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ABSTRACT 
  

The electroencephalogram (EEG) is used to noninvasively monitor brain activities; it 

is the most utilized tool to detect abnormalities such as seizures. 

In recent studies, detection of neonatal EEG seizures has been automated to assist 

neurophysiologists in diagnosing EEG as manual detection is time consuming and 

subjective; however it still lacks the necessary robustness that is required for clinical 

implementation. Moreover, as EEG is intended to record the cerebral activities, extra-

cerebral activities external to the brain are also recorded; these are called “artifacts” and 

can seriously degrade the accuracy of seizure detection. 

Seizures are one of the most common neurologic problems managed by hospitals 

occurring in 0.1%-0.5% livebirths. Neonates with seizures are at higher risk for 

mortality and are reported to be 55-70 times more likely to have severe cerebral-palsy. 

Therefore, early and accurate detection of neonatal seizures is important to prevent 

long-term neurological damage. 

Several attempts in modelling the neonatal EEG and artifacts have been done, but most 

did not consider the multichannel case. Furthermore, these models were used to test 

artifact or seizure detection separately, but not together. This study aims to design 

synthetic models that generate clean or corrupted multichannel EEG to test the accuracy 

of available artifact and seizure detection algorithms in a controlled environment. 

In this thesis, synthetic neonatal EEG model is constructed by using; single-channel 

EEG simulators, head model, 21-electrodes, and propagation equations, to produce 

clean multichannel EEG.  Furthermore, neonatal EEG artifact model is designed using 

synthetic signals to corrupt EEG waveforms. After that, an automated EEG artifact 
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detection and removal system is designed in both time and time-frequency domains. 

Artifact detection is optimised and removal performance is evaluated. Finally, an 

automated seizure detection technique is developed, utilising fused and extended 

multichannel features along a cross-validated SVM classifier. 

Results show that the synthetic EEG model mimics real neonatal EEG with 0.62 

average correlation, and corrupted-EEG can degrade seizure detection average 

accuracy from 100% to 70.9%. They also show that using artifact detection and removal 

enhances the average accuracy to 89.6%, and utilising the extended features enhances 

it to 97.4% and strengthened its robustness. 
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CHAPTER 1:  INTRODUCTION 

1.1 Background and Motivation 

Neonatal seizures are one of the most common and crucial signs of acute neonatal 

encephalopathy. They represent a major risk of death or morbidity, and may contribute 

to an adverse neurodevelopmental outcomes. Seizures occur as reported in population-

based studies, in 1 to 5 per 1000 live births, increasing to 11.1% for preterm neonates 

and to 13.5% for infants with a birth weight less than 2500 grams. Furthermore, 

neonates with seizures are reported to be 55 to 70 times more likely to have severe 

cerebral palsy [1] [2] [3] [4] [5]. 

Clinical signs of seizures may not be present in as many as 85% of neonates. In addition, 

treating these seizure events with antiepileptic drugs may further suppress the clinical 

signs while electrographic seizures persist. Consequently, electroencephalogram (EEG) 

monitoring is essential to accurately diagnose neonatal seizure events and to evaluate 

the efficacy of treatment [6]. 

Few staff in Neonatal Intensive Care Unit (NICU) receive sufficient training to interpret 

EEG patterns. Therefore, automated neonatal seizure detectors were introduced in the 

NICU to assist neurophysiologists in diagnosing EEG, as manual detection is time 

consuming and subjective. Current seizure detection methods still lack the necessary 

robustness that is required for clinical implementation, due the variability of EEG 

recordings in time and among patients [7] [8]. Such variability is inevitable, as the 

morphology of background and seizure patterns change significantly among different 

patients, and is greatly affected by the conceptual age (CA) of the patient. Moreover, as 

EEG is intended to record the cerebral activities, extra-cerebral activities external to the 
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brain are also recorded; these are called “artifacts”. Artifacts are undesired signals 

originating from different sources that can introduce changes in the EEG recordings. 

They can mimic abnormal EEG patterns, thus deforming the EEG information content. 

EEG artifacts such as cardiac activity, ocular movements, eye blinks and muscular 

activity are among the most common types of artifacts and can have durations ranging 

from seconds to hours [6] [9] [10] [11]. 

Neonatal seizure detection accuracy and robustness can be enhanced by testing and 

validating the system using large, annotated, clinical databases [12]. Unfortunately, 

obtaining such databases requires intense effort, and their protection policies restrain 

independent scientists from comparing their results on a common ground basis. 

Therefore, modelling neonatal EEG is needed to provide a common ground database. 

Such models can assist the development of new features for the automated seizure 

detection systems, and can facilitate comparisons of neonatal seizure detection 

algorithms. Furthermore, it can be used for calibrating new EEG machines, and can 

serve as an alternative when patient’s confidentiality and ethical laws prohibit the use 

of real EEG [13]. 

 

1.2 Project Characteristics 

1.2.1 Definition and Objectives 
The project is defined as the design of a simulator for neonatal multichannel EEG, and 

its application as a test bed for automatic artifact detection and removal for abnormality 

detection systems. The project investigates whether neonatal seizure detection rates can 

be enhanced using; time and time-frequency artifact detection and removal techniques, 

and time-frequency features based on channels alikeness. Thus, the objective of this 
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thesis is to design synthetic models that generate clean or corrupted neonatal 

multichannel EEG to test the accuracy of available artifact and seizure detection 

algorithms in a controlled environment. 

 

1.2.2 Scope 
The project scope is defined as designing the neonatal multichannel EEG model by 

assessing validated: simulators, neonatal head model, and multichannel propagation 

scheme. Furthermore, the automatic artifact detection and removal techniques use time 

and time-frequency signal processing methods. Such methods are preferred more than 

frequency domain techniques, because; they require standard real-valued algorithms 

rather than complex-valued [14], they do not omit the non-stationary behaviour of EEG 

[15], and additionally time-frequency methods produce unique signatures for different 

signals and are not limited to non-Gaussian signals [15] [16]. Finally, the automatic 

abnormality detection system utilise: time-frequency feature extraction methodology, 

features fusion and selection techniques, and a machine learning algorithm. 

 

1.2.3 General Overview 
The general overview of the project stages is depicted in Figure 1.1. Synthetic neonatal 

multichannel EEG waveforms are produced using the developed model along with 

synthetic multichannel artifacts. Both signals are added to produce contaminated 

version of the clean multichannel EEG. After that, multichannel time-frequency 

representations are computed using Spatial Time-Frequency Distributions (STFD) and 

plugged into the automatic artifact detection and removal system along with the time 

domain contaminated version. Time and time-frequency artifact detection and removal 
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algorithms are computed and the results are finally plugged into the automatic EEG 

abnormality detection to recognise seizure events. 

 
Figure 1.1: Schematic overview of the project stages 

 

1.3 Contributions 
The most important contributions of this thesis to the neonatal EEG modelling and 

detection are five folds. 

1. Modelling synthetic neonatal multichannel EEG: We developed a model that 

mimics real life neonatal multichannel EEG by using: single-channel EEG 

simulators, head model, 21 electrodes, and propagation equations, and which is 

controlled by user inputs to alter the properties of produced patterns. The 

synthetic neonatal multichannel EEG has been validated against real neonatal 

multichannel EEG using Spearman’s correlation. Validation results show 

0.58065 and 0.57796 mean correlations when comparing synthetic and real 

background epochs, and 0.65107 and 0.66254 when comparing seizure epochs 

in the frequency and time-frequency domains respectively. 
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2. Modelling multichannel EEG propagation: We developed a novel neonatal EEG 

propagation model by utilising the radiation transport equation, which describes 

the dispersion and decay in light intensity due absorption, scattering, and 

reflection when propagating through biological tissues. The developed model is 

simple, descriptive, and require low computational power when compared to 

current modelling techniques. The model has been validated by comparing its 

seizure-to-background ratio distribution against a validated reference using 

Probability-Probability plots. The resultant normal line show an R2 value of 

0.99999036 when fitting the reference, thus proving the goodness of the model. 

3. Modelling synthetic neonatal multichannel EEG artifacts: We developed a 

model that contaminates the synthetic clean EEG, and which is also controlled 

by user inputs to alter the properties of produced artifacts. The produced EEG 

artifacts effectively supress the EEG information content and lower the seizure 

detection average accuracies from 100% to; 99.5%, 98.2%, 93.0 %, 82.8%, and 

70.9% when using signal-to-artifact ratios of; 0, -7.2206, -13.2412, and -16.763, 

and -19.262 dB respectively, thus mimicking real life contamination. 

4. Automated artifacts detection and removal: We automated and extended time 

domain Blind Source Separation (BSS) algorithms into the joint time-frequency 

and statistically optimised their detection performances. They effectively detect 

contaminated EEG with mean detection rates of 97% and 90.4% in the time and 

time-frequency domains respectively. Furthermore, they maintained their 

detection accuracies when using signal-to-artifact ratios of; 0, -7.2206, -

13.2412, and -16.763, and -19.262 dB, thus proving their robustness to 

contamination level. Moreover, seizure detection mean accuracy have increased 
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from 70.9% to 89.6% when removing artifacts from corrupted EEG with -

19.262 dB SAR using time domain Fast-ICA, thus enhancing the overall system 

performance (by 18.7% increment). 

5. Extended multichannel features: We introduced extended time-frequency 

multichannel features that are based on information alikeness between EEG 

channels. By utilising the extended features, seizure detection average 

accuracies have increased from 93.0% to 97.8%, 82.8% to 97.6%, and from 

70.9% to 97.4% when using corrupted EEG with SAR values of -13.2412, -

16.763, and -19.262 dB respectively (4.8%, 14.8% and 26.5% increments). This 

proves the effectiveness of the extended features in enhancing the seizure 

detection performance. 

Additional contributions are:  

1. We developed an EEG corruption evaluation methodology using various 

statistical approaches. This methodology quantifies the artifact masking effect 

on the EEG information contents, thus assessing the EEG contamination level. 

2. We introduced a classification accuracy profiling to illustrate the effect of 

feature subset size on the accuracy of the automated seizure detection system. 

This provides a benchmark to choose a number of feasible features that 

maximises the system accuracy and robustness. 

 

1.4 Thesis Organisation 

Chapter 2: Theoretical Background and Literature Review 

Chapter 2 provides a review of the fundamentals needed to proceed in this thesis along 

with the literature reviews. The chapter starts with an explanation of the anatomical 
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structure of the neonatal head and its current modelling techniques. After that, 

fundamentals of EEG signals and its normal and abnormal behaviours are explained 

along with their modelling techniques. Furthermore, methods and techniques for 

processing the EEG signals are reviewed to understand their adequacy and limitations. 

Finally, it presents a review on blind source separation methods and fundamentals of 

pattern recognition to summarise the edge of knowledge in; detecting and removing 

EEG artifacts, and detecting neonatal seizures. 

 

Chapter 3: Modelling Approaches and Techniques 

Chapter 3 provides in depth explanations for the modelling approaches and techniques 

used in this thesis along with all the procedures undertaken. First, it illustrates an 

analysis for real neonatal EEG data, then it explains the synthetic neonatal multichannel 

EEG modelling technique that is based on: time-frequency synthetic simulators, a head 

model, and a novel EEG propagation scheme. Furthermore, it explains the EEG 

propagation model validation procedure using Probability-Probability plots. Finally, it 

explains the construction of the synthetic neonatal multichannel EEG artifacts model 

that is based on using simulated signals to contaminate the clean EEG. 

 

Chapter 4: Application to Time-Frequency Algorithms Enhancement for 

Abnormality Detection  

Chapter 4 provides in depth explanations for the abnormality detection time-frequency 

enhancement techniques used in this thesis along with all the procedures undertaken. 

First, it explains the construction of the automatic artifact detection and removal system 

using BSS in time and time-frequency domains to filter the contaminated EEG patterns. 
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After that, an optimisation procedure for the automated artifact detection technique is 

presented along with an evaluation for the artifact removal quality to quantify the 

system performance. Furthermore, it demonstrates the construction of the automated 

EEG abnormality detection system, embedding fused and extended multichannel EEG 

features to detect neonatal seizures. Finally, validation of the automated EEG 

abnormality detection performance using cross-validation techniques is explained. 

 

Chapter 5: Results and Discussions 

Results and outcomes of the methods and techniques used in chapter 3 and 4 are 

presented in this chapter, along with their discussions and interpretations. First, the 

synthetic neonatal multichannel EEG and artifacts models results are illustrated to 

present the clean and corrupted multichannel waveforms. After that, results of the 

automated artifact detection and removal system using BSS in the time and time-

frequency domains along with the automated EEG abnormality detection system, are 

presented and discussed to assess the system performance enhancement. 

 

Chapter 6: Conclusions and Future Perspectives 

The last chapter summarises the important findings of this thesis and tests the validity 

of the null hypothesis of this work. It also presents several suggestions and perspectives 

for future research and development. 
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CHAPTER 2:  THEORETICAL BACKGROUND 
AND LITERATURE REVIEW 

In this chapter, a review of the fundamentals needed to proceed in this thesis are 

presented along with the literature reviews. First, the anatomy of the neonatal head 

and its modelling techniques are discussed to understand the complexity of the 

Electroencephalogram source environment. After that, the EEG fundamentals and its 

modelling techniques are discussed to create a baseline in discriminating normal and 

abnormal signal behaviours. Furthermore, a review on the neonatal EEG processing 

methods is presented to illustrate the adequacy of such techniques along with their 

limitations. Finally, blind source separation methods and fundamentals of pattern 

recognition are reviewed to summarise the current techniques in; detecting and 

removing EEG artifacts, and detecting neonatal seizures. 

2.1 The Neonatal Head 

2.1.1 Anatomy of the Neonatal Head 
The neonatal head shares the same main structures with adults. It consists of a scalp, 

skull, cerebrospinal fluid (CSF), and a brain (Figure 2.1). The scalp is the soft tissue 

envelope of the cranial vault containing the skull, CSF, and the brain, while the skull is 

the bony structure that mainly forms the head and protects inner soft tissues. The CSF 

is a clear, colourless body fluid found in the brain and spine, which provides basic 

mechanical and immunological protection to the brain. Finally, the brain is the main 

organ of the human nervous system [17]. 

The brain consists of two symmetric hemispheres and can be divided into cerebrum, 

brain stem and cerebellum. The cortex, or upper portion of the brain, is composed of 
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four lobes namely; frontal, parietal, occipital and temporal lobes (Figure 2.1). Each of 

these lobes are subdivided into many areas that control different functions. The cortex 

is about 1.5-4.0 mm thick and consists of nerve cells, which are darker in colour and 

therefore called grey matter. The larger inner part of the brain consists only of axons of 

the nerve cells and is lighter in colour, therefore called the white matter [17]. 

 

Figure 2.1: Brain lobes and head structures [Redrawn from www.md-health.com] 

 

The brain is made of about 1010 nerve cells called neurons. Neurons consist of a cell 

body, dendrites, nucleus, an axon, and synaptic terminals (Figure 2.2). Dendrites extend 

from the cell body and share with it the function of receiving information from synaptic 

connections from adjoining neurons. Information is then transmitted to the next neuron 

through the axon and the synaptic terminals [17]. 

 

Figure 2.2: Neuron structure and information transmission [Taken from www.pixgood.com] 
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2.1.2 Neonatal Head Modelling 
Spherical and realistic neonatal head models had been successfully used in different 

areas such as; solving EEG forward and inverse problems, and validation of optical 

tomographic images. Several spherical head models had been proposed in the literature 

such as; homogeneous spherical model, three sphere model, four sphere model, 

isotropic multi-sphere model, anisotropic multi-sphere model, and five layer model. 

Despotovi et al. had proposed using the four sphere model in [18] and [19] to mimic 

the neonatal head by dividing the head structure into four concentric spheres; scalp, 

skull, CSF, and the brain. They had used this model in [18] to present a pipeline for 

modelling realistic volume conductor models for the neonatal head, and they addressed 

the challenges and presented their solutions. They had also used this model in [19] to 

develop an integrated method for ictal EEG dipole source localization based on a 

realistic head model, and had investigated the utility of EEG source imaging in neonates 

with postasphyxial seizures. 

Another adaption for the four sphere model was used by Vatta et al. in [20]. They 

compared different spherical and realistic head modelling techniques to estimate the 

EEG forward solution from current dipole sources, distributed on a standard cortical 

space, and reconstructed from Montreal Neurological Institute Magnetic Resonance 

Imaging (MRI) data. They presented computer simulations for three different four-shell 

head models, two with realistic geometries; either surface-based (BEM) or volume-

based (FDM), and the corresponding sensor-fitted spherical-shaped model. 

Sadleir et al. had also adapted the four sphere model in [21]. They had used the model 

to estimate the sensitivity of three 16-electrode and impedance measurement 

configurations to bleeding in premature neonates. 
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Ala et al. had proposed using the isotropic multi-sphere model in [22]. They built a 

multi-sphere particle method in order to estimate the solution of the Poisson’s equation 

with Nuemann boundary conditions describing the neuronal brain activity. 

Hayde et al. had proposed adapting the anisotropic multi-sphere model in [23]. Their 

study examined the effects that partial volume errors in CSF segmentations had upon 

the electromagnetic source localization bioelectric model. They introduced a new 

approach for using estimates of partial volume fractions in the construction of patient 

specific bioelectric models. 

Gupta et al. had used the five sphere model in [24]. They studied the effect of taking 

white matter and grey matter into account while solving the forward EEG problem. 

Their work shows that five sphere head models, comprising scalp, skull, CSF, grey 

matter and white matter, are more accurate in finding the forward EEG solution in 

comparison to four sphere models. 

Brigadoi et al. had also adapted the five sphere model in [25]. They presented a 4D 

neonatal head model (for each week from 29 to 44 weeks post-menstrual age) that 

included a multi-layered tissue mask identifying; CSF, grey matter, white matter, 

cerebellum and brainstem. They developed an open source package which can be 

applied by users of near-infrared spectroscopy and diffuse optical tomography. It can 

be used to optimise probe locations and image reconstruction, register data to cortical 

locations, and ultimately improve the accuracy and interpretation of diffuse optical 

techniques in neonatal populations. 

12 
 



  

2.2 Neonatal Electroencephalogram (EEG) 

2.2.1 Electrical Activities and Scalp EEG 
The sources of the electrical activity in the brain measurable with EEG are cortical. 

Each synapse behaves like a voltage source driving current in a small loop. Electric 

potentials around individual cells are negligible, and not recordable at the scalp surface, 

except for the fact that the pyramidal cells are all aligned perpendicular to the surface 

of the cortex. Therefore, if activities were synchronous, the voltage fields produced by 

individual cells accumulate to produce a relatively larger potential that is recordable at 

the scalp. Such spatiotemporal synchronisation of neural networks results in net 

polarisation of extended brain regions, which may be transient, slow, or oscillatory [26]. 

A widely used standard for placing and denoting EEG electrodes on the scalp is the 

10-20 system [27] [28] [29] [30]. It is an internationally recognized method that defines 

the location of the scalp electrodes, and it provides a uniform coverage of the entire 

scalp. The system is based on the relationship between the location of an electrode and 

the underlying area of cerebral cortex. The numbers 10 and 20 correspond to the fact 

that the distances between adjacent electrodes are either 10% or 20% of the total front-

back or right-left distance of the scalp, which defines 21 electrode positions. Each 

electrode has: a main letter to identify the lobe, a number to identify the hemisphere, 

and some electrodes has subscripted letter used for accurate localization (Figure 2.1 and 

Table 2.1) [31].  

Four anatomical landmarks are used to position the electrodes. The first landmark is the 

nasion which is the point between the forehead and the nose. The second landmark is 

the inion which is the lowest point of the skull from the back of the head, and lastly the 

pre-auricular points anterior to the ear (Figure 2.3). The exact electrode placement 
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procedure is discussed extensively in [31] and [32]. The electrodes positions in 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 

azimuth and elevation/altitude are summarized in Table 2.2 [33]. 

 

 

Table 2.1: Electrodes letters/labels according to the brain lobes and hemispheres 

Main 
Letter 

Main 
Location Number Hemisphere Subscripted 

Letter 
Specific 
Location 

F Frontal Lobe Even Right Z Midline 

T Temporal 
Lobe Odd Left 

C Scalp Centre 

P Parietal Lobe 

O Occipital 
Lobe 

 

 

 

 

Figure 2.3: The International 10-20 standard for EEG electrodes placement (Redrawn from [34]) 
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Table 2.2: 21 EEG electrodes positions in catesian and spherical coordinates. Cartesian coordinates are 
caluclated with respect to a head radius of  5.95 cm. Spherical angles measuring references are; 
azimuth angle is between +X and +Y, and elevation is between the electrode vector and the x-y plane. 
The computed values can be validated by checking the results in [33], but note that transforming to a 
common angle reference is needed 

Electrode 
Label 

Cartesian Coordinates Spherical Coordinates 
(Degrees) 

X Y Z Azimuth Elevation 

𝑭𝑭𝒛𝒛 -3.50 0.00 4.81 180 54 

𝑪𝑪𝒛𝒛 0.00 0.00 5.95 180 90 

𝑷𝑷𝒛𝒛 3.50 0.00 4.81 360 54 

𝑭𝑭𝒑𝒑𝟏𝟏 -5.38 -1.75 1.84 198 18 

𝑭𝑭𝟑𝟑 -3.45 -2.73 4.00 218.36 42.3 

𝑭𝑭𝟕𝟕 -3.33 -4.58 1.84 234 18 

𝑪𝑪𝟑𝟑 0.00 -3.50 4.81 270 54 

𝑻𝑻𝟑𝟑 0.00 -5.66 1.84 270 18 

𝑷𝑷𝟑𝟑 3.45 -2.73 4.00 321.64 42.3 

𝑻𝑻𝟓𝟓 3.33 -4.58 1.84 306 18 

𝑶𝑶𝟏𝟏 5.38 -1.75 1.84 342 18 

𝑭𝑭𝒑𝒑𝟐𝟐 -5.38 1.75 1.84 162 18 

𝑭𝑭𝟒𝟒 -3.45 2.73 4.00 141.64 42.3 

𝑭𝑭𝟖𝟖 -3.33 4.58 1.84 126 18 

𝑪𝑪𝟒𝟒 0.00 3.50 4.81 90 54 

𝑻𝑻𝟒𝟒 0.00 5.66 1.84 90 18 

𝑷𝑷𝟒𝟒 3.45 2.73 4.00 38.36 42.3 

𝑻𝑻𝟔𝟔 3.33 4.58 1.84 54 18 

𝑶𝑶𝟐𝟐 5.38 1.75 1.84 18 18 

𝑭𝑭𝒑𝒑𝒑𝒑 -5.66 0.00 1.84 180 18 

𝑶𝑶𝒛𝒛 5.66 0.00 1.84 360 18 
 

 

15 
 



  

2.2.2 Normal and Abnormal Neonatal EEG 
The most common way of analysing EEG is by visual inspection in the time domain 

and by estimating the signal spectral contents. Normally, EEG is visualised in time 

windows ranging from 10 to 15 seconds and showing all channels simultaneously. The 

frequency distribution is important when characterising the EEG pattern. Different 

oscillations are consequences of different underlying mechanisms. The EEG is 

commonly divided into four sub-bands as the following (Figure 2.4): 

• Delta: 0.5 ≤ f < 4 Hz (Occur in infants and during deep sleep or anaesthesia). 

• Theta: 4 ≤ f < 8 Hz (High in children below 13 years old during drowsiness or 

light sleep). 

• Alpha: 8 ≤ f < 13 Hz (Occur in walking and resting state. High when eyes are 

closed. Sinusoidal in shape). 

• Beta: 13 ≤ f < 30 Hz (The lower frequencies are present during mental activity, 

and higher frequencies are associated with tension and intense). 

 

Figure 2.4: Example of Different brain waves (Redrawn from www.hubpages.com) 
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Classification of neonatal EEG into normal and abnormal is a difficult task as 

neurologists need to be aware of the exact age of the neonate. Vast maturational changes 

happen in the 25 to 48 week period of Conception Age (CA). Normal patterns at one 

age can be abnormal only a few weeks later and vice versa [35]. 

In extreme prematurity, normal EEG patters are typically discontinues, with bursts 

of continuous cerebral activity separated by intervals of relative quiescence and lower 

amplitude. This discontinuity improves with ages and the inter-burst interval becomes 

much shorter and higher in amplitude as the baby approaches full term. Between 30 to 

32 weeks CA, Quite Sleep (QS) activity consists of a tracé discontinue patterns, where 

periods of cerebral activity are separated by isoelectric periods of quiescence with 

voltages less than 25µV. By 35 to 36 weeks CA, QS changes behaviour into tracé 

alternant pattern, where cerebral activities are maintained above 25µV, but with cycles 

between higher-amplitude bursts and more quiescent periods. Finally, by 40 to 44 

weeks CA, the EEG background becomes continuous in both wake and sleep cycles 

[35]. 

EEG abnormalities can be detected by examining the background EEG voltage and 

frequency. Examples of abnormalities in the background are: discontinuous pattern 

(Figure 2.5), burst suppression pattern (Figure 2.6), continuous low voltage EEG (less 

than 10 µV), and isoelectric EEG (less than 2 µV) [35]. 

Seizures are one of the most important EEG abnormality that needs to be detected. They 

can be grouped into the following categories: clonic, tonic, and myoclonic. Due to the 

incomplete myelination, infants cannot generate generalised tonic-clonic seizures♣, but 

♣ Generalized tonic-clonic seizure is one type of seizure that involves the entire body [35]. 
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they can have multifocal seizures that can appear as generalised to the inexperienced 

examiner. They can also have generalised epileptic spams that are hypothesised to be 

more subcortically driven [35]. Generally, seizures are characterised by sudden changes 

in frequency in the measured EEG (limited by the alpha band < 13 Hz [13] [35] [36]). 

These changes are imposed on the background EEG as repetitive spikes or oscillatory 

type of signals (Figure 2.7). Moreover, the morphology of epileptic seizures slightly 

change from one type to another as they may appear in different frequency ranges. 

 

 

Figure 2.5: Tracé discontinue in a neonate with moderately severe HIE (Redrawn from [37]). Note that 
discontinuous EEG in neonates with HIE is equivalent to the tracé discontinue in premature. 

 

 

Figure 2.6: Burst suppression pattern in severe birth asphyxia (Redrawn from [37]) 
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Figure 2.7: Example of a typical neonatal seizure (Redrawn from [37]) 

 

2.2.3 Neonatal Single-Channel EEG Modelling 
Several attempts and techniques to model single-channel neonatal EEG has been 

found in the literature. The first attempt (to the best of the author’s knowledge) at 

modelling the neonatal EEG for seizure detection was performed by Roessgen et al. in 

[38] “The Roessgen Model”. The model was constructed by modifying the adult EEG 

model proposed by Lopes da Silva et al. in [39]. The modification was done by adding 

a stationary sawtooth input to Lopes da Silva’s model to simulate neonatal seizures. 

The produced synthetic waveforms had coloured spectrum but lacked the broad 

nonstationary behaviour that is known to be present in neonatal EEG. 

Another attempt to model the neonatal EEG was performed by Celka and Colditz [40] 

“The Celka Model”. Their model consisted of two different wiener filters to simulate 

seizure and background patterns. The model included a nonstationary sawtooth input 
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with a piecewise linear instantaneous frequency (IF) law to comprise the nonstationary 

behaviour of the neonatal EEG seizure patterns. This model offered two major 

improvements in modelling the neonatal EEG; the inclusion of the nonlinear mapping 

function, and the inclusion of a nonstationary input based on the analysis of the seizure 

waveform. However, the model was not capable of simulating the various morphologies 

of the seizure waveform due to a lack of variability in the mapping function. 

Furthermore, this model could not be implemented as the range and distribution of 

possible inputs and model parameters used are still not known. 

Rankine et al. had presented a different approach to the neonatal EEG modelling 

problem in [41] “The Rankine Model”. It is based on the fact that the seizure waveform 

can be modelled as a multicomponent signal with a piecewise linear IF law [42], and 

that background EEG can be modelled as a random signal with a time varying spectrum 

[43]. The statistical properties of the model parameters (ranges and the distributions) 

were al known. Consequently the model was capable of simulating the neonatal EEG 

patterns. However, due the large number of parameters; the model failed to account for 

dependence between them, which meant that many seizure patterns generated by the 

model were not mimicking real neonatal EEG seizure. 

An improvement to the background EEG waveform produced in the Rankine model 

was proposed in [44] “The FBM Model”. This model was based on using a band limited 

fractional Brownian process with time-varying Hurst exponent to model the neonatal 

background EEG. This approach had provided a more detailed definition of the neonatal 

background EEG when compared to the previous models. The advantages of this 

approach were; simple simulation of continues neonatal background EEG with variable 
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spectral characteristics, and that development of features for analysing the neonatal 

background EEG is inherited in the model. 

The latest attempt (to the best of the author’s knowledge) in neonatal EEG modelling 

was proposed by Stevenson et al. in [13]. The model was based on a nonlinear dynamic 

system; the Duffing oscillator “The Duffing Model”. The Duffing oscillator was driven 

by a nonstationary impulse train to simulate neonatal seizure EEG and by white 

Gaussian noise to simulate neonatal background EEG. The advantages of this model 

were; reduction in the required number of parameters, and more accurate/realistic, life–

like EEG when compared with the previous models. 

 

2.2.4 Neonatal Multichannel EEG Modelling 
Modelling the neonatal multichannel EEG is done by adapting the Radiation 

Transport Equation (RTE) and by considering a mean seizure propagation speed. The 

RTE describes the dispersion and decay in light intensity due absorption, scattering, 

and reflection when propagating through biological tissues. Despite the fact that, RTE 

uses light and EEG is an electrical measurement; both signals are fundamentally 

electromagnetic, thus they obey the same fundamental laws of physics (absorption, 

scattering, reflection, and the inverse square law [45]). Furthermore, applying the RTE 

on a validated neonatal head model, would represent the EEG propagation through the 

different head structures, thus EEG power will decay and disperse according to the head 

tissue’s optical properties. 

The RTE is used extensively in Optical Imaging, Near Infrared Spectroscopy 

(NIRS), Diffuse Optical Tomography (DOT), Single Photon Emission Computed 

Tomography (SPECT), and to study light absorption and scattering in different 
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biological tissues. Jacques had used the RTE in [46] to review reported tissue optical 

properties. The author concluded that using a generic tissue can adequately mimic any 

real tissue, and it has the advantage of generating smoothly predictable spectra for 

absorption and scattering. 

Tuchin had also adapted the RTE in [47] to discuss both (strongly) multiple scattering 

tissues, such as: skin, brain tissues, and vessel walls, and (weakly) scattering high-

transparent tissues, such as eye tissues (cornea and lens). 

Dehaes et al. had investigated the effect of the neonatal fontanel by predicting the 

photon propagation using a probabilistic Monte Carlo approach in [48] to improve 

NIRS measurements. They had created two anatomical neonatal head models from 

computed tomography and magnetic resonance images. The first model is a realistic 

head including the fontanel tissue, while the second model replaces the fontanel by skull 

tissue. Their results suggested that the fontanel should be taken into account in 

quantification of NIRS responses to avoid errors. 

Jager et al. had investigated the performance of a neural network in the derivation of 

the absorption coefficient of the brain in [49]. This was done by using simulated non-

invasive time-resolved reflectance measurements on the head. They had determined the 

absorption coefficient of the brain with an RMS error of less than 6% from reflectance 

data at a single distance calculated by diffusion theory. 

Another adaptation of the RTE was done by Brigadoi et al. in [25]. They had used 

absorption coefficients, reduced scattering coefficients, and refractive indices from 

Dehaes et al. to model the photon transport using Mote Carlo approach, Finite Element 

Method, and a Voxel-based Monte Carlo method. 
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The neonatal seizure propagation speed has no record in the literature (to the best 

of the author’s knowledge). However adult seizure propagation speed ranges are 

studied, but it is still poorly understood why it varies over several orders of magnitude. 

Several attempts and techniques had been done to understand this behaviour. Trevelyan 

et al. had proposed in [50] that the speed of propagation is set by the extent of the 

recruitment steps, which in turn is set by how successfully the feedforward inhibitory 

restraint contains the excitatory drive. Thus, a single mechanism could account for the 

wide range of propagation velocities of epileptiform events observed in vitro and in 

vivo (0.1 - 100 mm/s). Trevelyan et al. had also suggested in [51] that the after-

discharges propagate with relative uniform speed and are independent of the speed of 

the ictal waveform (20 - 100 mm/s). Another attempt was done by Asakawa et al. in 

[52]. They had evaluated the effect of different anxiety states on information processing 

as measured by an EEG using emotional stimuli on a smartphone. They showed how 

anxiety level can change the EEG propagation speed. 

 

2.2.5 Artifacts in Neonatal EEG 
Artifacts that corrupt neonatal EEG measurement can be categorised into three 

distinct sources: environmental artifacts, experimental errors, and systemic 

physiological artifacts.  

2.2.5.1 Environmental Artifacts 

Environmental artifacts generally originate from the mains power leads that surround 

the body. It can be seen in the form of 50/60 Hz sinusoid and can additionally arise 

from electromagnetic interference. Instrumentation artifact is a type of environmental 

artifact which originates from within the circuit components and can be observed in the 
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form of; thermal noise, shot noise, or 1/f noise. These types of artifacts can easily be 

suppressed by means of linear filters. This is due to either the narrow frequency band 

of the artifact such as the 50/60 Hz power signal or because the different frequency 

band these artifacts occupy when compared to the neonatal EEG. Although white noise 

covers all frequencies, filtering the undesired high-frequency components removes the 

majority of the noise, thereby improving the signal-to-noise ratio (SNR) [9]. 

2.2.5.2 Experimental Errors 

Experimental errors are seen as uncontrolled/unwanted variations in the experimental 

setup. They can be reduced by proper planning, but it is almost impossible to eliminate 

completely. This inability to completely supress such errors is in most part due to; 

human errors during the experimental setup, or subject motion during data acquisition. 

Examples of such errors are: incorrect procedural setup, and poor application or 

placement of the EEG electrodes which can create discrepancies in the measured signal. 

Neonate’s motion can create large amount of experimental errors and it is commonly 

the most detrimental for EEG recordings. Neonate’s motion alters the position of the 

electrodes on the scalp and can cause differences in the distance between recording 

electrodes and the scalp, thus a change in the electrical coupling causing signal 

distortion. Moreover, changes in the conduction volume between the electrode and the 

EEG signal source due neonate’s motion induces potential changes at the recording 

sites. Movement artifacts can be reduced by correct preparation of the interface surface 

by abrasion and cleansing of the skin prior to the adhesion of the electrodes [9]. 

2.2.5.3 Physiological Artifacts 

Physiological processes in the body other than EEG can contribute to the measured 

signal. The major contributors of such artifacts are: eye movement related artifacts, 

24 
 



  

Electrocardiogram signals (ECG), and muscle tension signals measured using 

Electromyography (EMG). 

The eye movement related artifacts have the highest supressing effect on EEG. 

Alternations in the eye position (due rapid eye movement sleep REMS, blinking, or eye 

lid movements) change the resting potential of the retina. These electrical changes can 

be measured using an Electrooculogram (EOG) and can propagate over the scalp to be 

imposed on the EEG recordings. This type of artifact can seriously degrade the utility 

of EEG analysis, as its amplitude can be greater than the EEG. 

The cardiac signals can also cause artifacts on the EEG readings. The signal originating 

from the heart has a relative high amplitude that can be picked up at different locations 

on the patient’s body. Furthermore, the expansion and contraction of the blood vessels 

caused by the heart beatings may introduce pulsation artifacts on the EEG recordings. 

These artifacts are characterised by frequency ranges of around 0.5–40 Hz and 1.2 Hz, 

respectively, making them difficult to remove from EEG waveforms, as they are 

overlaid on the EEG spectrum [9]. 

 

2.2.6 Neonatal EEG Artifacts Modelling 
Several attempts and techniques had been done to understand the characteristics of 

the neonatal EEG artifacts. Uriguen et al. had reviewed the background knowledge on 

the characteristics of the EEG activities along with the EEG artifacts in [10]. They had 

categorised EEG artifacts into physiological and non-physiological waveforms, and 

then discussed only physiological artifacts (ocular, muscle, cardiac, perspiration, and 

tongue artifacts) as the other type can be reduced by proper measurement techniques. 
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Another attempt in reviewing the characteristics of EEG artifacts was done by Sweeney 

et al. in [9]. In this publication EEG artifacts had been categorised into: environmental 

artifacts, experimental errors, and physiological artifacts. They had extensively 

discussed the physiological signals that most likely to be recorded in a home 

environment, and documented the artifacts which occurred most frequently that had the 

largest degrading effect on the EEG signals. 

