlower were

computed based on the majority vote of three annotators. To get the label for a particular

tweet, CrowdFlower allows at most 3 annotators to agree whether a tweet is relevant to

an event or not. For a single event, several annotators might completely agree on a

label or completely disagree. In some cases, annotators might get confused about the

label and raise issues with the event or job design. Hence, we decided to measure the

quality of the labels obtained through CrowdFlower by computing the inter-annotator

agreement. Since we fixed the number of annotators that agree on a label to be 3, the

most appropriate reliability measure is Fleiss’ Kappa [54]. Kappa is a statistical measure

that computes the degree of reliability between the labels obtained from annotators. The

formula to compute Kappa is given in Equation 4.1.

K =
P◦ − Pc

1 − Pc

(4.1)

P◦ in the equation stands for the proportion of agreements that were observed during

the labeling phase, while Pc stands for the proportion of agreements that were obtained

by chance [54]. To compute Kappa, we used the Real Statistics tool for Microsoft Excel

1. According to [54], each value of Kappa tends to fall within a certain category. There

are six well-known Kappa categories based on their values, which are given in Table 4.4.

Table 4.4. The six Kappa categories according to the range of Kappa values

Agreement Almost perfect Almost perfect Moderate Fair Slight Poor

Range 1 - 0.81 0.8 - 0.61 0.6 - 0.41 0.4 - 0.21 0.2 - 0.01 ≤ 0

1http://www.real-statistics.com/reliability/fleiss-kappa/

48

http://www.real-statistics.com/reliability/fleiss-kappa/

In Figure 4.6, we show the distribution of events based on the Fleiss’ Kappa categories

that they belong to. Our collection covers five of the six different Kappa categories,

since there are no events that belong to the poor category. Based on the computed

Kappa values, 13 events belong to the almost perfect category, 23 events belong to the

substantial category, 16 events fall under the moderate category, 11 events are in the

fair category, and 3 events belong to the slight category. This categorization shows that

across all the events that we have, only 14 events (which belong to the fair and slight

category) have poor Kappa values. By examining the event with the highest Kappa value

(0.96), we found that it is about the bombing of a Shiite mosque in Shikarpur. The total

number of non-relevant tweets for this event is 3,331, while the relevant tweets are 523.

Moreover, we found that for this particular event, annotators did not fully agree on the

labels of 404 tweets. For example, the following tweet was judged by three annotators

for the event of Shikarpur bombings: �
éªJ

�
�ÊË

�
éÊ

	
¯Ag ð

	
àA

�
J�» AK. ú

	
¯

�
éªJ

�
�ÊË Yj. �Ó @ðQm.

	
¯ ÐñJ
Ë @

	á�
K

Q�

	
®º

�
JË @

½�Ó
�
éJ.k ©Ó

�
é
	
JK
AîD�ÊË

	á�

�
KPAJ
� Qm.

	
¯ é<Ë @ H.

	Qk ,,,
�

�
�

�ÓX ú

	
¯. Two out of the three annotators labeled

the tweet as relevant, so there was no full agreement within annotators. We also looked

at the event with the lowest Kappa value (0.04), which contains 2,852 tweets. The event

is about a strike launched by an Israeli helicopter near Syria. Although the total number

of non-relevant tweets in this event is only 29tweets.

The trend line in Figure 4.5 shows that in general, Kappa values tend to decrease

when the total number of judged tweets increases. Yet, there are several outliers that

defy this trend. This is evident when the trend line slope decreases while events remain

above the line. We believe that this is due to the amount of disagreement (or full

agreement) present within the labels of each event. The event that we discussed earlier

about Shikarpur bombings is shown at the far top of the plot (close to 1). Whereas, the

event of the Israeli helicopter strike is shown at the bottom (close to 0). In fact, the

event of Israeli helicopter strike is considered an outlier because it has a large number of

relevance judgments, yet a small Kappa value.

49

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1000 2000 3000 4000 5000 6000

K
a
p
p
a
 V

a
lu

e
s

Judged tweets

Figure 4.5. The relationship between Kappa values and the total number of judged tweets per event

In addition to Kappa, we computed the overall annotator agreement per tweet using

Equation 4.2. Since we have two possible labels (either a tweet is relevant to an event

or not relevant) and a total of three annotators. The equation represents the agreement

per tweet for a single event. Averaging all of the agreement values per tweet will give us

the agreement per event.

Annotator%agreement(per tweet) =
Max(Number R and NR tweets)

Total number of annotators
(4.2)

The last statistic that we computed on our labels is the confidence value. Since

we relied on CrowdFlower to get the annotations, we used the results report that the

platform generates to obtain the trust value per annotator. According to CrowdFlower,

each annotator has a certain trust value that lies between 1 and 0. The platform does

not declare how this trust value is computed, but we know that based on a labeling job

setting, we can choose to allow annotators with a certain trust to participate in labeling.

Since CrowdFlower offers 3 levels to control the speed-quality ratio, we adjusted the

50

settings of each labeling job at a level 2. We discovered that this setting allows jobs to

finish at a moderate speed with relatively good quality. Level 1 disregards quality and

favors speed, while level 3 favors quality at the price of very slow speed. If we were

working with English tweets, level 3 would be a reasonable choice. However, Arabic

tweets require annotators to be familiar with the language. Since we cannot guarantee

that CrowdFlower’s top rated annotators will be familiar with Arabic, we decided to go

with level 2. To compute the confidence in a certain label given by an annotator, we use

Equation2 4.3.

Tweet Trust Score =
max(

∑r
i=1 trusti,

∑n
i=1 trusti)∑n+r

i=1 trusti
(4.3)

where r and n are the number of annotators labeling the tweet as relevant or non-

relevant respectively, and trusti is the trust score for an annotator. Averaging this overall

trust score over all tweets and all events results in an average quality score of 0.94 out of

1. Getting the average of all tweet trust score values gives us the trust score per event.

The results shown in Table 4.5 summarize the findings that we obtained from the an-

notations. We only report the maximum, minimum, and average values for all the events.

The average Kappa value for all the events is 0.6, which falls in the substantial category.

Moreover, more than half of the events got a substantial to an almost perfect agreement.

Additionally, eliminating the 3 events with slight agreement among annotators results

in an average agreement of 0.62, which is considered substantial. Those 3 events had

large annotators disagreement due to confusion with other similar events, resulting in

very low Kappa. The figure also shows the values of the average trust score per event,

which indicates a slight general drop with decreasing Kappa values. Coincidentally, we

discovered that computing the tweet trust score for both relevant and non-relevant was

similar to the agreement. Hence, we refrained from including duplicate results and pre-

sented the agreement, which in our case is equal to the overall tweet trust score of both

2The equation is stemming from the one used by CrowdFlower to report confidence in the aggregated
label given for a data item, see: http://bit.ly/20NmFkU

51

http://bit.ly/20NmFkU

relevant and non-relevant tweets. The maximum and minimum values in Table 4.5 are

used to illustrate the extreme values that were identified in the 66 events. For a full list

of confidence and Kappa statistics per event, please refer to Appendix C at the end of

this thesis.

Table 4.5. Kappa and confidence values across all events in the collection

Statistic Agreement Overall Confidence Kappa

Maximum 0.99 0.99 0.96

Minimum 0.81 0.81 0.04

Average 0.94 0.94 0.60

The result combining Fleiss’ Kappa categories and confidence values (or tweet trust

score) is shown in Figure 4.6. The Figure shows that at the beginning of the substantial

category, the confidence values begin to fluctuate and differ from the semi-steadiness

in the almost perfect category. By tracing the columns that represent Kappa values

and the confidence lines, we noticed that the overall confidence resembles the progress

of Kappa values more than the relevance confidence. This is due to the fact that the

overall confidence considers both relevant and non-relevant tweets. Therefore, it is more

comparable to the Kappa values that were computed from both relevant and non-relevant

tweets.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

C
o
n

fi
d
en

ce

K
a
p
p
a
 V

a
lu

es

Events

Almost Perfect Substantial Moderate Fair Slight Overall Confidence (avg.)

مروحية إسرائيلية تقصف

هدفاً في الجولان

في تفجير مسجد شيعي

شيكاربور

63 45

Figure 4.6. Categories of Fleiss’ kappa Vs. overall confidence per event across all events

52

4.1.4 Comparison With Other Test Collections

To compare between our test collection and the existing test collections that we discussed

Chapter 2, we present a new version of Table 2.1 that focuses on the available test

collections. This time, instead of highlighting the availability, we look at the average

number of tweets per event (if it was reported), as shown in Table 4.6. Our test collection

is situated at the last row in Table 4.6. On average, our test collection has more tweets

per event when compared with [35].

Table 4.6. Information on different data and test collections in microblogs (ED: Event Detection)

Collection size Number of events Avg. Number of tweets Language Usage

120M tweets 361 events 259 tweets English Evaluate ED systems[35]

65M tweets 1000 events NA Dutch ED with term pivoting[27]

60M tweets 6 event categories 2.8 K tweets English Unsupervised event extraction and categorization [67]

135K tweets 28 events NA English ED using word similarity [43]

25K tweets 2 events 22K and 3K English Temporal influence on hot topics[19]

60M tweets 1049 events NA English Large-scale credibility detection[38]

590M tweets 66 events 2K tweets Arabic Event detection & ad-hoc search

4.2 Using EveTAR

Since Chapter 3 discussed the process of building a test collection from Arabic tweets

for event detection; now, it is relevant to showcase how such a collection can be used to

evaluate event detection systems. While the main goal of this research is to build the

collection, we believe that it is essential to demonstrate the usage of the collection through

different event detection algorithms. The following section demonstrates four different

event detection algorithms and their performance when applied to our test collection.

4.2.1 SONDY’s Social Analysis Tool

Developing event detection algorithms from scratch to evaluate the test collection is te-

dious. Therefore, we looked for an open source tool that integrates some state-of-the-art

event detection algorithms. Recently, a work by Guille et al.[21] discussed a tool named

53

SOcial Networks DYnamics (SONDY). The platform is an open source application that

allows end-users and researchers to explore and manipulate Twitter’s social messages in

different ways. Users can benefit from SONDY through four main services: the data

manipulation service, topic detection and tracking service, network analysis and visual-

ization service, and the service for importing algorithms to the tool. Initially, we were

interested in SONDY because it encompasses some event detection algorithms, which are

available through the topic detection and tracking service. In brief, the two services that

we used allowed us to achieve the following:

• Data manipulation service: Through this service, we were able to import our data

collection with the data import part to prepare it for event detection algorithms.