Vos et al. had described and evaluated algorithms using Independent Component 

Analysis (ICA) for the automatic removal of ECG, pulsation and respiration artifacts in 

neonatal EEG in [53]. They concluded that these artifacts had similar morphologies as 

seizures, and were characterised by a high degree of repetitiveness. Because of this, 

these artifacts were the main cause of false positives in seizure detection algorithms. 

Janardhan et al. had discussed ECG artifact’s influence on the analysis and 

interpretation of the EEG signals in [54]. They had modelled the cardiac artifact by 

combining two signals to approximate the main characteristics of the artifact. The 

cardiac artifact consisted of a 1 Hz spike train signal simulating corrupted QRS 

complexes of the ECG, and a 2 Hz sine wave that corresponded to the pulsation artifact 

of an electrode close to a blood vessel. 

Matic et al. had also discussed the ECG artifact’s influence on the analysis and 

interpretation of the EEG signals in [55]. They had modelled the cardiac artifact by 

combining two signals to approximate the main characteristics of the artifact. The 

cardiac artifact consisted of a 2.5 Hz spike train signal simulating corrupted QRS 

complexes of the ECG having an amplitude of 6, and a 2 Hz sine wave that 

corresponded to the pulsation artifact of an electrode close to a blood vessel having an 

amplitude of 1.5. 
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Khalifa et al. had discussed the contamination of EEG data by different sources external 

to the brain in [56]. They had found out that pulse artifacts having a frequency near 1.2 

Hz occur when an electrode is placed in the vicinity of a blood vessel. This artifact can 

appear as a sharp spike or as a smooth wave. They had also found out that an electrode 

artifact is generally characterized by behaviour like short time, high amplitude (STHA) 

jump due to impedance alteration, and confinement to a single electrode. Electrode 

artifacts resembled inter-ictal spikes and at times could mimic an ictal pattern. 

Zima et al. had discussed STHA artifacts on long-term neonatal EEG recordings, and 

their robust removal in [57]. They described the STHA artifact to be mainly caused by 

movement activity, and had an adverse effect on automatic processing of long-term 

sleep recordings. 

Brotchie et al. had also discussed the STHA EEG artifact characteristics in [58]. They 

had constructed a model that simulates STHA EEG artifacts using heavy-tailed noise. 

This type of noise was generated using a Levy stable symmetrical stochastic process 

and had a maximum amplitude 15 times greater than the normalised EEG. 

 

2.3 Processing of Neonatal EEG Signals 

Neonatal EEG is a nonstationary signal where its spectral contents change with 

time. Classical processing domains such as time and frequency cannot take into 

consideration the time varying spectrum, thus they cannot represent the EEG 

information adequately. Consequently, a Time-Frequency Representation (TFR) is used 

to represent the time varying spectral information of nonstationary signals. It represents 

both time (t) and frequency (f) in a joint distribution called the Time-Frequency 

Distribution (TFD) and denoted by 𝜌𝜌(𝑡𝑡,𝑓𝑓). More details can be found in [1] chapter 1 
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pages 31-64. Time-frequency signal processing is studied and discussed extensively in 

Appendix A page 140, along with a novel approximation for the compact support kernel 

time-frequency formulation. 

Several recent publications used time-frequency processing techniques in different 

applications. For instance, Castaño-Candamil et al. had introduced a novel method for 

source analysis of EEG recordings based on a physiologically-motivated source 

representation in [59]. They had used Time-Frequency Mixed-Norm Estimates along 

with Sparse Basis Field Expansions to extract EEG sources. 

Another adaptation for time-frequency processing techniques was done by Siddiqui et 

al. in [60]. They had used time frequency processing to analyse the power spectrum 

density of EEG signals to diagnosis Rapid Eye Movement Behaviour Disorder 

(REMBD). Their results suggested that normal people and REMBD patients can be 

differentiated using this methodology. 

Yan et al. had employed the Stockwell transform to obtain the time–frequency 

representation of the EEG signals, and then calculated the power spectral density in the 

time-frequency plane to characterize the behaviour of EEG recordings in [61]. This was 

done to propose a novel seizure detection method based on Stockwell transform for 

intracranial long-term EEG data. Samiee et al. had used an approach based on an 

adaptive and localized time-frequency representation of EEG signals by means of 

rational functions to classify epileptic seizures in [62]. They also implemented a novel 

feature extraction technique based on rational discrete short-time Fourier transform 

(DSTFT) that outperformed others in terms of classification accuracy. 

Lastly, Boashash et al. had used time-frequency processing techniques mostly for 

neonatal seizure detection applications as in [27], [28], [63] and [64]. In [27] they had 
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proposed a methodology to define new time-frequency features to detect changes in 

nonstationary signals and applied it on a neonatal seizure detection system. In [28] they 

had designed a novel time-frequency matched filter to solve the problem of detecting 

non-stationary signals in the presence of additive noise, and then applied the design to 

detect neonatal seizures using multichannel EEG signals. In [63] they had reviewed the 

recent advances in the field of time-frequency signal processing with focus on 

introducing image feature information using pattern recognition techniques. Finally, in 

[64] they presented a methodical approach to improve quadratic time-frequency 

distribution (QTFD) methods by designing adaptive time-frequency kernels for 

diagnosis applications. They had illustrated their approach by using EEG, heart rate 

variability (HRV), and pathological speech signals. 

 

2.4 Blind Source Separation 

2.4.1 The Cocktail Party Problem 
Blind Source Separation (BSS) refers to the methods that allow the separation of a 

set of source signals from a set of mixed signals without information about the nature 

of the source signals. This problem is called the cocktail party problem. 

The neonatal EEG represents a linear mixture of numerous sources of neural and non-

neural activities (EEG and artifacts). Because EEG is acquired with a number of 

electrodes on different locations on the scalp, each electrode will measure a weighted 

sum of these different sources namely the electrode observation. This mixture of 

sources can be expressed using Equation 2.1, where; 𝑌𝑌 is the matrix of acquired signals 

on the 𝑖𝑖th electrode (Equation 2.2), 𝑆𝑆 is the matrix of source signals (Equation 2.3), and 
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𝑀𝑀 is the mixing matrix where its coefficients determine the contribution of each source 

signal in the observation (Equation 2.4). 

Equation 2.1 describes the standard linear statistical model in the time domain (Two 

Dimensional Signals [Channel, Time]). This equation can be extended to include three 

dimensional signals such as images, or in this particular case the auto-TFDs of the 

STFD matrix. Equation 2.5 describes the time-frequency extension of the standard 

linear statistical model, where; 𝑄𝑄 is the matrix of the mixed auto-TFDs on the 𝑖𝑖th 

electrode, and 𝑇𝑇 is the vectorisation of the auto-TFDs from the STFD matrix. 

Vectorisation converts the auto-TFDs matrices into vectors having 𝑛𝑛 number of rows 

and (time samples x frequency samples) number of columns. Such transformation is 

valid as the fundamental property of the linear mixing models states that transformation 

of the mixed data does not in any way change the mixing model, and it is essential as 

time-domain BSS techniques can be used in the time-frequency domain [65]. 

The EEG and artifacts mixture can be separated by estimating an un-mixing 

matrix 𝑊𝑊� , where “ideally” it is the inverse of the mixing matrix 𝑀𝑀. Equation 2.6 and 

Equation 2.7 describe the source separation in the time and the time-frequency domain 

respectively. The objective of BSS is to find or estimate an un-mixing matrix that 

separates the observed mixture into source signals and Independent Component 

Analysis (ICA) is a widely used tool to solve this problem (Figure 2.8). 

 

𝑌𝑌 = 𝑀𝑀 .  𝑆𝑆 Equation 2.1 

𝑌𝑌 = [𝑦𝑦1(𝑡𝑡), 𝑦𝑦2(𝑡𝑡), … , 𝑦𝑦𝑛𝑛(𝑡𝑡)]𝑇𝑇 Equation 2.2 

𝑆𝑆 = [𝑠𝑠1(𝑡𝑡), 𝑠𝑠2(𝑡𝑡), … , 𝑠𝑠𝑛𝑛(𝑡𝑡)]𝑇𝑇 Equation 2.3 
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𝑀𝑀 =  �

𝑚𝑚11 𝑚𝑚12 ⋯ 𝑚𝑚1𝑛𝑛
𝑚𝑚21 𝑚𝑚22 ⋯ 𝑚𝑚2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑚𝑚𝑛𝑛1 𝑚𝑚𝑛𝑛2 ⋯ 𝑚𝑚𝑛𝑛𝑛𝑛

� Equation 2.4 

𝑄𝑄 = 𝑀𝑀 .  𝑇𝑇 = 𝑀𝑀 .  𝑣𝑣𝑣𝑣𝑣𝑣 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝝆𝝆(𝑡𝑡,𝑓𝑓)�� Equation 2.5 

𝑆̂𝑆 = 𝑊𝑊�  .𝑌𝑌 =  𝑀𝑀�−1 .𝑌𝑌 Equation 2.6 

𝑇𝑇� = 𝑊𝑊�  .𝑄𝑄 =  𝑀𝑀�−1 .𝑄𝑄 Equation 2.7 

 

Figure 2.8: Linear mixing and de-mixing models (Redrawn from [10]) 

 

2.4.2 Independent Component Analysis 
Since both 𝑀𝑀 and 𝑆𝑆 are unknown, it is generally impossible to determine them 

without imposing additional constraints. Therefore, ICA imposes several assumptions 

about the sources in order to obtain a unique decomposition which are: 

• 𝑀𝑀 is an unknown invertible mixing matrix. 

• The source signals are mutually independent random variables. 

• The source signals are non-Gaussian signals (This assumption can be relaxed as 

only one source signal can be Gaussian at a time). 
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• The number of source signals are always less than or equal the number of 

electrodes/observations. 

Furthermore, several choices need to be made as several BSS algorithms exist and it is 

necessary to decide how many components should be retrieved. More details on BSS 

algorithms can be found in Appendix B, page 164. 

Several attempts had been done to analyse the different EEG artifact detection and 

removal techniques in the time domain. Uriguen et al. had reviewed artifact removal 

algorithms used to extract the main sources of interference encountered in the EEG, 

specifically ocular, muscular and cardiac artifacts in [10]. With that review they had 

concluded that, without prior knowledge of the recorded EEG signal or the 

contaminants, the safest approach is to correct the measured EEG using ICA, precisely 

an algorithm based on second order statistics such as second order blind identification 

(SOBI). They had also concluded that correlation measures and normalised root mean 

square error (NRMSE) are the most prevalent metrics to verify the effectiveness of a 

noise/artifact removal methods. 

Another attempts in reviewing the artifact removal algorithms were done by Sweeney 

et al. and Adali et al. in [9] and [66] respectively. Sweeney et al. provided a detailed 

analysis of the current artifact removal techniques and evaluated the advantages and 

disadvantages of each of the proposed artifact detection and removal techniques. Adali 

et al. had presented ICA and then its generalization to multiple data sets Independent 

Vector Analysis (IVA). They had addressed how various methods fall under this 

umbrella and had given examples of performance for a few sample algorithms in 

medical image analysis. 
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Sarfraz et al. had proposed the application of ICA to ECG signal pre-processing and 

then compared the performances of two major types of ICAs namely Infomax and Fast-

ICA in ECG signal de-noising in [67]. They concluded that Fast ICA outperformed 

Infomax algorithm and can effectively improve the ECG recognition in the presence of 

non-trivial artifacts. 

Vos et al. had described and evaluated artifact removal algorithms using ICA for the 

automatic removal of ECG, pulsation and respiration artifacts in neonatal EEG in [53]. 

They concluded that these techniques reduced the number of false positive detections 

and are beneficial in long term EEG seizure monitoring in the presence of disturbing 

biological artifacts. 

Janardhan et al. had quantified which artifact separation algorithm would be most 

effective when used for contaminated EEG in [54]. They had evaluated the influence 

of noise and artifacts on the performance of Fixed Point ICA (FpICA), SOBI, Joint 

Approximation Diagonalization of Eigen matrices (JADE), and Algorithm for Multiple 

Unknown Source Extraction (AMUSE) algorithms. They had used spearman correlation 

as detection/comparison criterion, and concluded that SOBI is the best for sinusoidal 

artifacts removal, while FpICA is the best for spiky artifacts removal. 

Another comparison of common ICA methods was done by Matic et al. and Miljkovic 

et al. in [55] and [68] respectively. They compared the performance of Robust-ICA, 

SOBI, JADE, and Blind Source Separation-Canonical Correlation Analysis (BSS-CCA) 

algorithms when applied to real-life neonatal EEG data with added artifacts. They both 

had used spearman correlation as detection/comparison criterion, and concluded that 

SOBI and BSS-CCA are the best algorithms for sinusoidal artifacts removal, while 

Robust ICA was the best for spiky artifacts removal. 

33 
 



  

Vanderperren et al. had also used ICA algorithms to remove Ballistocardiogram (BCG) 

artifacts from EEG recordings inside MR scanner in [69]. They had used JADE, SOBI, 

Fast-ICA, and Infomax ICA algorithms to remove artifacts and adapted the spearman 

correlation as the artifact component selection criteria. 

On the other hand, many attempts had been done to analyse the different EEG 

artifact removal techniques in the time-frequency domain. Sardouie et al. had used the 

BSS-CCA method to extract the time-frequency signature of ictal sources in [11]. 

Moreover, they proposed two time-frequency based semi-BSS approaches, namely the 

Time-Frequency-Generalized Eigen Value Decomposition (TF-GEVD) and the Time-

Frequency-Denoising Source Separation (TF-DSS), for the denoising of ictal signals 

based on the extracted time-frequency signatures. 

Zhao et al. had proposed a hybrid de-noising method combining Discrete Wavelet 

Transformation (DWT) and an Adaptive Predictor Filter (APF) to remove Ocular 

Artifacts (OA) from the EEG signals in [70]. Their results outperformed existing 

techniques such as; Wavelet Packet Transform (WPT), ICA, DWT and Adaptive Noise 

Cancellation (ANC). Muthukumaraswamy had reviewed the spectral, spatial, and 

temporal characteristics of muscle artifacts along with the techniques to suppress such 

artifacts in EEG in [71]. The author had concluded that none of the artifact detection 

and removal techniques was able to guarantee that the analysed data are artifacts free. 

Daly et al. had proposed to place an accelerometer on cerebral palsy patient’s head 

along with ICA to separate head movement’s artifacts from EEG signals in [72]. Their 

results illustrated that the approach significantly reduces the influence of head 

movement artifacts for Brain-Computer Interface (BCI) applications. 
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Hamaneh et al. had proposed an automated algorithm for removal of EKG artifact from 

EEG data using ICA and Continuous Wavelet Transformation (CWT) in [73]. The 

method applies CWT to the ICs to detect if an EKG artifact component exist using 

different wavelet based features. Hyvarinen et al. had proposed to apply ICA on Short-

Time Fourier Transforms (STFT) of EEG/MEG signals in [65] to find more 

“interesting” sources than with time-domain ICA, and to sort the obtained components 

more meaningfully. They had used Fast-ICA, SOBI, and JADE algorithms and applied 

them on a concatenated short-time Fourier transform of the EEG signal.  

Zachariah et al. had designed a system for removal of artifacts from multichannel EEG 

signals based on ICA and using signal rhythmic components in [74]. Wavelet 

decomposition was used as a pre-processing step because different artifacts were 

overlapped with different EEG rhythms. Using wavelet decomposition had increased 

the redundancy and the rejection of the suitable wavelet artifact related components and 

decreased the probability of rejecting useful information from the EEG signals. 

He-ping et al. had proposed a BSS algorithm by combining the characteristic of time-

frequency analysis (TFA) and BSS in [15]. Their simulations showed that this algorithm 

not only suppresses cross term interference but also enhanced time-frequency 

resolutions. It also provided an effective technology for fault diagnosis of mechanical 

equipment. Ramkumar et al. had developed a data driven method to spatiotemporally 

and spectrally characterize the dynamics of the brain oscillations for resting state 

magnetoencephalography (MEG) data in [75], and called it envelope Spatial Fourier 

Independent Component Analysis (eSFICA). They had compared their method using 

simulated data set against 5 other variants of ICA and found that eSFICA performed on 
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par with its temporal variant eTFICA, and better than other ICA variants in 

characterizing dynamics at time scales of the order of minutes. 

 

2.4.3 Number of Source Signals Estimation 
In general, it is not possible to know how many sources are present in the time 

domain or in the time-frequency domain EEG. However, this number is known to affect 

the quality of the BSS solution. When more sources are estimated than there really are, 

BSS algorithms tend to ‘overfit’, which can lead to estimation errors [53]. An accepted 

method to define the number of active sources is based on Principle Component 

Analysis (PCA) decomposition or Singular Value Decomposition (SVD) of the 

multichannel EEG waveform [53]. The number of dominant eigenvalues provides an 

estimate for the number of active sources in the EEG. More specifically, a percentage 

of the total sorted eigenvalues can be defined, explaining the variance. The number of 

required eigenvalues to satisfy the percentage is chosen as the number of active sources 

in the multichannel EEG waveform. In this way, the number of sources to be extracted 

is automatically adapted to the complexity of the EEG and the number of EEG channels 

available. 

 

2.5 Fundamentals of Pattern Recognition 

2.5.1 Feature Extraction 
Feature extraction is a key stage in pattern recognition, classification of 

abnormalities, and in automated decision making algorithms such as machine learning. 

Features concerning the statistical and spectral properties are traditionally used to 

obtain specific details about the underlying signal. Such statistical features include: 
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mean, variance, skewness and kurtosis, coefficient of variation, inter-quartile range, 

and entropy. On the other hand, spectral features include: spectral flux, spectral 

centroid, spectral roll-off, and spectral flatness. In the case of EEG, such features would 

fail to give sufficient relevant discriminatory information as the spectral contents are 

changing with time. Consequently, time-frequency extension of these features is 

required to increase the relevant information content of these features. 

Several authors have extended neonatal EEG features into the time-frequency 

domain such as: Hidalgo-Muñoz et al. in [29], Balakrishnan et al. in [30], Nagaraj et 

al. in [36], Boashash et al. in [27], [63], [64], [76], and [77], Al-Fahoum et al. in [78], 

Bruser et al. in [79], Fu et al. in [80], Jenke et al. in [81], and Kumari et al. in [82]. 

From all of these publications, the time-frequency features that illustrated good 

performance in characterising the abnormalities in neonatal EEG are categorised as: 

statistical features, frequency extended features, instantaneous frequency features, and 

sub-bands energy features.  More details on the time-frequency features along with their 

equations and interpretations are discussed in Appendix C, page 173. 

 

2.5.2 Feature Fusion: Sum Basis 
Feature fusion, also known as early integration or feature-level combining, is a 

common framework for the fusion of different feature sets. It combines features derived 

from the different single-channel EEG into a more global feature set to be used for 

classification of multichannel EEG, thus, it requires only one classifier. 

The Multichannel Feature Fusion Sum Basis (MFFSB) scheme is based on summing 

the extracted features from all single-channels [30]. Equation 2.8 expresses the 

extracted 𝑑𝑑 features from 𝑀𝑀 channels, while Equation 2.9 expresses the fusion process 
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to produce the global features set. Recent publications concluded that this methodology 

outperforms other fusion techniques such as decision fusion [28] [30]. 

𝐉𝐉 =  �

𝐽𝐽1,1 𝐽𝐽1,2 ⋯ 𝐽𝐽1,𝑑𝑑
𝐽𝐽2,1 𝐽𝐽2,2 ⋯ 𝐽𝐽2,𝑑𝑑
⋮ ⋮ ⋱ ⋮
𝐽𝐽𝑀𝑀,1 𝐽𝐽𝑀𝑀,2 ⋯ 𝐽𝐽𝑀𝑀,𝑑𝑑

� Equation 2.8 

𝚿𝚿𝑖𝑖 =  �𝐽𝐽𝑖𝑖,𝑗𝑗

𝑀𝑀

𝑖𝑖=1

 Equation 2.9 

 

2.5.3 Feature Selection 
“Feature selection is a process of selecting an optimal subset from the original set 

of extracted features that is both relevant and non-redundant” [30]. A large number of 

features containing redundant and/or irrelevant features can reduce the classifier 

performance. Thus, this stage is crucial to maintain the highest possible classification 

performance with the minimum number of features. Furthermore, feature selection has 

to be utilised even when using ensemble of classifiers. This is essential because utilising 

the full feature set (containing irrelevant features) in every used classifier, ensures an 

ensemble performance that is at least higher than any of the individual classifiers, but 

their individual performance will not be maximised. Consequently, the overall 

performance can still be higher when utilising a feature selection algorithm 

Existing feature selection algorithms generally belong to the following categories: 

wrappers, filters, and hybrid. The filter method is independent of any classification 

algorithm, as it orders (ranks) features using specific statistical metrics. Such 

methodologies are time efficient, but produce low accuracy. Some popular filter 

methods are F-score criterion, mutual information and information gain. On the other 

hand, the wrapper method depends on the specific classification algorithm, thus it 
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produces high accuracy, but it requires high computational power. Finally, the hybrid 

method attempts to take advantage of the filter and wrapper techniques by employing 

their opposing strengths [83]. 

Several authors have used different feature selection algorithms. Balakrishnan et 

al. had used the filter-wrapper based feature selection approach to select an optimal 

subset of EEG features from a larger set extracted in [30]. Bruser et al. have applied 

the filter approach using a second-order extension of the first-order utility (FOU) 

method to rank the available features for atrial fibrillation detection in cardiac vibration 

signals in [79]. Liu et al. had proposed a new feature selection method based on Fisher 

criterion and genetic optimization (called FIG) to tackle the CT imaging signs of lung 

diseases recognition problem in [84]. Jenke et al. have selected features to recognise 

emotions from EEG using; ReliefF, Min-Redundancy-Max-Relevance (mRMR), and 

Effect-Size (ES) based algorithms in [81]. Lastly, Adam et al. have selected the best 

features to detect EEG peaks using two algorithms namely; Particle Swarm 

Optimization (PSO) and Random Asynchronous Particle Swarm Optimization 

(RAPSO) in [85].  

 

2.5.3.1 Fisher’s Score 

The Fisher’s score is a filter based feature selection algorithm. It finds a subset of 

features such that, the distances between data points in different classes are as large as 

possible, while the distances between data points in the same class are as small as 

possible. In particular, the input feature vector Ψ ∈ ℝ𝑑𝑑×𝑛𝑛 is reduced to 𝐙𝐙 ∈ ℝ𝑚𝑚×𝑛𝑛 by 

computing the Fisher score as expressed by Equation 2.10, where 𝜇𝜇𝑖𝑖,𝑘𝑘 and 𝜎𝜎𝑖𝑖,𝑘𝑘 are the 

mean and standard deviation of 𝑘𝑘-th class corresponding to the 𝑖𝑖-th feature. 𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 
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denote the mean and standard deviation of the whole data set corresponding to the 𝑖𝑖-th 

feature. Finally, after computing the Fisher score for each feature, the top 𝑚𝑚 ranked 

features with large scores are selected. This feature selection method is suboptimal as 

the score of each feature is computed independently. More in depth details on Fisher’s 

Score can be found in [86], while the Matlab code for the Fisher’s score algorithm can 

be found in [87]. 

𝐹𝐹(Ψ𝑖𝑖) =  
∑ 𝑛𝑛𝑘𝑘�𝜇𝜇𝑖𝑖,𝑘𝑘 − 𝜇𝜇𝑖𝑖�

2𝑐𝑐
𝑘𝑘=1

(𝜎𝜎𝑖𝑖)2
 Equation 2.10 

(𝜎𝜎𝑖𝑖)2 = �𝑛𝑛𝑘𝑘�𝜎𝜎𝑖𝑖,𝑘𝑘�
2

𝑐𝑐

𝑘𝑘=1

 Equation 2.11 

 

2.5.4 Classification 
Classification is the problem of identifying to which set of categories a new 

observation belongs to on the basis of a training set whose category membership is 

known. Different classification algorithms exist such as: k-Nearest Neighbour (k-NN), 

Linear Discriminant Analysis (LDA), Naive Bayes, Decision Trees, Artificial Neural 

Networks (ANN), and Support Vector Machine (SVM) [30] [79] [80] [82] [88]. 

The classifier detection performance can be evaluated in terms of sensitivity, 

specificity, and balanced accuracy (more details on detection performance metrics can 

be found in Appendix D, page 177). Unfortunately, these classifier evaluation metrics 

are not robust as they depend on the selected training and testing sets, thus producing 

unreliable results. Cross-validation techniques are used to overcome this problem and 

to produce robust results independent from the selection of training and testing sets.  

 

40 
 



  

2.5.4.1 Support Vector Machine 

SVM is a supervised learning method that generates input-output mapping functions 

from a set of labelled training data. It produces a model, based on the training data to 

classify new test data. SVM is capable of classifying data separated by linear and non-

linear boundaries by mapping the problem to a higher dimensional space using different 

kernel functions (Figure 2.9). It is also capable of classifying overlapping and non-

separable data by assigning a penalty for input data that fall on the wrong side of the 

hyper planes. 

For a two-class problem (i.e. normal and abnormal EEG), consider a given training set 

{𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘}𝑘𝑘=1𝑁𝑁  with input data 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛 and output data 𝑦𝑦𝑘𝑘 ∈ ℝ with class labels 𝑦𝑦𝑘𝑘 ∈

{−1, 1}, a nonlinear SVM classifier can be expressed using Equation 2.12, where 𝛼𝛼𝑘𝑘 

are Lagrange multipliers, and 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) is a kernel function. The Radius Basis Function 

(RBF) is widely used as SVM kernel and it can be expressed using Equation 2.13, where 

𝜎𝜎 controls the width of the RFB kernel. 

𝑦𝑦(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ��𝛼𝛼𝑘𝑘𝑦𝑦𝑘𝑘

𝑁𝑁

𝑘𝑘=1

𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) + 𝑏𝑏� Equation 2.12 

𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) =  exp�
−‖𝑥𝑥 − 𝑥𝑥𝑘𝑘‖2

2𝜎𝜎2
� Equation 2.13 

 

Figure 2.9: SVM kernel used to separate mixed data in a higher dimension (This figure is for 
illustration purposes) 
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2.5.4.2 Cross-Validation 

Several cross-validation techniques were used in the literature to validate the SVM 

detection performance, and were categorised into: Exhaustive, and Non-exhaustive 

cross-validation techniques [80]. Exhaustive cross-validation methods learn and test on 

all possible combinations to divide the original sample into training and validation sets. 

On the other hand, Non-exhaustive cross-validation methods do not consider all the 

combinations but only portions. 

Leave-one-out cross-validation (LOOCV) is an exhaustive method that provides an 

unbiased estimate of the generalisation error for the SVM classifier. It takes one 

instance from the original sample of size 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 as the validation data, and leaves the rest 

observations 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 − 1 as the training data. This process is repeated 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 times until 

each data sample is considered as validation, thus covering all possible combinations 

(Figure 2.10) [30] [89] [90] [91]. 

 

Figure 2.10: Leave-one-out cross-validation process. Training segments are highlighted in green, while 
validation segments are highlighted in red 
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CHAPTER 3:  MODELLING APPROACHES AND 
TECHNIQUES 

In this chapter, the modelling approaches and techniques used in this thesis are 

explained in depth along with all the procedures undertaken. First, real neonatal 

multichannel EEG data are analysed to understand their properties that must exist in 

a synthetic model. After that, the synthetic neonatal multichannel modelling technique 

based on synthetic simulators, a head model, and a novel EEG propagation scheme is 

explained. The utilised synthetic simulators are based on time-frequency modelling of 

the neonatal EEG background and seizure epochs. Moreover, the multichannel model 

relationships with previous publications are presented. Furthermore, the EEG 

propagation scheme produce three different propagation models, thus a model 

validation procedure is discussed and explained to choose the best model. After that, 

the synthetic neonatal multichannel EEG is validated against real neonatal 

multichannel EEG data to quantify its effectiveness. Finally, the synthetic neonatal 

multichannel EEG artifacts modelling methodology based on simulated signals is 

presented to contaminate the clean EEG, thus masking its information content. 

3.1 Data Analysis 

Multichannel continuous EEG recordings were collected from 7 neonatal patients 

at the NICU of the Royal Brisbane and Women’s Hospital, Brisbane, Australia, and 

were transferred to professor Boashash, lead PI at Qatar University of the National 

Priorities Research Program (NPRP) grant no. 6-885-2-364. Data were recorded using 

the MEDELEC Profile System (Medelec, Oxford Instruments, UK) that utilises 12 

Ag/AgCL electrodes placed according to the 10-20 standard, thus constructing a 20 
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channel bipolar scheme (more details on the 10-20 standard can be found in 

Section 2.2.1, page 13, but note that electrode FPZ is not utilised). Acquired data are: 

filtered using an analog bandpass filter with cut-off frequencies of 0.5Hz and 70Hz, 

sampled at 256Hz, and then down-sampled to 32Hz. Acquired data contains 

background and seizure epochs that are marked by a paediatric neurologist from the 

Royal Children's Hospital, thus providing a method for validation. Figure 3.1 and 

Figure 3.2 illustrate a single-channel sample of the acquired database depicting 

background and seizure epochs respectively. Background epochs are characterised by: 

nonstationary temporal behaviours, decaying power spectrums, and random time-

frequency signatures. On the other hand, seizure patterns are characterised by: 

oscillatory and evolving temporal behaviours, spiky power spectrums, and 

deterministic time-frequency signatures [1]. These properties will be the basis in 

constructing the multichannel neonatal EEG model. 

 

Figure 3.1: Real neonatal background EEG. TFD parameters (EMBD, N = 256, Fs = 32 Hz, FFT_N = 
512, lag window = 91, alpha = 0.08, beta = 0.9, time resolution = 1). Time and frequency steps are 
(0.03125, 0.0626) respectively 
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Figure 3.2: Real neonatal seizure EEG. TFD parameters (EMBD, N = 256, Fs = 32 Hz, FFT_N = 512, 
lag window = 255, alpha = 0.01, beta = 0.9, time resolution = 1). Time and frequency steps are 
(0.03125, 0.0196) respectively 

 

3.2 Synthetic Neonatal Multichannel EEG Model 

3.2.1 Neonatal Head Model 
The neonatal head model is constructed by utilising the four sphere approach used 

by Sadleir et al. in [21]. This Sadleir et al. approach is adapted as authors supply the 

dimensions of all spheres. These dimensions were chosen according to data gathered 

from the inspection of archived neonatal MRI models, which makes them more reliable 

in mimicking the true neonatal head (more details of the Sadleir four sphere head model 

can be found in Appendix E, page 179). Furthermore, 21 EEG electrodes are placed on 

the scalp surface of the four sphere head model according to the international 10-20 

system (Section 2.2.1, page 13). The electrodes placement on the four sphere neonatal 

head model is illustrated in Figure 3.3 by modelling the electrodes as small spheres 
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(relative to the four sphere head model). It shows; the right and left hemisphere’s 

electrodes in blue and in red respectively, the midline electrodes are in black, and finally 

the front and back electrodes are in green. 

 

Figure 3.3: 21 EEG electrodes placement on the four sphere neonatal head model. The plot on the left 
shows the 21 electrodes positions according to the 10-20 standard, while the plot on the right shows the 
placement of the 21 electrodes on the neonatal head model. The electrodes are modelled by spheres 
having a radius of 0.3 cm constructed from a 32x32 structure 

 

3.2.2 Neonatal Single-Channel EEG Model 
The neonatal single-channel EEG model is constructed using the Rankine model 

[41] that was developed by Nathan Stevenson and Luke Rankine. This model is the 

latest that is available as an open source to the public and it can be downloaded from 

[92] (more details on the Rankine model can be found in Appendix F, page 181). The 

model consists of two simulators; the first simulator models the neonatal background 

EEG (Figure 3.4), while the second simulator models the neonatal seizure EEG 

(Figure 3.5). Both simulators produce good approximations as they were validated by 
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correlating their results with real neonatal EEG epochs (0.817 for background and 0.901 

for seizure in the time-frequency domain). 

 

Figure 3.4: Simulated neonatal background EEG. TFD parameters (EMBD, N = 512, Fs = 64 Hz, 
FFT_N = 1024, lag window = 91, alpha = 0.08, beta = 0.9, time resolution = 1). Time and frequency 
steps are (0.0156, 0.0626) respectively 

 

The multiple harmonics of the neonatal seizure illustrate the multipath reception of 

LFM signal that propagated through a nonlinear frequency shifting material 

(Figure 3.5). The fundamental harmonic has the highest power, while each of the next 

harmonics has a power less than its previous one (power is decaying as we move across 

the harmonic number). Furthermore, the fourth harmonic has the highest frequency 

deviation and distortion, while each of the previous harmonics has a frequency 

deviation and distortion less than its next one (frequency deviation and distortion is 

increasing as we move across the harmonic number). The fundamental harmonic 

(having the highest power and least frequency distortion) represents the seizure event 
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that had to propagate the least distance to reach the electrode, while others represent 

scattered versions of the fundamental harmonic; thus the Rankine single-channel EEG 

model takes into consideration the multipath reception of neonatal EEG. 

 

Figure 3.5: Simulated neonatal seizure EEG. TFD parameters (EMBD, N = 1024, Fs = 20 Hz, FFT_N 
= 1024, lag window = 511, alpha = 0.01, beta = 0.9, time resolution = 1). Time and frequency steps are 
(0.05, 0.0196) respectively 

 

3.2.3 Neonatal EEG Propagation Model 
EEG propagation describes how EEG signals propagate through the different brain 

tissues that can attenuate, scatter the propagation path, and/or modulate the signal 

frequency. One problem arise in constructing the propagation model is calculating the 

electrode potentials for a given source (usually a current dipole). This problem is called 

the Forward Problem, and it is the reciprocal of the Inverse Problem which finds the 

dipole parameters that best represent measured potentials at the scalp electrodes. 
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The Forward Problem had been solved using many different methods such as: 

combining both EEG and MRI to localize seizures in 3D space as in [19], using Particle 

Numerical Models as in [22], using Electromagnetic Source Localisation (ESL) as in 

[23], using analytical solutions for the forward problem as in [24], and using Boundary 

Element Method (BEM), Finite-Element Method (FEM) and Finite Difference Method 

(FDM) as in [20] [93] [94] [95]. 

All these methodologies have common pitfalls such as: 

• Rapid and extensive need for high computational power [20]. 

• Deep knowledge in specialised areas such as: numerical 3D meshing, optimisation 

techniques, electromagnetics, and Monte Carlo simulations. 

• The need of specialised costly software, because commercial ones do not solve 3D 

numerical problems such as MATLAB. 

• The need of accurate measurement/estimation of the neonatal different brain 

structure conductivities [18]. 

• The need of accurate placement for EEG electrodes [19]. 

• The need of accurate head modelling, especially in including or excluding the 

neonatal fontanel [24] [94] [95]. 

Since we are using the neonatal single-channel EEG simulators from Section 3.2.2, the 

forward problem is simplified to become a matter of assigning relative amplitudes and 

delays to synthetic signals that take into account the multipath reception. Such assigning 

shall be done with respect to the location of the EEG event in time and space in a way 

that, the relative amplitudes and delays will be influenced by the depth and properties 

of the brain structure the signal would propagate through. After that, these synthetic 

signals would appear on the 21 EEG channels on the neonatal four sphere head model. 
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The neonatal EEG propagation scheme is constructed in a novel way by combining 

a space-propagation and a time-propagation models together. The space-propagation 

model is constructed by modifying the Radiation Transport Equation (RTE) that was 

adapted by Jacques in [46], by Tuchin in [47], and by Dehaes et al. in [48] and by 

applying it to the neonatal four sphere head model. The equation describes the decay in 

light intensity (photons power per unit area) due absorption, scattering, and reflection 

when propagating through biological tissues. The model maps relative amplitudes to 

each EEG channel which depends on the medium the signal propagate through and the 

signal path length. On the other hand, the time-propagation model is constructed by 

considering an adult mean seizure propagation speed and the signal total path length, 

as the neonatal seizure propagation speed has no record in the literature (to the best of 

the author’s knowledge). The model maps relative delays to each EEG channel 

depending on the signal total path length. The simplification of considering the mean 

speed is valid as the seizure propagation speed vary over several orders of magnitude 

with no clear explanation [50] [51] [52]. 

Combining both space and time propagation models creates the neonatal EEG 

propagation model which assigns relative amplitudes and delays to the synthetic seizure 

signals that would appear on the 21 EEG channels on the neonatal four sphere head 

model. Such model would have tremendous advantages over the previous 

methodologies (Combining EEG and MRI, ESL, Particle Numerical Models, BEM, 

FEM, and FDM) which are: 

• Simple descriptive model that does not acquire high level mathematics. 

• Calculations acquire relatively low computational power when compared to the 

previous methodologies. 

50 
 



  

• Tissue optical properties are more stable and well established when compared to 

their electrical conductivities. This is true as tissue optical properties had been 

extensively studied for lots of medical imaging modalities such as Optical Imaging, 

Near Infrared Spectroscopy (NIRS), Diffuse Optical Tomography (DOT), and 

Single Photon Emission Computed Tomography (SPECT). 

Assumptions for constructing the neonatal EEG propagation model are stated as 

follows: 

• The electrodes and seizure event locations are well known. 

• The neonatal four sphere head model has homogenous optical properties, such that 

each sphere optical properties do not change over time nor space. 

• Seizure source location is represented by a point source. 

• Background EEG is a stochastic process that will appear on all channels, and will 

have a normalized amplitude. Thus it does not need to have a propagation model. 

• Seizure patterns are not stochastic; consequently the same pattern will appear on all 

channels in the case of a seizure simulation but with different amplitudes and delays 

that are proportional to the event generation location in time and space. Thus, it is 

needed to develop a propagation model for this signal. 

3.2.3.1 The Space-Propagation Model 

The model describes the seizure signal decay in the neonatal four sphere head model 

(Equation 3.1). 𝐼𝐼𝑖𝑖 is the signal intensity estimated at electrode 𝑖𝑖. 𝑅𝑅𝑗𝑗,𝑗𝑗+1 is the coefficient 

of Fresnel reflection at the normal beam incidence between regions 𝑗𝑗 and 𝑗𝑗 + 1. 𝐼𝐼𝑜𝑜 is 

the initial intensity of the signal. 𝜇𝜇𝑡𝑡,𝑗𝑗 is the extinction coefficient for region 𝑗𝑗 

(summation of absorption and scattering coefficients). 𝐷𝐷𝑖𝑖,𝑗𝑗 is the signal path length in 
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region 𝑗𝑗 to reach electrode 𝑖𝑖. 𝑟𝑟𝑖𝑖,𝜃𝜃𝑖𝑖, and 𝜙𝜙𝑖𝑖 define electrode 𝑖𝑖 position in spherical 

coordinates with respect to the seizure event location, and lastly 𝑀𝑀 is the number of 

head regions and 𝑁𝑁 is the number of electrodes [46] [47] [48]. 

𝐼𝐼𝑖𝑖 = �1 − 𝑅𝑅𝑗𝑗,𝑗𝑗+1� 𝐼𝐼𝑜𝑜 exp �−�𝜇𝜇𝑡𝑡,𝑗𝑗 𝐷𝐷𝑖𝑖,𝑗𝑗(𝑟𝑟𝑖𝑖,𝜃𝜃𝑖𝑖,𝜙𝜙𝑖𝑖)
𝑀𝑀

𝑗𝑗=1

�    ,   𝑖𝑖 ∈ ℕ|1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 Equation 3.1   

The optical properties (absorption coefficients, scattering coefficients, anisotropy 

factors and refractive indices for every sphere in the Sadlier head model) selected to 

simulate the EEG propagation are summarised in Table 3.1 and were taken from 

Dehaes et al. in [48]. The same values were used by Brigadoi et al. in [25], while some 

of them were also used by older publications as in [96], [97] and [98]. Table 3.1 values 

exclude the coefficient of Fresnel reflection from the RTE, and if we assume the initial 

intensity of the signal to be unity (as we are looking for relative amplitudes) 

Equation 3.1 is modified into the matrix form and expressed by Equation 3.2, 

Equation 3.3, and Equation 3.4. By substituting the values and variables from 

Equation 3.2 and Equation 3.4 into Equation 3.3, the signal path lengths become the 

only unknowns (Equation 3.5). The complete process for solving the RTE can be found 

in Appendix G, page 185. 

 

Table 3.1: Optical properties of the neonatal four sphere head model. Absorption coefficient µa, 
scattering coefficient µs, anisotropy factor g, refractive index n, region number j. Taken from [48] 

 𝒋𝒋 Tissue Type 𝝁𝝁𝒂𝒂,𝒋𝒋 (𝒄𝒄𝒄𝒄−𝟏𝟏) 𝝁𝝁𝒔𝒔,𝒋𝒋 (𝒄𝒄𝒄𝒄−𝟏𝟏) 𝒈𝒈𝒋𝒋 𝒏𝒏𝒋𝒋 

1 Brain 0.425 50 0.9 1.3 

2 CSF 0.041 3.2 0.9 1.3 

3 Skull 0.16 160 0.9 1.3 

4 Scalp 0.18 190 0.9 1.3 
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𝜇𝜇𝑡𝑡,1
𝜇𝜇𝑡𝑡,2
𝜇𝜇𝑡𝑡,3
𝜇𝜇𝑡𝑡,4

� =

⎣
⎢
⎢
⎡
𝜇𝜇𝑎𝑎,1 + 𝜇𝜇𝑠𝑠,1(1 − 𝑔𝑔1)
𝜇𝜇𝑎𝑎,2 + 𝜇𝜇𝑠𝑠,2(1 − 𝑔𝑔2)
𝜇𝜇𝑎𝑎,3 + 𝜇𝜇𝑠𝑠,3(1 − 𝑔𝑔3)
𝜇𝜇𝑎𝑎,4 + 𝜇𝜇𝑠𝑠,4(1 − 𝑔𝑔4)⎦

⎥
⎥
⎤

= �
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0.18 + 19

� = �
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0.361
16.16
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⎥
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 Equation 3.3   

⎣
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⎢
⎢
⎡
𝐼𝐼1
𝐼𝐼2
⋮
𝐼𝐼20
𝐼𝐼21⎦
⎥
⎥
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⎤

=

⎣
⎢
⎢
⎢
⎢
⎡ exp�−𝜇𝜇𝑡𝑡,1 𝐷𝐷1,1 − 𝜇𝜇𝑡𝑡,2 𝐷𝐷1,2 − 𝜇𝜇𝑡𝑡,3 𝐷𝐷1,3 − 𝜇𝜇𝑡𝑡,4 𝐷𝐷1,4�

exp�−𝜇𝜇𝑡𝑡,1 𝐷𝐷2,1 − 𝜇𝜇𝑡𝑡,2 𝐷𝐷2,2 − 𝜇𝜇𝑡𝑡,3 𝐷𝐷2,3 − 𝜇𝜇𝑡𝑡,4 𝐷𝐷2,4�
⋮
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⎥
⎥
⎥
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 Equation 3.4   
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=

�exp�−5.425 𝐷𝐷1,1 − 0.361 𝐷𝐷1,2 − 16.16 𝐷𝐷1,3 − 19.18 𝐷𝐷1,4�

�exp�−5.425 𝐷𝐷2,1 − 0.361 𝐷𝐷2,2 − 16.16 𝐷𝐷2,3 − 19.18 𝐷𝐷2,4�

⋮

�exp�−5.425 𝐷𝐷20,1 − 0.361 𝐷𝐷20,2 − 16.16 𝐷𝐷20,3 − 19.18 𝐷𝐷20,4�

�exp�−5.425 𝐷𝐷21,1 − 0.361 𝐷𝐷21,2 − 16.16 𝐷𝐷21,3 − 19.18 𝐷𝐷21,4�

 Equation 3.5   

3.2.3.2 The Time-Propagation Model 

The model is constructed by considering the mean seizure propagation speed of an adult 

and the signal total path length 𝑙𝑙𝑖𝑖.  The neonatal seizure propagation speed has no record 

in the literature (to the best of the author’s knowledge). However adult seizure 

propagation speed ranges are studied, but it is still poorly understood why it varies over 

several orders of magnitude, thus the mean value is considered [50] [51] [52]. 

The time delay 𝑡𝑡𝑖𝑖 of the signal reaching electrode 𝑖𝑖 is calculated by dividing the total 

path length by the seizure event propagation speed 𝑣𝑣 (Equation 3.6). The signal total 
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path length is calculated by summing all the signal pathways in all the 𝑀𝑀 regions 

reaching electrode 𝑖𝑖. The seizure propagation speed is considered to be 6 cm/s as it is 

the mean value of the seizure speed uniform distribution (20 - 100 mm/s) [51]. 

𝑡𝑡𝑖𝑖 =
𝑙𝑙𝑖𝑖
𝑣𝑣

=
∑ 𝐷𝐷𝑖𝑖,𝑗𝑗𝑀𝑀
𝑗𝑗=1

𝑣𝑣
=

1
6
�𝐷𝐷𝑖𝑖,𝑗𝑗

𝑀𝑀

𝑗𝑗=1

    ,     𝑖𝑖 ∈ ℕ|1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 Equation 3.6   

Finding the signal time delay on all the EEG electrodes on the neonatal four sphere 

head model is done by extending Equation 3.6 into the matrix form (Equation 3.7), 

where 𝑀𝑀 = 4 and 𝑁𝑁 = 21. The relative time delays ∆𝑡𝑡𝑖𝑖 are calculated by subtracting 

the inferior of the signal time delays vector, making the signal with the largest 

amplitude (smallest total path length) having a relative time delay of zero 

(Equation 3.8). 

𝑻𝑻 =

⎣
⎢
⎢
⎢
⎡
𝑡𝑡1
𝑡𝑡2
⋮
𝑡𝑡20
𝑡𝑡21⎦
⎥
⎥
⎥
⎤

=
1
6

⎣
⎢
⎢
⎢
⎡
𝐷𝐷1,1 + 𝐷𝐷1,2 + 𝐷𝐷1,3 + 𝐷𝐷1,4
𝐷𝐷2,1 + 𝐷𝐷2,2 + 𝐷𝐷2,3 + 𝐷𝐷2,4

⋮
𝐷𝐷20,1 + 𝐷𝐷20,2 + 𝐷𝐷20,3 + 𝐷𝐷20,4
𝐷𝐷21,1 + 𝐷𝐷21,2 + 𝐷𝐷21,3 + 𝐷𝐷21,4⎦

⎥
⎥
⎥
⎤

 Equation 3.7   

∆𝑻𝑻 = 𝑻𝑻 − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑻𝑻) Equation 3.8   

This concludes the construction of the neonatal EEG propagation model, as the 

relative amplitudes and delays were calculated for all the 21 EEG channels using the 

space and time propagation models. The neonatal EEG propagation model has two 

tuning parameters, which are the absorption and scattering coefficients. Omitting the 

scattering coefficient creates a pure optical absorbing head model (Model A), while 

omitting the absorption coefficient creates a pure optical scattering head model (Model 

B). Using both coefficients creates a third head model that is absorbing and scattering 

(Model C). Models A, B, and C will be all used in the validation process to choose the 

best of them that fits published criteria. 
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3.2.4 Neonatal Multichannel EEG Model 
The neonatal multichannel EEG model is intended to: create a system that controls 

what type of EEG patterns should appear on every channel (seizure or background), the 

duration of these patterns, and the number of segments in the whole EEG signal. The 

model should have a number of tuning parameters, making it suitable for different 

applications such as: testing of algorithms, generation of synthetic neonatal EEG, 

validation of seizure localising algorithms, and validation of EEG classification results. 

The model would also generate a flag or a mask that tells where seizures are located on 

the whole EEG signal. This is very important to make the system suitable for validation 

purposes. 

The neonatal multichannel EEG model has a number of assumptions listed below (note 

that some of these assumptions are similar to those in Section 3.2.3 but are mentioned 

here to emphasize on their need and usage). 

• Seizure source location is represented by a point source that is generated using a 

uniform distribution, which is localised in the northern/upper hemisphere of the 

brain model. 

• Background EEG is a stochastic process that will appear on all electrodes/channels 

all the time with a normalized amplitude. 

• Seizure patterns are not stochastic, consequently the same pattern will appear on all 

channels in the case of a seizure simulation but with different amplitudes and delays 

that are determined by the EEG propagation model. 

• The beginning of a seizure is determined by the beginning of the first seizure pattern 

appearing on any of the channels. 
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• The end of a seizure is determined by the end of the last seizure pattern appearing 

on any of the channels. 

• The beginning and ending of a background EEG is determined by the absence of a 

seizure pattern on all the EEG channels simultaneously. 

3.2.4.1 Multichannel EEG Epochs Arrangement 

The multichannel EEG epochs arrangement produces a mask that will be the baseline 

for plugging in different types of EEG epochs. The mask or the flag illustrates all the 

properties that a multichannel waveforms must have. This production is controlled by 

user inputs such as: the number of segments that the single-channel waveform consist 

of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, the time duration of the waveform segment 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, the sampling frequency 𝐹𝐹𝑠𝑠 of 

the waveform, the number of electrodes 𝑛𝑛𝑐𝑐ℎ, and the EEG operation mode 𝑚𝑚𝑜𝑜. 

The number of segments 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 and their duration 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 determine the time duration 𝑇𝑇𝑐𝑐ℎ 

of a single-channel, which can be described by Equation 3.9. The sampling frequency 𝐹𝐹𝑠𝑠 

and the time duration 𝑇𝑇𝑐𝑐ℎ of a single-channel determine the number of samples 

generated per channel 𝑁𝑁𝑐𝑐ℎ, which can be described by Equation 3.10. The total number 

of samples generated for the 21 EEG electrodes 𝑁𝑁𝑤𝑤 can be determined by using 

Equation 3.11. These basic equations are essential in understanding the memory 

requirements to simulate such multichannel waveforms. 

𝑇𝑇𝑐𝑐ℎ =  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠    ,    𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ  &  𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ Equation 3.9 

𝑁𝑁𝑐𝑐ℎ =  𝐹𝐹𝑠𝑠𝑇𝑇𝑐𝑐ℎ    ,    𝐹𝐹𝑠𝑠 ∈ ℕ  &  𝑇𝑇𝑐𝑐ℎ ∈ ℕ Equation 3.10 

𝑁𝑁𝑤𝑤 =  𝑛𝑛𝑐𝑐ℎ𝑁𝑁𝑐𝑐ℎ = 21�𝐹𝐹𝑠𝑠 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠�  ,    𝐹𝐹𝑠𝑠 ∈ ℕ  &  𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ  &   𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ Equation 3.11 

The EEG mask is initially filled up with zeros indicating only background epochs. 

Depending on the EEG operation mode 𝑚𝑚𝑜𝑜 the values of the mask change as follows: 
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• EEG Operation Mode 1: 

In this operation mode different background epochs will be generated for every segment 

in every channel. This multi-plugging is done to ensure the stochasticity of the EEG 

background waveform. In this operation mode the mask values will remain zeros. 

Figure 3.6 illustrates the construction of the multichannel EEG waveforms having six 

segments using mode 1. In this case all segments are different background epochs and 

are indicated by the green colour (Seg 1.1 is different from Seg. 2.1). 

 

 

Figure 3.6: EEG operation mode 1. All segments are different background epochs through all channels 

 

• EEG Operation Mode 2: 

In this operation mode different seizure epochs will be generated for every segment, 

but the same seizure behaviour will exist through the different channels. This is done 

as seizure epochs are not stochastic in nature. In this operation mode the mask values 

will be filled up with ones. Figure 3.7 illustrates the construction of the multichannel 

EEG waveforms having six segments using mode 2. In this case all segments are seizure 

epochs and are indicated by the red colour (Seg 1.1 behaviour is different from Seg. 

1.2, but not different from Seg. 2.1). 
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Figure 3.7: EEG operation mode 2. All segments are different seizure epochs but the same through all 
channels 

 

• EEG Operation Mode 3: 

In this operation mode both modes 1 and 2 logics are combined to produce an 

alternating epoch type signal in every channel. Different background epochs will be 

generated for every segment that is masked as background in every channel, while 

different seizure epochs will be generated for every segment that is masked as seizure, 

but the same seizure behaviour will exist through the different channels. In this 

operation mode the mask values will be alternating between zero and one. Figure 3.8 

illustrates the construction of the multichannel EEG waveforms having six segments 

using mode 3. In this case all seizure epochs are indicated by the red colour, while 

background epochs are indicated by the green colour (Seg 1.1 is different from Seg. 

2.1, while Seg 1.2 behaviour is different from Seg. 1.4, but not different from Seg. 2.2). 

 

Figure 3.8: EEG operation mode 3. All segments are alternating between background and seizure 
epochs 
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3.2.4.2 Multichannel EEG Epochs Generation 

The multichannel EEG epochs generation produces neonatal EEG segments that are 

either background or seizure epochs. This production of segments is controlled by user 

inputs such as: the number of segments that the single-channel waveform consist 

of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, the time duration of the waveform segment 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, the sampling frequency 𝐹𝐹𝑠𝑠 of 

the waveform, the number of electrodes 𝑛𝑛𝑐𝑐ℎ, the EEG operation mode 𝑚𝑚𝑜𝑜, and the 

propagation model 𝑚𝑚𝑝𝑝. One problem arises immediately concerning the sampling 

frequency 𝐹𝐹𝑠𝑠, as the neonatal EEG background and seizure simulators in Section 3.2.2 

use different sampling frequencies which are 64 and 20 Hz respectively. Seizure epochs 

are oversampled from 20 Hz to 32 Hz. While background epochs are down-sampled 

from 64 Hz to 32 Hz satisfying the sampling theorem and solving the problem of 

different sampling rates. This modification in the sampling frequency of the simulators 

is valid as most of the background and seizure EEG energies are located below 12 Hz 

(do not exceed the alpha band 8-12 Hz) [13]. 

3.2.4.2.a Background EEG Generation: 

All EEG waveforms contain background epochs, as all the abnormalities are imposed 

on the background epoch and might be demolishing it. Background EEG epochs are 

stochastic in nature and to respect this property different background epochs are 

generated for every segment in every channel by re-exciting the simulator 

independently using the new sampling rate of 32 Hz. 

Every generated background EEG segment is normalised with respect to its amplitude 

independently from other segments. This is done so no segments would overcome 

others by amplitude, and because background EEG information is not embedded in its 

amplitude rather than in its frequency and entropy. 
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The total number of background epochs needed in the multichannel waveform depends 

on the EEG operation mode 𝑚𝑚𝑜𝑜, the number of segments 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, and the number of 

channels 𝑛𝑛𝑐𝑐ℎ = 21, as for an EEG operation mode 𝑚𝑚𝑜𝑜 = 1, 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 segments are 

needed, and for an EEG operation mode 𝑚𝑚𝑜𝑜 = 3 either 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

 or 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

+ 1 are needed. 

This depends whether 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is even or odd. In the case of an EEG operation mode of 1, 

all needed background segments are stacked in a 21𝑥𝑥𝑁𝑁𝑐𝑐ℎ matrix, which represents the 

neonatal multichannel background EEG signal (Figure 3.6). 

3.2.4.2.b Seizure EEG Generation: 

The EEG seizure simulator is excited once to supply an epoch for a specific segment, 

and its amplitude is normalised. The normalised seizure epoch is supplied to the EEG 

propagation model to provide delayed/attenuated copies of the signal, and then passed 

through all 21 channels. 

The EEG propagation model requires a specific source location. Seizure source location 

is represented as a point source that is generated using a three-dimensional uniform 

distribution. This is done to simulate different seizure source locations for every 

generated segment. The locations of the seizure event sources are confined within the 

northern/upper hemisphere of the brain model. This is done to mimic realistic cases as 

seizures only happen in the brain not in the whole sphere (Figure 3.9). The three-

dimensional uniform distribution has an azimuth angle changing from 0 to 2π, an 

elevation angle that is changing from 0 to π/2, and a radius changing from 0 to 4.75 cm. 

The maximum radius of the event generation is limited to 4.75 cm which is 0.1 cm less 

than the brain sphere radius. This is done to ensure that seizures are generated within 

the brain sphere. 
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The total number of seizure epochs needed in the multichannel waveform depends on 

the EEG operation mode 𝑚𝑚𝑜𝑜, the number of segments 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠, and the number of 

channels 𝑛𝑛𝑐𝑐ℎ = 21, as for an EEG operation mode 𝑚𝑚𝑜𝑜 = 2, 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 segments are 

needed, and for an EEG operation mode 𝑚𝑚𝑜𝑜 = 3, either 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

 or 21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

− 1 segments 

are needed. This depends whether 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is even or odd. In the case of an operation mode 

of 2, all needed seizure segments are stacked in a 21𝑥𝑥𝑁𝑁𝑐𝑐ℎ matrix and then summed with 

the background 21𝑥𝑥𝑁𝑁𝑐𝑐ℎ matrix. The resultant matrix represents the neonatal 

multichannel seizure EEG signal (Figure 3.7). In the case of an operation mode of 3, all 

needed seizure segments are stacked in � 21𝑁𝑁𝑐𝑐ℎ
2

� or �21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

− 1� matrix and then 

summed with the background �21𝑁𝑁𝑐𝑐ℎ
2

� or �21 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
2

+ 1� matrix. The resultant matrix 

represents the alternating multichannel neonatal EEG signal (Figure 3.8). 

 

Figure 3.9: Seizure source three dimensional uniformly distributed locations that are localised in the 
northern-upper hemisphere. 5000 locations are generated in this figure 

 

3.2.5 Relationships with Previous Models 
A literature survey for the neonatal multichannel EEG modelling was conducted first 

in 2014 and later in 2016 (using IEEE database and Google Scholar). There was no 
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evidence of any modelling attempt for the neonatal multichannel EEG (to the best of 

the author’s knowledge), but two publications were found relevant. 

Shen et al. had proposed modelling the adult multichannel EEG by using a new local 

spatiotemporal prediction method based on support vector machines in [99]. The model 

estimates the dynamics of the system using time delay embedding according to the 

Takens embedding theorem. Their training data (taken from [100]) were strictly 

stationary epochs, and their model had failed to simulate abnormal EEG epochs. 

Furthermore, Cui et al. had proposed modelling the multichannel EEG using a multi-

kinetics and multichannel coupled Neural Mass Model (NMM) in [101]. Their model 

was able to simulate background and seizure epochs of Sprague-Dawley rats, but failed 

to produce nonstationary epochs. Their technique in modelling the multichannel EEG 

is based on using multiple NMMs to mimic the brain functions, which are based on 

coupled cortical areas. 

Both multichannel modelling techniques are related to the neonatal multichannel EEG 

model in this thesis, as they all take into consideration the relationships between the 

EEG channels along with the multipath reception of an EEG event. 

 

3.2.6 EEG Propagation Model Validation 
The validation process of the EEG propagation model is done by comparing the 

model generated Seizure-to-Background Ratio (SBR) against a reference using 

Probability-Probability (P-P) plots (more details on Probability-Probability plots can 

be found in Appendix I, page 211). 

Different SBRs had been suggested and used in many publications. Mesbah et al. had 

used an SBR value of 5 dB in [102] and 10 dB in [103], while Stevenson et al. and 
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Celka et al. had used a uniform random SBR ranging from 10 dB to 30 dB in [13] and 

[40] respectively. Stevenson et al. had also used a uniform random SBR, but ranging 

from 10 dB to 20 dB in [42]. Furthermore, different range was used by Rankine et al. 

in [104] starting from -2.5 dB to 6 dB. 

In this thesis, the SBR reference is chosen to have a normal distribution with a mean 

value of 15 and variance of 25 to cover most of the published ranges. Such mean and 

variance have; 68% confidence interval ranging from 10 to 20 dB, 90% confidence 

interval ranging from 5 to 25 dB, and a 95% confidence interval ranging from 0 to 30 

dB. The neonatal EEG propagation model has two tuning parameters that produced 

three different propagation models (Model A, Model B, and Model C), hence all models 

must be validated against the reference SBR. 

The model validation process consists of the following steps: 

1. Generate 50 minutes of multichannel background EEG (200 segments per channel, 

15 seconds each, 96,000 samples per channel, and 2,016,000 samples in total). 

2. Generate 200 seizure source locations. 

3. Generate 50 minutes of multichannel seizure EEG by utilising the 200 source 

locations and by using models A, B, and C. 

4. Calculate the power of every segment in the background multichannel signal (This 

produces a 21x200 background power matrix). 

5. Calculate the power of every segment in models A, B, and C seizure multichannel 

signals (This produces a 21x200 power matrix for every model). 

6. Calculate the SBR for all models by dividing each value in the models power 

matrices by every value in the background power matrix. This produces 17,640,000 

SBR values for every model. 

63 
 



  

7. Compare the models SBR values with the SBR reference using P-P plots. 

8. Calculate the model normal line goodness of fit metric R2 when fitting the reference 

normal line.  

9. Choose the model that creates the largest R2 value. 

 

3.2.7 Neonatal Multichannel EEG Model Validation 
The validation process of the neonatal multichannel EEG model is done by 

quantifying the alikeness between the synthetic multichannel generated waveforms and 

the real multichannel neonatal EEG (described in Section 3.1, page 43). EEG alikeness 

is quantified using Spearman’s correlation, which is computed on segment per segment 

basis and averaged across all channels, thus producing a correlation distribution (more 

details on correlation can be found in Appendix H, page 188). The real EEG data are 

comprised of 20 channels, consequently channel 𝐹𝐹𝑝𝑝𝑝𝑝 will be omitted from the synthetic 

model (only for the validation process) as it is the furthest electrode from any seizure 

event (Figure 2.3 and Figure 3.3). The EEG model validation process consists of the 

following steps: 

1. Repeat the first 2 steps of the EEG propagation validation process, but by generating 

100 segments per channel, 8 seconds each. 

2. Extract clean and annotated background and seizure segments (8 seconds each) 

from the real neonatal EEG dataset (this will be done for all 7 patients). 

3. Calculate and average the absolute Spearman’s correlation between the synthetic 

and real multichannel waveforms for every segment, thus producing a correlation 

distribution (e.g. segment no. 1 of synthetic multichannel background versus 

segment no. 20 of real multichannel background). 
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4. Calculate the mean of the background and seizure EEG correlation distributions. 

5. Repeat steps 3 and 4, but by transforming the data into the frequency and time-

frequency domains. 

This process will produce six correlation distributions, 3 of them are for the background 

EEG comparison (time, frequency, and time-frequency comparisons), and the others 

are for the seizure EEG comparison. 

 

3.3 Synthetic Neonatal Multichannel EEG Artifacts Model 

3.3.1 Neonatal EEG Artifacts Model 
The neonatal EEG artifacts model is constructed by combining different synthetic 

EEG artifacts to corrupt the synthetic neonatal multichannel EEG waveforms. Blood 

Vessel Pulsation (BVP), Electrocardiogram Spikes (ECGS), and Short-Time High- 

Amplitude (STHA) artifacts are chosen to be the contamination signals. These artifacts 

are physiological, and this type of signals is chosen for modelling because of its nature 

of occurrence, as neonatal seizure and background EEG spectrums overlap with these 

signals. BVP, ECGS, and STHA physiological artifacts are chosen specifically because 

of their unique behaviour in mimicking EEG seizure patterns, and this contributes to 

high false rates in automatic seizure detection systems [9] [10] [53] (more details on 

EEG artifacts can be found in Section 2.2.5, page 23 and in Section 2.2.6, page 25). 

3.3.1.1 Blood Vessel Pulsation 

The BVP artifact corresponds to the pulsation effect of an electrode close to a blood 

vessel. It is a continuous oscillatory Gaussian type of artifact, highly correlated in time, 

but uncorrelated to the other activities in the EEG signal [53] [54]. The BVP artifact is 
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modelled as a sine wave having a Gaussian probability distribution, and a frequency 

close to the heart rate of neonates [55]. 

The model is constructed by using Equation 3.12, where 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 is the pulsation 

frequency, and 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇1,𝜎𝜎1) is a Gaussian noise having a mean of 𝜇𝜇1 and a standard 

deviation of 𝜎𝜎1 (Equation 3.13). The Gaussian noise is added to the sine wave to force 

the probability distribution of the BVP artifact in taking a bell-shape, as sine waves are 

not Gaussian signals in nature and this would contradict the characteristics of the BVP 

artifact. This addition is also important to simulate the noisy nature of the BVP artifact. 

The BVP artifact 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) is then normalised to have a maximum amplitude of one. 

The pulsation frequency 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 of the sine wave is chosen as 2 Hz because both 

Janardhan et al. in [54] and Matic et al. in [55] agreed on this value as a valid frequency 

in modelling the BVP artifact. The Gaussian noise 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇1,𝜎𝜎1) has a mean value of 

zero (𝜇𝜇1 = 0) and a standard deviation of 0.5 (𝜎𝜎1 = 0.5). 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = sin(2𝜋𝜋𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡) + 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇1,𝜎𝜎1) Equation 3.12 

𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇,𝜎𝜎) =  
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑡𝑡−𝜇𝜇)2
2𝜎𝜎2  Equation 3.13 

3.3.1.2 Electrocardiogram Spikes 

The ECGS artifact corresponds to the corrupted QRS complexes of the ECG picked up 

by the EEG electrodes when placed in the vicinity of a blood vessel. This artifact 

appears as a sharp spike and the occurrence of these spikes is not strictly periodical but 

correlated with the neonatal heart rate [54] [55]. The ECGS artifact is modelled as a 

spike train signal having a Gaussian probability distribution [56]. 

The model is constructed by using Equation 3.14, where 𝑓𝑓𝑒𝑒 is the frequency of the spike 

train, and 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇2,𝜎𝜎2) is a Gaussian noise having a mean of 𝜇𝜇2 and a standard deviation 
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of 𝜎𝜎2 (Equation 3.13). The Gaussian noise is added to the spike train to force the 

probability distribution of the ECGS artifact in taking a bell-shape as spikes are not 

Gaussian signals in nature and this would contradict the characteristics of the ECGS 

artifact. This addition is also important to simulate the noisy nature of the ECGS 

artifact. The ECGS artifact 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) is then normalised to have a maximum amplitude 

of one. Janardhan et al. 2015, Matic et al. 2009, and Khalifa et al. 2010 had all 

disagreed on the frequency of the spike train, as it was 1 Hz in [54], 2.5 Hz in [55], and 

1.2 Hz in [56]. In this thesis, the spike train frequency 𝑓𝑓𝑒𝑒 is chosen as 1 Hz because 

Janardhan et al. in [54] is the most recent publication and it is the closest to Khalifa et 

al. 2010 in [56] where they dealt with neonatal EEG artifacts. The Gaussian 

noise 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇2,𝜎𝜎2) has a mean value of zero (𝜇𝜇2 = 0) and a standard deviation of 0.1 

(𝜎𝜎2 = 0.1). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) = �
1   ;   𝑡𝑡 =  

𝑛𝑛
𝑓𝑓𝑒𝑒

0   ;   𝑡𝑡 ≠
𝑛𝑛
𝑓𝑓𝑒𝑒

      ;   𝑛𝑛 ∈ 𝑁𝑁+� + 𝒩𝒩𝑔𝑔(𝑡𝑡, 𝜇𝜇2,𝜎𝜎2) Equation 3.14 

 

3.3.1.3 Short-Time High-Amplitude 

The STHA artifact corresponds to the burst suppression in the neonatal brain and can 

also correspond to movement activities or electrode artifacts [56] [57]. It is an EEG 

artifact that is characterized by periods of high-voltage electrical activity alternating 

with periods of no activity in the brain. The STHA EEG artifact is modelled using a 

heavy-tailed noise [58]. 

The model is constructed as a type of noise that exhibits impulsive characteristics. The 

probability density function (PDF) of this impulsive noise is modelled by a heavy-tailed 

distribution, and Levy stable symmetrical stochastic process is used to simulate such 
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noise [58]. The Levy stable symmetrical stochastic process is defined by Equation 3.15, 

which is the characteristic function of the process 𝜑𝜑(𝑡𝑡) [105]. 𝛼𝛼 is the stability index, 

𝛽𝛽 is the skewness parameter, 𝛾𝛾 is the scale parameter, and 𝛿𝛿 is the location parameter. 

Their varying ranges are 0 < 𝛼𝛼 ≤ 2,−1 ≤ 𝛽𝛽 ≤ 1, 𝛾𝛾 > 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿 ∈ 𝑅𝑅. It is worthy of 

noting that the well-known Gaussian and Cauchy distributions are special cases of this 

distribution and they exist when the stability index 𝛼𝛼 is 2 or 1 respectively [105]. The 

STHA artifact is then normalised to have a maximum amplitude of one. The 

characteristic function parameters are chosen from Liang et al. in [105]. The stability 

index 𝛼𝛼 and the skewness parameter 𝛽𝛽  have values of 1.4 and 0.8 respectively 

producing a Levy distribution. The scale parameter 𝛾𝛾 is unity so it does not affect the 

distribution amplitude, and lastly the location parameter 𝛿𝛿 has a value of zero to 

centralise the levy PDF. 

𝜑𝜑(𝑡𝑡) =  �
𝑒𝑒𝑒𝑒𝑒𝑒 �𝑗𝑗𝑗𝑗𝑗𝑗 −  𝛾𝛾𝛼𝛼|𝑡𝑡|𝛼𝛼 �1 − 𝑗𝑗𝑗𝑗 tan �

𝜋𝜋𝜋𝜋
2
�  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)��   ;   𝛼𝛼 ≠ 1

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑗𝑗𝑗𝑗𝑗𝑗 −  𝛾𝛾|𝑡𝑡| �1 + 𝑗𝑗𝑗𝑗 �
2
𝜋𝜋
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ln|𝑡𝑡|��          ;   𝛼𝛼 = 1

 Equation 3.15 

 

3.3.2 Multichannel Neonatal EEG Artifacts Model 
The multichannel neonatal EEG artifacts model is intended to create a system that 

controls: the duration of patterns, the amplitude of patterns, and the number of artifact 

segments in the whole EEG signal. The model should have a number of tuning 

parameters, making it suitable for different applications such as: testing of artifact 

detection algorithms, generation of synthetic neonatal EEG artifacts, and validation of 

artifact removal algorithms. The model would also generate an artifact flag or a mask 

that tells where EEG artifacts are located on the whole EEG signal. This is very 

important to make the system suitable for validation purposes. 
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The neonatal multichannel EEG artifacts model assumptions are summarised as: 

• EEG Artifacts change behaviour on EEG segment basis (the model will be re-

excited for every segment), such that different artifact behaviours would appear 

across a single channel. 

• EEG Artifacts do not change behaviour on EEG channel basis (the same generated 

artifact segment will be replicated on all channels), such that the same artifact 

behaviour would appear on all channels for the same EEG segment. 

• The beginning of an artifact is determined by the beginning of the first artifact 

pattern appearing on any of the channels.  

• The end of an artifact is determined by the end of the last artifact pattern appearing 

on any of the channels.  

• The beginning and ending of a clean EEG segment is determined by the absence of 

an artifact pattern on all the EEG channels simultaneously.  

3.3.2.1 Multichannel EEG Artifact Epochs Arrangement 

The EEG artifact epochs arrangement produces a mask that forms the baseline for plugging 

in EEG artifact epochs. The mask (or flag) illustrates all the properties that a multichannel 

artifact waveforms must have. This production is controlled by user inputs such as: the 

number of segments that the single-channel artifact waveform consist of 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠, the 

time duration of the artifact waveform segment 𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠, the sampling frequency 𝐹𝐹𝑠𝑠 of the 

artifact waveform, the number of electrodes 𝑛𝑛𝑐𝑐ℎ, and the artifact operation mode 𝑚𝑚𝑎𝑎𝑎𝑎. 

The number of artifact segments 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 and their duration 𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 determine the time 

duration 𝑇𝑇𝑎𝑎_𝑐𝑐ℎ of a single channel, which can be described by Equation 3.16. The 

sampling frequency 𝐹𝐹𝑠𝑠 and the time duration 𝑇𝑇𝑎𝑎_𝑐𝑐ℎ of a single channel determine the 
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number of artifact samples generated per channel 𝑁𝑁𝑎𝑎_𝑐𝑐ℎ, which can be described by 

Equation 3.17. The total number of artifact samples generated for the 21 EEG 

electrodes 𝑁𝑁𝑎𝑎_𝑤𝑤 can be determined by using Equation 3.18. 

𝑇𝑇𝑎𝑎_𝑐𝑐ℎ =  𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠    ,    𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ  &  𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ Equation 3.16 

𝑁𝑁𝑎𝑎_𝑐𝑐ℎ =  𝐹𝐹𝑠𝑠𝑇𝑇𝑎𝑎_𝑐𝑐ℎ    ,    𝐹𝐹𝑠𝑠 ∈ ℕ  &  𝑇𝑇𝑎𝑎_𝑐𝑐ℎ ∈ ℕ Equation 3.17 

𝑁𝑁𝑎𝑎_𝑤𝑤 =  𝑛𝑛𝑐𝑐ℎ𝑁𝑁𝑎𝑎_𝑐𝑐ℎ = 21�𝐹𝐹𝑠𝑠 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠�  ,    𝐹𝐹𝑠𝑠 ∈ ℕ  &  𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ  &  𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 ∈ ℕ Equation 3.18 

 

The artifact mask is initially filled up with zeros indicating that no artifact epochs exist. 