The preprocessing part offers stemming, lemmatization, tokenization, and time-slice

partitioning. In the case of Arabic tweets, we discovered that applying stemming

and lemmatization makes the resulting events unreadable. Hence, we only applied

tokenization and time-slice partitioning [21]. The service allows the data collection

to be filtered by removing stop words, which are configurable. We added a list of

common Arabic stop words that were identified from previous studies. The full list

of Arabic stop words is given in Appendix A. In addition to stop word removal, the

filtering part allows the tweet stream size to be adjusted and re-sized to a specific

time window. Both stemming and lemmatization were disabled, while tokenization

was set to 1-gram and partitioning was set to 30 minutes. The filtering that was

applied to the collection is English, Arabic, and Twitter-related stop word removal.

We applied English stop word removal to ensure that no English stop words slip

into the event detection algorithms. As for Twitter stop words, they include terms

like RT (retweet), http, and follow. Such words do not contribute to the event

detection algorithms, thus, they were removed from the message stream.

• Topic detection and tracking service: With the aid of this service, different topic

and event detection algorithms can be applied to the tweet stream. By selecting

54

the prepared messages from the data manipulation service, we were able to choose

between 7 different algorithms. Some of the offered algorithms were for topic de-

tection, like on-line LDA (Latent Dirichlet Allocation). Therefore, we focused on

the event detection algorithms, which are MABED [22], EDCoW [62], Peaky Topics

and Persistent Conversations[53]. A detailed overview of the chosen algorithms will

be given in the upcoming section. In addition to event detection, SONDY provides

an event visualization tool. Each detected event can be viewed on a time line that

illustrates the event peaks. The demonstration in Figure 4.7 depicts the applica-

tion of MABED algorithm on the Arabic data stream. The highlighted event in

the Figure matches the running example that we introduced in Chapter 3. The

time line in the Figure matches the days in which the highlighted event occurs.

Moreover, the tweets associated with each detected event are accessible through

the messages view. For the highlighted event of queen Khentakawess in Figure 4.7,

the messages view is given in Figure 4.8. The columns in the messages view show

the tweet ID, timestamp, and text of all the tweets that belong to the event. As for

the event time interval, the view shows a range between the 4th and 6th of January,

which is the same period that we reported in our test collection. Moreover, Figure

4.8 shows that MABED identified 671 relevant tweets in the event. In fact, some

of those tweets belong to the 284 tweets that crowdsourcing identified as relevant

for the same event. Some of the tweets might be non-relevant, yet the algorithm

managed to identify the actual event, the exact date, and a portion of the relevant

tweets.

55

Figure 4.7. SONDY’s event detection interface, where MABED is applied to EveTAR

Figure 4.8. Messages view in SONDY that shows all the tweets associated with the detected event

56

4.2.2 Performance of Event Detection Algorithms

In the upcoming sections, we describe the details of the algorithms used in the evaluation,

then we discuss the experiments conducted on our Arabic test collection. Additionally,

we explain the inter-annotator agreement that was computed for EveTAR, followed by a

section about the conducted experiments on other English test collections.

Algorithms

Previously, we mentioned that SONDY offers several algorithms for topic and event

detection. For the task of event detection, we explored four different algorithms from

SONDY’s topic detection and exploration service. The details of each algorithm along

with their parameters are given as follows:

1. EDCoW: Event Detection with Clustering of Wavelet-based signals (EDCoW) aims

at identifying events from a stream of tweets [62]. The technique relies on analyzing

wavelet signals of individual words to identify events. For each word, the algorithm

builds a signal based on the wavelet analysis of the word’s raw frequency. Then,

autocorrelation is used to compute each word’s bursty energy. Cross-correlation is

then computed between pairs of bursty words. By doing that, insignificant words

are filtered out from the computations. By the end of this, the remaining bursty

words form a cross-correlation table, which is later used to build a modularity-

based graph [62]. To detect events, graph-partitioning techniques are applied on

the constructed graph of bursty words. Final events are constructed by clustering

(grouping) words with similar bursty patterns. To apply EDCoW, the wavelet

signal must be built for each individual word. Therefore, the difference between

each set of consecutive sample points is set by default to 8 minutes and δ = 48.

Such setting allows the algorithm to compute the final signals of individual words

as they change within 384 hours (16 days). The maximum term support parameter

57

was set to 0.01, while the minimum term support was left at 0.0001 [21]. As for

the tunable parameter γ, it was set to 5.

2. Peaky Topics: To discover temporal patterns from a stream of tweets, peaky topics

leverages a normalized version of term frequency to detect momentary terms of

interest. The technique works by identifying a list of highly-localized terms or

“Peaky Topics” [53]. In other words, peaky topics identifies terms that appear in a

fixed time window but do not appear in any other time window. So term frequency

is computed over a specific time window and used as a score for all terms within

that window. The technique is solely focused on temporal features of terms. Thus,

the only parameters that the algorithm requires are the maximum term support at

0.01, and minimum term support, which was set to 0.0001.

3. Persistent Conversations: The implementation of persistent conversations is quite

similar to peaky topics. In fact, both algorithms were introduced by Shamma et

al. [53]. Unlike peaky topics, persistent conversations looks for terms that are

popular throughout the entire stream of tweets. The algorithm aims at finding

terms that remain important and highly discussed during a longer time period

than peaky topics. To score terms, the algorithm uses the scores obtained from

peaky topics. A term is ranked based on how longer it remains interesting, so

the score is computed by averaging the normalized pre-peak and post-peak term

frequency. Similar to peaky topics, the only parameters used in this algorithm are

the maximum and minimum term support, which were set to 0.01 and 0.001.

4. MABED: Mention-Anomaly-Based Event Detection is a unique technique that has

an advantage over all the previously mentioned techniques. Instead of using the

temporal characteristics of a tweet stream to identify events, the algorithm uses

tweets text only to detect events. By using the power of mentions (dynamic links)

that users often use in their tweets, MABED is able to detect important events.

Another advantage that the algorithm holds when compared to the previous ones

58

is that it can dynamically estimate the time period in which the event occurs [22].

This means that there is no need to specify a fixed time period to detect events,

as the algorithm adjusts this period automatically. The algorithm computes the

anomaly of mention creation of a certain word at a time slice by taking into account

the expected frequency of words that contain at least one mention in the same time

slice. The parameters that MABED needs were set to their default values, where θ

= 0.7 and σ = 0.7. Another parameter is p, which stands for the number of words

in a tweet. Given that the average number of words per tweet is 10.7 [22], p was set

to 10. Users can also set the desired number of detected events in the parameter k.

The last parameters are the maximum and minimum term support. Just like the

previous studies, the parameters were set to 0.01 and 0.0001.

Evaluating Event Detection

To measure the performance of each event detection algorithm, we used the same collec-

tion that was labeled by CrowdFlower workers, which consists of 135,887 tweets. To con-

duct comprehensive comparisons, we devised several scenarios in which we try different

preprocessing settings. The first experiment focused on applying different tokenization

techniques to the data collection. In this context, tokenization stands for the splitting of

terms into smaller pieces, often called tokens. SONDY’s data manipulation service offers

three types of tokenization: 1-gram, 2-gram, and 3-gram. We decided to experiment

with the three different settings in all experiments. The second setting that we looked

into was the message time-slice partitioning option. By default, SONDY recommends a

time-slice of 30 minutes, which we found reasonable for our experiments. However, we

decided to experiment with a 60 minute time-slice as well. The evaluation measures that

we adopted were the standard precision 4.4, recall 4.5 and harmonic mean (F1 measure)

4.6. The equations for each of the applied evaluation measures are:

Precision =
relevant retrieved

(relevant retrieved+non-relevant retrieved)
(4.4)

59

Recall =
relevant retrieved

(relevant retrieved+relevant not retrieved)
(4.5)

F1 measure = 2 ∗ Precision * Recall

Precision + Recall
(4.6)

To compute precision,recall, and F1 measure, first, we manually examined the output

of each algorithm and compared it to the 66 events that were identified in EveTAR. If an

algorithm repeats the same event in different wordings, it does not count as a different

event. Any event that an algorithm detects but does not belong to the 66 events is

considered non-relevant. Given such criteria, we used the number of relevant events from

each algorithm, and used it along with the number of retrieved events in the calculations.

Second, we used an automated technique to compute precision, recall and F1 measure.

Further details about the automatic evaluation technique will be presented later. The

results of the first experiment are shown in Table 4.7, where the time slice was fixed

to 30 minutes. The Table shows the evaluation measures for 1-gram, 2-gram, and 3-

gram options. As for MABED, the parameter k was tested with the following values:

25, 50, 75, and 100. The results with the label [A] stand for the automatic evaluation

approach, while the reminder of the results without the label were done manually. The

remaining algorithm parameters were not changed from their default configurations that

were mentioned previously.

60

Table 4.7. Precision, Recall, and F1 measure for the 30 minute time slice setting in EveTAR

Algorithm

1-gram 2-gram 3-gram

Precision Recall F1 Precision Recall F1 Precision Recall F1

EDCoW 0.09 0.15 0.11 0.18 0.24 0.21 0.25 0.27 0.26

Peaky Topics 0.11 0.80 0.19 0.12 0.88 0.21 0.10 0.94 0.18

Peaky Topics[A] 0.10 0.71 0.20 0.12 0.88 0.21 0.09 0.83 0.16

MABED(25) 0.80 0.30 0.44 0.64 0.24 0.35 0.56 0.21 0.31

MABED(25)[A] 0.56 0.21 0.31 0.60 0.23 0.33 0.68 0.25 0.37

MABED(50) 0.60 0.45 0.52 0.50 0.38 0.43 0.50 0.38 0.43

MABED(50)[A] 0.58 0.44 0.50 0.60 0.45 0.52 0.64 0.48 0.55

MABED(75) 0.56 0.64 0.60 0.47 0.53 0.50 0.41 0.47 0.44

MABED(75)[A] 0.61 0.70 0.65 0.64 0.73 0.68 0.63 0.71 0.67

MABED(100) 0.56 0.64 0.60 0.40 0.61 0.48 0.41 0.62 0.49

MABED(100)[A] 0.61 0.92 0.73 0.56 0.85 0.67 0.58 0.88 0.70

The second experiment focused on the 60 minute time slice. In Table 4.8, the config-

urations from the previous experiment were maintained except for the time slice option.