Depending on the artifact operation mode 𝑚𝑚𝑎𝑎_𝑜𝑜 the values of the artifact mask change. 

• Artifact operation Mode 1: 

In this artifact operation mode, no artifact epochs will be generated. This operation is 

essential in generating clean EEG signals that can be used for EEG corruption 

evaluation purposes, and in artifact removal validation. 

• Artifact operation Mode 2: 

In this artifact operation mode, different artifact epochs will be generated for every 

segment, but the same artifact behaviour will exist through the different channels. This 

multi-plugging is done to ensure different artifact situation in every segment to cover 

all possible artifact behaviour scenarios. In this operation mode, the artifact mask values 

will be filled up with ones. Figure 3.10 illustrates the construction of the multichannel 

artifact waveforms having six segments and using an artifact operation mode of 2. In 

this case all segments are artifact epochs and are indicated by the grey colour (Seg. 1 

behaviour is different from Seg. 2). 

• Artifact operation Mode 3: 
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In this artifact operation mode, different artifact epochs will be generated only for the 

segments that exist on the first half of the signal length, but the same artifact behaviour 

will exist through the different channels. The first half of the artifact mask values are 

filled up with ones while the rest is filled up with zeros (Note that if the number of 

segments was odd, artifact operation mode 3 will floor the artifact segments number). 

Figure 3.11 illustrates the construction of the multichannel artifact waveforms having 

six segments and using an artifact operation mode of 3. In this case half of the segments 

are artifact epochs and are indicated by the grey colour (Seg. 1 behaviour is different 

from Seg. 2). 

 

Figure 3.10: Artifact operation mode 2. All segments are different artifact epochs but the same through 
all channels 

 

Figure 3.11: Artifact operation mode 3. The first half segments are different artifact epochs but the 
same through all channels 
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3.3.2.2 Multichannel EEG Artifacts Epochs Generation 

The EEG artifacts epoch’s generation produces neonatal EEG artifact segments that are 

combined from the BVP, ECGS, and the STHA signals by using the artifact mask. This 

production of artifact epochs is controlled by user inputs such as: the number of 

segments that the single-channel artifact waveform consist of 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠, the time duration 

of the artifact waveform segment 𝑇𝑇𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠, the sampling frequency 𝐹𝐹𝑠𝑠 of the waveform, 

the number of electrodes 𝑛𝑛𝑐𝑐ℎ, and the artifact operation mode 𝑚𝑚𝑎𝑎_𝑜𝑜. 

All EEG artifacts; BVP, ECGS, and STHA have normalised amplitudes. The combined 

EEG artifacts 𝑤𝑤(𝑡𝑡) can be constructed using Equation 3.19, where 𝜌𝜌1, 𝜌𝜌2, and 𝜌𝜌3 are 

the contamination factors for the 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡), 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡), and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) respectively. The 

contamination factors values for the BVP and the ECGS artifacts were taken from Matic 

et al. in [55] as 1.5 and 6 respectively, while the contamination factor value of the 

STHA artifact was taken from Brotchie et al. in [58] as 15. 

The total number of the EEG artifacts epochs needed in the multichannel waveform 

depends on the artifact operation mode 𝑚𝑚𝑎𝑎_𝑜𝑜, the number of artifact segments 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠, 

and the number of channels 𝑛𝑛𝑐𝑐ℎ = 21, as for an artifact operation mode 𝑚𝑚𝑎𝑎_𝑜𝑜 =

2, 21 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 segments are needed, and for an artifact operation mode 𝑚𝑚𝑎𝑎_𝑜𝑜 = 3, either 

21 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠

2
 or 21 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠

2
− 1 are needed. This depends whether 𝑁𝑁𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠 is even or odd.  In the 

case of an operation mode of 2, all needed artifact segments are stacked in a 21𝑥𝑥𝑁𝑁𝑎𝑎_𝑐𝑐ℎ 

matrix, which represents the neonatal multichannel EEG artifact signal 𝑤𝑤(𝑡𝑡) 

(Figure 3.10) 

𝑤𝑤(𝑡𝑡) =  �
𝜌𝜌1
𝜌𝜌2
𝜌𝜌3
� [𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)] Equation 3.19 
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Finally, the neonatal multichannel corrupted EEG waveforms are constructed using 

Equation 3.20, where; 𝑠𝑠(𝑡𝑡) is the neonatal multichannel corrupted EEG waveform, 𝑥𝑥(𝑡𝑡) 

is the neonatal multichannel clean EEG waveform, 𝑤𝑤(𝑡𝑡) is the neonatal multichannel 

EEG artifact waveform, and 𝛼𝛼 is a factor that alters the signal-to-artifact ratio (SAR). 

The corrupted multichannel signal is simply constructed by adding up the clean 

multichannel EEG signal with the multichannel EEG artifact signal. The generation of 

𝑠𝑠(𝑡𝑡) can be tuned by changing the EEG operation mode 𝑚𝑚𝑜𝑜, the artifact operation 

mode 𝑚𝑚𝑎𝑎_𝑜𝑜, and the SAR. This creates lots of possibilities in generating multichannel 

EEG waveforms; it can be e.g. only background, only seizure, or alternating between 

the two; and each of these possibilities can either be clean, or have artifacts across all 

segments, or on the first half of the EEG waveform with different SARs.  

Evaluation of EEG information masking due artifacts is studied and discussed 

extensively in Appendix H, page 188. This study is beyond the scope of this thesis; 

hence it will not be discussed here. 

 

𝑠𝑠(𝑡𝑡) =  𝑥𝑥(𝑡𝑡) + 𝛼𝛼 𝑤𝑤(𝑡𝑡) Equation 3.20 
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CHAPTER 4:  APPLICATION TO TIME-
FREQUENCY ALGORITHMS ENHANCEMENT 
FOR ABNORMALITY DETECTION 

In this chapter, abnormality detection time-frequency enhancement techniques used in 

this thesis are explained in depth along with all the procedures undertaken. First, an 

automated artifact detection and removal system utilising BSS in time and time-

frequency domains is constructed to filter the contaminated EEG patterns. Time and 

time-frequency BSS techniques are utilised rather than frequency domain methods 

because they require standard real-valued algorithms rather than complex-valued, and 

additionally time-frequency methods produce unique signatures and are not limited to 

non-Gaussian signals. After that, an optimisation procedure for the automated artifact 

detection technique is discussed and an evaluation method for assessing the quality of 

filtered EEG is presented to quantify the system performance. Furthermore, an 

automated EEG abnormality detection system is constructed embedding fused and 

extended multichannel EEG features to detect neonatal seizures. This stage considers 

clean, corrupted, and BSS filtered EEG as input patterns to quantify the differences in 

detection accuracy for a range of signal-to-artifact ratios. Finally, validation of the 

automated EEG abnormality detection performance is discussed and explained using 

cross-validation techniques in order to produce reliable results. 

4.1 Automatic Artifacts Detection and Removal 

The automatic artifacts detection and removal stage is intended to create a system 

that: separates the EEG and artifact source signals (𝑥𝑥𝑖𝑖 and 𝑤𝑤𝑖𝑖) from the corrupted 

mixture 𝑦𝑦𝑖𝑖 by estimating an un-mixing matrix 𝑊𝑊�  using Blind Source Separation (BSS) 
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in the time and time-frequency domains. Furthermore, it detects and determines the 

artifact components by processing the estimated source signals to remove its 

contribution from the mixture, in order to filter the corrupted multichannel EEG signal 

(more details of BSS can be found in Section 2.4.2, page 31 and Appendix B, page 

164). 

In this thesis, estimation of the number of sources is done by choosing the percentage 

of the total eigenvalues explaining the variance as one (more details on estimation of 

the number of sources can be found in Section 2.4.3, page 36). This means that the 

number of estimated independent components (source signals) will be equal to the 

number of EEG channels (21 components). This is done as the number of EEG channels 

is relatively low when compared to dense EEG electrode configurations (62 channels 

are used in [69]), so further reduction in dimensionality might mean loss of information. 

 

4.1.1 Neonatal EEG Artifact Detection 
Once BSS has been performed, it is crucial to carefully identify and select the 

artifact related component for removal purposes. Selecting the artifact-related 

component must be automated and should not rely on user inputs. Furthermore, BSS 

methods have limitations in the sense that an estimated signal 𝑠̂𝑠𝑖𝑖 cannot determine the 

variance of the source signal 𝑠𝑠𝑖𝑖. That is, there exists an infinite number of factors 𝛼𝛼𝑖𝑖 as 

described by Equation 3.1. Moreover, 𝛼𝛼𝑖𝑖 can be always chosen in a way to create a unit 

variance signal, but this still leaves the ambiguity of the sign. This implies that artifact 

component detection must not rely on the amplitude of the components rather than its 

shape or the morphology. 

75 
 



  

𝑠̂𝑠𝑖𝑖 =
1
𝛼𝛼𝑖𝑖
𝑠𝑠𝑖𝑖 Equation 3.1 

The most widely reported EEG artifact selection criterion is based on the amount of 

correlation between the resulting independent components and an artifact reference 

signal [69]. The Spearman’s Correlation Coefficient (SCC) proves to be a good choice 

to compare the artifact reference signal with the independent components because it 

depends on the relative shape of the signal [10] [54] [55] [68] [69]. 

An artifact reference signal is generated independently from the corrupted 

multichannel EEG waveform containing; BVP, ECGS, and STHA signals, and having 

different contamination factors from the multichannel model. The 21 estimated source 

signals are correlated with this reference signal using the SCC. If the maximum 

correlation output was above a certain threshold (𝐶𝐶𝑡𝑡ℎ𝑟𝑟), this source signal is considered 

an EEG artifact, and an artifact prediction mask (or flag) will contain ones for this 

segment indicating the detection of an EEG artifact. If the maximum correlation output 

was below the chosen threshold, this segment will be considered as clean EEG and no 

further processing will be applied and the artifact prediction mask will contain zeros 

for this segment. If multiple source signals produce Spearman’s correlations above the 

correlation threshold 𝐶𝐶𝑡𝑡ℎ𝑟𝑟, the source signal with the maximum correlation output will 

be considered as the EEG artifact, while the other is not. 

This correlation process between the artifact reference signal and the independent 

components will be repeated for all the BSS algorithms (Fast-ICA [106], Robust-ICA 

[107], BSS-CCA [108], SOBI [109] [110], and JADE [111]) and for all EEG segments 

covering the whole neonatal multichannel EEG waveform in time and time-frequency 
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domains. Figure 4.1 illustrates the correlation process between the artifact reference 

signal and the independent components/source signals. 

 

Figure 4.1: Artifact detection procedure based on Spearman’s correlation coefficient. IC is the 
Independent Component, Cthr is the correlation threshold, × means no artifact detected, and √ means 
artifact is detected 

 

4.1.2 Artifact Detection Optimisation 
The artifact detection technique needs to be optimised, as a low correlation 

threshold would result in detecting more artifacts than there really exist, while a high 

correlation threshold would result in detecting less artifacts than there really exist. The 

artifact detection optimisation is done by maximising the alikeness between the artifact 

mask, and the time and time-frequency prediction masks. Such optimisation scheme 

must be applied to all BSS algorithms independently as they process data differently 

even though they are based on the same BSS knowledge. Artifact detection 

performance is quantified in terms of sensitivity, specificity, and balanced accuracy 

(more details on detection performance metrics can be found in Appendix D, page 177). 

Artifact detection optimisation aims to find a correlation threshold that would maximise 

both sensitivity and specificity for every BSS algorithm in the time and time-frequency 

domains. This is a multivariable optimisation problem, but it reduces to a single variable 

by maximising the balanced accuracy, as it will then maximise both sensitivity and 

specificity and will reduce the optimisation problem complexity. Such maximisation 
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will not produce a deterministic answer, because maximising the balanced accuracy can 

be done using a range of correlation thresholds. Consequently, artifact detection 

optimisation becomes a statistical optimisation problem that would produce a random 

variable instead of a deterministic answer. The artifact detection statistical optimisation 

process consists of the following steps: 

1. Generate 25 minutes (21 channels, 100 segments each channel, 15 seconds each 

segment) of clean multichannel EEG using an EEG operation mode of 3 (alternating 

between background and seizure epochs). 

2. Generate 25 minutes (21 channels, 100 segments each channel, 15 seconds each 

segment) of multichannel EEG artifact using an artifact operation mode of 3 

(artifacts only exist on the first half of the waveform). 

3. Add the generated multichannel artifacts to the clean EEG from step 1, then 

segment the resultant waveform to reduce the needed computational time and 

memory. 

4. Estimate the independent components using Fast-ICA, Robust-ICA, BSS-CCA, 

JADE, and SOBI algorithms for every segment in the corrupted multichannel EEG. 

5. Initiate a correlation threshold of 0. 

6. Apply the artifact detection technique on all the BSS components for all the 

corrupted multichannel EEG segments using the defined correlation threshold. 

7. Generate prediction masks for all BSS algorithms. 

8. Calculate sensitivity, specificity, and balanced accuracy for all BSS algorithms by 

comparing the prediction masks with the true artifact mask. 

9. Update the correlation threshold value by adding a correlation threshold step of 

0.001. 
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10. Repeat steps 6-11 until correlation threshold reaches unity (This will create a loop 

of 1001 iteration). 

11. Repeat steps 1-11 hundred times to produce the statistical optimisation random 

variable for every BSS algorithm. 

This extensive operation will produce 100 curves for sensitivity, specificity, and the 

balanced accuracy for every BSS algorithm (namely performance curves), where every 

curve consists of 1001 samples. This is done to ensure the integrity of the results and to 

establish a robust random variable for the correlation threshold of every BSS algorithm. 

Note that, the same steps are followed to optimise the artifact detection for the time-

frequency BSS. The only difference is that an extra step will be added after step 4, 

which transforms the segmented corrupted multichannel EEG into the time-frequency 

domain. Moreover, steps 1-11 could not be repeated hundred times due to limited 

memory and processing power, as each step produced approximately 10 GB of data. 

Instead, it was repeated for three times using a correlation threshold range of 0-0.3 and 

a step of 0.003, as preliminary results showed that maximum values would fall within 

this range. 

 

4.1.3 Neonatal EEG Artifact Removal 
After detecting the artifact components in the corrupt multichannel EEG, the next 

step becomes removing the contribution of these components. By expanding the matrix 

notations in the BSS model, we can see that each column in the estimated mixing matrix 

corresponds to contributions from a specific source signal estimate (Equation 3.2). 

Following the detection example in Figure 4.1 where the 20th independent component 

is the detected artifact signal, the 20th column of the estimated mixing matrix holds the 
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contributions of that artifact. By removing the 20th column of the estimated mixing 

matrix, the electrode observations become cleaner versions of the corrupted 

multichannel EEG waveform (Equation 3.3). This process will be repeated in time and 

time-frequency domains for all the BSS algorithms and for all the EEG segments that 

were marked or flagged as corrupted. 

⎣
⎢
⎢
⎢
⎡
𝑦𝑦�1
𝑦𝑦2
⋮
𝑦𝑦�20
𝑦𝑦�21⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑚𝑚�1,1 𝑚𝑚�1,2 ⋯ 𝑚𝑚�1,20 𝑚𝑚�1,21
𝑚𝑚�2,1 𝑚𝑚�2,2 ⋯ 𝑚𝑚�2,20 𝑚𝑚�2,21
⋮ ⋮ ⋱ ⋮ ⋮

𝑚𝑚�20,1 𝑚𝑚�20,2 ⋯ 𝑚𝑚�20,20 𝑚𝑚�20,21
𝑚𝑚�21,1 𝑚𝑚�21,2 ⋯ 𝑚𝑚�21,20 𝑚𝑚�21,21⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑠̂𝑠1
𝑠̂𝑠2
⋮
𝑠̂𝑠20
𝑠̂𝑠21⎦

⎥
⎥
⎥
⎤

 Equation 3.2 

⎣
⎢
⎢
⎢
⎡
𝑦𝑦�1
𝑦𝑦2
⋮
𝑦𝑦�20
𝑦𝑦�21⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑚𝑚�1,1 𝑚𝑚�1,2 ⋯ 0 𝑚𝑚�1,21
𝑚𝑚�2,1 𝑚𝑚�2,2 ⋯ 0 𝑚𝑚�2,21
⋮ ⋮ ⋱ ⋮ ⋮

𝑚𝑚�20,1 𝑚𝑚�20,2 ⋯ 0 𝑚𝑚�20,21
𝑚𝑚�21,1 𝑚𝑚�21,2 ⋯ 0 𝑚𝑚�21,21⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑠̂𝑠1
𝑠̂𝑠2
⋮
𝑠̂𝑠20
𝑠̂𝑠21⎦

⎥
⎥
⎥
⎤

 Equation 3.3 

 

4.1.4 Artifact Removal Evaluation 
The output of the artifact removal scheme in the time and time-frequency domains 

must be evaluated to quantify its performance. The performance evaluation is done by 

quantifying the alikeness between the filtered EEG (artifacts removed) and the clean 

multichannel EEG waveform in the time and time-frequency domains. This is done by 

using the Normalised Root Mean Squared Error (NRMSE) and the Pearson’s 

Correlation Coefficient (PCC) metrics (more details on performance metrics can be 

found in Appendix D, page 177). The artifact removal performance evaluation process 

consists of the following steps: 

6. Repeat the first 4 steps of the artifact detection optimisation, but with an artifact 

operation mode of 2, and segment both clean and corrupted waveforms. 
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7. Identify and remove artifact components using the optimised artifact detection 

technique. 

8. Estimate the clean multichannel EEG segments for all BSS algorithms. 

9. Calculate time-frequency NRMSE and PCC for every estimated segment. 

 

4.2 Automatic EEG Abnormality Detection 

The automatic EEG abnormality detection stage is intended to create a system that 

detects neonatal EEG seizures, by utilising fused and selected multichannel time-

frequency features along with a statistical classifier. 

 

4.2.1 Feature Extraction and Fusion 
Single-channel feature extraction is done by extending the time or frequency 

domain features into the joint time-frequency domain (more details on feature 

extraction and the time-frequency features equations can be found in Section 2.5.1, page 

36 and Appendix C, page 173). In this thesis, time-frequency features are categorised 

as: statistical, spectral, instantaneous frequency, and sub-bands energy features. These 

features are utilised as they have shown good discrimination power for the neonatal 

EEG [27] [30] [36] [63] [78] [80] [81]. After extracting the time-frequency features 𝐉𝐉 

from every single channel 𝐙𝐙, these features are fused together forming a global feature 

set 𝚿𝚿 using the Multichannel Feature Fusion Sum Basis (MFFSB) technique [30] (more 

details on feature fusion can be found in Section 2.5.2, page 37). The feature extraction 

and fusion process for the 21 EEG channels and for the 16 time-frequency features is 

depicted in Figure 4.2. This process will be applied on the clean, corrupted, and BSS 

estimated multichannel EEG waveforms to be further processed. 
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Figure 4.2: Feature extraction and fusion process. STFD is the Spatial Time-Frequency Distribution, 
and MFFSB is the Multichannel Feature Fusion Sum Basis. Note that only auto-TFDs (bolded in the 
STFD matrix) will be used for the feature extraction stage 

 

4.2.2 Feature Selection and Classification 
Once time-frequency features had been extracted and fused, an optimal subset from 

these features is selected on the basis of relevance and non-redundancy to be fed into a 

statistical classifier. 

The feature selection process is constructed by using the filter approach, and more 

specifically by computing Fisher’s score for each feature (more details on feature 

selection can be found in Section 2.5.3, page 38). Features are ordered according to 

their Fisher’s scores and the top ranked 𝑚𝑚 features are selected. This process is only 

applied on the clean EEG features and not on the corrupted or estimated EEG features. 

This is done to quantify; the possible reduction in classification accuracy due EEG 

corruption, and the possible increment in accuracy due EEG filtering. The selected 

subsets 𝝍𝝍 are then fed simultaneously into nonlinear SVM classifier to discriminate the 

multichannel EEG segments into background or seizure patterns. The nonlinear SVM 

82 
 



  

classifier is constructed using an RBF kernel with 𝜎𝜎 of 1 (more details on classification 

and SVM can be found in Section 2.5.4, page 40). 

Since the Fisher’s score method is suboptimal, an iterative feature selection and 

classification process must be utilised. This is done by increasing the top ranked feature 

size 𝑚𝑚 from 1 up to the total number of features and feeding each to the SVM classifier 

(Note that all features will be selected when 𝑖𝑖 = 16). Such iterative process would 

produce an accuracy profile for the SVM classifier, illustrating its accuracy relation 

with the size of selected features (Figure 4.3). 

 

Figure 4.3: Feature selection and classification iterative process (The maximum number of selected 
features is 16) 

 

4.2.3 Defining Extended Multichannel EEG Features 
It was established in Sections 2.2.2 and 3.1, pages 16 and 43, that background EEG 

is a stochastic process, which produces independent random behaviours across all EEG 

channels. On the other hand, seizure events are not stochastic and their channel 

behaviour depends on neighbouring channels. Consequently, features that describe the 
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multichannel information alikeness can be used to discriminate background from 

seizure events. Information alikeness can be quantified in terms of correlation, or joint 

entropy. In this thesis, correlation is adapted as the information alikeness metric. 

Pearson’s correlation equation can be extended to be used with time-frequency 

distributions. The extension is expressed in Equation 3.4 and Equation 3.5, where 𝑄𝑄 is 

the number of channels, and 𝜇𝜇𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖 is the mean value of the auto-TFD 𝜌𝜌𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖[𝑛𝑛,𝑘𝑘]. The 

Pearson’s correlation forms a symmetric matrix 𝐑𝐑  containing; multichannel auto-

correlations on the diagonal, and multichannel cross-correlations off the diagonal 

(Equation 3.6). The auto-correlations do not contain information concerning the 

multichannel information alikeness, thus they must be removed. Furthermore, since 𝐑𝐑 

is symmetric, only the lower or upper triangle of the matrix has to be computed in order 

to minimise the computation requirements (the upper triangle of the matrix 𝐑𝐑 is 

highlighted in red). The extracted upper or lower triangle is then vectorised into a one-

dimensional array 𝑟𝑟 of length 𝑃𝑃 (Equation 3.7). This array contains the pure information 

concerning the multichannel alikeness, thus the statistical features described in 

Appendix C in page 173 can be used to create extended multichannel features. 

The extended multichannel EEG features are expressed in Equation 3.8, Equation 3.9, 

Equation 3.10, Equation 3.11, and Equation 3.12. The feature selection and 

classification iterative process described in Section 4.2.2, has to be repeated twice 

considering only the multichannel fused features and then considering the combination 

of the extended multichannel features and the fused multichannel features (Figure 4.4). 

The maximum number of selected features in this case is not 21, but has to be 

maintained as 16. This is crucial, so a comparison between the two classification 

profiles can be made. 
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• Coefficient of Variation: 

𝑀𝑀5 =  
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 Equation 3.12 
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Figure 4.4: Feature selection and classification iterative process including the extended multichannel 
features (The maximum number of selected features is 16) 

 

4.2.4 Abnormalities Detection Evaluation 
The abnormality detection evaluation procedure produces an accuracy profile for 

the Leave-one-out cross-validated (LOOCV) SVM classifier (more details on Leave-

one-out cross-validation can be found in Section 2.5.4.2, page 42). The SVM kernel 

and parameters are kept constant during the process to quantify the relative change in 

performance when utilising; the artifact detection and removal stage, and the extended 

multichannel features. The process consists of the following steps: 

1. Repeat the first 3 steps of the artifact removal evaluation (Section 4.1.4, page 80). 

2. Extract time-frequency features from every single channel in every segment for the 

clean, corrupted, and estimated multichannel EEG waveforms. 

3. Fuse the extracted features using MFFSB to form the fused multichannel time-

frequency features. 
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4. Extract the extended multichannel time-frequency features from every segment for 

the clean, corrupted, and estimated multichannel EEG waveforms, and then 

combine them with the fused multichannel time-frequency features. 

5. Compute Fisher scores for every fused and combined multichannel features of the 

clean EEG, and sort them in descending order. 

6. Apply the feature selection and classification iterative process on the clean EEG 

fused and combined ordered features. 

7. Cross validate the SVM classifier using LOOCV in every iteration to produce a 

validated accuracy profile for the fused and combined multichannel time-frequency 

features. 

Summing up, the synthetic neonatal multichannel EEG model (constructed in 

Chapter 3) is used to produce clean normal and abnormal EEG patterns, thus 

establishing the control setup in this thesis. Furthermore, the experimental setup is 

established by studying the effect of four independent variables on the performance of 

the neonatal seizure detection system. The independent variables are summarised as: 

• Artifact relative power: the synthetic neonatal multichannel artifacts model 

(Chapter 3) is used to produce corrupted EEG with different signal-to-artifact ratios. 

• Artifact detection and removal: Each of the corrupted multichannel waveforms is 

pre-processed by the optimised automated time and time-frequency artifact 

detection and removal systems. 

• Extended features: proposed features are extracted from the clean, corrupted, and 

pre-processed multichannel waveforms. 

• Number of utilised features: performance curves of the neonatal seizure detection 

system are generated with respect to the number of utilised features. 
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CHAPTER 5:  RESULTS AND DISCUSSIONS 

In this chapter, the synthetic neonatal multichannel EEG results are illustrated to 

present the clean multichannel waveform. The model results consist of the propagation 

model validation outcomes so as to choose the best model that fits the reference 

distribution along with its results. Moreover, validation results for the synthetic 

neonatal multichannel EEG model are presented to quantify its effectiveness in 

mimicking real neonatal EEG. After that, the synthetic neonatal multichannel EEG 

artifacts model results are illustrated in terms of how they contaminate the clean 

waveform. Results include the synthetic EEG artifacts outcomes, the multichannel 

artifact waveforms, and the contaminated neonatal multichannel EEG. Furthermore, 

results of the automated artifact detection and removal system using BSS in the time 

and time-frequency domains are presented in terms of how they filter the contaminated 

EEG signals. Artifact detection and removal performances are evaluated and discussed 

with respect to different signal-to-artifact ratios to quantify the quality of the system. 

Finally, the automated EEG abnormality detection system results are presented to 

assess the enhancements in seizure detection rates when utilising; the artifact detection 

and removal system, and the extended multichannel features. 

5.1 Synthetic Neonatal Multichannel EEG Model Outputs 

5.1.1 EEG Propagation Model Validation Results 
EEG propagation models were validated against the reference SBR range. All 

models output signals were amplified to produce an approximated mean SBR of 15 so 

they can be compared with the reference distribution. Model A output was amplified 

by 11.33 to produce a mean SBR of 14.8, while models B and C were amplified by 
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400e6 and 600e6 respectively to produce mean SBRs of 14.83 and 14.26. Models B 

and C amplification factors are relatively large when compared to model A, but they 

are essential as scattering coefficients were large enough to attenuate the seizure signal 

picked up by the scalp electrodes. Figure 5.1 illustrates the output SBR distributions of 

all models against the reference distribution. Model A has the highest likelihood to be 

chosen as “The EEG Propagation Model”, because the P-P plot emphasises on the fact 

that Model A (pure optical absorber) is the best candidate to be the propagation model 

as it is the best in fitting the reference distribution behaviour when calculating the total 

probability (Figure 5.2). Moreover, Model A normal line has an R2 value of 0.99999036 

when fitting the reference normal line, thus proving its goodness of fit. Further 

simulations and testing will be carried out using only Model A. P-P plot with linear 

SBR axis is depicted in the supplementary material shown in Appendix J.1, page 212. 

 

Figure 5.1: SBR distributions of the reference and models A, B, and C outputs. Note that amplitudes of 
all plots have the same range 
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Figure 5.2: P-P plot of models A, B, and C output (Logarithmic) SBR against the reference distribution 

 

5.1.2 Neonatal EEG Propagation Model Output 
The EEG propagation model simulations are carried out using only Model A with 

a seizure source location defined by a radius 4.5, an azimuth angle 180 degrees, and an 

elevation angle of 45 degrees. 

5.1.2.1 The Space-Propagation Model 

Figure 5.3 illustrates the seizure event dispersion in the neonatal four sphere head model 

reaching the scalp electrodes. Closer electrodes have relatively higher reception power 

than further ones. The space model output illustrates the change in the seizure relative 

amplitude with respect to the electrodes location (Figure 5.4). Note that Figure 5.4 does 

not show the time delay in every channel as it only illustrates the change in the relative 

amplitude, so all seizure patterns start and end together. 
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Figure 5.3: The seizure event dispersion in the neonatal four sphere head model 

 

 

Figure 5.4: The multichannel EEG space-propagation model output 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (s)

A
m

pl
itu

de
s 

ra
ng

in
g 

fr
om

 -7
 to

 +
7 

fo
r e

ve
ry

 s
ig

na
l

MultiChannel EEG Signal (Space Model)

91 
 



  

5.1.2.2 The Time-Propagation Model 

Figure 5.5 illustrates every channel delay in receiving the seizure pattern. Delays 

depend on the signal total path length, as farther electrodes result in relatively larger 

time delays. Note that all channel amplitudes are normalised to illustrate the differences 

in the reception relative time between the channels. The beginning and ending of the 

seizure pattern in every channel are depicted using green and red vertical lines 

respectively. 

 

Figure 5.5: The multichannel EEG time-propagation model output (Green lines represent the beginning 
of the seizure pattern, while red lines represent the end of the seizure pattern) 

 

5.1.2.3 The Time-Space Propagation Model 

Table 5.1 and Figure 5.6 illustrate the output when combining the time and space 

models into a time-space propagation model. Results show the relative amplitudes and 
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four sphere head model. Electrode 𝐹𝐹𝑧𝑧 has the highest relative amplitude and the lowest 

relative delay, as it is the closest electrode to the seizure source location, while in 

contrast 𝑂𝑂𝑧𝑧 has the lowest relative amplitude and the highest relative delay. Note that 

the relative amplitudes and delays have some sort of symmetry across the channels. 

This is a consequence of the perfect spheres representing the neonatal head regions, as 

such shapes produce symmetry in modelling results. 

 

Table 5.1: The multichannel EEG time-space propagation model output 

𝒊𝒊 Electrode Label Relative Amplitude (V) Relative Delay (s) 
1 𝑭𝑭𝒛𝒛 9.689199655 0 
2 𝑪𝑪𝒛𝒛 6.547759961 0.40625 
3 𝑷𝑷𝒛𝒛 3.391266637 0.875 
4 𝑭𝑭𝒑𝒑𝒑𝒑 8.124688322 0.25 
5 𝑭𝑭𝟑𝟑 8.430654536 0.1875 
6 𝑭𝑭𝟕𝟕 5.729977323 0.5 
7 𝑪𝑪𝟑𝟑 5.413214954 0.5625 
8 𝑻𝑻𝟑𝟑 3.602627909 0.8125 
9 𝑷𝑷𝟑𝟑 3.118237446 0.9375 
10 𝑻𝑻𝟓𝟓 2.54271105 1.0625 
11 𝑶𝑶𝟏𝟏 2.118622305 1.1875 
12 𝑭𝑭𝒑𝒑𝒑𝒑 8.124688322 0.25 
13 𝑭𝑭𝟒𝟒 8.430654536 0.1875 
14 𝑭𝑭𝟖𝟖 5.729977323 0.5 
15 𝑪𝑪𝟒𝟒 5.413214954 0.5625 
16 𝑻𝑻𝟒𝟒 3.602627909 0.8125 
17 𝑷𝑷𝟒𝟒 3.118237446 0.9375 
18 𝑻𝑻𝟔𝟔 2.54271105 1.0625 
19 𝑶𝑶𝟐𝟐 2.118622305 1.1875 
20 𝑭𝑭𝒑𝒑𝒑𝒑 8.486164054 0.1875 
21 𝑶𝑶𝒛𝒛 2.070078352 1.21875 
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Figure 5.6: The multichannel EEG time-space propagation model output (Green lines represent the 
beginning of the seizure pattern, while red lines represent the end of the seizure pattern) 

 

 

5.1.3 Neonatal Multichannel EEG Model Output 
Figure 5.7 depicts the output of the synthetic neonatal multichannel EEG model. It 

shows the multichannel waveform by using an EEG operation mode of 3 (alternating 

between background and seizure epochs). Every channel is constructed by 8 segments, 

where 4 of them are background epochs and the others are seizure epochs. Every 

segment has a duration of 15 seconds making the total waveform to have a duration of 

120 seconds. Seizure patterns are highlighted with light red background, while 

background patterns are not. 
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Figure 5.7: The neonatal multichannel EEG model output (Seizure segments are highlighted with light 
red background) 

 

5.1.4 Neonatal Multichannel EEG Model Validation Results 
Validation of the neonatal multichannel EEG model was done by comparing the 

synthetic multichannel generated waveforms and the real multichannel neonatal EEG 

(described in Section 3.1, page 43) using Spearman’s correlation. A selection of 201 

background and 80 seizure annotated segments were extracted from the real neonatal 

EEG database, and then correlated with 100 synthetic multichannel background and 

seizure segments. 

Figure 5.8 illustrates the correlation distributions for the background and seizure EEG 

comparisons. Time, frequency, and time-frequency correlation distributions are 

depicted in blue, red, and green respectively. Comparisons for the background and 
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seizure segments in the time domain, illustrate negligible mean correlations of 0.1584 

and 0.32923 respectively. However, the “EEG Corruption Evaluation” study in 

Appendix H, page 188 showed that background and seizure segments are weakly 

correlated among themselves in the time domain (Table A.4). On the other hand, 

comparisons in the frequency and time-frequency domains illustrate high mean 

correlations of 0.58065 and 0.57796 for the background EEG comparison, and 0.65107 

and 0.66254 for the seizure EEG comparison respectively. These high correlation 

results illustrate the effectiveness of the synthetic neonatal multichannel EEG model in 

mimicking the morphology of real neonatal EEG in the frequency and the time-

frequency domains. 

 

 

Figure 5.8: The neonatal multichannel EEG model validation results 
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5.2 Synthetic Neonatal Multichannel EEG Artifacts Model 

Outputs 

5.2.1 Neonatal EEG Artifacts Model Output 
The neonatal EEG artifacts model produces single-channel EEG artifacts, 

consisting of BVP, ECGS, and STHA synthetic signals. All produced segments have a 

duration of 15 seconds and a sampling frequency of 32 Hz. 

5.2.1.1 Blood Vessel Pulsation 

Figure 5.9 illustrates the behaviour of the synthetic BVP artifact when Gaussian noise 

is added. It contains the simulated artifact in time, frequency, and time-frequency 

domains, along with the time domain histogram. Furthermore, it shows the Gaussian 

behaviour and the noisy nature of the BVP artifact when picked up by EEG electrodes. 

The initial non-Gaussian simulated BVP artifact is attached in the supplementary 

material shown in Appendix J.2, page 213. 

 

Figure 5.9: Simulated Gaussian Blood Vessel Artifact. TFD parameters (MB, N = 480, Fs = 32 Hz, 
FFT_N = 1024, Lag Window = 479, Alpha = 0.01, time resolution = 1). Time and frequency steps are 
(0.0313, 0.0313) respectively  
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5.2.1.2 Electrocardiogram Spikes 

Figure 5.10 illustrates the behaviour of the synthetic ECGS artifact when Gaussian 

noise is added. It contains the simulated artifact in time, frequency, and time-frequency 

domains, along with the time signal histogram. Moreover, it shows the Gaussian 

behaviour and the noisy nature of the ECGS artifact when picked up by EEG electrodes. 

The initial non-Gaussian simulated ECGS artifact is attached in the supplementary 

material shown in Appendix J.2, page 213. 

 

Figure 5.10: Simulated Gaussian ECG Spike artifact. Simulated ECG Spike artifact. TFD parameters 
(EMB, N = 480, Fs = 32 Hz, FFT_N = 1024, Lag Window = 479, time resolution = 1, Alpha = 0.99, 
Beta = 0.01). Time and frequency steps are (0.0313, 0.0313) respectively 

 

5.2.1.3 Short-Time High-Amplitude 

The simulated STHA artifact is illustrated in Figure 5.11. It contains the synthetic 

artifact in time, frequency, and time-frequency domains, along with the time signal 

histogram. The histogram shows the heavy-tailed distribution of such artifact, which 
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fits a Levy Distribution. LSD toolbox has been used to simulate Levy stable 

symmetrical stochastic process. More details on the toolbox can be found in [105]. 

 

Figure 5.11: Simulated STHA artifact. TFD parameters (MB, N = 480, Fs = 32 Hz, FFT_N = 1024, 
Lag Window = 11, Alpha = 0.99, time resolution = 1). Time and frequency steps are (0.0313, 0.0313) 
respectively 

 

5.2.2 Neonatal Multichannel EEG Artifacts Model Output 
The neonatal multichannel EEG artifacts model is capable of producing different 

multichannel artifact patterns to contaminate the clean neonatal multichannel EEG. 

5.2.2.1 Multichannel Clean EEG 

Figure 5.12 illustrates the neonatal multichannel clean EEG. It was produced using an 

EEG operation mode of 3. Every channel is constructed from 6 segments, where 3 of 

them are background epochs and the other half are seizure epochs. Every segment has 

a duration of 15 seconds making the total waveform to have a duration of 90 seconds. 

Seizure patterns are highlighted with light red background, while background patterns 

are not. Figure 5.13 illustrates the first channel of the multichannel clean EEG output 
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in time, frequency, and time-frequency domains. A diagnosis mask is attached to 

illustrate the alternation between background and seizure epochs. 

 

Figure 5.12: The neonatal multichannel clean EEG (EEG operation mode of 3). Seizure segments are 
highlighted with light red background 

 

Figure 5.13: The neonatal multichannel clean EEG (First Channel). TFD parameters (EMB, N = 2880, 
Fs = 32 Hz, FFT_N = 1024, Lag Window = 2879, Alpha = 0.01, Beta = 0.9, time resolution = 1). Time 
and frequency steps are (0.0313, 0.0313) respectively. S: Seizure, B: Background 
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5.2.2.2 Multichannel EEG Artifact 

Figure 5.14 illustrates the neonatal multichannel EEG artifact. It was produced using 

an artifact operation mode of 3 (artifacts exist on the first half of the signal length). 

Every channel is constructed by 6 segments, where the first 3 of them are artifacts, 

while the rest are empty. Every segment has a duration of 15 seconds making the total 

waveform to have a duration of 90 seconds. Artifacts patterns are highlighted with light 

grey background, while clean patterns are not. Figure 5.15 illustrates the first channel 

of the multichannel EEG artifact output in time, frequency, and time-frequency 

domains. An artifact mask is attached to illustrate the location of the artifact patterns in 

the waveform. 

 

 

Figure 5.14: The neonatal multichannel EEG Artifact (Artifact operation mode of 3) 
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Figure 5.15: The neonatal multichannel EEG Artifact (First Channel). TFD parameters (EMB, N = 
2880, Fs = 32 Hz, FFT_N = 1024, Lag Window = 2879, Alpha = 0.01, Beta = 0.9, time resolution = 1). 
Time and frequency steps are (0.0313, 0.0313) respectively. A: Artifact, AF: Artifact Free 

 

5.2.2.3 Multichannel Corrupted EEG 

Figure 5.16 depicts the neonatal multichannel corrupted EEG. It was produced using 

an EEG operation mode of 3 and an artifact operation mode of 3. Every channel is 

constructed from 6 segments, where 3 of them are background, and 3 of them are 

seizure epochs. 3 artifact segments are imposed on the first 3 segments, while the rest 

are clean. Every segment has a duration of 15 seconds making the total waveform to 

have a duration of 90 seconds. Figure 5.17 illustrates the first channel of the 

multichannel corrupted EEG output in time, frequency, and time-frequency domains. 

Artifact and diagnosis masks are attached to illustrate the location of the artifact and 

seizure patterns in the waveform. 
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Figure 5.16: The neonatal multichannel corrupted EEG (EEG operation mode of 3, Artifact operation 
mode of 3). Seizure segments are highlighted with light red background and artifact segments are 
highlighted with light grey background 

 

 

Figure 5.17: The neonatal multichannel corrupted EEG (First Channel). TFD parameters (EMB, N = 
2880, Fs = 32 Hz, FFT_N = 1024, Lag Window = 2879, Alpha = 0.01, Beta = 0.9, time resolution = 1). 
Time and frequency steps are (0.0313, 0.0313) respectively. A: Artifact, AF: Artifact Free, B: 
Background, S: Seizure 
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5.3 Automatic Artifacts Detection and Removal 

The automatic artifacts detection and removal system output illustrate the detection 

and removal performance results for the time and time-frequency BSS algorithms using 

different signal-to-artifact ratios (SAR). Corrupted neonatal multichannel EEG signals 

are generated using an EEG and artifact operation modes of 3 and 2 to test the time and 

time-frequency artifact detectors. Five versions of the corrupted signals are created by 

altering the artifact factor to be 0.4355, 1, 2, 3, and 4, thus producing corrupted 

waveforms with SAR values of 0, -7.2206, -13.2412, -16.763, and -19.262 dB 

respectively. This is done to assess the robustness and accuracy of the artifact detection 

and removal system when applied to different EEG contamination levels. 

 

5.3.1 Artifact Detection Performance 
Artifact detection performances for the time and time-frequency BSS algorithms 

are maximised by statistically optimising the correlation thresholds between the ICs 

and the artifact reference signal (the complete detection optimisation results are 

attached in the supplementary material shown in Appendix J.3, page 214 because of 

their quantity).  

The time and time-frequency domain BSS artifact detection performance results are 

illustrated in Figure 5.18. Results show that time domain JADE has the highest 

detection rate when compared to the other examined time domain BSS algorithms. It 

illustrates maintained 97% accuracy, 94% sensitivity, and 100% specificity through the 

different SAR levels. This makes time domain JADE the most robust time domain 

algorithm with respect to its detection capabilities. Fast-ICA and BSS-CCA algorithms 

show a slight decrement in their detection rate (maximum differences in accuracies are 
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3% and 1% respectively). They show 95% and 91.6% mean accuracies, 91.6% and 

85.2% mean sensitivities, and lastly 98.4% and 98% mean specificities. Furthermore, 

SOBI shows an increment in its detection rate due the prominence of the artifact signal 

(maximum difference in accuracy is 4%). It illustrates 92.2% mean accuracy, 86.4% 

mean sensitivity, and 98% mean specificity. Lastly, Robust-ICA illustrates a 

maintained 95% accuracy, 92% sensitivity, and 98% specificity through the different 

SAR levels.  

On the other hand, time-frequency domain artifact detection results show that none of 

the BSS algorithms maintained its detection rate through the different SAR levels. 

Time-frequency SOBI produces the highest detection rate when compared to the other 

examined time-frequency BSS algorithms. It illustrates 90.4% mean accuracy, 86.8% 

mean sensitivity, and 94% mean specificity through the different SAR levels 

(maximum difference in accuracy is 3%). This makes SOBI the most robust time-

frequency domain algorithm with respect to its detection capabilities. Other BSS 

algorithms show an overall decrement in their detection rates. Fast-ICA, Robust-ICA 

and BSS-CCA algorithms show 88%, 86.8%, and 86.6% mean accuracies, 82.4%, 82%, 

and 81.6% mean sensitivities, and lastly 93.6%, 91.6% and 91.6% mean specificities 

(maximum differences in accuracies are 3%, 2%, and 3% respectively). Furthermore, 

JADE algorithm has the least detection rate consisting of: 85.8% mean accuracy, 81.6% 

mean sensitivity, and 90% mean specificity (maximum difference in accuracy is 5%). 

Summing up, all time and time-frequency artifact detection algorithms can be 

considered robust through the different SAR levels. This is valid as all algorithms have 

maintained a maximum difference in their detection accuracies below 5%, thus no prior 

knowledge on the SAR level is required for such algorithms. In addition, time domain 

105 
 



  

artifact detection algorithms produce higher overall detection performance when 

compared to the time-frequency BSS, but SOBI is the exception. It maintains the same 

level of performance when used in the time and time-frequency domains, thus making 

it reliable and independent from the domain of analysis. 

 

Figure 5.18: Time and time-frequency artifact detection performance assessment through different 
signal-to-artifact ratios 

 

5.3.2 Artifact Removal Performance 
Artifact removal performance is evaluated using the NRMSE and PCC metrics in 

the time-frequency domain. This evaluation procedure is done for all the time and time-

frequency BSS algorithms. 

The time and time-frequency domain BSS artifact removal evaluation results are 

illustrated in Figure 5.19. Results show that time domain SOBI algorithm has the 

highest removal performance when compared to the other examined time domain BSS 

algorithms. It illustrates 51.3% mean NRMSE and 79.5% mean PCC through the 
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different SAR levels. This makes it the best time domain algorithm with respect to its 

artifact removal capabilities (maximum differences in NRMSE and PCC are 42.8% and 

26.9% respectively). On the other hand, time domain Robust-ICA illustrates the lowest 

removal performance when compared to the other examined time domain BSS 

algorithms. It illustrates 56.8% mean NRMSE and 74.2% mean PCC through the 

different SAR levels. This makes it the worst time domain algorithm with respect to its 

artifact removal capabilities (maximum differences in NRMSE and PCC are 47.9% and 

29.7% respectively). 

Furthermore, time-frequency JADE algorithm shows the highest removal performance 

when compared to the other examined time-frequency BSS algorithms. It illustrates 

70.3% mean NRMSE and 52.3% mean PCC through the different SAR levels. This 

makes it the best time-frequency domain algorithm with respect to its artifact removal 

capabilities (maximum differences in NRMSE and PCC are 44.8% and 44.6% 

respectively). On the other hand, time-frequency BSS-CCA and SOBI algorithms 

illustrate the lowest removal performance when compared to the other examined time-

frequency BSS algorithms. They illustrate 76% and 77.6% mean NRMSEs, and 47.6% 

and 49.6% mean PCCs through the different SAR levels respectively (maximum 

differences in NRMSEs are 45.6% and 35.5% respectively, and maximum differences 

in PCCs are 49% and 46.2 respectively). 

NRMSE and PCC values for the time-frequency BSS have been degraded when 

compared to the time domain BSS results. Transforming time-domain BSS estimated 

signals to the time-frequency domain created cross terms between; EEG components, 

artifact components, and between EEG and artifact components. Removing artifacts in 

the time domain minimised the existence of artifacts in the EEG time domain signal, 
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thus the time-frequency transformation would contain the EEG information patterns 

and the EEG components cross terms. On the other hand, removing artifacts in the time-

frequency domain minimised the existence of artifacts patterns, but cross terms between 

artifact components, and between EEG and artifact components still exist. This created 

a noticeable difference between the clean signal and the estimation, consequently 

producing high NRMSE and low PCC values. 

Summing up, all time and time-frequency artifact removal algorithms cannot be 

considered robust through the different SAR levels, as their performance metrics were 

depending on the contamination level, thus prior knowledge of the SAR level is 

essential for these algorithms. In addition, time domain artifact removal algorithms 

produce higher overall removal performance when compared to the time-frequency 

BSS due artifact cross-terms existence. 

 

Figure 5.19: Time and time-frequency artifact removal performance assessment through different 
signal-to-artifact ratios 

20

40

60

80

100

Time Domain
Artifact Removal Performance

N
R

M
SE

 (%
)

 

 

Fast-ICA
Robust-ICA
BSS-CCA
SOBI
JADE

Time-Frequency Domain
Artifact Removal Performance

-20 -15 -10 -5 0
20

40

60

80

100

C
or

re
la

tio
n 

(%
)

Signal-to-Artifact Ratio (dB)
-20 -15 -10 -5 0

Signal-to-Artifact Ratio (dB)

108 
 



  

5.4 Automatic EEG Abnormality Detection 

The automatic EEG abnormality detection system output show the feature selection 

results when using the fused multichannel features, and when using the combination of 

the fused and extended multichannel features. Furthermore, it demonstrates the 

performance results of the SVM classifier when using the fused multichannel features, 

and the combination of the fused and extended multichannel features for the clean, 

corrupted, and filtered EEG epochs through different SAR levels. 

 

5.4.1 Feature Selection Results 
The features selection process is based on calculating the Fisher’s score for every 

feature in the clean EEG waveform independently from the others. Then, ordering them 

according to their Fisher’s scores to select a top ranked subset. Table 5.2 illustrates the 

ordered fused multichannel time-frequency features and their Fisher’s scores. It shows 

that the instantaneous frequency features and spectral flatness are the worst features to 

be used in the EEG abnormality detection system, and that Shannon entropy, 

normalised Renyi entropy, and the TFD mean features are the best. On the other hand, 

Table 5.3 illustrates the ordered combination of the extended and fused multichannel 

time-frequency features and their Fisher’s scores. It also shows that the instantaneous 

frequency features and spectral flatness features are the worst to be used in the EEG 

abnormality detection system, but it demonstrates that the mean time-frequency 

correlation between the EEG channels would be the best feature to be used along with 

the Shannon and normalised Renyi entropies. Such change in the best feature to be used 

could improve the EEG abnormality detection results. Feature selection complete tables 

are attached in the supplementary material shown in Appendix J.4, page 222. 
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Table 5.2: Fused multichannel time-frequency features ordered according to their Fisher’s scores 

# Feature Label Fisher Score 
12 𝑭𝑭𝟕𝟕 10.89603343 
9 𝑭𝑭𝟔𝟔 8.408607824 
1 𝑻𝑻𝟏𝟏 6.802327383 
⋮ ⋮ ⋮ 

10 𝑭𝑭𝟓𝟓 0 
13 𝑰𝑰𝑰𝑰𝟏𝟏 0 
14 𝑰𝑰𝑰𝑰𝟐𝟐 0 

 

Table 5.3: Combined extended and fused multichannel time-frequency features ordered according to 
their Fisher’s scores 

# Feature Label Fisher Score 
17 𝑴𝑴𝟏𝟏 13.10198119 
12 𝑭𝑭𝟕𝟕 10.89603343 
9 𝑭𝑭𝟔𝟔 8.408607824 
⋮ ⋮ ⋮ 

10 𝑭𝑭𝟓𝟓 0 
13 𝑰𝑰𝑰𝑰𝟏𝟏 0 
14 𝑰𝑰𝑰𝑰𝟐𝟐 0 

 

5.4.2 Abnormality Detection Results 
The abnormality detection process is based on adapting the feature selection and 

classification iterative process, along with an SVM classifier that will be cross-

validated in every iteration using the LOOCV method. This process will be repeated 

twice; first using the fused multichannel time-frequency features, and then using the 

combined extended and fused multichannel time-frequency features. Abnormality 

detection results will be discussed with respect to accuracy and robustness, where 

abnormality detection robustness is defined as the maximum accuracy delivered by 

utilising the maximum number of features. 
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The classification accuracy profiles when using the fused and the combined 

extended and fused time-frequency multichannel features are illustrated in Figure 5.20, 

while averages of the classification accuracy profiles are illustrated in Table 5.4. Firstly, 

it can be seen that the system accuracy profiles when using corrupted EEG has been 

improved by utilising the extended multichannel features. The average detection 

accuracies have increased from 93.0% to 97.8%, 82.8% to 97.6%, and from 70.9% to 

97.4% when using corrupted EEG with SAR of -13.2412, -16.763, and -19.262 dB 

respectively. This proves that the overall system accuracy can be improved by using 

the combined features with average addition of 4.8%, 14.8% and 26.5%. 

Moreover, the maximum accuracies when using corrupted EEG with SAR of: 0, -

7.2206, -13.2412, and -16.763 dB are: 100%, 100%, 99%, and 90% respectively by 

utilising 8 fused features. Furthermore, 77% is the maximum accuracy when using 

corrupted EEG with SAR of -19.2618 dB and by utilising 7 fused features. On the other 

hand, maximum accuracies when using corrupted EEG with all different SARs have 

reached 100% by utilising 9 combined multichannel features. This proves that the 

overall system robustness and accuracy are enhanced when using the extended features 

as the number of feasible features has increased from 7 or 8 to 9 and the least accuracy 

has increased by 23%. 

Classification accuracy profiles for the time and time-frequency filtered EEG using 

the fused and the combined extended and fused time-frequency multichannel features 

are attached in Appendix J.5, page 224. 

Results show that time domain artifact detection and removal improves the abnormality 

detection average accuracies when utilising the fused multichannel features. They have 

increased by approximately 3.5%, 11.8%, and 16% when applying Robust-ICA on the 
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corrupted EEG, and by 2.8%, 10.3%, and 18.7% when applying Fast-ICA on the 

corrupted EEG with SAR of -13.2412, -16.763, and -19.262 dB respectively. On the 

other hand, average accuracies have degraded when applying time domain artifact 

detection and removal on the corrupted EEG and utilising the extended multichannel 

features. They have decreased by minimum of 2.3%, 1.9%, 2.5%, and 3.2% when 

applying SOBI, JADE, Robust-ICA, and Fast-ICA on the corrupted EEG with SAR of 

-7.22, -13.2412, -16.763, and -19.262 dB respectively. 

Moreover, time domain artifact detection and removal does not improve the 

abnormality detection robustness, because maximum accuracies were achieved using 

the same number of features as the corrupted EEG. In addition, results show that 

different algorithms must be used to maintain the same number of utilised features on 

different SAR levels. SOBI achieves the maximum accuracy at 0 and -7.22 dB SAR 

when utilising 9 and 8 features respectively, while Robust-ICA achieves the maximum 

accuracy at -13.2412 and -16.763 dB SAR when utilising 8 features, and finally Fast-

ICA achieves the maximum accuracy at -19.262 dB SAR when utilising 8 features. This 

wide range of used algorithms due different SAR levels prohibits the usage of time 

domain artifact detection and removal techniques, as adequate algorithms cannot be 

chosen without prior knowledge on the contamination level. 

Time-frequency domain artifact detection and removal results illustrate that 

abnormality detection average accuracies can be improved when utilising the fused 

multichannel features. They have approximately increased by 1.9%, 4.6%, and 3.4% 

when applying JADE on the corrupted EEG, and by 1.3%, 6.7%, and 3% when applying 

Fast-ICA on the corrupted EEG with SAR of -13.2412, -16.763, and -19.262 dB 

respectively.  
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In addition, abnormality detection average accuracies has also improved when utilising 

the extended multichannel features. They have approximately increased by 0.13% and 

0.3% when applying Fast-ICA on the corrupted EEG with SAR of -13.2412 and -19.262 

dB. Furthermore, JADE has increased the average accuracy by 0.4% and 0.1% when 

applied on the corrupted EEG with SAR of -16.763 and -19.262 dB. 

Moreover, time-frequency artifact detection and removal does not improve the 

abnormality detection robustness, because maximum accuracies were achieved using 

the same number of features as the corrupted EEG. In addition, results show that only 

the time-frequency JADE algorithm can be used to maintain the same number of 

features on all the SAR levels. This makes time-frequency artifact detection and 

removal preferable as they do not require prior knowledge on the SAR level in contrast 

with time domain techniques. 

Summing up, abnormality detection average accuracies can be improved when 

using corrupted EEG with SARs of -13.2412, -16.763, and -19.262 dB. Utilising the 

fused multichannel features along with time domain Fast-ICA increases the average 

accuracies from; 93.0%, 82.8%, and 70.9% to; 95.8%, 93.1%, and 89.6% respectively 

(2.8%, 10.3%, and 18.7% increments). On the other hand, using time-frequency JADE 

increases the average accuracies to; 94.9%, 87.4%, and 74.3% respectively (1.9%, 

4.6%, and 3.4% increments). Furthermore, by only utilising the extended multichannel 

features average accuracies have increased from; 93.0%, 82.8%, and 70.9% to; 97.8%, 

97.6%, and 97.4% (4.8%, 14.8% and 26.5% increments) when using corrupted EEG 

with SAR of -13.2412, -16.763, and -19.262 dB respectively. Adding to that, using 

time-frequency JADE slightly improves these accuracies to be 97.7%, 98.0%, and 

97.5% (-0.1%, 0.4% and 0.1% increments), while using time domain techniques 
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degrade them. Moreover, both time and time-frequency artifact detection and removal 

techniques do not improve the abnormality detection robustness, because most 

maximum accuracies were achieved using the same number of features as the corrupted 

EEG. In addition, results show that only the time-frequency JADE algorithm can be 

used to maintain the same number of features on all the SAR levels, thus time-frequency 

artifact detection and removal techniques are preferable. 

 

 

 

Figure 5.20: EEG abnormality detection accuracy profiles when using the fused and the combined 
extended and fused time-frequency multichannel features for the clean and corrupted EEG. Maximum 
accuracies delivered by utilising the maximum number of features are contoured in dark brown circles 
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Table 5.4: EEG abnormality detection average performances when using the fused and the combined 
extended and fused time-frequency multichannel features for the clean and corrupted EEG. min is the 
minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

Clean EEG 100 100 100 100 100 100 100 100 100 

SAR ≈ 0 dB 99 99.5 100 100 100 100 98 99 100 

SAR ≈ -7.22 dB 96 98.1875 100 98 99.75 100 92 96.625 100 

SAR ≈ -13.241 dB 73 93.0625 99 60 93.5 98 84 92.625 100 

SAR ≈ -16.763 dB 60 82.8125 90 40 82 90 66 83.625 90 

SAR ≈ -19.262 dB 49 70.9375 77 40 71.25 80 50 70.625 76 

 Combined Extended and Fused Multichannel Time-Frequency Features 

Clean EEG 99 99.875 100 100 100 100 98 99.75 100 

SAR ≈ 0 dB 75 97.8125 100 66 97.875 100 84 97.75 100 

SAR ≈ -7.22 dB 94 98.125 100 98 99.875 100 88 96.375 100 

SAR ≈ -13.241 dB 90 97.75 100 100 100 100 80 95.5 100 

SAR ≈ -16.763 dB 88 97.625 100 100 100 100 76 95.25 100 

SAR ≈ -19.262 dB 88 97.4375 100 94 99.25 100 76 95.625 100 
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CHAPTER 6:  CONCLUSIONS AND FUTURE 
PERSPECTIVES 

The synthetic neonatal multichannel EEG was constructed by using: a neonatal 

single channel EEG model, a neonatal head model, 21 EEG electrodes, and an EEG 

propagation model. After that, the generated seizure-to-background ratios were 

validated against published references using Probability-Probability (P-P) plots. 

Furthermore, the synthetic neonatal multichannel model was validated against real 

neonatal EEG data using Spearman’s correlation. 

The neonatal single-channel EEG used the Rankine model [41] to produce background 

and seizure epochs. Secondly, the neonatal head model used Sadleir four sphere 

approach [21], which divided the head into four concentric spheres namely; scalp, skull, 

cerebrospinal fluid, and the brain. Furthermore, 21 EEG electrodes were placed on the 

scalp surface of the neonatal head model according to the international 10-20 system 

[27] [28] [29] [30]. Moreover, the EEG propagation model was constructed by 

modifying the radiation transport equation to describe the EEG propagation through the 

head model. It had three tuning options to alter the head optical properties making them; 

pure optical absorbing, pure optical scattering, or optical absorbing and scattering♣. 

The P-P validation results illustrated that pure optical absorbing medium is the best 

candidate to be used further in the system, as its normal line had an R2 value of 

0.999990 when fitting the reference normal line. After that, the synthetic neonatal 

♣ Despite the fact that, RTE uses light and EEG is an electrical measurement; both signals are 
fundamentally electromagnetic, thus they obey the same fundamental laws of physics (absorption, 
scattering, reflection, and the inverse square law [45]). Furthermore, applying the RTE on a validated 
neonatal head model, would represent the EEG propagation through the different head structures, thus 
EEG power will decay and disperse according to the head tissue’s optical properties. 
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multichannel EEG was assembled and user options were created to alter: the type, 

duration, and the number of EEG patterns appearing on every channel. Finally, the 

model validation results showed the model effectiveness in mimicking the morphology 

of real neonatal EEG, as it illustrated 0.58065 and 0.57796 mean correlations for the 

background EEG comparison and 0.65107 and 0.66254 for the seizure EEG comparison 

in the frequency and time-frequency domains respectively 

Capabilities of this model can be upgraded by utilising several options such as: different 

background and seizure simulators, different electrode placement standards such as the 

10-20, 10-10, and 5-10 systems, and an option to include or exclude the neonatal 

fontanel in the neonatal head model. These additions can tailor the model according to 

the user specific needs, and can broaden its validation and simulation capabilities. 

The synthetic neonatal multichannel EEG artifacts model was constructed by 

combining three synthetic physiological signals to corrupt the synthetic neonatal EEG. 

After that, corrupted EEG was generated with different signal-to-artifact ratios (SAR) 

to assess the system performance through different contamination levels. 

The model used three synthetic physiological signals namely; blood vessel pulsation, 

electrocardiogram spikes, and short-time high-amplitude signals to produce EEG 

artifacts. Furthermore, an EEG multichannel artifact system was created with user 

inputs to alter the: location, duration, amplitude, and the number of artifact segments in 

the EEG signal. After that, five versions of corrupted EEG were created with signal-to-

artifact ratios (SAR) of: 0, -7.2206, -13.2412, -16.763, and -19.262 dB respectively, to 

assess the system robustness and accuracy for all the different SAR levels. 

Contamination potentials of the model can be upgraded and enhanced by expanding the 

synthetic templates to include other types of EEG artifacts, such as eye blinking and 

117 
 



  

body movement artifacts. Furthermore, randomness in choosing and placing the 

synthetic artifacts on different channels can be introduced, thus making the model more 

suitable in testing artifact detection and removal algorithms. 

The automatic artifacts detection and removal system was designed to process 

corrupted EEG signals in the time (t) and time-frequency (t-f) domains using BSS 

algorithms. Furthermore, the artifact detection technique was statistically optimised and 

the artifact removal was evaluated. After that, artifact detection and removal 

performances were tested using corrupted EEG with different SAR levels in order to 

assess its accuracy and robustness to contamination levels. 

The system utilised Fast-ICA, Robust-ICA, BSS-CCA, SOBI, and JADE algorithms to 

estimate the source signals in the t and t-f domains. After that, artifacts were detected 

by comparing an optimised correlation threshold with the correlation between the 

estimated source signals and a reference signal. Finally, artifact removal performance 

was evaluated by computing Normalised Root Mean Square Error (NRMSE) and 

Pearson’s Correlation Coefficient (PCC) metrics in the t-f domain between the filtered 

and original clean epochs. 

Artifact detection results illustrated that, all t and t-f artifact detection and removal 

algorithms were robust with respect to their detection capabilities for all the different 

SAR levels (maintained 5% maximum difference), but not with respect to their removal 

capabilities (NRMSE and PCC were degrading when increasing the SAR level). JADE 

algorithm had produced the highest and the most robust detection performance when 

utilised in the t domain (97% accuracy, 94% sensitivity, and 100% specificity), and the 

highest mean removal performance when utilised in the t-f domain (70.3% NRMSE 

and 52.3% PCC). On the other hand, SOBI algorithm had produced the highest and the 
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most robust mean detection performance when utilised in the t-f domain (90.4% 

accuracy, 86.8% sensitivity, and 94% specificity), and the highest mean removal 

performance when utilised in the t domain (51.3% NRMSE and 79.5% PCC). 

The automatic EEG abnormality detection was constructed using: t-f multichannel 

features, extended multichannel features, multichannel feature fusion scheme, feature 

selection algorithm, and a cross validated Support Vector Machine (SVM) classifier  

Multichannel t-f features were extracted from every channel, then fused using the 

Multichannel Feature Fusion Sum Basis technique. Furthermore, extended t-f 

multichannel features were introduced based on EEG multichannel information 

alikeness, and then combined with the fused features. After that, Fisher’s scores were 

computed for both feature sets of the clean EEG waveform, and then ordered according 

to their scores to select a top ranked subset. Finally, the feature subset was plugged into 

the feature selection and classification iterative process to produce classification 

accuracy profiles using cross-validated SVM classifier. 

Feature selection results illustrated that Shannon and normalised Renyi entropies were 

the best features to be used in the EEG abnormality detection system when utilising the 

fused multichannel feature set (Fisher’s scores are 10.9 and 8.4 respectively). 

Furthermore, the average t-f correlation among EEG channels became the best feature 

to be used when utilising the combined multichannel feature set (Fisher’s score 13.1). 

Abnormality detection results demonstrated that, using corrupted EEG with SARs of -

13.2412, -16.763, and -19.262 dB along with utilising the fused feature set, had 

degraded the average accuracies of the classifier from 100% to 93.0%, 82.8%, and 

70.9% respectively. However, they were increased by using the time domain Fast-ICA 

algorithm (95.8%, 93.1%, and 89.6% respectively), and by using the t-f JADE 
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algorithm (94.9%, 87.4%, and 74.3% respectively). Furthermore, by only utilising the 

extended multichannel features the average accuracies were increased to 97.8%, 97.6%, 

and 97.4% respectively. Adding to that, using the t-f JADE along with the extended 

multichannel features had slightly improved these accuracies to be 97.7%, 98.0%, and 

97.5%, but using time domain artifact detection and removal degraded them. 

Furthermore, the maximum accuracies when using corrupted EEG with SAR of; 0, -

7.2206, -13.2412, and -16.763 dB were; 100%, 100%, 99%, and 90% respectively by 

utilising 8 fused features, and 77% for an SAR of -19.2618 dB by utilising 7 fused 

features. However, they were increased to 100% by utilising 9 combined multichannel 

features. This indicates that the robustness and accuracy of the system had improved 

when using the extended features as the number of feasible features increased from 7 

or 8 to 9, and the least maximum accuracy had increased by 23%. 

Improvements to the automatic EEG abnormality detection system can be done by 

utilising: different multichannel fusion schemes, such as symmetrical uncertainty, 

different feature selection algorithms, such as mRMR, adaptive feature selection based 

on patients and/or data, and regularized tree, and different classifiers, such as: naive 

Bayes, K-nearest neighbour, Extended Nearest Neighbour, and Convolutional Neural 

Networks. These added options can help determine which feature selection algorithm 

and classifier result in the maximum detection performance. 
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Appendix A: Fundamentals of Non-Stationary Signal Processing 

The material presented in this appendix are used to explain the fundamentals of 

neonatal EEG time-frequency processing and analysis, which are needed for 

Section 2.3, page 27. 

 

A.1 Stationary and Nonstationary Processes 
A random process 𝑋𝑋(𝑡𝑡) is said to be stationary to the 𝑁𝑁𝑁𝑁ℎ order if for 

any 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 Equation A.1 holds, where the probability is 𝑃𝑃, 𝐹𝐹𝑥𝑥 

is the probability density function, and 𝑡𝑡0 is an arbitrary real constant [112]. 

𝐹𝐹𝑥𝑥(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁; 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁) = 𝑃𝑃({𝑥𝑥(𝑡𝑡1) ≤ 𝑥𝑥1, … , 𝑥𝑥(𝑡𝑡𝑁𝑁) ≤ 𝑥𝑥𝑁𝑁}) 

= 𝑃𝑃({𝑥𝑥(𝑡𝑡1 + 𝑡𝑡0) ≤ 𝑥𝑥1, … , 𝑥𝑥(𝑡𝑡𝑁𝑁 + 𝑡𝑡0) ≤ 𝑥𝑥𝑁𝑁}) = 𝐹𝐹𝑥𝑥(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁; 𝑡𝑡1 + 𝑡𝑡0, … , 𝑡𝑡𝑁𝑁 + 𝑡𝑡0) 
Equation A.1 

This process is said to be strictly stationary if it is stationary to the infinite order (𝑁𝑁 →

∞). This implies that all moments are constants and equal through the random process, 

thus a process cannot be proven to be strictly stationary as infinite moments have to be 

calculated. Wide-sense stationary processes are stationary to the second order, thus the 

expectation of the process (first moment) is constant and the autocorrelation 

function 𝑅𝑅𝑋𝑋𝑋𝑋 (second moment) does not depend on time (Equation A.2 and Equation 

A.3) [112]. 

E[𝑋𝑋(𝑡𝑡)] =  � 𝑥𝑥 𝑓𝑓𝑥𝑥(𝑥𝑥; 𝑡𝑡)
∞

−∞
𝑑𝑑𝑑𝑑 = 𝑐𝑐 Equation A.2 

𝑅𝑅𝑋𝑋𝑋𝑋(𝑡𝑡1, 𝑡𝑡2) = 𝑅𝑅𝑋𝑋𝑋𝑋(𝜏𝜏) =  E[𝑋𝑋(𝑡𝑡1).𝑋𝑋(𝑡𝑡1 + 𝜏𝜏)] , 𝜏𝜏 = |𝑡𝑡2 − 𝑡𝑡1| Equation A.3 

Most real life signals are nonstationary for instance: ocean waves, atmospheric 

turbulence, economic time-series data, EEG, and much simpler example is a linear 

frequency modulated (LFM) signal. All of these examples share that both or at least one 
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of the first two moments changes with time. However, it is still possible to consider 

such signals as piece wise stationary for measurement and analysis purposes. This can 

be done by segmenting the nonstationary signal into N wide-sense stationary segments, 

thus stationary analysis tools can be used. This is very important as the Wiener-

Khintchine theorem still holds for such small segments. Consequently, a time-varying 

power spectrum 𝑆𝑆𝑋𝑋(𝑡𝑡𝑖𝑖,𝑓𝑓) for nonstationary signals can be obtained from the Fourier 

transform of the time-varying autocorrelation function 𝑅𝑅𝑋𝑋𝑖𝑖(𝑡𝑡, 𝜏𝜏). Thus creating a time-

frequency representation (TFR) [1] [112]. 

𝑆𝑆𝑋𝑋(𝑡𝑡𝑖𝑖,𝑓𝑓) = ℱ�𝑅𝑅𝑋𝑋𝑖𝑖(𝑡𝑡, 𝜏𝜏)� =  � 𝑅𝑅𝑋𝑋𝑖𝑖(𝑡𝑡, 𝜏𝜏) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
∞

−∞
𝑑𝑑𝜏𝜏, 𝑖𝑖 ∈ [1,𝑁𝑁] Equation A.4 

A.2 Wigner-Ville Distribution 
The Wigner Distribution (WD) 𝒲𝒲𝑠𝑠(𝑡𝑡,𝑓𝑓) was discovered by Eugene Wigner in 1932 

in a quantum mechanical concept. It is a Quadratic Time-Frequency Distribution 

(QTFD) based on computing the Fourier transform of a signal kernel 𝐾𝐾𝑠𝑠(𝑡𝑡, 𝜏𝜏) which 

represents the Instantaneous Autocorrelation Function (IAF) of a signal 𝑠𝑠(𝑡𝑡) using 

Equation A.5 and Equation A.6 [1]. 

𝐾𝐾𝑠𝑠(𝑡𝑡, 𝜏𝜏) = 𝑠𝑠 �𝑡𝑡 +
𝜏𝜏
2
�  𝑠𝑠∗ �𝑡𝑡 −

𝜏𝜏
2
� Equation A.5 

𝜌𝜌𝑠𝑠(𝑡𝑡,𝑓𝑓) =  � 𝑠𝑠 �𝑡𝑡 +
𝜏𝜏
2
�  𝑠𝑠∗ �𝑡𝑡 −

𝜏𝜏
2
�  𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋

∞

−∞
 𝑑𝑑𝑑𝑑 =  𝒲𝒲𝑠𝑠(𝑡𝑡,𝑓𝑓) Equation A.6 

The Wigner-Ville Distribution (WVD) 𝑊𝑊𝑧𝑧(𝑡𝑡,𝑓𝑓) is an extension of the WD. It modifies 

the signal kernel to adapt the analytic associate 𝑧𝑧(𝑡𝑡) of 𝑠𝑠(𝑡𝑡). The analytic association is 

a realistic version of the real signal, where this association has no negative frequencies. 

This concept mimics real life signals where negative frequencies have no meaning as a 

consequence from the basic definition of frequency (number oscillations per unit time), 
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this quantity cannot be negative [1]. The analytic association can be calculated using 

Equation A.7 and Equation A.8, where 𝑦𝑦(𝑡𝑡) is the Hilbert transform of 𝑠𝑠(𝑡𝑡). 

𝑧𝑧(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑗𝑗𝑗𝑗(𝑡𝑡) Equation A.7 

𝑦𝑦(𝑡𝑡) =  ℋ{𝑠𝑠(𝑡𝑡)} Equation A.8 

The signal kernel of the analytic associate is calculated using Equation A.9 and is used 

to compute the WVD using Equation A.10. 