The results in the Table are given in a similar manner to the Table 4.7, where precision,

recall, and F1 measure are computed for all algorithms. Notice that in both tables, we did

not include the results from the persistent conversations algorithm. With experiments,

we noticed that both algorithms produce similar results. In fact, both algorithms tend to

produce the same number of events with an extremely similar textual description. Hence,

we refrained from duplicating the results of both algorithms in the tables and used our

findings from experimenting with peaky topics.

61

Table 4.8. Precision, Recall, and F1 measure for the 60 minute time slice setting in EveTAR

Algorithm

1-gram 2-gram 3-gram

Precision Recall F1 Precision Recall F1 Precision Recall F1

EDCoW 0.14 0.12 0.13 0.29 0.18 0.22 0.38 0.18 0.24

Peaky Topics 0.17 0.76 0.28 0.17 0.79 0.28 0.15 0.82 0.25

Peaky Topics[A] 0.17 0.76 0.28 0.19 0.89 0.31 0.15 0.85 0.26

MABED(25) 0.64 0.24 0.35 0.72 0.27 0.40 0.60 0.23 0.33

MABED(25)[A] 0.48 0.18 0.26 0.60 0.23 0.33 0.68 0.26 0.37

MABED(50) 0.60 0.45 0.52 0.48 0.36 0.41 0.50 0.38 0.43

MABED(50)[A] 0.54 0.41 0.47 0.60 0.45 0.52 0.62 0.47 0.53

MABED(75) 0.47 0.53 0.50 0.49 0.56 0.52 0.47 0.53 0.50

MABED(75)[A] 0.59 0.67 0.62 0.61 0.70 0.65 0.56 0.64 0.60

MABED(100) 0.51 0.77 0.61 0.49 0.74 0.59 0.50 0.76 0.60

MABED(100)[A] 0.59 0.89 0.71 0.57 0.86 0.69 0.58 0.88 0.70

Inter-annotator Agreement

To ensure that our labels for the output of each algorithm are accurate, we asked another

annotator to label the resulting events as either relevant or non-relevant. First, we

provided the new annotator with a list of the 66 events in the collection. Then, we

asked the annotator to label the output of each algorithm as either relevant or non-

relevant. We considered an event to be relevant if it was included in the list of 66

events of our collection. Any duplicate instances of a relevant event were considered

non-relevant. To measure the inter-annotator agreement, we used Cohen’s Kappa [54].

This Kappa is different from Fleiss’ Kappa that we computed in section 4.1.3 because it

is used to compute the agreement between two annotators. The computed Kappa tries to

eliminate any labels obtained by chance; thus reducing the amount of uncertainty in the

labels obtained manually. The equation to compute Cohen’s Kappa is a slightly modified

version of 4.1, which is given as follows:

62

K = 1 − 1 − P◦

1 − Pc

(4.7)

In equation 4.7, when annotators agree completely, K=1. The value of Pc determines

if annotations were obtained by chance; in this case K might be ≤ 0. By computing

Cohen’s Kappa for the labels of the three algorithms, we had an average agreement

of 0.68. We noticed that the average Kappa value was higher in the labels obtained

for MABED, which was 0.73. This might be due to clarity of the event descriptions

produced by MABED when compared to EDCoW and Peaky Topics. To improve the

average Kappa for all the algorithms, the annotators resolved the labels of the events

where they disagreed on. This process improved the Kappa slightly from 0.68 to 0.69.

We believe that this slight improvement is due to the fact that one of the annotators

is not familiar with the events in our Arabic collection. Although the annotator was

provided with a list of all the events in the collection; some of the algorithms produced

specific event-related details that were not clear to the annotator. To grasp such details,

the annotator had to at least be familiar with the event details, which were not provided

during annotation.

Automatic Evaluation

In addition to manual evaluation, we automatically evaluated event detection using the

approach of Petrović [44]. Automatic evaluation was done by computing the proportion

(P) of tweets produced from each algorithm that are covered by the events in EveTAR.

Figure 4.9 illustrates the process of automatic evaluation. For this particular type of

evaluation, we view each event as a cluster of tweets. Hence, algorithms that don’t pro-

duce tweets like EDCoW could not be evaluated automatically. To get the proportion

of covered tweets, we take the intersection of the tweets produced by a particular algo-

rithm’s events with the tweets from the events in EveTAR. Then, we set a condition on

the proportion to be more than the threshold value θ, which was set to 0.5. This means

63

that we consider an event to be valid (i.e, covered by the events in EveTAR) if more

than half of the tweets in this event match the tweets in EveTAR. The process shown

in Figure 4.9 is repeated for all the events produced for each algorithm to get number

of covered events. The final number of covered events for each algorithm was used to

compute recall, precision, and F1 using the equations that were given previously. Here,

we consider the number of covered events to be the number of relevant retrieved events

that were mentioned in equation 4.4 and 4.5.

Event

Detection:

EDCoW

Peaky Topics

MABED

P > θ Θ = 0.5

Event is covered

Events from

EveTAR

Figure 4.9. Process of automatically evaluating the event detection algorithms using EveTAR

Evaluation using other English test collections

In addition to the two conducted experiments, we compare the output of each algorithm

using our collection with the numbers reported in the literature. Starting with EDCoW,

the authors stated that the value of γ controls the precision of the algorithm. We noticed

that changing γ did not affect our output that much. When γ is 10, EDCoW has a

64

precision of 0.14 [62]. At the same γ setting, we got a precision of 0.06 in the first

experiment (30 minutes) and 0.14 at the second experiment (60 minutes). In general,

we think that EDCoW did not perform better using our test collection, however; it

produced comparable results. Moreover, we did not notice any change in the algorithm

performance when γ was 5, hence the output when γ is 5 is the same as the output when

γ is 10. In MABED, the authors reported the performance of the algorithm in terms of

precision and F1 measure. In an English corpus, MABED has a precision of 0.78 and F1

of 0.68. While the algorithm performed better on a French corpus, obtaining a precision

and F1 of 0.83 [22]. Since we used MABED in four different settings, we will compare

the outputs obtained from the first experiment that we conducted at 30 minutes. We

noticed that the precision of MABED (25) is higher than the precision of the English

corpus. However, the F1 is much lower due to the low recall. In the French corpus, the

outputs reported by MABED slightly outperform the precision of MABED (25) but the

F1 is still much better in the French corpus [22]. As for Peaky Topics, the authors did

not report any numbers that we could use to compare with our evaluation measures.

To compare our test collection with one of the available test collections, we used the

English test collection of McMinn et al. [35]. In terms of annotator agreement, the

Wikipedia approach of [35] was 0.72, which is higher than the average agreement that

we had of 0.6. This might be due to the difference in the number of tweets that were

annotated in both collections. As we mentioned in Table 4.2 that obtained annotations

for 135,887 tweets. However, in the English test collection, a total of 39,980 tweets were

annotated. This difference in the tweet number coupled with the nature of the events and

event-related tweets might cause the annotator agreement to be higher in the English

test collection. Additionally, we wanted to compare the output of EDCoW, MABED,

and Peaky Topics when applied on the English test collection. Thus, we crawled a subset

of the English test collection and obtained a total of 22,814 tweets that span 361 events.

Then, we used the same parameters that were used in the two previous experiments on

65

our collection with the English test collection. The results of experimenting with the 30

minute time slice are depicted in Table 4.9.

Table 4.9. Precision, Recall, and F1 measure for the 30 minute time slice setting in the English Test
collection

Algorithm

1-gram 2-gram 3-gram

Precision Recall F1 Precision Recall F1 Precision Recall F1

EDCoW 0.17 0.05 0.07 0.15 0.04 0.06 0.36 0.06 0.10

Peaky Topics 0.17 0.58 0.26 0.16 0.56 0.25 0.21 0.76 0.33

Peaky Topics [A] 0.08 0.29 0.13 0.08 0.29 0.13 0.08 0.29 0.13

MABED(25) 0.92 0.06 0.12 0.84 0.06 0.11 0.92 0.06 0.12

MABED(25) [A] 1.00 0.07 0.13 1.00 0.07 0.13 1.00 0.07 0.13

MABED(50) 0.88 0.12 0.21 0.84 0.12 0.20 0.88 0.12 0.21

MABED(50) [A] 1.00 0.14 0.25 1.00 0.14 0.25 1.00 0.14 0.24

MABED(75) 0.83 0.17 0.28 0.79 0.16 0.27 0.91 0.19 0.31

MABED(75) [A] 1.00 0.22 0.36 1.00 0.21 0.36 0.99 0.20 0.34

MABED(100) 0.89 0.24 0.38 0.86 0.24 0.37 0.91 0.25 0.39

MABED(100) [A] 1.00 0.28 0.43 1.00 0.29 0.45 0.99 0.27 0.43

We conducted an additional experiment on the English test collection using the 60

minute time slice. The results of each algorithm are given in Table 4.10.

66

Table 4.10. Precision, Recall, and F1 measure for the 60 minute time slice setting in the English test
collection

Algorithm

1-gram 2-gram 3-gram

Precision Recall F1 Precision Recall F1 Precision Recall F1

EDCoW 0.39 0.05 0.09 0.47 0.04 0.07 0.36 0.03 0.05

Peaky Topics 0.31 0.54 0.39 0.36 0.65 0.46 0.35 0.63 0.45

Peaky Topics [A] 0.16 0.28 0.21 0.16 0.29 0.21 0.16 0.28 0.20

MABED(25) 0.92 0.06 0.12 0.80 0.06 0.10 0.84 0.06 0.11

MABED(25) [A] 1.00 0.07 0.13 1.00 0.07 0.13 1.00 0.07 0.13

MABED(50) 0.80 0.11 0.19 0.86 0.12 0.21 0.82 0.11 0.20

MABED(50) [A] 1.00 0.14 0.25 1.00 0.14 0.25 1.00 0.14 0.24

MABED(75) 0.81 0.17 0.28 0.89 0.19 0.31 0.84 0.17 0.29

MABED(75) [A] 1.00 0.22 0.36 1.00 0.21 0.35 0.99 0.20 0.34

MABED(100) 0.88 0.24 0.38 0.87 0.24 0.38 0.90 0.25 0.39

MABED(100) [A] 1.00 0.28 0.44 1.00 0.29 0.45 0.99 0.27 0.43

After conducting the four experiments with different time slices, we came with the

following conclusions:

• Algorithms like EDCoW were difficult to evaluate due to the implementation of it.