𝐾𝐾𝑧𝑧(𝑡𝑡, 𝜏𝜏) = 𝑧𝑧 �𝑡𝑡 +
𝜏𝜏
2
�  𝑧𝑧∗ �𝑡𝑡 −

𝜏𝜏
2
� Equation A.9 

𝜌𝜌𝑧𝑧(𝑡𝑡,𝑓𝑓) =  � 𝑧𝑧 �𝑡𝑡 +
𝜏𝜏
2
�  𝑧𝑧∗ �𝑡𝑡 −

𝜏𝜏
2
�  𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋

∞

−∞
 𝑑𝑑𝑑𝑑 =  𝑊𝑊𝑧𝑧(𝑡𝑡,𝑓𝑓) Equation A.10 

Figure A.1 illustrates a real signal 𝑠𝑠1(𝑡𝑡) and its analytic associate 𝑧𝑧1(𝑡𝑡) in the frequency 

and time-frequency domains using WD and WVD. 𝑠𝑠1(𝑡𝑡) is a LFM signal and can be 

described using Equation A.11. It is clear that the analytic associate has no negative 

frequencies, but only mimics the positive portion of the real signal frequency 

representation (Equation A.12). The WD shows two LFM signals on the positive and 

negative frequency axes respectively. On the other hand, the WVD only shows only 

one LFM on the positive frequency axis which again mimics real life signals [1]. 

𝑠𝑠1(𝑡𝑡) = cos (2𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡 +  𝜋𝜋𝜋𝜋𝑡𝑡2) Equation A.11 

𝑧𝑧(𝑡𝑡) =  𝑠𝑠1(𝑡𝑡) + 𝑗𝑗ℋ[𝑠𝑠1(𝑡𝑡)] = 𝑒𝑒 𝑗𝑗�2𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡+𝜋𝜋𝜋𝜋𝑡𝑡2� Equation A.12 

Noisy terms are added on the centre of the WD. These noisy additions are called inner 

artifacts and they act as embedded noise on the TFR. Figure A.2 illustrate the WVD of 

a multicomponent signal consisting of a LFM and a Quadratic Frequency Modulated 

signal (QFM).  The TFR consists of many artifacts that did not exist in the original 

signal. These artifacts are contoured with red and yellow blubs. The real information of 

the signal are contoured in green and are called the auto-terms of the TFR where they 
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describe the instantaneous frequency (IF) law of the multicomponent signal. Artifacts 

that are between two components are called outer-terms or cross-terms (contoured in 

red) and are generated because of the nonlinear nature of TFDs. On the other hand, 

artifacts that are generated within the signal are called inner-terms (contoured in 

yellow) and are generated because of the nonlinear IF law of the signal [1]. 

Inner and outer-terms alternate in sign as we move normal to the IF law in the t-f plane; 

this is a characteristic feature of the inner and outer terms and will be used in cross-

terms minimisation. Note that MATLAB default linear colour-maps are not adequate 

for the human eye to see small changes in colour, thus a different linear colour-map is 

used and illustrated in Figure A.3. This colour-map will be used further in this thesis. 

More details on colour-maps and human eye perception can be found in [113]. 

 

Figure A.1: Real LFM and its analytic associate frequency and time-frequency representations using 
WD and WVD. The starting frequency of the LFM is 1 Hz and ends at 4 Hz. The signal duration is 64 
seconds and the sampling frequency is 16 Hz 

143 
 



  

 

Figure A.2: WVD of a multicomponent signal consisting of a LFM and a QFM. The LFM frequency 
starts at 1 and finishes at 40 Hz, while the QFM frequency starts at 400 goes to 100 Hz at ends at 400 
Hz. The signal duration is 1 second using a sampling frequency of 512 Hz 

 

Figure A.3: WVD of a multicomponent signal consisting of a LFM and a QFM. This is the same as 
Figure A.2 but with different colour map 
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A.3 Formulation of Quadratic Time-Frequency Distributions 
The WVD defined in Equation A.10 gives ideal concentration for mono-component 

LFM signals, but it produces undesired cross-terms for non-linear frequency modulated 

or multicomponent signals (Figure A.1 and Figure A.3). Cross-terms can be reduced by 

convolving the WVD with a two dimensional time-frequency kernel 𝛾𝛾(𝑡𝑡,𝑓𝑓), which can 

be described using Equation A.13. 

Equation A.13 also represents the general time-frequency formulation of QTFDs. The 

2D smoothing reduces cross-terms contribution, but it blurs the auto-terms as well. 

Consequently, kernels must be designed to achieve the best trade-off between cross-

terms minimisation and auto-terms resolution [1]. 

𝜌𝜌(𝑡𝑡,𝑓𝑓) =  𝛾𝛾(𝑡𝑡,𝑓𝑓) ∗𝑡𝑡∗𝑓𝑓 𝑊𝑊𝑧𝑧(𝑡𝑡,𝑓𝑓) Equation A.13 

Computation of QTFDs based on Equation A.13 requires one Fourier transform and 

two convolutions along the time and frequency axes. In addition to this general 

expression, QTFDs can be expressed starting from a time-lag formulation, doppler-lag 

formulation or a doppler-frequency formulation [1]. 

Equation A.13 can be described in the time-lag formulation by using Equation A.14. 

The convolution operation along the frequency domain axis is replaced with 

multiplication along the lag axis, where 𝐺𝐺(𝑡𝑡, 𝜏𝜏) is called the time-lag kernel of the TFD. 

This formulation requires only one convolution with respect to time and one Fourier 

transform from lag domain to frequency domain [1]. 

Another formulation can be done in the doppler-frequency domain as in Equation A.15. 

In this case the time convolution is replaced by a multiplication in the Doppler axis, 

where 𝒢𝒢(𝑣𝑣,𝑓𝑓) is called the doppler-frequency kernel of the TFD and 𝑘𝑘𝑧𝑧(𝑣𝑣,𝑓𝑓) is referred 

to as the Spectral Autocorrelation Function (SAF). 
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Lastly, Equation A.13 can be also described in the doppler-lag formulation using 

Equation A.16. The time convolution of Equation A.14 is replaced by multiplication in 

the Doppler domain, where 𝐴𝐴𝑧𝑧(𝑣𝑣, 𝜏𝜏) represents the ambiguity function and 𝑔𝑔(𝑣𝑣, 𝜏𝜏) is 

the doppler-lag kernel (Equation A.17 and Equation A.18). This formulation is widely 

used for designing high resolution TFDs as it allows entering the filter specifications 

directly in the formulation which is equivalent to designing a 1D filter in the frequency 

domain. The relationship between all formulations is depicted in Figure A.4 [1]. 

𝜌𝜌(𝑡𝑡,𝑓𝑓) =  �𝐺𝐺(𝑡𝑡, 𝜏𝜏) ∗𝑡𝑡 𝐾𝐾𝑧𝑧(𝑡𝑡, 𝜏𝜏) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 =   �𝑅𝑅𝑧𝑧(𝑡𝑡, 𝜏𝜏) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 Equation A.14 

𝜌𝜌(𝑡𝑡,𝑓𝑓) =  �𝒢𝒢(𝑣𝑣, 𝑓𝑓) ∗𝑓𝑓 𝑘𝑘𝑧𝑧(𝑣𝑣,𝑓𝑓) 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 =  �𝑟𝑟(𝑣𝑣,𝑓𝑓) 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑 Equation A.15 

𝜌𝜌(𝑡𝑡, 𝑓𝑓) =  �𝑔𝑔(𝑣𝑣, 𝜏𝜏)𝐴𝐴𝑧𝑧(𝑣𝑣, 𝜏𝜏)𝑒𝑒𝑗𝑗2𝜋𝜋(𝑣𝑣𝑣𝑣−𝑓𝑓𝑓𝑓) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝒜𝒜𝑧𝑧(𝑣𝑣, 𝜏𝜏) 𝑒𝑒𝑗𝑗2𝜋𝜋(𝑣𝑣𝑣𝑣−𝑓𝑓𝑓𝑓) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  Equation A.16 

𝐴𝐴𝑧𝑧(𝑣𝑣, 𝜏𝜏) = �𝐾𝐾𝑧𝑧(𝑡𝑡, 𝜏𝜏) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑  Equation A.17 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = �𝐺𝐺(𝑡𝑡, 𝜏𝜏) 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑  Equation A.18 

 

 

Figure A.4: TFD formulation relationships in several domains (Redrawn from [1] and [63]) 
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As stated before inner and outer-terms sign alternate as we move normal to the IF law 

in the t-f plane, and their alternation frequency is higher than the auto-terms. 

Consequently, their contribution in the doppler-lag domain would exist far away from 

the origin where low alternating components (auto-terms) resign. Figure A.5 illustrates 

the ambiguity domain of the multicomponent signal in Figure A.3. The contribution of 

auto-terms is contoured in green while the rest is contributions from inner and outer-

terms. Designing high resolution TFDs becomes a matter of designing a 2D filter in the 

time-frequency domain that is able to filter auto-terms from inner and outer-terms. This 

can be achieved by designing a 2D filter in the ambiguity domain conserving the shape 

of the auto-terms contribution [1]. 

 

 

Figure A.5: Doppler-lag or Ambiguity domain of the signal depicted in Figure A.3 
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A.4 High Resolution Quadratic Time-Frequency Distributions 
High resolution QTFDs can be computed using separable kernels, where 𝛾𝛾(𝑡𝑡, 𝑓𝑓) can 

be expressed using Equation A.19. The meaning and significance of separable kernels 

is that QTFDs are defined and designed by smoothing the WVD in t and then in f. The 

shape and size of 𝑔𝑔1(𝑡𝑡) or 𝐺𝐺2(𝑓𝑓) defines the smoothing along the time or frequency 

axis respectively. The relationship between all formulations is depicted in Figure A.6. 

 

𝛾𝛾(𝑡𝑡,𝑓𝑓) = 𝑔𝑔1(𝑡𝑡)𝐺𝐺2(𝑓𝑓) Equation A.19 

 

Examples of high resolution TFDs are: the B-Distribution (BD), Modified B-

Distribution (MBD), Extended Modified B-Distribution (EMBD), Compact Support 

Kernel (CSK), and Extended Compact Support Kernel (ECK) [1] [27] [63] [77] [114]. 

 

 

Figure A.6: Separable kernels formulation relationships in several domains  (Redrawn from [1] and 
[63]) 
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A.4.1 B-Distribution   

The BD kernel expression in the ambiguity domain is depicted in Equation A.20, 

where 𝜏𝜏, 𝑣𝑣, and 𝛽𝛽 are bounded to ensure that the BD contains a low-pass filter. It 

illustrates the product between a low-pass filter 𝐺𝐺1(𝑣𝑣) and high-pass filter 𝑔𝑔2(𝜏𝜏). The 

BD produces high resolution TFD for small values of 𝛽𝛽. The disadvantage of the BD is 

that a zero at the origin appears as a consequence of the high pass filtering along the 

lag axis. This results in degradation of the resolution for specific types of signals [63]. 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = 𝐺𝐺1(𝑣𝑣)𝑔𝑔2(𝜏𝜏) =  |𝜏𝜏|𝛽𝛽  
|Γ(𝛽𝛽 + 𝑗𝑗𝑗𝑗𝑗𝑗)|2

21−2𝛽𝛽Γ(2𝛽𝛽)  

 |𝑣𝑣| ≤ 0.5, |𝜏𝜏| ≤ 0.5, 0 ≤ 𝛽𝛽 ≤ 1 
Equation A.20 

A.4.2 Modified B-Distribution 

The MBD design overcomes some of the problems illustrated in the BD. Its kernel 

expression in the ambiguity domain is depicted in Equation A.21. The kernel of the 

MBD includes only the Doppler window of the BD kernels so as to avoid the distortion 

caused by high pass filtering along the lag-axis. As a consequence the MBD gives the 

highest energy concentration only for signals whose IF does not vary rapidly with time, 

such as EEG seizure signals and LFMs [1] [63]. 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = 𝐺𝐺1(𝑣𝑣) =   
|Γ(𝛽𝛽 + 𝑗𝑗𝑗𝑗𝑗𝑗)|2

Γ2(𝛽𝛽) , |𝑣𝑣| ≤ 0.5, 0 ≤ 𝛽𝛽 ≤ 1 Equation A.21 

A.4.3 Extended Modified B-Distribution 

The EMBD was designed as an improvement to the MBD. It extends the MBD by 

applying its kernel filter along both lag and Doppler axes as depicted in Equation A.22.  

The lengths of the lag and Doppler windows are controlled independently by 𝛼𝛼 and  𝛽𝛽 

respectively. The extra degree of freedom in the formulation of the EMBD allows to 

149 
 



  

independently adjust the lengths of the windows along both lag and Doppler axes. This 

advantage makes it a useful tool in analysing real life signals such as; EEG signals with 

seizure and EEG spike signals [1] [63]. 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = 𝐺𝐺1(𝑣𝑣)𝑔𝑔2(𝜏𝜏) =   
|Γ(𝛽𝛽 + 𝑗𝑗𝑗𝑗𝑗𝑗)|2

Γ2(𝛽𝛽)  
|Γ(𝛼𝛼 + 𝑗𝑗𝑗𝑗𝑗𝑗)|2

Γ2(𝛼𝛼) ,  

−0.5 ≤ 𝑣𝑣 ≤ 0.5, −0.5 ≤ 𝜏𝜏 ≤ 0.5, 0 ≤ 𝛽𝛽 ≤ 1, 0 ≤ 𝛼𝛼 ≤ 1 

Equation A.22 

 

A.4.4 Compact Support Kernel 

The CSK is designed to vanish outside a given range in the ambiguity domain. 

Consequently, it does not have infinite length and does not require rectangular window 

truncation which may cause loss of information. TFDs utilising such compact kernels 

have been shown to outperform other kernel-based methods in terms of their ability to 

supress cross-terms and to retain auto-terms resolution. Such high-resolution 

performance is achieved by the kernel finite length, and its flexibility in adjusting both 

the shape and the size independently. The CSK expression in the ambiguity domain is 

depicted in Equation A.23, Equation A.24, and Equation A.25. These equations show 

that the shape and size of both Doppler and lag windows are determined by the 

parameters 𝑐𝑐 and 𝐷𝐷 respectively. However, it restricts the Doppler and lag windows to 

be of same length, so that smoothing along time or frequency cannot be adjusted 

independently. 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = 𝐺𝐺1(𝑣𝑣)𝑔𝑔2(𝜏𝜏) =   �𝑒𝑒2𝑐𝑐𝑒𝑒
𝑐𝑐𝐷𝐷2

𝑣𝑣2−𝐷𝐷2+
𝑐𝑐𝐷𝐷2
𝜏𝜏2−𝐷𝐷2 ,   𝑣𝑣2 < 𝐷𝐷2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏2 < 𝐷𝐷2

0       ,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� Equation A.23 

𝐺𝐺1(𝑣𝑣) =   � 𝑒𝑒𝑐𝑐𝑒𝑒
𝑐𝑐𝐷𝐷2

𝑣𝑣2−𝐷𝐷2 ,    𝑣𝑣2 < 𝐷𝐷2

       0           ,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� Equation A.24 
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𝑔𝑔2(𝜏𝜏) =   � 𝑒𝑒𝑐𝑐𝑒𝑒
𝑐𝑐𝐷𝐷2
𝜏𝜏2−𝐷𝐷2 ,    𝜏𝜏2 < 𝐷𝐷2

       0           ,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� Equation A.25 

 

A.4.5 Extended Compact Support Kernel 

The CSK shape and size adjusting pitfalls limits its application to the analysis of 

signals whose energy is homogeneously distributed in the ambiguity domain. 

Consequently, the CSK TFD cannot deal optimally with signals like EEG seizure 

signals, whose IF is almost parallel to the time axis, or EEG spike signals, whose IF is 

almost parallel to the frequency axis [1] [63]. 

Fortunately, the CSK can be extended by modifying the formulation of Doppler and lag 

windows such that their lengths can be adjusted independently as expressed in Equation 

A.26, Equation A.27, and Equation A.28. These equations show that the shape and size 

of both Doppler and lag windows are determined independently by the parameters 𝑐𝑐, 𝐷𝐷, 

and 𝐸𝐸 respectively, which leads to the formulation of the Extended Compact Support 

Kernel  (ECK). The TFD defined by the ECK kernel may be referred to as ECK TFD, 

but this abbreviation is further shortened to Compact Kernel Distribution (CKD) for 

simplicity [1] [63]. 

𝑔𝑔(𝑣𝑣, 𝜏𝜏) = �𝑒𝑒2𝑐𝑐𝑒𝑒
𝑐𝑐𝐷𝐷2

𝜈𝜈2−𝐷𝐷2+
𝑐𝑐𝐸𝐸2
𝜏𝜏2−𝐸𝐸2 , 𝑖𝑖𝑖𝑖  |𝜈𝜈| < 𝐷𝐷  𝑎𝑎𝑎𝑎𝑎𝑎  |𝜏𝜏| < 𝐸𝐸

0                  ,                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
� Equation A.26 

𝐺𝐺1(𝑣𝑣) = � 𝑒𝑒𝑐𝑐𝑒𝑒
𝑐𝑐𝐷𝐷2

𝜈𝜈2−𝐷𝐷2 , 𝑖𝑖𝑖𝑖  |𝜈𝜈| < 𝐷𝐷  𝑎𝑎
      0            ,               𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

� Equation A.27 

𝑔𝑔2(𝜏𝜏) = � 𝑒𝑒𝑐𝑐𝑒𝑒
𝑐𝑐𝐸𝐸2
𝜏𝜏2−𝐸𝐸2 , 𝑖𝑖𝑖𝑖 |𝜏𝜏| < 𝐸𝐸

       0            ,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
� Equation A.28 
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The ECK time-frequency formulation can be derived using the saddle-point 

integration method. Starting from Equation A.29, Equation A.30, Equation A.31, and 

Equation A.32 we can see that the time-frequency formulation requires a Fourier 

transform from lag to frequency and an inverse Fourier transform from Doppler to time 

(Equation A.33). Thus, formulations of 𝑔𝑔1(𝑡𝑡) and 𝐺𝐺2(𝑓𝑓) are the only unknowns and 

can be derived independently (Equation A.34 and Equation A.35). 

𝑔𝑔(𝜈𝜈, 𝜏𝜏) = 𝜆𝜆 𝐺𝐺1(𝑣𝑣) 𝑔𝑔2(𝜏𝜏), 𝑖𝑖𝑖𝑖  |𝜈𝜈| < 𝐷𝐷  𝑎𝑎𝑎𝑎𝑎𝑎  |𝜏𝜏| < 𝐸𝐸 Equation A.29 

𝜆𝜆 = exp(2𝑐𝑐) Equation A.30 

𝐺𝐺1(𝑣𝑣) =  exp �
𝑐𝑐𝐷𝐷2

𝜈𝜈2 − 𝐷𝐷2� , 𝑖𝑖𝑖𝑖  |𝜈𝜈| < 𝐷𝐷 Equation A.31 

𝑔𝑔2(𝜏𝜏) = exp �
𝑐𝑐𝐸𝐸2

𝜏𝜏2 − 𝐸𝐸2
�  , 𝑖𝑖𝑖𝑖 |𝜏𝜏| < 𝐸𝐸 Equation A.32 

𝛾𝛾(𝑡𝑡,𝑓𝑓) =  𝜆𝜆 𝑔𝑔1(𝑡𝑡) 𝐺𝐺2(𝑓𝑓) Equation A.33 

𝑔𝑔1(𝑡𝑡) = ℱ𝑣𝑣→𝑡𝑡−1 {𝐺𝐺1(𝑣𝑣)} Equation A.34 

𝐺𝐺2(𝑓𝑓) =  ℱ𝜏𝜏→𝑓𝑓{𝑔𝑔2(𝜏𝜏)} Equation A.35 

The derivation starts by modifying Equation A.31 into the form of Equation A.36, thus 

changing the Fourier transform expression into Equation A.37, where 𝜙𝜙(𝑣𝑣) =

exp(𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋). 

𝐺𝐺1(𝑣𝑣) = exp �
−𝑐𝑐𝐷𝐷2

𝐷𝐷2 − 𝜈𝜈2
� = exp �

−𝑐𝑐

1 − �𝑣𝑣𝐷𝐷�
2� , 𝑖𝑖𝑖𝑖  |𝜈𝜈| < 𝐷𝐷 Equation A.36 

𝑔𝑔1(𝑡𝑡) = ℱ𝑣𝑣→𝑡𝑡−1 {𝐺𝐺1(𝑣𝑣)} = 〈𝐺𝐺1(𝑣𝑣),𝜙𝜙(𝑣𝑣)〉 = � 𝐺𝐺1(𝑣𝑣) 𝜙𝜙(𝑣𝑣)
1

−1
 𝑑𝑑𝑑𝑑 Equation A.37 
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By letting 𝑣𝑣 = 𝜓𝜓𝜓𝜓   ,   𝑑𝑑𝑑𝑑 =  𝐷𝐷𝑑𝑑𝑑𝑑    ,   𝜓𝜓 ∈ (−1, 1)  Equation A.36 expression changes 

into Equation A.38, and Equation A.37 changes into Equation A.39, where 𝜙𝜙(𝜓𝜓) =

exp(𝑗𝑗2𝜋𝜋𝜋𝜋𝜓𝜓𝜓𝜓) =  exp(𝑘𝑘𝜓𝜓). 

𝐺𝐺1(𝜓𝜓) =  exp �
−𝑐𝑐

1 − 𝜓𝜓2� , 𝑖𝑖𝑖𝑖  |𝜓𝜓| < 1 Equation A.38 

𝑔𝑔1(𝑡𝑡) = ℱ𝑣𝑣→𝑡𝑡−1 {𝐺𝐺1(𝜓𝜓)} = 〈𝐺𝐺1(𝜓𝜓),𝜙𝜙(𝜓𝜓)〉 = 𝐷𝐷� 𝐺𝐺1(𝜓𝜓) 𝜙𝜙(𝜓𝜓)
1

−1
 𝑑𝑑𝑑𝑑 Equation A.39 

Since 𝐺𝐺1(𝜓𝜓) is an even function Equation A.39 can be expressed as; 

𝑔𝑔1(𝑡𝑡) = 2𝐷𝐷 Re �� 𝐺𝐺1(𝜓𝜓) 𝜙𝜙(𝜓𝜓)
1

0
 𝑑𝑑𝑑𝑑� Equation A.40 

The inner term of the integration can be expressed by Equation A.41, where 𝛼𝛼(𝜓𝜓) =

𝑘𝑘𝜓𝜓 − 𝑐𝑐
1−𝜓𝜓2, which changes the form of Equation A.40 into Equation A.42. 

𝐺𝐺1(𝜓𝜓) 𝜙𝜙(𝜓𝜓) = exp[𝛼𝛼(𝜓𝜓)] Equation A.41 

𝑔𝑔1(𝑡𝑡) = 2𝐷𝐷 Re �� exp[𝛼𝛼(𝜓𝜓)]
1

0
 𝑑𝑑𝑑𝑑� Equation A.42 

By letting 𝜓𝜓 = 1 − 𝑥𝑥   ,   𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑    ,   𝑥𝑥 ∈ (1, 0) 𝛼𝛼(𝜓𝜓) changes into 𝛼𝛼(𝑥𝑥) which is 

expressed by Equation A.43, and 𝑔𝑔1(𝑡𝑡) changes into the form expressed by Equation 

A.44. 

𝛼𝛼(𝑥𝑥) = 𝑘𝑘 − 𝑘𝑘𝑘𝑘 −
𝑐𝑐

1 − (1 − 𝑥𝑥)2 = 𝑘𝑘 − 𝑘𝑘𝑘𝑘 −
𝑐𝑐

(2 − 𝑥𝑥)𝑥𝑥
 Equation A.43 

𝑔𝑔1(𝑡𝑡) = 2𝐷𝐷 Re �� −exp[𝛼𝛼(𝑥𝑥)]
0

1
 𝑑𝑑𝑑𝑑� = 2𝐷𝐷 Re �� exp[𝛼𝛼(𝑥𝑥)]

1

0
 𝑑𝑑𝑑𝑑� Equation A.44 

Now, by using rational regression 𝑐𝑐
(2−𝑥𝑥)𝑥𝑥

 can be approximated as 𝑐𝑐𝑃𝑃1𝑥𝑥+𝑐𝑐𝑃𝑃2
𝑥𝑥+𝑄𝑄1

, where the 

mean values of 𝑃𝑃1, 𝑃𝑃2, and 𝑄𝑄1 are 0.35524, 0.5, and 0 respectively, thus modifying 

Equation A.43 expression into Equation A.45 (Figure A.7). The goodness of fit for this 

rational regression is 0.9999926, which proves the feasibility of this approximation. 
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𝛼𝛼(𝑥𝑥) ≈ 𝑘𝑘 − 𝑘𝑘𝑘𝑘 −
𝑐𝑐

2𝑥𝑥
− 0.35524𝑐𝑐 Equation A.45 

By using Taylor Series approximation up to the second order derivative, 𝛼𝛼(𝑥𝑥) can be 

approximated as 𝛼𝛼�(𝑥𝑥) = 𝛼𝛼(𝑥𝑥0) + 𝛼𝛼′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0) + 1
2
𝛼𝛼′′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0)2, thus 

changing Equation A.44 into Equation A.46. Choosing 𝑥𝑥0 as the saddle point 

makes 𝛼𝛼′(𝑥𝑥0) = 0. 

𝑔𝑔1(𝑡𝑡) = 2𝐷𝐷 Re �� exp[𝛼𝛼�(𝑥𝑥)]
1

0
 𝑑𝑑𝑑𝑑� Equation A.46 

𝛼𝛼�(𝑥𝑥) can be expressed as 𝛼𝛼�(𝑥𝑥) = 𝛼𝛼(𝑥𝑥0) + 1
2
𝛼𝛼′′(𝑥𝑥0)(𝑥𝑥 − 𝑥𝑥0)2, where 𝛼𝛼′(𝑥𝑥) = −𝑘𝑘 +

𝑐𝑐
2(𝑥𝑥)2 , 𝛼𝛼′′(𝑥𝑥) = −𝑐𝑐

𝑥𝑥3
 , and 𝛼𝛼′(𝑥𝑥0) =  −𝑘𝑘 + 𝑐𝑐

2(𝑥𝑥0)2 = 0,  thus 𝑥𝑥0 = ±� 𝑐𝑐
2𝑘𝑘

 

Since 𝑥𝑥 is changing from 0 to 1, 𝑥𝑥0 = � 𝑐𝑐
2𝑘𝑘

   making 𝛼𝛼(𝑥𝑥0) = 𝑘𝑘 − √2𝑐𝑐𝑐𝑐 − 0.35524𝑐𝑐 

and 𝛼𝛼′′(𝑥𝑥0) = −𝑐𝑐

�� 𝑐𝑐
2𝑘𝑘�

3 = −�(2𝑘𝑘)3

𝑐𝑐
, thus; 

𝛼𝛼�(𝑥𝑥) = 𝑘𝑘 − √2𝑐𝑐𝑐𝑐 − 0.35524𝑐𝑐 − 2�
𝑘𝑘3

𝑐𝑐
�𝑥𝑥 − �

𝑐𝑐
2𝑘𝑘
�
2

 Equation A.47 

By replacing the variables of Equation A.47 with the dummy variables: 𝛾𝛾 = 𝑘𝑘 − √2𝑐𝑐𝑐𝑐 −

0.35524𝑐𝑐, 𝜎𝜎 = 2�𝑘𝑘3

𝑐𝑐
,   𝜇𝜇 = � 𝑐𝑐

2𝑘𝑘
  , and 𝑘𝑘 = 𝑗𝑗2𝜋𝜋𝜋𝜋𝐷𝐷, it can be expressed as 𝛼𝛼�(𝑥𝑥) = 𝛾𝛾 −

𝜎𝜎(𝑥𝑥 − 𝜇𝜇)2, thus changing Equation A.46 into the form of Equation A.48. 

𝑔𝑔1(𝑡𝑡) = 2𝐷𝐷 Re �exp(𝛾𝛾)� exp[−𝜎𝜎(𝑥𝑥 − 𝜇𝜇)2]
1

0
 𝑑𝑑𝑑𝑑� Equation A.48 

By knowing that the integration of exp[−𝑎𝑎(𝑥𝑥)2] or exp[−𝜎𝜎(𝑥𝑥 − 𝜇𝜇)2] is equal to �𝜋𝜋
𝑎𝑎
  

for 𝑎𝑎 > 0, 𝑔𝑔1(𝑡𝑡) can be solved as; 𝒈𝒈𝟏𝟏(𝒕𝒕) = 𝟐𝟐𝟐𝟐 𝐑𝐑𝐑𝐑 �𝐞𝐞𝐞𝐞𝐞𝐞(𝜸𝜸)�𝝅𝝅
𝝈𝝈
� 
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Using the same analogy and steps of 𝑔𝑔1(𝑡𝑡), derivation 𝐺𝐺2(𝑓𝑓) can be expressed as; 

𝑮𝑮𝟐𝟐(𝒇𝒇) = 𝟐𝟐𝟐𝟐 𝐑𝐑𝐑𝐑 �𝐞𝐞𝐞𝐞𝐞𝐞(𝜻𝜻)�𝝅𝝅
𝜺𝜺
�, where 𝜁𝜁 = 𝜂𝜂 − �2𝑐𝑐𝑐𝑐 − 0.35524𝑐𝑐,   𝜀𝜀 = −2�𝜂𝜂3

𝑐𝑐
  , 

and 𝜂𝜂 = −𝑗𝑗2𝜋𝜋𝜋𝜋𝐸𝐸, thus expanding Equation A.33 into Equation A.49. 

𝜸𝜸(𝒕𝒕,𝒇𝒇) =  𝟒𝟒𝟒𝟒𝟒𝟒 � 𝐑𝐑𝐑𝐑�𝐞𝐞𝐞𝐞𝐞𝐞(𝜸𝜸)�
𝝅𝝅
𝝈𝝈
�𝐑𝐑𝐑𝐑 �𝐞𝐞𝐞𝐞𝐩𝐩(𝜻𝜻)�

𝝅𝝅
𝜺𝜺
�� Equation A.49 

One problem arises immediately in this approximation, is the infinite value at the centre 

of the time-frequency approximation (t = 0 and f = 0). In this work, the centre value is 

simply assumed to be zero, which disturbs the approximation quality and calls for 

further work. 

 

Figure A.7: Rational regression computed parameters 

 

Figure A.8, Figure A.9, Figure A.10, Figure A.11, Figure A.12, and Figure A.13 

illustrate the approximation outcomes along with the real CKD outputs in the time-
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frequency and doppler-lag domains for different 𝐶𝐶, 𝐷𝐷 and 𝐸𝐸 parameters. Note that, high 

alternations are imposed on the time-frequency approximation, but the general 

morphology of the real CKD is followed. 

 

Figure A.8: CKD approximation resultant doppler-lag domain. C = 0.2, D = 0.5, and E = 1. Sampling 
frequency is 32 Hz, and time duration is 32 seconds 

 

Figure A.9: CKD time-frequency approximation. C = 0.2, D = 0.5, and E = 1. Sampling frequency is 
32 Hz, and time duration is 32 seconds 
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Figure A.10: CKD approximation resultant doppler-lag domain. C = 0.8, D = 1, and E = 0.1. Sampling 
frequency is 32 Hz, and time duration is 32 seconds 

 

 

 

Figure A.11: CKD time-frequency approximation. C = 0.8, D = 1, and E = 0.1. Sampling frequency is 
32 Hz, and time duration is 32 seconds 
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Figure A.12: CKD approximation resultant doppler-lag domain. C = 0.1, D = 0.1, and E = 1. Sampling 
frequency is 32 Hz, and time duration is 32 seconds 

 

 

 

Figure A.13: CKD time-frequency approximation. C = 0.1, D = 0.1, and E = 1. Sampling frequency is 
32 Hz, and time duration is 32 seconds 
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Figure A.14 illustrates the Normalised Root Mean Square Error (NRMSE) distribution 

of the approximated ECK doppler-lag domain transformation using different C, D, and 

E values. Regions that show NRMSE values below 50% are contoured in black. It can 

be seen that the approximation is most feasible when 𝐷𝐷 and 𝐸𝐸 parameters are below 1, 

but the feasibility range increases when C approaches 1. However, the error 

distributions show large values, which is due to the high alternations in the time-

frequency domain. This again calls for further work to develop a more practical 

approximation. 

 

 

 

Figure A.14: CKD approximation resultant doppler-lag domain NRMSE distribution. Plot colours 
change from blue to red reflecting 40% to 100% NRMSE percentages. Errors that are less than 50% are 
contoured in black. Sampling frequency is 16 Hz, and time duration is 16 seconds 
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A.4.6 Performance Assessment 

Figure A.15 and Figure A.16 illustrate the WVD, BD, MBD, EMBD, CSK, and 

ECK of the multicomponent signal depicted in Figure A.3, along with the ambiguity 

domains of each result. It can be clearly seen that the EMBD and the ECK give the 

highest energy concentration for the QFM while others failed to do so. It also supresses 

most of the cross-terms as depicted in the TFR and in the ambiguity domain. The ECK 

formulation was not available at the beginning of this thesis, thus the EMBD will be 

used further in this work as it produces adequate resolution. 

Details of CSK, ECK, and other high resolution TFDs such as smoothed WVD, S-

Method, Stockwell transform, Hilbert-Huang Transform, and Adaptive Kernel TFD can 

be found in [27], [61], [63], [80], [114], [115], [116], [117], and [118]. 

 

 

Figure A.15: WVD, BD, and MBD results of a multicomponent signal consisting of a LFM and a 
QFM. BD parameters are β = 0.08, and MBD parameters are β = 0.08 
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Figure A.16: EMBD, CSK, and ECK results of a multicomponent signal consisting of a LFM and a 
QFM. EMBD parameters are: α = 0.08 and β = 0.3, CSK parameters are C = 4 and D = 50, and ECK 
parameters are C = 4, D = 50, and E = 0.05 

 

 

A.5 Extension of Single-Channel QTFDs to Multichannel QTFDs 
EEG is recorded using multiple electrodes (sensors) for measurement reliability and 

events localisation. The multisensory scheme of EEG recording can take multiple cases 

such as: Single Input Single Output (SISO), Multiple Input Single Output (MISO), 

Single Input Multiple Output (SIMO), and Multiple Input Multiple Output (MIMO). 