The wavelet algorithm depends on clustering of correlated bursty words. This clus-

tering does not necessarily grantee that terms from the same event will be clustered

together. For example, if e1 and e2 are two different events that happened at the

same time. According to EDCoW, if they happen to have the same wavelet burst,

they will be clustered together. This observation was evident with many events

from our collection, which caused events to be meaninglessly clustered together.

This explains the low precision that EDCoW received in the the first experiment,

as shown in Table 4.7. However, we discovered that the result improved slightly in

the second experiment.

• Manually evaluating the outcome of algorithms like peaky topics and persistent

conversations was extremely difficult. The output of each algorithm in the 1-gram

67

setting is a list of words that may or may not represent events. Moreover, some-

times those algorithms produce more than 600 events, which makes it even more

difficult to keep track of the relevant event count. Actually, the algorithms do not

distinguish between events and discussions. As we noticed that any “hot topic”

that gets mentioned a lot is considered an event. This explains the huge number

of events that such algorithms produce, which mostly consists of noise and in-

significant events. However, the advantage of these algorithms is that due to their

sensitivity to time, almost all of the 66 events are always included in their output.

The high recall values in Table 4.7 and 4.8 clearly depict this observation.

• As we initially predicted, MABED outperforms all the algorithms in terms of pre-

cision, recall, and F1 measure. We noticed that the output produced from MABED

is well formatted, readable, and closely resembles the 66 events that we have in

our test collection. Additionally, setting k to 25 appears to be the best setting for

MABED, as we noticed a decline in precision when k is more than 25. We be-

lieve that setting k to 25 is the ideal setting because increasing k tends to produce

duplicate events.

• Automatic evaluation is more accurate than manual evaluation. This is especially

true for the English test collection. The annotators that were assigned with the

labeling process tend to lose focus when the number of events is large. Thus;

performing automatic evaluation on the tweet level ensures that all events will be

taken into consideration when computing precision, recall, and F1 measure.

• The results obtained from automatic evaluation are comparable to the ones pro-

duced by manual evaluation in EveTAR. This observation shows that regardless

of the slight human errors produced from manual labels, we can still trust the

precision, recall, and F1 numbers when they are computed automatically.

68

• The experiments conducted on the English test collection show higher precision

values when compared to EveTAR. There are many factors that might contribute

to those results, the first one might be the huge difference in the number of events

in each test collection. It is extremely difficult to compare between 66 and 361

events. Moreover, the way each data collection was obtained contributes to the

quality of the test collection.

Evaluating Ad-hoc Search

In addition to event detection, EveTAR is designed to support evaluation of other tasks

like ad-hoc search as it provides a short query per event in addition to a list of relevant

tweets. We epxeriment with running and evaluating two ad-hoc systems that we refer

to as baseline (BL) and query expansion (QE) with EveTAR. We re-implemented these

models based on those of one of the good teams participating in the ad-hoc search task

in TREC-2013 microblog track [32]. We ran the search systems over the Lucene index of

the 590M tweets. We then evaluate ad-hoc search using MAP and P@30 which are the

two main measures used in evaluation of tweet ad-hoc search in TREC-2013 [32]. Results

are summarized in Table 4.11.

Table 4.11. Ad-hoc search performance with EveTAR

Model MAP P@30
BL 0.1283 0.3783
QE 0.1207 0.3384

We observe that the values of P@30 for both models are in range of the P@30 values

reported in [32], however, value of MAP is much lower than expected. The difference in

ad-hoc search performance between EveTAR and the English collection in [32] might be

due to the very big difference in size, as the English set is much smaller than EveTAR.

Additionally, we ran the models using parameter values reported in the original paper

(tuned on the English collection) which might not be good for ad-hoc search over Arabic

69

tweets. Further experiments are needed to understand the performance of ad-hoc search

with EveTAR.

70

CHAPTER 5. CONCLUSION AND FUTURE WORK

By the end of this first thorough study that tackles the problem of building a test

collection for significant-event detection in Arabic tweets, we conclude this work with

some final remarks and further guidelines for future work in the upcoming section.

5.1 Conclusion

In this work, we present our work on constructing EveTAR, then we followed a pipeline

that consists of four main stages to build the test collection. The first stage consists of

using Wikipedia’s current events portal to get a list of candidate events from our Jan-

uary 2015 data collection. The list of events was refined and filtered to include significant

events only. The second stage involves developing queries to retrieve event-related tweets

from our data collection. For each event, we developed 6 queries, that were later for-

matted to follow Lucene’s query syntax. The third stage focuses on obtaining relevance

judgments for the event-related tweets through crowdsourcing. We used CrowdFlower to

launch the 66 events as labeling jobs. The total number of labeled tweets was 135K, which

consists of 51K relevant tweets from all events. The fourth and final stage addresses the

evaluation of EveTAR by using it to evaluate the performance of three state-of-the-art

event detection algorithms.

In this thesis, we answered all the raised research questions and showcased how a

test collection can be collected to serve other information retrieval tasks, such as ad-hoc

search.

The outcome of the construction and evaluation of the test collection is summarized

as follows:

• The quality of crowdsourcing labels depend on the quality of the results obtained

from collection search. Therefore, the queries must be accurate to aid in the re-

trieval of relevant tweets.

71

• Annotators need clear and concise instructions to label tweets accordingly. When

the job description lacks necessary information and examples, this will affect the

quality of the labeling job in a negative way.

• State-of-the-art event detection algorithms are able to successfully detect events

from our Arabic test collection. Some of which report high precision, recall, and

F1 measures.

• Manipulating some of the algorithm’s parameters yields different kinds of results.

For instance, choosing k to be 25 in MABED gives better results when compared

to higher and lower values.

• Our developed test collection is comparable to some of the existing test collections.

However, we distinguish our work as the first Arabic test collection for the task of

event detection.

5.2 Future Work

With the aid of this built test collection, we aim to conduct further studies that leverage

the obtained labels for other information retrieval tasks, like tweet filtering. Moreover, we

would like to extend the test collection for summarization and Tweet Timeline Generation

(TTG) tasks. To conduct extensive evaluations on the test collection, we plan to use other

algorithms like ET [43] and tune their parameters according to the requirements of Arabic

tweets. Additionally, the output of the event detection algorithms can be examined by

experts or through crowdsourcing to obtain accurate evaluations. Due to restrictions on

full tweet distribution by Twitter, we plan to provide our own API through which users

of our collection can get easy access to the full tweets while still abiding by Twitter’s

terms of service. To enrich the test collection, the output of automatic event detection

algorithms can be used to refine the initial list of events and judgments, in a fashion

similar to [35]. This process will compensate for the lack of completeness that EveTAR

72

currently suffers from. Finally, it would be interesting to see how new state-of-the-art

event detection algorithms can benefit from EveTAR to evaluate their systems.

73

Bibliography

[1] Dhekar Abhik and Durga Toshniwal. Sub-event detection during natural hazards

using features of social media data. In Proceedings of the 22nd international con-

ference on World Wide Web companion, pages 783–788. International World Wide

Web Conferences Steering Committee, 2013.

[2] Puneet Agarwal, Rajgopal Vaithiyanathan, Saurabh Sharma, and Gautam Shroff.

Catching the long-tail: Extracting local news events from twitter. In ICWSM, 2012.

[3] Charu C Aggarwal and Karthik Subbian. Event detection in social streams. In

SDM, volume 12, pages 624–635. SIAM, 2012.

[4] James Allan. Introduction to topic detection and tracking. In Topic detection and

tracking, pages 1–16. Springer, 2002.

[5] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection and

tracking. In Proceedings of the 21st annual international ACM SIGIR conference on

Research and development in information retrieval, pages 37–45. ACM, 1998.

[6] Nasser Alsaedi and Pete Burnap. Arabic event detection in social media. In Compu-

tational Linguistics and Intelligent Text Processing, pages 384–401. Springer, 2015.

[7] Nasser Alsaedi, Peter Burnap, and Omer Farooq Rana. A combined classification-

clustering framework for identifying disruptive events. 2014.

[8] Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard Weikum.

See what’s enblogue: real-time emergent topic identification in social media. In

Proceedings of the 15th International Conference on Extending Database Technology,

pages 336–347. ACM, 2012.

[9] Hila Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: Real-world

event identification on twitter. ICWSM, 11:438–441, 2011.

74

[10] Thorsten Brants, Francine Chen, and Ayman Farahat. A system for new event

detection. In Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval, pages 330–337. ACM, 2003.

[11] Chris Buckley and Ellen M Voorhees. Retrieval evaluation with incomplete infor-

mation. In Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 25–32. ACM, 2004.

[12] Ben Carterette. Robust test collections for retrieval evaluation. In Proceedings of

the 30th annual international ACM SIGIR conference on Research and development

in information retrieval, pages 55–62. ACM, 2007.

[13] Ben Carterette, James Allan, and Ramesh Sitaraman. Minimal test collections for

retrieval evaluation. In Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 268–275.

ACM, 2006.

[14] Flavio Chierichetti, Jon Kleinberg, Ravi Kumar, Mohammad Mahdian, and Sandeep

Pandey. Event detection via communication pattern analysis. In Eighth International

AAAI Conference on Weblogs and Social Media, 2014.

[15] Gordon V Cormack, Christopher R Palmer, and Charles LA Clarke. Efficient con-

struction of large test collections. In Proceedings of the 21st annual international

ACM SIGIR conference on Research and development in information retrieval, pages

282–289. ACM, 1998.

[16] Ahmed AA Esmin, Rômulo SC Júnior, Wagner S Santos, Cássio O Botaro, and

Thiago P Nobre. Real-time summarization of scheduled soccer games from twitter

stream. In Natural Language Processing and Information Systems, pages 220–223.

Springer, 2014.

75

[17] Xiao Feng, Shuwu Zhang, Wei Liang, and Zhe Tu. Real-time event detection based

on geo extraction and temporal analysis. In Advanced Data Mining and Applications,

pages 137–150. Springer, 2014.

[18] Jonathan G Fiscus and George R Doddington. Topic detection and tracking evalu-

ation overview. Topic detection and tracking, pages 17–31, 2002.

[19] Thomas Gottron, Olaf Radcke, and Rene Pickhardt. On the temporal dynamics

of influence on the social semantic web. In Semantic Web and Web Science, pages

75–87. Springer, 2013.

[20] Adrien Guille and Cécile Favre. Event detection, tracking, and visualization in

twitter: a mention-anomaly-based approach. Social Network Analysis and Mining,

5(1):1–18, 2015.