Figure A.17 illustrates all of these cases where 𝑆𝑆𝑖𝑖 are different source signals. The 

QTFDs for a single sensor (SISO case) must be extended to consider the multisensory 

scheme to form multi-sensor QTFDs [1]. 
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Figure A.17: EEG recording multisensory schemes. A illustrates SISO, B illustrates SIMO, and C 
illustrates MIMO (Redrawn from [1]) 

 

Excluding the SISO case, the sensor received signals and their analytic associates would 

form vectors as expressed by Equation A.50 and Equation A.51. The class of quadratic 

Spatial TFDS (STFDs) is then defined by Equation A.52, where the time convolution 

operator is applied to each entry of the spatial instantaneous correlation matrix 𝑲𝑲𝑧𝑧𝑧𝑧(𝑡𝑡, 𝜏𝜏) 

as defined by Equation A.53. The spatial instantaneous correlation matrix contains the 

instantaneous auto-correlation functions (diagonal terms) and cross-correlation 

functions (off-diagonal terms). Furthermore, in the STFD matrix 𝝆𝝆𝑧𝑧𝑧𝑧(𝑡𝑡,𝑓𝑓) the diagonal 

terms are called auto-TFDs (Equation A.54) and the off-diagonal terms are called cross-

TFDs (Equation A.55).  Consequently the multichannel or spatial time-frequency 

analysis contains both auto-TFDs and cross-TFDs. Moreover, there are two types of 

cross-terms in multichannel TFDs. The first type is cross-terms embedded within the 

auto-TFDs due its nonlinear nature, and the second type of cross-terms is associated 

with cross-TFDs when having different source signals as they interact together forming 

artifacts. Figure A.18 illustrates the STFD 3-dimensional matrix that holds the auto-

TFDs of the example signal depicted in Figure A.3 [1]. 
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𝒔𝒔(𝑡𝑡) =  [𝑠𝑠1(𝑡𝑡),   𝑠𝑠2(𝑡𝑡), … , 𝑠𝑠𝑀𝑀(𝑡𝑡)]𝑇𝑇 Equation A.50 

𝒛𝒛(𝑡𝑡) =  [𝑧𝑧1(𝑡𝑡),   𝑧𝑧2(𝑡𝑡), … , 𝑧𝑧𝑀𝑀(𝑡𝑡)]𝑇𝑇 Equation A.51 

𝝆𝝆𝑧𝑧𝑧𝑧(𝑡𝑡,𝑓𝑓) = ℱ𝜏𝜏→𝑓𝑓{ 𝐺𝐺(𝑡𝑡, 𝜏𝜏) ∗𝑡𝑡 𝑲𝑲𝑧𝑧𝑧𝑧(𝑡𝑡, 𝜏𝜏)} = 

⎣
⎢
⎢
⎢
⎡
𝜌𝜌𝑧𝑧1𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝜌𝜌𝑧𝑧1𝑧𝑧2(𝑡𝑡, 𝑓𝑓) ⋯ 𝜌𝜌𝑧𝑧1𝑧𝑧𝑀𝑀(𝑡𝑡, 𝑓𝑓)
𝜌𝜌𝑧𝑧2𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝜌𝜌𝑧𝑧2𝑧𝑧2(𝑡𝑡, 𝑓𝑓) ⋯ 𝜌𝜌𝑧𝑧2𝑧𝑧𝑀𝑀(𝑡𝑡, 𝑓𝑓)

⋮ ⋮ ⋱ ⋮
𝜌𝜌𝑧𝑧𝑀𝑀𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝜌𝜌𝑧𝑧𝑀𝑀𝑧𝑧2(𝑡𝑡, 𝑓𝑓) ⋯ 𝜌𝜌𝑧𝑧𝑀𝑀𝑧𝑧𝑀𝑀(𝑡𝑡, 𝑓𝑓)⎦

⎥
⎥
⎥
⎤
 

Equation A.52 

𝑲𝑲𝑧𝑧𝑧𝑧(𝑡𝑡, 𝜏𝜏) = 𝒛𝒛 �𝑡𝑡 +
𝜏𝜏
2
� 𝒛𝒛𝑯𝑯 �𝑡𝑡 +

𝜏𝜏
2
� = 

⎣
⎢
⎢
⎢
⎡
𝐾𝐾𝑧𝑧1𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝐾𝐾𝑧𝑧1𝑧𝑧2(𝑡𝑡,𝑓𝑓) ⋯ 𝐾𝐾𝑧𝑧1𝑧𝑧𝑀𝑀(𝑡𝑡,𝑓𝑓)
𝐾𝐾𝑧𝑧2𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝐾𝐾𝑧𝑧2𝑧𝑧2(𝑡𝑡,𝑓𝑓) ⋯ 𝐾𝐾𝑧𝑧2𝑧𝑧𝑀𝑀(𝑡𝑡,𝑓𝑓)

⋮ ⋮ ⋱ ⋮
𝐾𝐾𝑧𝑧𝑀𝑀𝑧𝑧1(𝑡𝑡,𝑓𝑓) 𝐾𝐾𝑧𝑧𝑀𝑀𝑧𝑧2(𝑡𝑡,𝑓𝑓) ⋯ 𝐾𝐾𝑧𝑧𝑀𝑀𝑧𝑧𝑀𝑀(𝑡𝑡,𝑓𝑓)⎦

⎥
⎥
⎥
⎤
 

Equation A.53 

𝜌𝜌𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖(𝑡𝑡,𝑓𝑓) =  � � 𝐺𝐺(𝑡𝑡 − 𝑢𝑢, 𝜏𝜏) 𝑧𝑧𝑖𝑖 �𝑢𝑢 +
𝜏𝜏
2
�  𝑧𝑧𝑖𝑖∗ �𝑢𝑢 −

𝜏𝜏
2
�  𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

−∞

∞

−∞
 Equation A.54 

𝜌𝜌𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗(𝑡𝑡,𝑓𝑓) = � � 𝐺𝐺(𝑡𝑡 − 𝑢𝑢, 𝜏𝜏) 𝑧𝑧𝑖𝑖 �𝑢𝑢 +
𝜏𝜏
2
�  𝑧𝑧𝑗𝑗∗ �𝑢𝑢 −

𝜏𝜏
2
�  𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

−∞

∞

−∞
  Equation A.55 

 

Figure A.18: Auto-TFDs 3-dimensional matrix of the example signal in Figure A.3 
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Appendix B: Blind Source Separation 

The material presented in this appendix are used to explain BSS algorithms in depth 

along with the extension of time domain BSS to the time-frequency domain. These 

materials are needed to for Section 2.4.2 in page 31, and Section 4.1 in page 74. 

B.1 BSS Algorithms  

B.1.1 Fast-ICA 

Fast-ICA is described as a computationally efficient method for performing the 

estimation of ICA [69]. It uses fixed-point iteration scheme that has been proven to be 

10-100 times faster than conventional gradient descent methods. Fast-ICA extracts the 

sources one-by-one and uses the normalized kurtosis as its criterion function that every 

extracted vector must maximise (Equation A.56). More in depth details on Fast-ICA 

can be found in [106]. The Matlab code for the Fast-ICA algorithm was taken from 

[119]. 

𝐾𝐾(𝑤𝑤) =
𝐸𝐸{|𝑠̂𝑠|4} − 2𝐸𝐸2{|𝑠̂𝑠|2} − |𝐸𝐸{𝑠𝑠2}|2

𝐸𝐸2{|𝑠̂𝑠|2}  Equation A.56 

B.1.2 Robust-ICA 

Robust-ICA algorithm represents a simple modification on the Fast-ICA criterion 

function. The search for maxima’s is done by using a search direction 𝑔𝑔. The search 

direction is the gradient of the criterion function. The Robust-ICA criterion function 

and its search direction are described using Equation A.57 and Equation A.58. Robust-

ICA as its name is more robust than Fast-ICA and has a very high convergence speed 

[55]. More in depth details on Robust-ICA can be found in [107]. The Matlab code for 

the Robust-ICA algorithm was taken from [120]. 
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𝜇𝜇𝑂𝑂𝑂𝑂𝑂𝑂 = arg max𝜇𝜇 𝐾𝐾(𝑤𝑤 + 𝜇𝜇𝜇𝜇) Equation A.57 

𝑔𝑔 =  ∇𝑤𝑤𝐾𝐾(𝑤𝑤) Equation A.58 

B.1.3 Blind Source Separation-Canonical Correlation Analysis 

BSS-CCA solves the BSS problem by forcing the sources to be mutually 

uncorrelated and maximally correlated with a predefined function. The predefined 

function 𝑧𝑧 is the delayed version of the signal 𝑦𝑦(𝑡𝑡), or 𝑦𝑦(𝑡𝑡,𝑓𝑓) and it is described using 

Equation A.59. 

𝑧𝑧(𝑡𝑡) = 𝑦𝑦(𝑡𝑡 − 1) Equation A.59 

Canonical correlation analysis obtains two sets of basis vectors, one for 𝑦𝑦(𝑡𝑡) and the 

other for 𝑧𝑧(𝑡𝑡), such that the correlations between the projections of the variables onto 

these basis vectors are mutually maximised [55]. Linear combinations of components 

in 𝑦𝑦 and 𝑧𝑧 are described using Equation A.60 and Equation A.61. 

𝑦𝑦 =  𝑊𝑊𝑦𝑦
𝑇𝑇 .𝑌𝑌 Equation A.60 

𝑧𝑧 =  𝑊𝑊𝑧𝑧
𝑇𝑇 .𝑍𝑍 Equation A.61 

BSS-CCA finds the vectors 𝑊𝑊𝑦𝑦 and 𝑊𝑊𝑧𝑧 that maximise the correlation 𝜌𝜌 between the 𝑦𝑦 

and 𝑧𝑧 by solving the following maximisation problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊𝑦𝑦,𝑊𝑊𝑧𝑧
[𝜌𝜌(𝑦𝑦, 𝑧𝑧)] =  

𝐸𝐸{𝑦𝑦𝑦𝑦}

�𝐸𝐸{𝑦𝑦2}.𝐸𝐸{𝑧𝑧2}
=  

𝑊𝑊𝑦𝑦
𝑇𝑇𝐶𝐶𝑦𝑦𝑦𝑦𝑊𝑊𝑧𝑧

��𝑊𝑊𝑦𝑦
𝑇𝑇𝐶𝐶𝑦𝑦𝑦𝑦𝑊𝑊𝑦𝑦�. (𝑊𝑊𝑧𝑧

𝑇𝑇𝐶𝐶𝑧𝑧𝑧𝑧𝑊𝑊𝑧𝑧)
 

Equation A.62 

The solution of the maximisation problem is computed by setting the derivatives of 

Equation A.62 to zero. Which results in the following two eigenvalue problems. 

𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: �
𝐶𝐶𝑦𝑦𝑦𝑦−1𝐶𝐶𝑦𝑦𝑦𝑦𝐶𝐶𝑧𝑧𝑧𝑧−1𝐶𝐶𝑧𝑧𝑧𝑧𝑊𝑊�𝑦𝑦 = 𝜌𝜌2𝑊𝑊�𝑦𝑦
𝐶𝐶𝑧𝑧𝑧𝑧−1𝐶𝐶𝑧𝑧𝑧𝑧𝐶𝐶𝑦𝑦𝑦𝑦−1𝐶𝐶𝑦𝑦𝑦𝑦𝑊𝑊�𝑧𝑧 = 𝜌𝜌2𝑊𝑊�𝑧𝑧

 Equation A.63 
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After solving Equation A.63, we can calculate the estimates of the sources using 

Equation A.64. More in depth details on BSS-CCA can be found in [108]. The Matlab 

code for the BSS-CCA algorithm was taken from [121]. 

𝑠̂𝑠𝑖𝑖 = 𝑊𝑊�𝑦𝑦𝑖𝑖
𝑇𝑇𝑦𝑦  Equation A.64 

B.1.4 Second Order Blind Identification 

SOBI uses second order statistics to decompose the measurements and it is 

employed in numerous EEG studies. Furthermore, SOBI exploits non-stationarity, 

which is typical for EEG data and SOBI is proved to be among the best methods for 

separating EEG data [69] [122]. 

It is the most appropriate algorithm for sources that are individually correlated in time, 

but mutually uncorrelated [54] [55]. It is based on a joint diagonalization of correlation 

matrices. Mathematically, this means that for all time lags 𝜏𝜏 the source correlation 

matrices are diagonal. Equation A.65 describes the correlation of the observation, 

where 𝑅𝑅𝑠𝑠 represents the correlation matrix of the source signals and 𝑀𝑀 is the mixing 

matrix. Considering that this equation holds for all values of 𝜏𝜏, the mixing matrix 𝑀𝑀 is 

the one that jointly diagonalises all the correlation matrices. More in depth details on 

SOBI can be found in [109] and [110]. The Matlab code for the SOBI algorithm was 

taken from [123]. 

𝑅𝑅𝑦𝑦(𝜏𝜏) = 𝐸𝐸{𝑦𝑦(𝑦𝑦) 𝑦𝑦(𝑦𝑦 + 𝜏𝜏)𝑇𝑇} = 𝑀𝑀 𝑅𝑅𝑠𝑠(𝜏𝜏) 𝑀𝑀𝑇𝑇 Equation A.65 

B.1.5 Joint Approximate Diagonalization of Eigen Matrices 

JADE is one of the earliest BSS implementations and has a procedure based on 

higher-order statistics. JADE proved to be effective for removing artifacts from EEG 
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data [69] [122]. This approach exploits the fourth order moments in order to separate 

the source signals from mixed signals. 

First, the whitening matrix 𝑃𝑃 and the signal 𝑍𝑍 are estimated using Equation A.66. 

Secondly, the cumulants of the whitened mixtures 𝑄𝑄�𝑖𝑖𝑍𝑍 are computed. After that, an 

estimate of the unitary matrix 𝑅𝑅 is obtained by maximizing the criteria 𝜆𝜆𝑖𝑖𝑉𝑉𝑖𝑖 by means 

of the joint diagonalization. If  𝜆𝜆𝑖𝑖𝑉𝑉𝑖𝑖 cannot be exactly jointly diagonalised, the 

maximisation of the criteria defines a joint approximate diagonalization. An orthogonal 

contrast is optimised by finding the rotation matrix 𝑅𝑅 such that the cumulant matrices 

are as diagonal as possible (Equation A.67). Finally, the mixing matrix is estimated 

using Equation A.68 and the independent components are estimated by using Equation 

A.69. More in depth details on JADE can be found in [111]. The Matlab code for the 

JADE algorithm was taken from [124]. 

𝑍𝑍 = 𝑃𝑃 𝑌𝑌 Equation A.66 

𝑅𝑅 = arg min𝑅𝑅�𝑂𝑂𝑂𝑂𝑂𝑂�𝑅𝑅𝑇𝑇𝑄𝑄�𝑖𝑖𝑍𝑍𝑅𝑅�
𝑖𝑖

 
Equation A.67 

𝑀𝑀� = 𝑅𝑅 𝑃𝑃−1 Equation A.68 

𝑠̂𝑠𝑖𝑖 = 𝑀𝑀�−1 𝑦𝑦𝑖𝑖 = 𝑊𝑊�𝑦𝑦𝑖𝑖 Equation A.69 

 

B.2 BSS Examples 
Example signals are used to test the validity of the artifact detection and removal 

methodology along the time-frequency extension of BSS using two and three 

dimensional signals.  

Firstly, source signals are generated independently from each other and then mixed 

linearly using a random mixing matrix. Figure A.19 illustrate three source signals that 
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are generated in the time domain which are: a pulse train, a Linear Frequency 

Modulated signal (LFM), and an Amplitude Modulated signal (AM). These signals are 

linear mixed to form 3 channel waveforms. Figure A.20 demonstrate the time-

frequency transformation of the time-domain signals. These three dimensional signals 

are linearly mixed to form 3 channel three dimensional waveforms. Finally, Figure A.21 

illustrate three source images which are for; Albert Einstein, Leonhard Euler, and Alan 

Turing. These images are linearly mixed to form a 3 channels. 

Secondly, source signals/images are estimated using different ICA algorithms. Figure 

A.22, Figure A.23, and Figure A.24 illustrate the source estimations for the time, time-

frequency, and image examples. The sign ambiguity in the source estimation can be 

clearly seen in Figure A.24 as few image colours are inverted. 

Lastly, source signal/image number two is considered to be the real information while 

others are considered to be artifacts. Figure A.25, Figure A.26, and Figure A.27 

illustrate the output of the artifact detection and removal methodologies. 

 

Figure A.19: Time domain example. Source signals are on the left, while multichannel mixtures are on 
the right 

S 1(t)

Original Signals MultiChannel Mixture

S 2(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S 3(t)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)
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Figure A.20: Time-Frequency domain example. Source signals are on the left, while multichannel 
mixtures are on the right 

 

Figure A.21: Image example. Source signals are on the left, while multichannel mixtures are on the 
right 
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Figure A.22: Time domain example. Two dimensional source signals estimation 

 

 

Figure A.23: Time-Frequency domain example. Three dimensional source signals estimation 
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Figure A.24: Image example. Three dimensional source images estimation 

 

 

Figure A.25: Time domain example. Artifact detection and removal results 
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Figure A.26: Time-Frequency domain example. Artifact detection and removal results 

 

 

Figure A.27: Image example. Artifact detection and removal results 
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Appendix C: Time-Frequency Features 

The material presented in this appendix are used to introduce the time-frequency 

features that are used in this thesis along with their equations and interpretations. These 

equations are used in Section 2.5.1 page 36, Section 4.2.1 page 81, and in Section 4.2.3 

page 83. 

C.1 Statistical Features 
Assuming that abnormal and normal EEG have different probability distributions, the 

following features would result in high discrimination (Equation A.70, Equation A.71, 

Equation A.72, Equation A.73, and Equation A.74) [27] [30] [36] [63] [78] [80] [81]. 

• Mean: 

𝑇𝑇1 =   𝜇𝜇 =  
1
𝑁𝑁𝑁𝑁

��𝜌𝜌[𝑛𝑛, 𝑘𝑘]
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=1

 Equation A.70 

• Variance: 

𝑇𝑇2 =   𝜎𝜎2 =  
1
𝑁𝑁𝑁𝑁

��( 𝜇𝜇 − 𝜌𝜌[𝑛𝑛,𝑘𝑘])2
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=1

 Equation A.71 

• Skewness: 

𝑇𝑇3 =  
1

(𝑁𝑁𝑁𝑁 − 1)𝜎𝜎3
��( 𝜌𝜌[𝑛𝑛,𝑘𝑘] − 𝜇𝜇)3

𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=1

 Equation A.72 

• Kurtosis: 

𝑇𝑇4 =  
1

(𝑁𝑁𝑁𝑁 − 1)𝜎𝜎4
��( 𝜌𝜌[𝑛𝑛,𝑘𝑘] − 𝜇𝜇)4

𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=1

 Equation A.73 

• Coefficient of Variation: 

𝑇𝑇5 =  
𝜎𝜎
𝜇𝜇

 Equation A.74 
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C.2 Spectral Extended Features 
Assuming that abnormal and normal EEG have different spectral information, the 

following features would result in high discrimination (Equation A.75, Equation A.76, 

Equation A.77, Equation A.78, Equation A.79, Equation A.80, Equation A.81, and 

Equation A.82) [27] [30] [36] [63] [78] [80] [81]. 

• Spectral Flux: It measures the rate of change of the spectral content of a signal with 

time (Equation A.75). This measurement has to be done along the time axis (𝑙𝑙 =

0, 𝑝𝑝 = 1), the frequency axis (𝑙𝑙 = 1,𝑝𝑝 = 0), and along the diagonal axis (𝑙𝑙 = 1,𝑝𝑝 =

1) to measure any sudden change in all directions (Equation A.76, Equation A.77, 

and Equation A.78). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  � � 𝜌𝜌[𝑛𝑛 + 𝑙𝑙, 𝑘𝑘 + 𝑝𝑝] − 𝜌𝜌[𝑛𝑛,𝑘𝑘]
𝑀𝑀−𝑝𝑝

𝑘𝑘=1

𝑁𝑁−𝑙𝑙

𝑛𝑛=1

 Equation A.75 

𝐹𝐹1 = � � 𝜌𝜌[𝑛𝑛,𝑘𝑘 + 1] − 𝜌𝜌[𝑛𝑛, 𝑘𝑘]
𝑀𝑀−1

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

 Equation A.76 

𝐹𝐹2 = ��𝜌𝜌[𝑛𝑛 + 1,𝑘𝑘] − 𝜌𝜌[𝑛𝑛,𝑘𝑘]
𝑀𝑀

𝑘𝑘=1

𝑁𝑁−1

𝑛𝑛=1

 Equation A.77 

𝐹𝐹3 = � � 𝜌𝜌[𝑛𝑛 + 1, 𝑘𝑘 + 1] − 𝜌𝜌[𝑛𝑛,𝑘𝑘]
𝑀𝑀−1

𝑘𝑘=1

𝑁𝑁−1

𝑛𝑛=1

 Equation A.78 

 

• Energy Concentration: It determines the sparsity of the signal energy in the time-

frequency domain. 

𝐹𝐹4 = ����|𝜌𝜌[𝑛𝑛,𝑘𝑘]|
𝑀𝑀

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

�

2

 Equation A.79 
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• Spectral Flatness: It measures the level of uniformity of the energy distribution in 

the time-frequency domain. It is computed as the ratio of the geometric mean of a 

TFD divided by its arithmetic mean. 

𝐹𝐹5 = 𝑀𝑀𝑀𝑀
∏ ∏ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑀𝑀

𝑘𝑘=1
𝑁𝑁
𝑛𝑛=1

∑ ∑ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑘𝑘=1

 Equation A.80 

 

• Normalised Renyi Entropy: It measures the randomness in the distribution of signal 

energy in the time-frequency domain. 

𝐹𝐹6 = −
1
2

 log2 ����
𝜌𝜌[𝑛𝑛,𝑘𝑘]

∑ ∑ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑘𝑘=1

�
3𝑀𝑀

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

� Equation A.81 

 

• Shannon Entropy: It quantifies the amount of uncertainty in the distribution of the 

signal energy in the time-frequency domain.  

𝐹𝐹7 = −���
𝜌𝜌[𝑛𝑛,𝑘𝑘]

∑ ∑ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑘𝑘=1

 log2 �
𝜌𝜌[𝑛𝑛,𝑘𝑘]

∑ ∑ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑘𝑘=1

��
𝑁𝑁

𝑛𝑛=1

𝑀𝑀

𝑘𝑘=1

 Equation A.82 

 

C.3 Instantaneous Frequency Features 
Assuming that abnormal and normal EEG have different IF law (Equation A.83), the 

IF statistics would result in high discrimination (Equation A.84 and Equation A.85) 

[27] [30] [36] [63] [78] [80] [81]. 

𝑓𝑓[𝑛𝑛] =  
𝐹𝐹𝑠𝑠

2𝑀𝑀
∑ 𝑘𝑘𝑘𝑘[𝑛𝑛,𝑘𝑘]𝑀𝑀
𝑘𝑘=1

∑ 𝜌𝜌[𝑛𝑛,𝑘𝑘]𝑀𝑀
𝑘𝑘=1

 Equation A.83 

𝐼𝐼𝐼𝐼1 =
1
𝑁𝑁
�𝑓𝑓[𝑛𝑛]
𝑁𝑁

𝑛𝑛=1

 Equation A.84 
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𝐼𝐼𝐼𝐼2 = ∆𝑓𝑓[𝑛𝑛] = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓[𝑛𝑛]) − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑓𝑓[𝑛𝑛]) Equation A.85 

 

C.4 Sub-bands Energy Features 
Assuming that abnormal and normal EEG exist on different frequency bands, the 

following features would result in high discrimination (Equation A.86 and Equation 

A.87) [27] [30] [36] [63] [78] [80] [81]. 

𝐸𝐸1 =  ��𝜌𝜌[𝑛𝑛,𝑘𝑘]
𝑀𝑀𝛿𝛿

𝑘𝑘=1

𝑁𝑁

𝑛𝑛=1

 Equation A.86 

𝐸𝐸2 =  � � 𝜌𝜌[𝑛𝑛,𝑘𝑘]
2𝑀𝑀𝛿𝛿

𝑘𝑘=𝑀𝑀𝛿𝛿

𝑁𝑁

𝑛𝑛=1

 Equation A.87 

𝑀𝑀𝛿𝛿 = 10
𝑀𝑀
𝐹𝐹𝑠𝑠

 Equation A.88 
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Appendix D: Performance Metrics 

The material presented in this appendix are used to explain how to quantify the 

performance of any detection or removal (filtering) algorithm. This material is used in 

Section 4.1 page 74 to quantify artifact detection and removal performance, and in 

Section 2.5.4 page 40 to quantify the abnormality detection performance. 

 

D.1 Detection Performance 
Accuracy, sensitivity, specificity, and balanced accuracy are performance metrics 

that are generally used to quantify any detection algorithm or detection system 

performance. Accuracy measures the level of measurement that yields true and 

consistent results, while sensitivity (also called true positive rate) measures the 

proportion of positives that are correctly identified (target signals exist and detected), 

and lastly specificity (also called true negative rate) measures the proportion of 

negatives that are correctly identified (target signals do not exist and not detected). 

Balanced accuracy is a trade-off between sensitivity and specificity as it is their 

average, while another term can be also used namely “Informedness” where it re-

normalises the balanced accuracy to have a range from zero to one [125]. Accuracy, 

sensitivity, specificity, balanced accuracy, and informedness are described in Equation 

A.89, Equation A.90, Equation A.91, Equation A.92, and Equation A.93, where 𝑇𝑇𝑇𝑇 is 

true positive, 𝑇𝑇𝑇𝑇 is true negative, 𝐹𝐹𝐹𝐹 is false positive, and 𝐹𝐹𝐹𝐹 is false negative. The 

explanations of these terminologies are as follows: True positive: target signal exist and 

correctly identified, False positive: target signal do not exist but identified, True 

negative: target signal do not exist and not identified, False negative: target signal exist 

but not identified. 
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Accuracy =
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 Equation A.89 

Sensitivity =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Equation A.90 

Specificity =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 Equation A.91 

Balanced Accuracy =  
Sensitivity + Specificity

2
 Equation A.92 

Informedness = 2 × Balanced Accuracy − 1  Equation A.93 

 

D.2 Error Evaluation 
The Normalised Root Mean Square Error (NRMSE) quantifies the relative 

differences or errors between an estimate and a real value [10]. The NRMSE can be 

calculated for a one-dimensional segment 𝑖𝑖 of a signal or static using Equation A.94. 𝑥𝑥� 

is the estimated signal, 𝑥𝑥 is the real or reference signal, 𝑁𝑁 is the total number of samples 

within a segment, and 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is the total number of segments. This definition can be 

extended to include N-dimensional signals and statics by using tensor notations. 

Equation A.95 describes the NRMSE computation for two-dimensional segments of 

size 𝑁𝑁 × 𝑀𝑀. 

NRMSE𝑖𝑖ℝ = �
∑ |𝑥𝑥(𝑛𝑛) − 𝑥𝑥�(𝑛𝑛)|2𝑁𝑁
𝑛𝑛=1
∑ |𝑥𝑥(𝑛𝑛)|2𝑁𝑁
𝑛𝑛=1

,                                𝑖𝑖 ∈ �1,𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠� Equation A.94 

NRMSE𝑖𝑖ℝ
2 = �

∑ ∑ |𝑥𝑥(𝑛𝑛,𝑚𝑚) − 𝑥𝑥�(𝑛𝑛,𝑚𝑚)|2𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑚𝑚=1

∑ ∑ |𝑥𝑥(𝑛𝑛,𝑚𝑚)|2𝑁𝑁
𝑛𝑛=1

𝑀𝑀
𝑚𝑚=1

, 𝑖𝑖 ∈ [1,𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠] Equation A.95 

 

 

 

178 
 



  

Appendix E: The Sadleir Four Sphere Head Model 

The Sadleir four sphere head model is used in this thesis to simulate the neonatal 

head, which is utilised in Section 3.2.1 page 45. It divides the neonatal head into four 

concentric spheres (structures) namely: scalp, skull, cerebrospinal fluid (CSF), and the 

brain [21]. The dimensions of the spheres are summarized in Table A.1. A basic head 

model is constructed to reference the viewing perspective of front, back, and side views 

of the neonatal head. This is done by creating; a cone representing the nose to illustrate 

the front and back views, and two small ellipsoids representing the ears to illustrate the 

side views (Figure A.28 and Figure A.29).  

Table A.1: The neonatal head four sphere model dimensions. Taken from [21] 

 Radius (cm) Thickness (cm) Volume (cm3) 

Head 5.95 --- 882.3472 

Scalp --- 0.29 122.8295 

Skull --- 0.6 216.8423 
CSF --- 0.3 90.9137 

Brain 4.76 --- 451.7618 
 

 

Figure A.28: Basic neonatal head model. The head structure size is 32x32 
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Figure A.29: Basic neonatal head model to reference viewing perspective. The head structure size is 
32x32 

 

The neonatal four sphere head model is illustrated in 3D and in 2D top view cross 

sections (Figure A.30). It shows the different head regions along with their dimensions 

in different colours; the scalp region is illustrated in beige, the skull region is in green, 

the CSF region is in light blue, and finally the brain region is in red. 

 

Figure A.30: Neonatal four sphere head model cross sections in 3D and in 2D top view, every sphere is 
constructed using a 32x32 structure 
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Appendix F: The Rankine EEG Model 

The material presented in this appendix are used to explain the single-channel EEG 

model used in this thesis in depth. This model is utilised in Section 3.2.2, page 46. 

 

F.1 Neonatal EEG Background Simulator 
The neonatal background EEG simulator is based on the nonlinear analysis of real 

neonatal EEG signals using Fractal Dimension (FD) estimation. The synthetic neonatal 

EEG signal is derived from the relationship between FD and the spectrum power law 

index to produce a synthetic epoch [41] [43]. 

The power spectrum of the neonatal background EEG approximately follows a power 

law of the form expressed in Equation A.96, where 𝑐𝑐 is a constant, 𝑓𝑓 is frequency and 

𝛾𝛾 is the power law exponent [41]. 

𝑆𝑆(𝑓𝑓) ≈  
𝑐𝑐

|𝑓𝑓|𝛾𝛾 Equation A.96 

The nonstationary behaviour of the neonatal background EEG is modelled using a time-

varying power law exponent 𝛾𝛾𝑛𝑛, therefore the modified model can be described using 

Equation A.97, where 𝑆𝑆𝑛𝑛(𝑓𝑓) is the power spectrum associated with 𝑛𝑛𝑛𝑛ℎ epoch of 

duration 𝑇𝑇 [41] [43]. 

𝑆𝑆𝑛𝑛(𝑓𝑓) =  
𝑐𝑐

|𝑓𝑓|𝛾𝛾𝑛𝑛  Equation A.97 

This model assumes that the signal is quasi-stationary in every duration, which means 

that 𝛾𝛾𝑛𝑛 will be constant for the duration of an epoch, but will vary on an epoch by epoch 

basis. The power spectrum 𝑆𝑆𝑛𝑛(𝑓𝑓) can be expressed using Equation A.98, where 

𝑋𝑋𝑛𝑛(𝑓𝑓) is the FT of the 𝑛𝑛𝑛𝑛ℎ epoch 𝑥𝑥𝑛𝑛(𝑡𝑡) (Equation A.99), and 𝜃𝜃𝑛𝑛(𝑓𝑓) is the phase 

spectrum which is assumed to be a realisation of a random process [41] [43]. 
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𝑆𝑆𝑛𝑛(𝑓𝑓) =  
𝑐𝑐

|𝑓𝑓|𝛾𝛾𝑛𝑛 = 𝑋𝑋𝑛𝑛(𝑓𝑓)𝑋𝑋𝑛𝑛∗(𝑓𝑓) Equation A.98 

𝑋𝑋𝑛𝑛(𝑓𝑓) =  
√𝑐𝑐

|𝑓𝑓|𝛾𝛾𝑛𝑛/2 𝑒𝑒
𝑗𝑗𝜃𝜃𝑛𝑛(𝑓𝑓) Equation A.99 

Synthesis of 𝑥𝑥𝑛𝑛(𝑡𝑡) is then done by taking the IFT of Equation A.99. The modelled 

epoch 𝑥𝑥𝑛𝑛(𝑡𝑡) has a power spectrum with a smooth power law. However the power 

spectra of the real neonatal EEG background exhibits random fluctuations around the 

power law. Therefore, 15 sub-epochs with the same power law exponent, but different 

random phase spectra 𝜃𝜃𝑛𝑛(𝑓𝑓) are created then added together. The constructive and 

destructive interference of the sub-epochs result in fluctuations around the desired 

power law; mimicking the power spectrum of real neonatal EEG background [41]. 

The power law exponent is estimated using its linear relationship with the Fractal 

Dimension FD (Equation A.100). Studies have shown that the analysis of the estimated 

𝛾𝛾𝑛𝑛 values shows random fluctuations following a Beta distribution with parameters α 

and β equal to 7.82 and 7.44 respectively [41]. The phase spectrum 𝜃𝜃𝑛𝑛(𝑓𝑓) is estimated 

to be a random process with uniform distribution having a range of [0, 2𝜋𝜋] [41] [43]. 

𝐹𝐹𝐹𝐹 =  
5 − 𝛾𝛾𝑛𝑛

2
 Equation A.100 

 

F.2 Neonatal EEG Seizure Simulator 
The neonatal EEG seizure simulator is based on the well-known time-frequency 

nonstationary signal model (Equation A.101). This model accounts for all the 

significant time-frequency characteristics of neonatal EEG seizure including: multiple 

components or harmonics, piece-wise linear instantaneous frequency laws and 

harmonic’s amplitude modulation. A time-frequency model for real nonstationary 
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signals with multiple components can be expressed using Equation A.101, 

where 𝑎𝑎𝑘𝑘(𝑡𝑡), 𝑓𝑓𝑘𝑘(𝜏𝜏), and 𝜃𝜃𝑘𝑘 are the amplitude modulation, time-varying IF function, and 

initial phase for the 𝑘𝑘th signal component, respectively [41] [42]. 

𝑠𝑠(𝑡𝑡) =  �𝑎𝑎𝑘𝑘(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋� 𝑓𝑓𝑘𝑘(𝜏𝜏)𝑑𝑑𝑑𝑑
𝑡𝑡

0
+ 𝜃𝜃𝑘𝑘�

𝐾𝐾

𝑘𝑘=1

 Equation A.101 

It can be seen from Equation A.101 that estimates for the functions 𝑎𝑎𝑘𝑘(𝑡𝑡), 𝑓𝑓𝑘𝑘(𝜏𝜏),𝜃𝜃𝑘𝑘 and 

the number of harmonics 𝐾𝐾 are required for the simulation of neonatal EEG seizure. 

The IF function 𝑓𝑓𝑘𝑘(𝑡𝑡) is modelled as a piecewise linear function, where the general 

form of a piecewise LFM function 𝑓𝑓(𝑡𝑡), with 𝑀𝑀 pieces is given by Equation A.102. 

The start frequency of the LFM is given by 𝑓𝑓𝑠𝑠𝑠𝑠, 𝜉𝜉 = [𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑀𝑀] are the gradients in 

Hz/sec, 𝐵𝐵 = [𝐵𝐵1 = 0,𝐵𝐵2,𝐵𝐵3, … ,𝐵𝐵𝑀𝑀,𝐵𝐵𝑀𝑀+1 = 𝑁𝑁] are the turning points in seconds, 𝑁𝑁 is 

the discreet length of the seizure and 𝐶𝐶𝑚𝑚 is the alignment intercept that ensures 

continuity [41] [42]. 

𝑓𝑓(𝑡𝑡) =  � 𝐹𝐹𝑚𝑚(𝜉𝜉𝑚𝑚,𝐶𝐶𝑚𝑚; 𝑡𝑡) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑡𝑡 − 0.5(𝐵𝐵𝑚𝑚+1 − 𝐵𝐵𝑚𝑚)

𝐵𝐵𝑚𝑚+1 − 𝐵𝐵𝑚𝑚
�

𝑀𝑀

𝑚𝑚=1

 Equation A.102 

𝐹𝐹𝑚𝑚(𝜉𝜉𝑚𝑚,𝐶𝐶𝑚𝑚, 𝑡𝑡) =  𝜉𝜉𝑚𝑚𝑡𝑡 +  𝐶𝐶𝑚𝑚 Equation A.103 

𝐶𝐶𝑚𝑚 = �
𝑓𝑓𝑠𝑠𝑠𝑠                                                              ;  𝑚𝑚 = 1
𝐹𝐹𝑚𝑚−1(𝜉𝜉𝑚𝑚−1,𝐶𝐶𝑚𝑚−1,𝐵𝐵𝑚𝑚) − 𝜉𝜉𝑚𝑚 𝐵𝐵𝑚𝑚      ;  𝑚𝑚 ≥ 2 Equation A.104 

The multiple harmonics of the neonatal EEG seizure are related to the fundamental 

frequency, therefore the IF for each harmonic can be derived from the fundamental 

using Equation A.105 [41] [42]. 

𝑓𝑓𝑘𝑘(𝑡𝑡) = 𝑘𝑘 𝑓𝑓1(𝑡𝑡) Equation A.105 

The amplitude modulation function 𝑎𝑎𝑘𝑘(𝑡𝑡) of each harmonic is parameterized by a gain 

factor 𝑅𝑅𝑘𝑘, normalized variation  𝑉𝑉𝑛𝑛, and number of turning points 𝑃𝑃 (Equation A.106). 
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𝑎𝑎𝑘𝑘(𝑡𝑡) = Φ(𝑅𝑅𝑘𝑘,𝑉𝑉𝑘𝑘,𝑃𝑃, 𝑡𝑡) Equation A.106 

The gain factor  𝑅𝑅𝑘𝑘 is referred to as the harmonic ratio, which gives an indication 

that 𝑅𝑅1 = 1. The component amplitude modulation function 𝑎𝑎𝑘𝑘(𝑞𝑞) is determined from 

a cubic spline interpolation of 𝑃𝑃 randomly assigned turning points with amplitudes 

using Equation A.107, where the mean of 𝑉𝑉𝑛𝑛 = 0.33 and the locations of the turning 

points are found using Equation A.108 [41] [42].  

𝑎𝑎𝑘𝑘(𝑞𝑞) = 𝑅𝑅𝑘𝑘(0.67 + 𝑉𝑉𝑛𝑛) Equation A.107 

𝑞𝑞 =
𝑁𝑁(𝑝𝑝 + 𝑋𝑋)

𝑃𝑃
 Equation A.108 

𝑝𝑝 = [0, 1, … ,𝑃𝑃 − 1] and 𝑋𝑋 is a stationary random process uniformly distributed 

between 0 and 1. The boundary conditions of the cubic spline fit are set to have a 

derivative of zero. Finally, the initial phase value 𝜃𝜃𝑘𝑘 is assumed to be a random variable 

with a stationary uniform distribution on [−𝜋𝜋, 𝜋𝜋). 