[21] Adrien Guille, Cécile Favre, Hakim Hacid, and Djamel A Zighed. Sondy: An open

source platform for social dynamics mining and analysis. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, pages 1005–1008.

ACM, 2013.

[22] Antoine Guille and Cécile Favre. Mention-anomaly-based event detection and track-

ing in twitter. In Advances in Social Networks Analysis and Mining (ASONAM),

2014 IEEE/ACM International Conference on, pages 375–382. IEEE, 2014.

[23] Mehdi Hosseini, Ingemar J Cox, Natasa Milic-Frayling, Trevor Sweeting, and Vishwa

Vinay. Prioritizing relevance judgments to improve the construction of ir test col-

lections. In Proceedings of the 20th ACM international conference on Information

and knowledge management, pages 641–646. ACM, 2011.

[24] R Kaushik, S Apoorva Chandra, Dilip Mallya, JNVK Chaitanya, and S Sowmya

Kamath. Sociopedia: An interactive system for event detection and trend analy-

76

sis for twitter data. In Proceedings of 3rd International Conference on Advanced

Computing, Networking and Informatics, pages 63–70. Springer, 2016.

[25] Arpit Khurdiya, Lipika Dey, Diwakar Mahajan, and Ishan Verma. Extraction and

compilation of events and sub-events from twitter. In Proceedings of the The 2012

IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelli-

gent Agent Technology-Volume 01, pages 504–508. IEEE Computer Society, 2012.

[26] Giridhar Kumaran and James Allan. Text classification and named entities for

new event detection. In Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 297–304.

ACM, 2004.

[27] FA Kunneman and APJ van den Bosch. Event detection in twitter: A machine-

learning approach based on term pivoting. 2014.

[28] Victor Lavrenko, James Allan, Edward DeGuzman, Daniel LaFlamme, Veera Pol-

lard, and Stephen Thomas. Relevance models for topic detection and tracking. In

Proceedings of the second international conference on Human Language Technology

Research, pages 115–121. Morgan Kaufmann Publishers Inc., 2002.

[29] Chenliang Li, Aixin Sun, and Anwitaman Datta. Twevent: segment-based event

detection from tweets. In Proceedings of the 21st ACM international conference on

Information and knowledge management, pages 155–164. ACM, 2012.

[30] Rui Li, Kin Hou Lei, Ravi Khadiwala, and Kevin Chen-Chuan Chang. Tedas: A

twitter-based event detection and analysis system. In Data engineering (icde), 2012

ieee 28th international conference on, pages 1273–1276. IEEE, 2012.

[31] Yuan Liang, James Caverlee, and Cheng Cao. A noise-filtering approach for spatio-

temporal event detection in social media. In Advances in Information Retrieval,

pages 233–244. Springer, 2015.

77

[32] Jimmy Lin and Miles Efron. Overview of the TREC-2013 Microblog Track. In

TREC-2013, 2013.

[33] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action: Covers

Apache Lucene 3.0. Manning Publications Co., 2010.

[34] Richard McCreadie, Craig Macdonald, Iadh Ounis, Miles Osborne, and Slobodan

Petrovic. Scalable distributed event detection for twitter. In Big Data, 2013 IEEE

International Conference on, pages 543–549. IEEE, 2013.

[35] Andrew J McMinn, Yashar Moshfeghi, and Joemon M Jose. Building a large-scale

corpus for evaluating event detection on twitter. In Proceedings of the 22nd ACM

international conference on Conference on information & knowledge management,

pages 409–418. ACM, 2013.

[36] Eric Medvet and Alberto Bartoli. Brand-related events detection, classification and

summarization on twitter. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2012 IEEE/WIC/ACM International Conferences on, volume 1, pages

297–302. IEEE, 2012.

[37] Polykarpos Meladianos, Giannis Nikolentzos, François Rousseau, Yannis Stavrakas,

and Michalis Vazirgiannis. Degeneracy-based real-time sub-event detection in twitter

stream. In Ninth International AAAI Conference on Web and Social Media, 2015.

[38] Tanushree Mitra and Eric Gilbert. Credbank: A large-scale social media corpus with

associated credibility annotations. In Proceedings of the 9th International Conference

on Web and Social Media, Oxford, UK, 2015.

[39] Miles Osborne, Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin D

Sykora, Elizabeth Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yulan He, et al.

Real-time detection, tracking, and monitoring of automatically discovered events in

social media. 2014.

78

[40] Georgios Paltoglou. Sentiment-based event detection in twitter. Journal of the

Association for Information Science and Technology, 2015.

[41] Symeon Papadopoulos, Raphael Troncy, Vasileios Mezaris, Benoit Huet, and Ioannis

Kompatsiaris. Social event detection at mediaeval 2011: Challenges, dataset and

evaluation. In MediaEval, 2011.

[42] Ron Papka, James Allan, et al. On-line new event detection using single pass clus-

tering. UMass Computer Science, 1998.

[43] Ruchi Parikh and Kamalakar Karlapalem. Et: events from tweets. In Proceedings of

the 22nd international conference on World Wide Web companion, pages 613–620.

International World Wide Web Conferences Steering Committee, 2013.

[44] Sasa Petrović. Real-time event detection in massive streams. PhD thesis, School of

Informatics, University of Edinburgh, 2013.

[45] Saša Petrović, Miles Osborne, and Victor Lavrenko. Streaming first story detection

with application to twitter. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics, pages 181–189. Association for Computational Linguistics, 2010.

[46] Saša Petrović, Miles Osborne, and Victor Lavrenko. Using paraphrases for improving

first story detection in news and twitter. In Proceedings of the 2012 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 338–346. Association for Computational Linguistics,

2012.

[47] Daniela Pohl, Abdelhamid Bouchachia, and Hermann Hellwagner. Automatic sub-

event detection in emergency management using social media. In Proceedings of the

21st international conference companion on World Wide Web, pages 683–686. ACM,

2012.

79

[48] Narumol Prangnawarat, Ioana Hulpus, and Conor Hayes. Event analysis in social

media using clustering of heterogeneous information networks. In The Twenty-Eighth

International Flairs Conference, 2015.

[49] Shahzad Rajput, Virgil Pavlu, Peter B Golbus, and Javed A Aslam. A nugget-based

test collection construction paradigm. In Proceedings of the 20th ACM international

conference on Information and knowledge management, pages 1945–1948. ACM,

2011.

[50] Alan Ritter, Oren Etzioni, Sam Clark, et al. Open domain event extraction from

twitter. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1104–1112. ACM, 2012.

[51] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter

users: real-time event detection by social sensors. In Proceedings of the 19th inter-

national conference on World wide web, pages 851–860. ACM, 2010.

[52] Mark Sanderson. Test collection based evaluation of information retrieval systems.

Now Publishers Inc, 2010.

[53] David A Shamma, Lyndon Kennedy, and Elizabeth F Churchill. Peaks and persis-

tence: modeling the shape of microblog conversations. In Proceedings of the ACM

2011 conference on Computer supported cooperative work, pages 355–358. ACM,

2011.

[54] Julius Sim and Chris C Wright. The kappa statistic in reliability studies: use,

interpretation, and sample size requirements. Physical therapy, 85(3):257–268, 2005.

[55] Alan F Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and trecvid.

In Proceedings of the 8th ACM international workshop on Multimedia information

retrieval, pages 321–330. ACM, 2006.

80

[56] Giovanni Stilo and Paola Velardi. Efficient temporal mining of micro-blog texts and

its application to event discovery. Data Mining and Knowledge Discovery, pages

1–31, 2015.

[57] Bayar Tsolmon and Kyung-Soon Lee. An event extraction model based on timeline

and user analysis in latent dirichlet allocation. In Proceedings of the 37th interna-

tional ACM SIGIR conference on Research & development in information retrieval,

pages 1187–1190. ACM, 2014.

[58] Julián Urbano, Mónica Marrero, and Diego Mart́ın. On the measurement of test

collection reliability. In Proceedings of the 36th international ACM SIGIR conference

on Research and development in information retrieval, pages 393–402. ACM, 2013.

[59] Yu Wang, David Fink, and Eugene Agichtein. Seeft: Planned social event discovery

and attribute extraction by fusing twitter and web content. In Ninth International

AAAI Conference on Web and Social Media, 2015.

[60] Wei Wei, Kenneth Joseph, Wei Lo, and Kathleen M Carley. A bayesian graphical

model to discover latent events from twitter. In Ninth International AAAI Confer-

ence on Web and Social Media, 2015.

[61] Andreas Weiler, Michael Grossniklaus, and Marc H Scholl. Evaluation measures for

event detection techniques on twitter data streams. In Data Science, pages 108–119.

Springer, 2015.

[62] Jianshu Weng and Bu-Sung Lee. Event detection in twitter. ICWSM, 11:401–408,

2011.

[63] Yiming Yang, Tom Ault, Thomas Pierce, and Charles W Lattimer. Improving

text categorization methods for event tracking. In Proceedings of the 23rd annual

international ACM SIGIR conference on Research and development in information

retrieval, pages 65–72. ACM, 2000.

81

[64] Yiming Yang, Jaime G Carbonell, Ralf D Brown, Thomas Pierce, Brian T Archibald,

and Xin Liu. Learning approaches for detecting and tracking news events. IEEE

Intelligent Systems, (4):32–43, 1999.

[65] Yiming Yang, Tom Pierce, and Jaime Carbonell. A study of retrospective and on-line

event detection. In Proceedings of the 21st annual international ACM SIGIR con-

ference on Research and development in information retrieval, pages 28–36. ACM,

1998.

[66] Siqi Zhao, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. Human as real-

time sensors of social and physical events: A case study of twitter and sports games.

arXiv preprint arXiv:1106.4300, 2011.

[67] Deyu Zhou, Liangyu Chen, and Yulan He. An unsupervised framework of exploring

events on twitter: Filtering, extraction and categorization. In Twenty-Ninth AAAI

Conference on Artificial Intelligence, 2015.

[68] Xiangmin Zhou and Lei Chen. Event detection over twitter social media streams.

The VLDB JournalThe International Journal on Very Large Data Bases, 23(3):381–

400, 2014.

82

APPENDIX A. COLLECTION KEYWORDS

The list of keywords in Table A.1 and A.2 are the 400 tokens that were used to crawl the

data collection. For further details about the process of using the keywords to collect the

tweets, please refer to section 3.1.

Table A.1. The tokens used for crawling the data collection through the streaming API(1 of 2)

	áÓ
�

IK
ñ
�
KP é<ËAK. �Ô

	
g XAm�

�
'B@# PA

	
JË @

	
à@ð é<Ë @YJ.«

ú

	
¯ H. PAK
 É

�
JÓ AîE. ½J. Ê

�
¯ é�

	
®

	
K A

	
K

@ð È

é<Ë @ �K.
	
àñºK
 AÒ» Õ» Qå

�
� ø

	
Yë l��

úÎ« ú

æ
.
Ê
�
¯ úÍ@ ú

	
¯ Q

	
®

	
ª

�
J�@ A

	
JK. P H. ñ

�
K

@ð

�
èQÓ

B
	á�
K.

	
¬ AÖß. ½

	
®J

	
��
 ÉJ
j. �

�
�ÊË Qª

�
�# ù

ªÓ

ð ù

ë H. P iJ
m
�� �

èPñ�Ë@ 	ám�
	
' Q

	
k

�
@ AÜØ

AÓ ú

G
.
P Q�

	
mÌ'@ 	áºËð ú

æ
.

	
JË @

�
éJ

	
K AÖß
@_ �

HCÓA
�
K# Q�

�
J»

	
à

B

ÑêÊË @ ½K. è
	
Yë ½�

	
®

	
K 	áK. @ Ñî

	
DÓ I. k@

	
àA�

	
�B

@

É¿ 	áÓð
�
èAJ
m

Ì'@
�

�Ó éJ
Ë @

	áK
ð ½K. P éK
 @

	
à

@ ÈCêË@# ÈCêË@ ú

æ�

	
®

	
K ÉÔg

.

@ Qå�

	
JË @ ½

�
Kñ

	
®
�
KB É

�
¯

	á« YÒm× Yg@ð ½ÊÖÏ @
�

I
�
¯ð ½

	
K@

 úÎ«ð ¼Y

	
J«

ú

ÎË @ ½J
Ê«

	
�AK
QË @# �A

	
K qJ

�
�Ë@

	á�
ªK. A
�
JÖÏ @ Ðñ

	
JË @ #Hadith

Bð ð

@

�
IK
ñ

�
KP# ½

	
JÓ Q¢

�
¯# ZA�Ó

	
à

AK. �

	
¯

AK

Q�

	
« Ð 	áÖÏ É¾Ë I. k

�
èC� PA�

©Ó A
	
K

@ éË @

I. mÌ'@ ©J
Ô

g
.

éË @ ú

	
¯
�

�
è @PAJ.Ó

	
à@ ú

Í@ úÎ� Q�

�» @ ©K. A
�
JÓ é<ËYÒmÌ'@

�
éÒÊ¿ AêÊ¿

B@

¡
�
®

	
¯ 	áºË

�
èPñ�

	
�P

B@

�
�ñ

	
¯

	á�
ÒÊ�ÖÏ @ ½
	
K

@

A
	
K @ ø

Èñ�P ½Ë

	
X ø

Y

	
J« Aî

	
DÓ 	áK
YË@ñË@_ QK.# A

	
JªÓ

½Ë
�
éK
Xñª�Ë@#

�
èXAK

	QË
�

I
	
KA¿ AîD
Ê«

�
��
Ë H. @

	
Y« ú

	
GAm.

×

83

Table A.2. The tokens used for crawling the data collection through the streaming API(2 of 2)

ñë
	

à
�
B@ ½

	
JJ
ªK. A

�
JÓ ©J
K. h@P Éªk. @ 	áÓ� YK
Yg.

ñË
�

I
	
J» A

	
K @ð ½J

	
¯ Õç

�
' èYgð �

	
¯ ½

�
J���Q

	
¯

��. �
	
m�

�
� Yg@

	
¬B@ ÉJ
ÊË @ Z A

�
� é

�
JÒÊ¿_ Èñ

�
®K
_ I. ª

�
�Ë@# ú

æ
.

�
K

ú

Í ú

�
æË @ 	áK. ÕºË 	á» èQÓ ÐC¿ �ø

ÐñK
 Y
�
¯ Qå�

	
JË @#

�
B Èð@ XAm�

�
'B@ ÐC¾Ë@ A

	
JK
PñÊ

	
¯#

@
	

Yë
�

�ð ú
	
G
�
@Q

�
¯_

�
�J
J.¢

�
�# ÉK. #Quran �

èPñ��._ XQ
	
«# Q�.« ø

XA«

éJ
Ê« Y
	
J« ½

	
K @ I. Ê

�
®Ë @ Q

	
®

	
«@ ú

	
æJ

	
¯

�
H@ðAÒ�Ë@

�
èñ

�
¯

ÈA
�
¯ Q�

	
g Ñë ½Ë

A�

@ A

	
JK. ñÊ

�
¯ Q�.»

@

	á�
m
Ì'@ É

	
�

	
¯

@

YªK.
�

I
	
K

@ AÓY

	
J« é

	
K @

	
àA

	
¯ ¼Q�

	
«

�
Ð Q

	
k@

	
àA¿ AÓð hAJ.�

	áºÜØ ÕºJ
Ê« ú

	
æJ
« ÕËð Pñ

	
K

éË
	
àB@ ÑêË

	
àðYK. ú

	
æ« éJ
Ë ½

�
KAJ
k ½K. A�k

�A
	
JË @ éK.

	á�
ªK. A
�
JÓ ú

G
.

é
	
J« @ñ

	
JÓ

�
@ ÕÎ�Ó É¾

�
��.

	
à@

	

�ªK. ��
Ë
�
èC�Ë@ I. Ê

�
¯ éÊ¿ ½J
Ë @

ÐA«

ú
�
æk ÉÔ« Õç

�
' ÉJ
Ô

g
.

èYÒm�'
. ð ÐC�Ë@ Ém.

�� �
éªÒm.

Ì'@

úÍ@

XY« Q�
�K
ñ

�
K É¾K. @

	
Y»

�
I

�
¯ñË@ ú

�
GAJ
k

�
IJ
k

ÕË ú

	
G @ Éë é

	
JÓ Èñ

�
®
�
K Y

�
®Ë é

	
Jm.
Ì'@ Q�.» @

é<Ë @ð ÕÎ�ð A
	
Jë

	á�
g ÑîD
Ê« I. m�
�
' A

	
JK
PñÊ

	
¯ ¼Q�

�
�

�@

Zú

æ
�
� A

	
JË Q�

�»

@ øQ

�
K

�
èYK
Yg. H. ñÊ

�
®Ë @ é

	
K

@ H. QªË@

ø

	
YË@ AîD

	
¯ 	áË ÕËAªË @ Q�

�» ú

	
æÓ

�
é
	
¯A

	
�@ ú

æ
.
K

éJ

	
¯ ñëð �Ë ½

	
J« ú

�
æ

	
K @

�
IÊ

�
¯ @

	
X �C

	
g

@
	
X@

�
IK
ñ

�
JK
P ú

	
æªK
 ¼A

	
Jë AÒêÓ ú

G
.
@

	
à

�
@Q

�
®Ë @ l .

×A
	
KQK.

B@
	
àA

�
�« Èñ

�
®K

	
à@

ð ½ªÓ É� Èñk Qå

�
�J. Ë @

ÐñJ
Ë @ ð@
	
àñº

�
K I. J
£

	
­Ë@ ZAÒ�Ë@

�
HñÖÏ @ ék. Ag

@
	
X @ 	áK

	
YË @ ÈAK
P

	
àðX �

	
®

	
K Ð 	PB A

	
J« ��

	
®Ë @

ú

æ
�
� ñÓ ø

@ ú

	
¯ð H. A�k É¿ð Yg

�
èXAª�Ë@

ú

Î« é<Ë Yg

@

	
Xñ«

@ ú

	
æªK. A

�
K ½J.k@ Y

�
®

	
¯

	á�
Ó

ÉJ.
�
¯ Õæ

	
¢ªË@ AêË A

	
JJ
Ê« Èð

@ ú

�
æÓ ½

	
KAjJ.�

	
�P

B@ð

�
I

	
K@

	
­J
» C

	
¯

�
ð 	áºÖß
 @Q

�
K

�
�k I. k

@

ú

	
G @

H. YÒmÌ'@
�

IK
ñºË@# ñËð ÉÔg
.
@ CK. AîE

@

AJ

	
KYË@

	
àAjJ.�

�
é
	
Jm.
Ì'@

�
I

	
K@ð 	áK
Yg. @ñ

�
JÒÊË

�
Im�

�
' �

I
	
K

@ð

�	
¬

AÖÏ ¨
�
èPñ� ø

@ ú

G
.
X# @Yg.

�
@Yg.

	
­Ë

@

84

APPENDIX B. EVENTS

The list of 66 events that were used in this study are given in this appendix, along with

their English translation and corresponding category. Both Table B.1 and B.2 include

all the chronologically-ordered events of the month of January 2015.

Table B.1. List of Arabic and English event titles and categories (1 of 2)

Event Arabic title English title Event Category
1 	áÒJ
Ë @ ú

	
¯ H. @

�
é
	
JK
YÖß. ø

PAj

�
J
	
KB

@ Q�
j.
	
®
�
JË @

�
é
�
KXAg Suicide bombing in Ibb, Yemen Armed conflicts and attacks

2 ðPñJ
ÊË Õæ
	
�

	
J
�
Kð �A

�
JJ
ÊË @

	á« úÎ
	

j
�
J
�
K AJ

	
K @ñ

�
JJ
Ë Lithuania adopts the euro instead of Litas Business and economy

3 �
éJ

KA

	
Jm.
Ì'@

�
éÒºjÒÊË

	á�
¢�Ê
	
¯ ÐAÒ

	
�

	
� @ Palestine joins the International Criminal Court International relations

4 ¼PñK
ñJ

	
K ú

	
¯ é

�
JÒ» Am× 	áÓ ÐAK

@ ÉJ.

�
¯ ú

æ
.
J
ÊË @ �

	
�

@ ñK.

@

�
èA

	
¯ð Death of Abu Anas al-Libi Armed conflicts and attacks

5 ú

	
Gñ� úÎ« Ðñj. êË @ YªK.

�
éJ
ËAÒ

�
�Ë@ AK
Pñ»

�
HAK. ñ

�
®« North Korea sanctions after Sony hack International relations

6 	
àQ

�
¯

	
Y

	
JÓ ÈñJ.

	
J¢�@

ú

	
¯

�
é��

	
J» Èð

@ ZA

	
JK. Turkey permits the building of a church in Istanbul Arts and culture

7 	
àA

	
KñJ
Ë @

�
HAK. A

	
j

�
J
	
K @

ÉJ.
�
¯ YK
Yg. H.

	Qk ZA
�

�
	
� @

Formation of new party before Greek elections Politics and elections

8 AK. A
�

� 40
	

­¢
�
J
	
m�

�
' Ð@Qk ñ»ñK. Boko Haram had kidnapped around 40 boys Armed conflicts and attacks

9 �
éK
Qº�«

�
èY«A

�
¯ úÎ« Q¢J
�

�
� Ð@Qk ñ»ñK. Boko Haram controls military base Armed conflicts and attacks

10 	
àA

�
J�» AK. ú

	
¯

	
àAJ. Ë A£ úÎ«

�
éK
ñk.

�
H@PA

	
« Pakistan Air Force strikes Pakistani Taliban Armed conflicts and attacks

11 PAÓ
	
X

�
é

	
¢

	
¯AjÖß.

�
èñJ.« PAj.

	
®

	
K @ ú

	
¯

	á�
J

�
KñmÌ'@ 	áÓ úÎ

�
J
�
¯ Bombing in Dhamar kills Houthis Armed conflicts and attacks

12 �
éJ

	
Kñ«Q

	
¯

�
éºÊÖÏ

�
éK
Q

�
K

@

�
èQ�.

�
®Ó

	
¬A

�
�

�
�» @ Discovery of tomb of ancient Egyptian queen Arts and culture

13 �
éJ

	
K A

	
KñK
 ¡

	
®

	
K

�
éÊ

�
¯A

	
K AJ
�. J
Ë

	
­�

�
¯ Libya bombs Greek-operated oil tanker Armed conflicts and attacks

14 �
�@QªË@ XðYg H. Q

�
¯

	á�
K
Xñª� 	áÓ

@ ú

Îg. P É

�
J
�
®Ó Death of two Saudi guards near Iraq Armed conflicts and attacks

15 ú

æ
.

	
£ñK.

@ ú

	
¯

�
èQ

KA£ É

	
g@X @ñ

�
®Ê« 	áK
Q

	
¯A�ÖÏ @

�
HA

JÓ Passengers stuck in airplane in Abu Dhabi Disasters and accidents

16 �
èYK
Yg. Y«@ñ

�
¯

	
YJ

	
®

	
J
�
K YªK.

	á�
K
Pñ�Ë@ Èñ
	

kX YJ

�
®K

	
àA

	
JJ. Ë Lebanon implements strict immigration rules International relations

17 PAJ.
	
K

B@

�
HA¿ AJ.

�
�

�
�AK.

�
éJ

�
¯@QªË@

�
H@ñ

�
®Ë@ Xñ

	
Jk. É

�
J
�
®Ó Death of Iraqi soldiers in Anbar clashes Armed conflicts and attacks

18 �
�«@X úÎ«

�
H@PA

	
«

	
­ËAj

�
JË @

�
H@ñ

�
¯ 	á

�
� Combined Joint Task Force strikes on ISIS Armed conflicts and attacks

19 ÈñJ.
	
J¢�@ ú

	
¯

�
é£Qå

�
�ÊË 	Q»QÓ ú

	
¯

�
éK
PAj

�
J
	
K @

�
éJ
ÊÔ

« Suicide attack in Turkish police station Armed conflicts and attacks

20 ðYJ. K
 @

ú

ÍPA

�
�

�
é

	
®J
m

��
úÎ« iÊ�Ó Ðñj. îE. úÎ

�
J
�
¯ Deaths at armed attack on Charlie Hebdo Armed conflicts and attacks

21 ðYK. @

ú

ÍPA

�
� Ðñj. ë ø

	
Y

	
®

	
JÓ

�
éK
ñë YK
Ym�

�
' Identification of Charlie Hebdo suspects Armed conflicts and attacks

22 ZAª
	
J��.

�
é

	
j

	
j

	
®Ó

�
èPAJ
�

Q�
j.
	
®
�
K Car bomb explodes in Sana’a Armed conflicts and attacks

23 ú

æ
�
� @ñ» 	áK
ñ

	
k

B@

�
èXPA¢Óð éJ.

�
�

�
�Ó ÐC�

�
��@ Surrender of suspect and chase of brothers Armed conflicts and attacks

24 ��
PAK. Yg. A�Ó úÎ«
�

H@Z@Y
�
J«@ Attacks on Paris Mosques Armed conflicts and attacks

25 X@Y
	
ªK. ú

	
¯ 	áK

Q�
j.
	
®
�
JK. úÎ

�
J
�
¯ ñ

�
®� Suicide bomber kills people in Baghdad Armed conflicts and attacks

26 �
éK

Q�
j. J

	
JË @ A

	
«AK.

�
èYÊK.

�
�Qm�

�
' Ð@Qk ñ»ñK. Boko Haram burns Baga in Nigeria Armed conflicts and attacks

27 ðYK. @

ú

ÍPA

�
� Ðñj. ë ø

	
Y

	
®

	
JÓ É

�
J
�
®Ó Death of Charlie Hebdo suspects Armed conflicts and attacks

28 	á�
�
	
�J

	
®K. ø

XñîE

�
�ñ� ú

	
¯ 	á

KAëP 	PAj.

�
Jk@ Captive hostages in Jewish Market in Vincennes Armed conflicts and attacks

29 ø

ðYJ. Ë @
	

­

K@P

�
�m�'

.

�
A
	
JÊ« YÊm.

Ì'@
�
éK. ñ

�
®«

	
YJ

	
®

	
J
�
K Raif Badawi receives 50 lashes for insulting Islam Law and crime

30 AJ
�
�
@

�
HAJ

KAî

	
E hA

�
J
�
J
	
¯ @ ú

	
¯

�
IK
ñºË@ úÎ« AJ
Ë @

Q�
��@ 	Pñ

	
¯ Australia wins AFC cup first match against Kuwait Sports

85

Table B.2. List of Arabic and English event titles and categories (2 of 2)

Event Arabic title English title Event Category
31 	

àA
�
J�» AK. ú

	
¯ ù

ªJ

�
� Yj. �Ó Q�
j.

	
®
�
K Suicide bomb attack on Shiite mosque in Pakistan Armed conflicts and attacks

32 �ÊK. @Q¢�. úæê
�
®Ó

	
¬Yî

�
D�@ ø

PAj

�
J
	
K @ Ðñj. ë Suicide attack at a cafe in Tripoli, Lebanon Armed conflicts and attacks

33 �
é£Qå

�
�Ë @ ©Ó 	áK
QjJ. Ë @ ú

	
¯

	á�
j.
�
Jm× ¼AJ.

�
�

�
�@ Clash between Bahraini protestors and police Politics and elections

34 ��
PAK. ú

	
¯ 	áÓA

	
�

�
�

�
èQ�
�Ó ú

	
¯

	
àñ»PA

�
��
 ÕËAªË @ ZAÔ« 	P World leaders participate in Paris unit rally Armed conflicts and attacks

35 Èñ�QÊË
�
é

J�
�Ó AÓñ�P

�
HQå

�
�
	
�

�
é

	
®J
m

��
úÎ« Ðñj. ë German newspaper arson attack Armed conflicts and attacks

36 AK

Q�
j. J

	
K ú

	
¯

�
A�

	
m�

�
� 19 É

�
J
�
®K

�
èA

�
J
	
¯ PAj

�
J
	
K @ Girl suicide kills 19 person in Nigeria Armed conflicts and attacks

37 �
éJ
��

	
KðY

	
KB@

�
èQ

KA¢Ë@ ÐA¢k 	áÓ Z 	Qk. ÈA

�
�

�
�
	
K @ Divers retrieve part of the crashed Indonesian jet Disasters and accidents

38 �
éJ
ºK
QÓ

B@

�
éK

	Q»QÖÏ @
�
èXAJ

�
®Ë @ H. A�k

�
�«@X

�
�@Q

�
�

	
g@ ISIL hacks U.S Central Command Twitter and YouTube feeds Armed conflicts and attacks

39 I. «B É
	

�
	
¯

B

�
éJ
J.ë

	
YË@

�
èQºË@

�
è 	Q

KAm.

�'
.

	Pñ
	
®K
 ðYËA

	
KðP ñ

	
KAJ

�
���
Q» Cristiano Ronaldo wins the FIFA Ballon d’Or for 2014 Sports

40 AJ
�
�
@ QK
 @

�
èQ

KA£ ÐA¢k 	áÓ

�
èXAJ

�
®Ë @

�
èQÔ

�
¯ Éj. �Ó ÈA

�
�

�
�
	
K @ Divers recover cockpit recorder of Air Asia Disasters and accidents

41 �
é�A

KQË @ Pñ�

�
¯

�
éJ

	
�

�
¯ ú

	
¯ ¼PAJ.Ó

�
éÒ» Am×

�
èXA«@

Egypt’s court initiates a retrial of Hosni Mubarak Law and crime

42 ñ
	
KA

�
JJ
ËñK. A

	
K ñk. Pñk. ú

ÍA¢�
B

@ ��

KQË @

�
éËA

�
®

�
J�@ Resignation of Italy’s president Giorgio Napolitano Politics and elections

43 Q¢
�
¯ ú

	
¯ YJ
Ë @

�
èQ» ÈAK
Y

	
KñÓ hA

�
J
�
J
	
¯ @ Launch of men’s handball world championship in Qatar Sports

44 ¼PAJ.Ó
	áK.

	
�ñ« YÔg

@

	
¬A¢

�
J

	
k Abduction of the chief of staff to Yemen’s president Armed conflicts and attacks

45 	
àBñm.

Ì'@ ú

	
¯

	
¬Yë

	
­�

�
®

�
K

�
éJ
ÊJ

K @Qå� @

�
éJ
kðQÓ Israeli helicopter strike near the border with Syria Armed conflicts and attacks

46 PA
	
JË @

�
�C£@

	
­

�
¯ð 	áÊªK
 ú

æ
.
J
ÊË @

�
��
m.

Ì'@ Libyan army declares a ceasefire Armed conflicts and attacks

47 AJ

�
®K
Q

	
¯

@ Õ×

@ �

A¿

�
éJ

K @ñ

�
J�B

@ AJ

	
�J

	
«

�
é
	
¯A

	
�

�
J�@

Equatorial Guinea to host the Africa Cup of Nations Sports

48 ú

�
GñmÌ'@

�
èQ¢J
�

�
Im�

�
'

AJ.�

�
éËA¿ðð 	áÒJ
Ë @

�
èA

	
J
�
¯ Houthi rebels seize the official Saba News Agency Armed conflicts and attacks

49 �
é�A

KQË @ P@X úÎ« ZCJ

�
��B

@ð ú

�
GñmÌ'@ H. C

�
®

	
K @ Houthi rebels take over the residence of the President Armed conflicts and attacks

50 	áK

	Qj.

�
JjÖÏ @

	á�

�
J
	
�J
ëQËAK.

	
àAK. AJ
Ë @

�
�«@X YK
Yî

�
E ISIS threatens to kill two Japanese citizens Armed conflicts and attacks

51 é
�
JÓñºkð ú

	
æÒJ
Ë @ ��

KQË @

�
éËA

�
®

�
J�@ Yemeni President, Prime Minister, and Yemeni cabinet resign Armed conflicts and attacks

52 	á�

	
®K
Qå

�
�Ë @

	á�
ÓQmÌ'@ ÐXA
	

g
�
èA

	
¯ð Death of Custodian of the Two Holy Mosques King Abdullah Politics and elections

53 �
è 	Q

	
« PAÔ«@

�
èYj

�
JÖÏ @ Õ×

B@ ÉJ
¢ª

�
K United nations debilitate the reconstruction of Gazza Politics and elections

54 �
�«@X ©Ó

�
HAêk. @ñÓ ú

	
¯

	á�
J

	
K A

	
JJ. Ë Xñ

	
Jk. É

�
J
�
®Ó Death of Lebanese soldiers in clash with ISIS Armed conflicts and attacks

55 @ðA¿ñK
 A
	
KðPAë ú

	
GAK. AJ
Ë @

�
é
	
JJ
ëQË@ Ð@Y«@

ISIS kills the first Japanese hostage Armed conflicts and attacks

56 ú

	
GAK. ñ» 	áÓ

�
èQ�
J.» Z@ 	Qk.

@

	
àðYJ
ª

�
J��
 X@Q»

B@ Kurdish fighters recapture most of Koban Armed conflicts and attacks

57 AJ
�
�
@ Õ×

@ ú

	
¯

�
éJ
K. ñ

	
Jm.
Ì'@ AK
Pñ» ÐAÓ

@ Qå�

	
m�'

�

�@QªË@ Iraq loses against South Korea in AFC Asian cup Sports

58 AJ
�. J
Ë ú

	
¯ �ÊK. @Q¢�. AJ

�
�
	
KPñ»

�
�Y

	
J
	
¯ úÎ« Ðñj. ë Attack on Libyan Corinthia Hotel in Tripoli Armed conflicts and attacks

59 ú

ÎJ

K @Qå�B@

�
��
j. ÊË É

�
KP úÎ« é<Ë @ H.

	QmÌ Ðñj. ë ú

	
¯

	á�
K
Y
	
Jk. É

�
J
�
®Ó Death of soldiers in attack on Israeli military convoy Armed conflicts and attacks

60 �
ék. ñÊ

	
®Ë @ð Z@QÓA�ð X@Y

	
ªJ. K.

�
H@Q�
j.

	
®

�
K

�
éÊ�Ê��. úÎ

�
J
�
¯ Deaths caused by several attacks around Baghdad Armed conflicts and attacks

61 ZA
	
J�
��.

�
éJ
Ó@X

�
éÊJ
Ë ú

	
¯ A�

	
m�

�
� 30 É

�
J
�
®
�
K �Y

�
®ÖÏ @

�
I�
K. PA�

	
�

@ Deaths caused by terrorist attacks in Sinai Peninsula Armed conflicts and attacks

62 ø

PñêÒm.
Ì'@ �QmÌ'@ Qº�ªÓ úÎ«

	
àñËñ

�
J��

	
àñJ

�
KñmÌ'@ Shiite Houthi rebels seize a Yemeni military base Armed conflicts and attacks

63 	
àA

�
J�» AJ. K. PñK. A¿

Q�

�

� ú

	
¯ ù

ªJ

�
� Yj. �Ó Q�
j.

	
®
�
K Bombing of Shiite mosque in Shikarpur Armed conflicts and attacks

64 �
é»QÒ

�
��
J. Ë @

	áÓ úÎ
�
J
�
¯ ñ

�
®�ð ¼ñ»Q» úÎ«

�
�«@X Ðñj. ë ISIS attack on Kirkuk and peshmerga deaths Armed conflicts and attacks

65 Z @P 	PñË@ �Êm.
× ÉJ
º

�
�

�
� YJ
ªK

�
éK
Xñª�Ë@ ½ÊÓ Saudi king reconstructs the council of ministers Politics and elections

66 ú

	
GA

�
JË @ ú

	
G AK. AJ
Ë @

�
é
	
JJ
ëQË@ Ð@Y«

@ 	áÊªK

�
�«@X ISIS announces the death of the second Japanese hostage Armed conflicts and attacks

86

APPENDIX C. EVENT STATISTICS

This appendix is dedicated to the statistics associated with the identified events. For each

event, we present the exact number of relevant, non-relevant, and total judged tweets.

Then, we include the labeling time in hours, the % agreement, the trust-based confidence,

and Kappa statistic. Events are organized in a similar manner to the previous tables,

were event 1 in table C.1 is the same as event 1 in table B.1.

Table C.1. List of event relevance judgment details and statistics (1 of 2)

Event Relevant Non-relevant
Total

Judgments
Labeling

time (hrs)
Agreement(%)

Overall
Confidence (avg.)

Kappa

1 637 336 973 110 0.90 0.90 0.57
2 44 39 83 10 0.96 0.96 0.84
3 338 173 511 31 0.95 0.95 0.79
4 1755 151 1906 93 0.98 0.98 0.68
5 558 955 1513 63 0.96 0.96 0.82
6 687 707 1394 57 0.99 0.99 0.94
7 43 634 677 12 0.98 0.98 0.74
8 204 461 665 35 0.99 0.99 0.96
9 422 311 733 9 0.98 0.98 0.92
10 212 481 693 37 0.95 0.95 0.78
11 622 1227 1849 72 0.95 0.96 0.80
12 284 958 1242 58 0.98 0.98 0.89
13 150 705 855 52 0.97 0.97 0.82
14 1027 543 1570 81 0.96 0.96 0.80
15 100 38 138 14 0.99 0.99 0.94
16 1708 479 2187 23 0.97 0.97 0.82
17 102 115 217 78 0.81 0.81 0.23
18 46 419 465 61 0.95 0.95 0.50
19 439 686 1125 56 0.97 0.97 0.86
20 606 1192 1798 53 0.89 0.89 0.52
21 239 1536 1775 19 0.93 0.93 0.43
22 1869 271 2140 81 0.97 0.97 0.71
23 446 1802 2248 44 0.90 0.90 0.43
24 929 2124 3053 94 0.97 0.97 0.87
25 74 820 894 38 0.96 0.96 0.45
26 501 312 813 81 0.92 0.92 0.67
27 338 2065 2403 36 0.95 0.95 0.58
28 2719 736 3455 146 0.90 0.90 0.43
29 1797 165 1962 141 0.93 0.93 0.30
30 534 1215 1749 38 0.89 0.89 0.48

87

Table C.2. List of event relevance judgment details and statistics (2 of 2)

Event Relevant Non-relevant
Total

Judgments
Labeling

time (hrs)
Agreement(%)

Overall
Confidence (avg.)

Kappa

31 20 1932 1952 18 0.99 0.99 0.33
32 2980 308 3288 21 0.95 0.95 0.51
33 143 896 1039 33 0.96 0.96 0.65
34 593 1049 1642 138 0.84 0.84 0.34
35 56 2621 2677 26 0.99 0.99 0.55
36 181 1852 2033 42 0.96 0.96 0.56
37 312 412 724 39 0.85 0.85 0.40
38 594 1841 2435 28 0.97 0.97 0.83
39 202 1508 1710 15 0.96 0.96 0.66
40 283 1198 1481 15 0.96 0.96 0.71
41 943 405 1348 12 0.95 0.95 0.78
42 212 18 230 3 0.98 0.98 0.67
43 154 812 966 17 0.93 0.94 0.55
44 368 1026 1394 16 0.95 0.95 0.75
45 2823 29 2852 63 0.96 0.96 0.04
46 69 2105 2174 19 0.96 0.96 0.25
47 341 665 1006 31 0.91 0.91 0.62
48 363 1267 1630 43 0.94 0.94 0.67
49 3045 659 3704 202 0.89 0.89 0.39
50 295 2332 2627 22 0.95 0.95 0.53
51 763 2863 3626 36 0.95 0.95 0.72
52 1645 68 1713 110 0.95 0.95 0.18
53 86 2116 2202 14 0.96 0.96 0.24
54 254 2017 2271 14 0.97 0.97 0.69
55 113 3159 3272 16 0.98 0.98 0.42
56 917 1803 2720 371 0.90 0.90 0.54
57 964 2965 3929 129 0.93 0.93 0.65
58 980 4787 5767 110 0.96 0.96 0.71
59 3110 1627 4737 84 0.96 0.96 0.81
60 793 4504 5297 59 0.96 0.96 0.68
61 2009 2505 4514 119 0.85 0.85 0.39
62 12 3346 3358 28 0.98 0.98 0.05
63 523 3331 3854 34 0.97 0.97 0.70
64 1697 1300 2997 154 0.87 0.87 0.49
65 532 1146 1678 40 0.94 0.94 0.73
66 3619 517 4136 72 0.91 0.91 0.32

88

	Abstract
	TABLE OF CONTENTS
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Background and Related Work
	Background
	Definitions of Event
	Event Detection
	Test Collections

	Event Detection in Microblogs
	Event Detection Applications in Microblogs

	Test Collections for Event Detection in Microblogs

	Building the Test Collection
	Tweet Data Collection
	Identifying Events
	Wikipedia Current Events Portal (WCEP)
	Selecting Candidate Events

	Gathering Relevance Judgments
	Tweet Collection Search
	CrowdFlower Labeling Job
	Pilot Study
	Final Study

	Evaluation
	Test Collection
	Events
	Annotations
	Qualitative Analysis
	Comparison With Other Test Collections

	Using EveTAR
	SONDY's Social Analysis Tool
	Performance of Event Detection Algorithms

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Collection Keywords
	Appendix Events
	Appendix Event Statistics