The complexity of this model is reduced by setting the number of harmonics 𝐾𝐾 to 5, 

setting the number of pieces 𝑀𝑀 in 𝑓𝑓𝑘𝑘(𝜏𝜏) to 3, assuming that 𝐵𝐵 is a stationary uniformly 

distributed random process ranging across the epoch, and limiting the number of turning 

points 𝑃𝑃 in 𝑎𝑎𝑘𝑘(𝑡𝑡) to a maximum of 8. Distribution estimates for all neonatal EEG 

seizure model parameters are given in Table A.2 [41] [42]. 

Table A.2: Distribution estimates for the neonatal EEG seizure model parameters. B is a continuous 
beta distribution, B* is a discreet beta distribution and L-N is a Log Normal Distribution. Taken from 
[41] 

 𝑷𝑷 𝑹𝑹𝟐𝟐 𝑹𝑹𝟑𝟑 𝑹𝑹𝟒𝟒 𝑹𝑹𝟓𝟓 𝑽𝑽𝒏𝒏 𝝃𝝃 𝒇𝒇𝒔𝒔𝒔𝒔 

Distribution B* B B B B B B L-N 

𝜶𝜶 
𝜷𝜷 

1.8 
3.0 

1.7 
3.2 

1.5 
4.1 

1.9 
3.6 

1.4 
1.2 

3.9 
8.0 

69.1 
69.8 

-0.17 
0.55 

Minimum 
Maximum 

1 
8 

0.2 
1.2 

0.2 
1.0 

0.2 
0.6 

0.2 
0.4 

0 
1 

-0.06 
0.06 

0.425 
∞ 
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Appendix G: Solving the Radiation Transport Equation 

The material presented in this appendix are used to explain in details how to solve 

the Radiation Transport Equation (RTE). The solution of the RTE is utilised in 

Section 3.2.3.1, page 51. 

Two concentric biological disks are illustrated in Figure A.31 to describe the RTE 

solution for the 2-dimensional case. Equation A.109 describes the signal intensity 

decay, where 𝐼𝐼𝑖𝑖 is the signal intensity estimated at electrode 𝑖𝑖. 𝑅𝑅𝑗𝑗,𝑗𝑗+1 is the coefficient 

of Fresnel reflection at the normal beam incidence between the disk regions 𝑗𝑗 and 𝑗𝑗 + 1 

(Equation A.110). 𝑛𝑛𝑗𝑗  is the refractive index of disk 𝑗𝑗. 𝐼𝐼𝑜𝑜 is the initial intensity of the 

signal. 𝜇𝜇𝑡𝑡,𝑗𝑗, 𝜇𝜇𝑎𝑎,𝑗𝑗 , and 𝜇𝜇𝑠𝑠,𝑗𝑗 are the extinction, absorption, and scattering coefficients 

respectively for the region 𝑗𝑗 (Equation A.111). 𝑔𝑔𝑗𝑗 is the anisotropy factor of disk 

𝑗𝑗. 𝐷𝐷𝑖𝑖,𝑗𝑗  is the signal path length in region 𝑗𝑗 to reach electrode 𝑖𝑖. 𝑟𝑟𝑖𝑖 and 𝜃𝜃𝑖𝑖 defines electrode 

𝑖𝑖 position in polar coordinates with respect to the seizure event location (O in Figure 

A.31), and lastly 𝑀𝑀 is the number of disk regions and 𝑁𝑁 is the number of electrodes. 

Equation A.112 illustrates the relationship between the electrode relative amplitude 𝐴𝐴𝑖𝑖 

and its signal intensity. Since relative amplitudes need to be computed the relationship 

becomes equal, as the multiplication factors add no relative information. 

𝐼𝐼𝑖𝑖 = �1 − 𝑅𝑅𝑗𝑗,𝑗𝑗+1� 𝐼𝐼𝑜𝑜 exp �−�𝜇𝜇𝑡𝑡,𝑗𝑗 𝐷𝐷𝑖𝑖,𝑗𝑗(𝑟𝑟𝑖𝑖,𝜃𝜃𝑖𝑖)
𝑀𝑀

𝑗𝑗=1

�    ,   𝑖𝑖 ∈ ℕ|1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 Equation A.109   

𝑅𝑅𝑗𝑗,𝑗𝑗+1 =  �
�𝑛𝑛𝑗𝑗 − 𝑛𝑛𝑗𝑗+1�
�𝑛𝑛𝑗𝑗 + 𝑛𝑛𝑗𝑗+1�

�
2

,   𝑗𝑗 ∈ ℕ|1 ≤ 𝑗𝑗 ≤ 𝑀𝑀 Equation A.110   

𝜇𝜇𝑡𝑡,𝑗𝑗 =  𝜇𝜇𝑎𝑎,𝑗𝑗 + 𝜇𝜇𝑠𝑠,𝑗𝑗(1 − 𝑔𝑔𝑗𝑗) Equation A.111   
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𝐴𝐴𝑖𝑖 ∝  �𝐼𝐼𝑖𝑖 ≫  𝐴𝐴𝑖𝑖 =  �𝐼𝐼𝑖𝑖 Equation A.112   

Solving the intensity decay problem at electrode number 1, make Equation A.109, 

Equation A.110, and Equation A.111 in the form of; 

𝐼𝐼1 = �1 − 𝑅𝑅1,2� 𝐼𝐼𝑜𝑜 exp�−𝜇𝜇𝑡𝑡,1 𝐷𝐷1,1(𝑟𝑟1,𝜃𝜃1) − 𝜇𝜇𝑡𝑡,2 𝐷𝐷1,2(𝑟𝑟1,𝜃𝜃1)�  

𝑅𝑅1,2 =  �
(𝑛𝑛1 − 𝑛𝑛2)
(𝑛𝑛1 + 𝑛𝑛2)�

2

      , 𝜇𝜇𝑡𝑡,1 =  𝜇𝜇𝑎𝑎,1 + 𝜇𝜇𝑠𝑠,1(1− 𝑔𝑔1)       ,        𝜇𝜇𝑡𝑡,2 =  𝜇𝜇𝑎𝑎,2 + 𝜇𝜇𝑠𝑠,2(1− 𝑔𝑔2) 

All of these variables are known, except for 𝐷𝐷1,1 and 𝐷𝐷1,2, which are the propagation 

path lengths through regions 1 and 2. Finding  𝐷𝐷1,1 and  𝐷𝐷1,2 relies on knowing the exact 

location of the electrode (E1) and the seizure event location (O in Figure A.31). The 

solution of this problem is explained in Figure A.31 and consists of the following steps: 

a) Create a vector starting from the seizure event location (O) and ending at the 

electrode location (E1). Call it 𝑂𝑂𝐸𝐸1�������⃗ , and then calculate its magnitude and angle (𝑟𝑟1, 

and 𝜃𝜃1). 

b) Find the two intersection points between the border of region 1 (which is a circle) 

and the infinite line 𝐿𝐿, where 𝑂𝑂𝐸𝐸1�������⃗  ⊆   𝐿𝐿. 

c) Consider the intersection point (G1) that creates a vector 𝑂𝑂𝐺𝐺1�������⃗  parallel to 𝑂𝑂𝐸𝐸1�������⃗ , and 

then calculate its magnitude and angle. This point is called a ghost electrode where 

it mimics an electrode attached on region 1 and simplifies the problem to become a 

mono-region problem, where 𝐷𝐷1,1 is equal to �𝑂𝑂𝐺𝐺1�������⃗ �. 

d) Find the two intersection points between the outer border of region 2 (which is a 

circle) and the infinite line 𝐿𝐿. 

e) Consider the intersection point (E1) that creates a vector parallel to 𝑂𝑂𝐸𝐸1�������⃗ , and then 

calculate its magnitude and angle. 𝐷𝐷1,2 is equal to �𝑂𝑂𝐸𝐸1�������⃗ � −�𝑂𝑂𝐺𝐺1�������⃗ �. 
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The same steps can be followed to solve the signal path lengths in 𝑀𝑀 regions for 𝑁𝑁 

electrodes. This is done by repeating the line-and-circle intersection method 𝑁𝑁𝑁𝑁𝑁𝑁 

times. After finding the electrode signal intensity, the relative amplitude can be 

calculated using Equation A.112. 

The 2-dimensional RTE solution can be extended to the 3-dimensional case by 

replacing the line-and-circle intersection method with a line-and-sphere intersection 

method, which considers concentric spheres instead of disks. 

 

Figure A.31: Solving the radiation transport equation for two concentric disks. O is the seizure event 
location. E1 and E2 are the electrodes locations, while G1 and G2 are the ghost electrodes locations. D11 
is the signal path in region 1 reaching electrode 1, D12 is the signal path in region 2 reaching electrode 
1, D21 is the signal path in region 1 reaching electrode 2, and D22 is the signal path in region 2 reaching 
electrode 2 
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Appendix H: EEG Corruption Evaluation 

The material presented in this appendix are used to evaluate EEG information 

masking due artifacts. This study is considered as outside the scope of this thesis; hence 

it is discussed here. This material was referred to in Section 3.3, page 65. 

The neonatal EEG corruption evaluation process is intended to quantify the 

relationship between corrupted background and corrupted seizure EEG epochs in time, 

frequency and time-frequency domains. This relationship shall illustrate relative 

common behaviour between the different corrupted EEG epochs. This is caused by the 

dominance of artifact signals leading to unreliable interpretation/detection of 

background/seizure segments, consequently mimicking real neonatal EEG epoch 

corruption situations. The common behaviour is relative as it represents the increase in 

behaviour alikeness between corrupted background and seizure epochs when compared 

to what their relationship used to be before the artifact corruption. The quantification 

of the masking effect on EEG information by artifacts is done using different techniques 

such as: Pearson’s Correlation Coefficient (PCC), Two Samples t-Test, and one-way 

Analysis of Variance (ANOVA). 

H.1 Testing Signals Generation 
The first step in evaluation is generating the signals under test. These signals must 

have high number of samples covering most of the possible outcomes to produce 

statistically valuable/reproducible results. The testing signals generation procedure 

consists of the following steps: 

1. Generate 50 minutes (21 channels, 200 segments each channel, 15 seconds each 

segment) of clean multichannel EEG background and seizure signals. 
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2. Another 50 minutes (21 channels, 200 segments each channel, 15 seconds each 

segment) of multichannel EEG artifact is generated using the Neonatal 

Multichannel EEG Artifacts Model. 

3. Corrupted multichannel background EEG is created by adding up the generated 

multichannel artifacts with the clean background EEG from step 1. 

4. Corrupted multichannel seizure EEG is created by adding up the generated 

multichannel artifacts with the clean seizure EEG from step 1. 

5. The first channel of each of the following signals (the clean multichannel 

background EEG, the clean multichannel seizure EEG, the corrupted multichannel 

background EEG, and the corrupted multichannel seizure EEG) will be extracted 

and used in the evaluation processes (200 segments per signal). 

6. DFT is computed for each of the extracted signals in step 5. 

7. Time-Frequency transformation is computed using the EMBD for each of the 

extracted signals in step 5. 

The first channel was only extracted in step 5 instead of vectorising the multichannel 

matrix into one vector, because the first channel signals along with their frequency and 

time-frequency transformations take lots of memory and computation time (2.8 GB to 

be exact), so it is statistically enough to consider the first channel as the extracted time 

domain samples are more than 90,000. The extracted single channel signals form four 

groups of signals under test. The first group contains 200 only clean background 

epochs, while the second group contains 200 only clean seizure epochs.  The third group 

contains 200 only corrupted background epochs, and the fourth group contains 200 only 

corrupted seizure epochs. 
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Evaluation of EEG corruption is done by comparing and testing the alikeness for 

different combinations of the testing groups. The testing group’s combinations fall also 

under a likelihood umbrella, namely the self-likelihood, and the mutual-likelihood 

umbrellas. 

The self-likelihood umbrella contains the following four testing group’s combinations: 

clean background versus clean background, clean background versus corrupted 

background, clean seizure versus clean seizure, and clean seizure versus corrupted 

seizure. The self-likelihood umbrella quantifies the behaviour alikeness between clean 

signals with themselves, and between clean signals with their corrupted versions to 

represent the common relative behaviour or the change in the common behaviour. This 

umbrella should produce negligible results as the nature of background and seizure 

epochs are totally different from their corrupted versions. 

The mutual-likelihood umbrella contains the following three major testing group’s 

combinations: clean background versus clean seizure, clean background versus 

corrupted seizure, and corrupted background versus corrupted seizure. The mutual-

likelihood umbrella quantifies the behaviour alikeness between; clean signals, between 

corrupted signals, and between corrupted background and clean seizure to represent the 

likelihood for mistakes in the analysis or interpretation of the EEG patterns. This 

umbrella should produce significant results, because artifacts dominate the overall 

behaviour of the corrupted EEG signal. 

H.2 Evaluation Techniques 
The second step in evaluation is processing the testing signals by different 

techniques. PCC, Two Samples t-Test, and one-way ANOVA techniques are used to 
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process the signal under test for every likelihood umbrella in the time, frequency, and 

time-frequency domains. 

H.2.1 Pearson’s Correlation Coefficient 

Correlation is “a method of assessing a possible two-way linear association between 

two continuous variables/signals” [126]. It is measured by a statistic called the 

correlation coefficient, which measures the strength of the linear association between 

variables under test. It is a dimensionless quantity that can vary from -1 (perfect 

negative correlation) through 0 (no correlation) to +1 (perfect positive correlation). 

Zero correlation indicates that there is not any linear relationship between two testing 

signals, and a correlation of -1 or +1 indicates a perfect linear relationship. The stronger 

the linear correlation, the closer the correlation coefficient comes to ±1. If the 

coefficient is a positive number, the variables are directly related, and if it is a negative 

number, the variables are inversely related. Table A.3 illustrates the linear correlation 

coefficient ranges with their scientific interpretations [126] [127]. 

Table A.3: Rule of thumb for interpreting the size of a correlation coefficient 

Correlation Value Interpretation 

0.90 to 1.00 (-0.90 to -1.00) Very high positive (negative) correlation 

0.70 to 0.90 (-0.70 to -0.90) High positive (negative) correlation 

0.50 to 0.70 (-0.50 to -0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (-0.30 to -0.50) Low positive (negative) correlation 

0.00 to 0.30 (0.00 to -0.30) Negligible correlation 
 

There are two main types of correlation coefficients namely: Pearson’s product moment 

Correlation Coefficient (PCC) and Spearman’s rank Correlation Coefficient (SCC). 

The PCC is denoted as 𝜌𝜌 for a population and as 𝑟𝑟 for a sample statistic. It is used when 
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both variables are normally distributed or generally coming from the same distribution. 

The PCC between variables x and y can be calculated using Equation A.113. The SCC 

is denoted as 𝜌𝜌𝑠𝑠 for a population and as 𝑟𝑟𝑠𝑠  for a sample statistic. It is appropriate when 

one or both variables are skewed or ordinal and is robust when extreme values are 

present [126]. Equation A.114 describes the SCC between variables x and y, where 𝑑𝑑𝑖𝑖 

is the difference in ranks for x and y. 

𝑟𝑟 =  
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑌𝑌𝜎𝜎𝑌𝑌

=  
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)𝑁𝑁
𝑖𝑖=1 (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)

�∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2𝑁𝑁
𝑖𝑖=1 �∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑁𝑁

𝑖𝑖=1

 
Equation A.113 

𝑟𝑟𝑠𝑠 = 1 −
6∑ 𝑑𝑑𝑖𝑖

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛(𝑛𝑛2 − 1)
 Equation A.114 

The PCC evaluation is done by correlating every segment in one testing group with 

every single segment in the other testing group (Figure A.32).  This extensive process 

is done per segment to respect the stochastic nature of EEG epochs where every 

segment is considered to be wide-sense stationary which can be realized as a nonlinear 

system with different initial conditions. 

 

Figure A.32: The PCC evaluation procedure. Segment 1 in group A is correlated with every segment in 
group B. This process is repeated for every segment in group A producing a correlation distribution 

 

PCC evaluation of the neonatal EEG corruption is done by repeating the correlation 

process for the time, frequency, and time-frequency representations for the different 

combinations of testing groups in the likelihood umbrellas. The total number of tested 
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segments 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 in the PCC evaluation procedure can be described using Equation 

A.115, where 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 represent the number of testing group’s combination, 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

is the number of domains, and 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 is the number of segments per signal. 

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠2 = 7 × 3 × 2002 = 840,000 Equation A.115 

The output of this extensive evaluation process can be interpreted as a correlation 

distribution where the mean of this distribution reflects the linear correlation coefficient 

between the different testing signals; in every group combination; in every likelihood 

umbrella.  

The correlation distributions can be divided into three types: positive, negative, and 

mixed distributions. The positive correlation distribution is a distribution that totally 

lies in the positive correlation axis (Only positive correlation coefficients), while the 

negative correlation distribution is a distribution that lies totally in the negative 

correlation axis (Only negative correlation coefficients). The mixed distribution is a 

distribution that is combined from positive and negative distributions (positive and 

negative correlation coefficients). This happens mostly in stochastic time domain 

correlations as the relationship can alternate between positive and negative, but 

producing discontinuity at zero, which leads to consider this distribution as a 

combination of positive and negative distributions. In such cases positive and negative 

means are calculated with their respective probabilities resulting in two linear 

correlation coefficients for the mixed distributions. 

H.2.2 Two Samples t-Test 

The two samples t-test allows evaluation for the mean difference between two 

populations using data from two separate samples. This method is used in situations 

where no prior knowledge on either of the two populations under test. In particular, the 
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population means and standard deviations are all unknown, because the population 

variances are not known, and these values must be estimated from the sample data 

[128]. 

This evaluation technique relies on the condition that populations under test have to be 

normally distributed. This condition results in producing a random variable 𝑡𝑡 that has a 

t-distribution with 𝑣𝑣 degrees of freedom (Equation A.116 and Equation A.117). 

Where 𝑥𝑥1��� and 𝑥𝑥2��� are the means of the two samples, ∆ is the hypothesized difference 

between population means, 𝑆𝑆1 and 𝑆𝑆2 are the standard deviations of the two samples, 

and 𝑛𝑛1 and 𝑛𝑛2 are the sizes of the two samples. 

𝑡𝑡 =  
𝑥𝑥1��� − 𝑥𝑥2��� − ∆

�𝑆𝑆1
2

𝑛𝑛1
+ 𝑆𝑆22
𝑛𝑛2

 
Equation A.116 

𝑣𝑣 =  
�𝑆𝑆1

2

𝑛𝑛1
+ 𝑆𝑆22
𝑛𝑛2
�
2

�𝑆𝑆12/𝑛𝑛1�
2

𝑛𝑛1 − 1 +
�𝑆𝑆22/𝑛𝑛2�

2

𝑛𝑛2 − 1

 ≈   𝑛𝑛1 + 𝑛𝑛2 − 2 Equation A.117 

The Two Samples t-Test evaluation procedure is done by firstly calculating the means 

of the 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 segments. This will produce a total number of 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 means for every testing 

group (Figure A.33). These means are considered as a sampling distribution which 

follows a normal distribution as the number of segments increases (here we have 200) 

“Central Limit Theorem” [127]. 

The random variable 𝑡𝑡 is calculated to test the zero mean difference hypothesis (Null 

Hypothesis 𝐻𝐻0:∆ = 0, alternative Hypothesis 𝐻𝐻1:∆ ≠ 0) between; the different testing 

group’s sampling distributions for every testing group’s combination in every 

likelihood umbrella. The degrees of freedom (Equation A.117) for large number of 
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samples can be approximated to be 𝑛𝑛1 + 𝑛𝑛2 − 2, and because we have 200 segments 

this approximation is valid. Finally, after calculating the random variable 𝑡𝑡, error 

probabilities when rejecting the null hypothesis are calculated by accessing the t-table 

with 𝛼𝛼 = 0.05. These calculations are done in time, frequency, and time-frequency 

domains to compare the zero mean hypothesis for every testing group’s combinations 

in every likelihood umbrella. 

 

Figure A.33: The Two Samples t-Test evaluation procedure. Mean values are calculated for every 
testing group by calculating the mean value of every segment producing a sampling distribution that 
follows a normal distribution 

 

H.2.3 One-Way Analysis of Variance 

ANOVA is “a generalization of the t-Test; it compares means on a quantitative 

variable across any number of groups” [127]. This technique reduces the type I error 

conducted in the two samples t-Test because it performs a single omnibus test (F-test) 

that examines all the comparisons in the study as a set.  The F-test in the one-way 

ANOVA, tests the null hypothesis that the means of all k populations are equal 

(Equation A.118).  

𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2 = ⋯ = 𝜇𝜇𝑘𝑘 Equation A.118 

It produces a ratio (F-ratio) that determines the statistical significance of the results 

(Equation A.119). The F-ratio is distributed according to F-distribution with 𝑘𝑘 − 1 

and 𝑁𝑁 − 𝑘𝑘 degrees of freedom. Where 𝑘𝑘 is the number of groups, 𝑁𝑁 is the total number 
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of samples, 𝑛𝑛𝑖𝑖 is the number of samples for group 𝑖𝑖, 𝜇𝜇�𝑖𝑖 is the estimated mean for group 𝑖𝑖, 

𝜇𝜇 is the overall mean, 𝑛𝑛𝑘𝑘 is the number of samples for group 𝑘𝑘, and 𝑥𝑥𝑖𝑖𝑖𝑖 is the element 𝑗𝑗 

for group 𝑖𝑖. 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀𝑀𝑀𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖

=  
𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/(𝑘𝑘 − 1)
𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖/(𝑁𝑁 − 𝑘𝑘) =

(𝑁𝑁 − 𝑘𝑘)∑ 𝑛𝑛𝑖𝑖(𝜇𝜇�𝑖𝑖 − 𝜇𝜇)2𝑘𝑘
𝑖𝑖=1

(𝑘𝑘 − 1)∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖�
2𝑛𝑛𝑘𝑘

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1

 Equation A.119 

The ANOVA evaluation procedure is done by firstly calculating the means of the 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠 

segments, exactly the same as the Two Samples t-Test evaluation procedure (Figure 

A.33). The 𝐹𝐹 ratio is calculated to test the equal means hypothesis (Equation A.118) 

between all testing group’s sampling distributions. After calculating the 𝐹𝐹 ratio, error 

probabilities when rejecting the null hypothesis are calculated by accessing the F-table 

with 𝛼𝛼 = 0.05. These calculations are done in time, frequency, and time-frequency 

domains. 

 

H.3 EEG Corruption Evaluation Results 

H.3.1 Pearson’s Correlation Coefficient 

The PCC evaluation process for the time, frequency, and time-frequency 

representations for the two likelihood umbrellas is done by collecting statistically 

significant correlation coefficients with 𝛼𝛼 = 0.05 and representing their distribution. 

Distribution’s positive and negative means with their corresponding probabilities are 

calculated to reflect the linear correlation coefficient between the testing groups. Initial 

results showed negligible correlation results for all testing groups in the mutual-

likelihood umbrella, thus the BVP and ECGS contamination coefficients are doubled 

to become 3 and 12 respectively increasing the EEG corruption (Figure A.34, Figure 

A.35, and Table A.4). 
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Figure A.34: Correlation distributions for the self-likelihood umbrella. Red dotted lines are positive 
means, while blue dotted lines are negative means. TFD parameters (EMB, N = 480, Fs = 32 Hz, 
FFT_N = 1024, Lag Window = 479, Alpha = 0.01, Beta = 0.9, time resolution = 1) 

 

 

 

Figure A.35: Correlation distributions for the mutual-likelihood umbrella. Red dotted lines are positive 
means, while blue dotted lines are negative means. TFD parameters (EMB, N = 480, Fs = 32 Hz, 
FFT_N = 1024, Lag Window = 479, Alpha = 0.01, Beta = 0.9, time resolution = 1) 
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Table A.4: Detailed results of the PCC evaluation. r+: positive correlation coefficient. r-: negative 
correlation coefficient. pr: probability. t: time. f: frequency. tf: time-frequency. X no value 

Likelihood 
Umbrella 

Testing 
Groups 

Correlation Coefficients / Correlation Distributions Means 
𝒓𝒓𝒕𝒕+ 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕− 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒇𝒇+ 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒇𝒇− 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕𝒕𝒕+  

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕𝒕𝒕−  

(𝒑𝒑𝒓𝒓) 

Se
lf-

L
ik

el
ih

oo
d 

Background 
V.S 

Background 

0.1820 
(0.4977) 

-0.1817 
(0.5023) 

0.6866 
(1) 

X 
(0) 

0.4137 
(1) 

X 
(0) 

Background 
V.S 

Corrupted 
Background 

0.1200 
(0.5445) 

-0.1102 
(0.4555) 

0.1163 
(0.9847) 

-0.0783 
(0.0153) 

0.0514 
(0.8324) 

-0.0185 
(0.1676) 

Seizure 
V.S 

Seizure 

0.1972 
(0.4976) 

-0.1943 
(0.5024) 

0.2208 
(0.9999) 

-0.0644 
(0.0001) 

0.1819 
(0.5313) 

-0.0129 
(0.4687) 

Seizure 
versus 

Corrupted 
Seizure 

0.2049 
(0.5223) 

-0.1684 
(0.4777) 

0.2045 
(0.9915) 

-0.0726 
(0.0085) 

0.1728 
(0.5706) 

-0.0156 
(0.4294) 

M
ut

ua
l L

ik
el

ih
oo

d 

Background 
V.S 

Seizure 

0.1363 
(0.5130) 

-0.1342 
(0.4870) 

0.2604 
(1) 

X 
(0) 

0.0840 
(0.8770) 

-0.0111 
(0.1230) 

Corrupted 
Background 

V.S 
Seizure 

0.1203 
(0.5397) 

-0.1315 
(0.4603) 

0.1588 
(0.8517) 

-0.0775 
(0.1483) 

0.1139 
(0.4535) 

-0.0252 
(0.5465) 

Corrupted 
Background 

V.S 
Corrupted  

Seizure 

0.2492 
(0.9999) 

-0.1079 
(0.0001) 

0.2662 
(0.9999) 

-0.0682 
(0.0001) 

0.1726 
(0.9643) 

-0.0141 
(0.0357) 

 

 

Figure A.36 and Figure A.37 illustrate the linear correlation coefficients 

distributions for the self-likelihood and the mutual-likelihood umbrellas in the time, 
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frequency, and time-frequency domains. Positive and negative means are illustrated by 

dotted red and blue vertical lines respectively. In Figure A.36 the first row of plots 

(subplots 1-3) show the correlation distributions for the clean background versus clean 

background testing group combination, while the second row of plots (subplots 4-6) 

show the correlation distributions for the clean background versus corrupted 

background testing group combination. All means (positive and negative) of the second 

row in time, frequency, and time-frequency domains are below ±0.15 and less than the 

first row (especially for frequency and time-frequency domains). These low mean 

values of row two are interpreted as; clean background epochs are poorly correlated 

with corrupted backgrounds, and do not share much behaviour with its corrupted 

versions. The difference in the correlation coefficients means between row one and two 

is interpreted as; clean background epochs are more correlated with themselves than 

their corrupted versions. 

The third row of plots (subplots 7-9) in Figure A.36 show the correlation distributions 

for the clean seizure versus clean seizure testing group combination, while the fourth 

row of plots show the correlation distributions for the clean seizure versus corrupted 

seizure testing group combination. All means (positive and negative) of the third and 

fourth rows in time, frequency, and time-frequency domains are below ±0.25 and 

similar in values. These low mean values are interpreted as; clean seizure epochs are 

poorly correlated with corrupted seizures, and do not share much behaviour with its 

corrupted versions. The similarity in the correlation coefficients means between row 

three and four is interpreted as; clean seizure epochs are poorly correlated with 

themselves and with their corrupted versions. 
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In Figure A.37 the first row of plots (subplots 1-3) show the correlation distributions 

for the clean background versus clean seizure testing group combination, the second 

row of plots (subplots 4-6) show the correlation distributions for the corrupted 

background versus clean seizure testing group combination, and the third row of plots 

(subplots 7-9) show the correlation distributions for the corrupted background versus 

corrupted seizure testing group combination. All means (positive and negative) of the 

first and second rows in time, frequency, and time-frequency domains are below ±0.3. 

These low mean values are interpreted as; clean background epochs are poorly 

correlated with clean seizures, and corrupted background are also poorly correlated 

with clean seizures. All means of the third row in time, frequency, and time-frequency 

domains are above +0.4. These relatively high mean values indicate high relative 

correlation between corrupted background epochs and corrupted seizure epochs, 

consequently resulting in difficulty when differentiating between the two of them. 

Table A.5 illustrate detailed results, showing positive and negative means for every 

correlation distribution and their corresponding probabilities. The detailed results of 

Table A.5 match Figure A.36 and Figure A.37 outcomes. It shows relatively high 

correlation between corrupted background and corrupted seizure epochs, which proves 

the difficulty in distinguishing between those. Other correlations show negligible 

results (below ±0.3) which means possible identification between these groups. Since 

the initial amplitudes of the BVP and ECGS did not result in adequate EEG corruption 

while the doubled amplitude did, consequently the new doubled amplitudes will used 

through the rest of the results, and will be considered as the default values unless 

otherwise mentioned. 
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Figure A.36: Correlation distributions for the self-likelihood umbrella (BVP and ECGS amplitudes are 
doubled). Red dotted lines are positive means, while blue dotted lines are negative means. TFD 
parameters (EMB, N = 480, Fs = 32 Hz, FFT_N = 1024, Lag Window = 479, Alpha = 0.01, Beta = 0.9, 
time resolution = 1) 

 

 

Figure A.37: Correlation distributions for the mutual-likelihood umbrella (BVP and ECGS amplitudes 
are doubled). Red dotted lines are positive means, while blue dotted lines are negative means. TFD 
parameters (EMB, N = 480, Fs = 32 Hz, FFT_N = 1024, Lag Window = 479, Alpha = 0.01, Beta = 0.9, 
time resolution = 1) 
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Table A.5: Detailed results of the PCC evaluation (BVP and ECGS amplitudes are doubled). r+: 
positive correlation coefficient. r-: negative correlation coefficient. pr: probability. t: time. f: frequency. 
tf: time-frequency. X no value 

Likelihood 
Umbrella 

Testing 
Groups 

Correlation Coefficients / Correlation Distributions Means 
𝒓𝒓𝒕𝒕+ 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕− 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒇𝒇+ 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒇𝒇− 

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕𝒕𝒕+  

(𝒑𝒑𝒓𝒓) 
𝒓𝒓𝒕𝒕𝒕𝒕−  

(𝒑𝒑𝒓𝒓) 

Se
lf-

L
ik

el
ih

oo
d 

Background 
V.S 

Background 

0.1820 
(0.4977) 

-0.1817 
(0.5023) 

0.6866 
(1) 

X 
(0) 

0.4137 
(1) 

X 
(0) 

Background 
V.S 

Corrupted 
Background 

0.1101 
(0.5798) 

-0.1071 
(0.4202) 

0.0882 
(0.9562) 

-0.0741 
(0.0438) 

0.0273 
(0.5208) 

-0.0185 
(0.4792) 

Seizure 
V.S 

Seizure 

0.1972 
(0.4976) 

-0.1943 
(0.5024) 

0.2208 
(0.9999) 

-0.0644 
(0.0001) 

0.1819 
(0.5313) 

-0.0129 
(0.4687) 

Seizure 
versus 

Corrupted 
Seizure 

0.1802 
(0.5482) 

-0.1601 
(0.4518) 

0.1990 
(0.9791) 

-0.0719 
(0.0209) 

0.1746 
(0.5246) 

-0.0200 
(0.4754) 

M
ut

ua
l L

ik
el

ih
oo

d 

Background 
V.S 

Seizure 

0.1363 
(0.5130) 

-0.1342 
(0.4870) 

0.2604 
(1) 

X 
(0) 

0.0840 
(0.8770) 

-0.0111 
(0.1230) 

Corrupted 
Background 

V.S 
Seizure 

0.1296 
(0.5538) 

-0.1433 
(0.4462) 

0.1984 
(0.7930) 

-0.0737 
(0.2070) 

0.1628 
(0.3278) 

-0.0254 
(0.6722) 

Corrupted 
Background 

V.S 
Corrupted  

Seizure 

0.4571 
(1) 

X 
(0) 

0.5242 
(1) 

X 
(0) 

0.4284 
(1) 

X 
(0) 

 

H.3.2 Two Samples t-Test 

The Two Samples t-Test evaluation process for the time, frequency, and time-

frequency representations for the different testing groups is done by calculating the 

mean value for every testing group’s segments, then generating the mean sampling 

distributions for every testing group. Sampling distributions absolute mean differences 

are calculated to test the null hypothesis of equal means along with the error 
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probabilities when rejecting the null hypothesizes at 5% significance for every group 

combination. 

Figure A.38 illustrates the sampling distributions for every testing group’s in time, 

frequency, and time-frequency domains. Mean values are illustrated by red dotted 

vertical lines. The first row (subplots 1-3) show the sampling distributions for the first 

testing group (Background) in time, frequency, and time-frequency domains. The 

second row (subplots 4-6) show the sampling distributions for the second testing group 

(Seizure) in time, frequency, and time-frequency domains. The third row (subplots 7-

9) show the sampling distributions for the third testing group (Corrupted Background) 

in time, frequency, and time-frequency domains, and finally the fourth row (subplots 

10-12) show the sampling distributions for the fourth testing group (Corrupted Seizure) 

in time, frequency, and time-frequency domains. 

Table A.6 illustrate the absolute mean differences for the two likelihood umbrellas, 

along with the error probabilities when rejecting the null hypothesis. For the self-

likelihood umbrella, the clean background versus corrupted background, and the clean 

seizure versus corrupted seizure show negligible error probabilities when rejecting the 

null hypothesis of equal means for all; time, frequency, and time-frequency domains. 

This suggests that clean background epochs and corrupted background epochs are 

relatively easy to be identified in the time, frequency, and time-frequency domains, as 

well as clean seizure epochs and corrupted seizure epochs. For the mutual-likelihood 

umbrella, the corrupted background versus clean seizure show negligible error 

probabilities when rejecting the null hypothesis of equal means for all; time, frequency, 

and time-frequency domains. This suggests that corrupted background epochs and 

clean seizure epochs are relatively easy to be identified in the time, frequency, and time-
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frequency domains. The clean background versus clean seizure, and the corrupted 

background versus corrupted seizure show negligible error probabilities when rejecting 

the null hypothesis of equal means for the frequency and time-frequency domains. On 

the other hand, they show 12.9% and 80.3% error probability for the time domain 

comparison respectively. This suggests that clean background and clean seizure epochs 

relatively difficult to be identified in the time domain, as well as corrupted background 

and corrupted seizure epochs. This proves the difficulty in distinguishing between 

corrupted background and corrupted seizure epochs in the time domain. 

 

Table A.6: Detailed results of the Two Samples t-Test evaluation (BVP and ECGS amplitudes are 
doubled). µt, µf, and µtf are the time, frequency, and time-frequency domains sampling distribution 
means, p: error probability when rejecting the null hypothesis 

Likelihood 
Umbrella 

Testing 
Groups 

Mean Difference 
|𝝁𝝁𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩| 

(𝒑𝒑) 
�𝝁𝝁𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩� 

(𝒑𝒑) 
�𝝁𝝁𝑨𝑨𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩𝑩𝑩� 

(𝒑𝒑) 

Se
lf-

L
ik

el
ih

oo
d 

Background 
V.S 

Background 

0 
(1) 

0 
(1) 

0 
(1) 

Background 
V.S 

Corrupted 
Background 

0.09584 
(9.46e-28 ≈ 0) 

0.027594 
(5.11e-193 ≈ 0) 

547.1867 
(8.55e-106 ≈ 0) 

Seizure 
V.S 

Seizure 

0 
(1) 

0 
(1) 

0 
(1) 

Seizure 
versus 

Corrupted 
Seizure 

0.09584 
(1.89e-25 ≈ 0) 

0.023424 
(5.89e-113 ≈ 0) 

553.3039 
(3.64e-11 ≈ 0) 

M
ut

ua
l 

L
ik

el
ih

oo
d 

Background 
V.S 

Seizure 

0.002901 
(0.129239) 

0.012691 
(3.74e-97 ≈ 0) 

902.6766 
(5.46e-45 ≈ 0) 

Corrupted 
Background 

V.S 
Seizure 

0.092938 
(1.97e-25 ≈ 0) 

0.014903 
(1.00e-73 ≈ 0) 

355.4898 
(4.08e-09 ≈ 0) 

Corrupted 
Background 

V.S 
Corrupted  

Seizure 

0.002901 
(0.803469) 

0.008522 
(4.32e-26 ≈ 0) 

908.7938 
(6.74e-40 ≈ 0) 
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Figure A.38: Mean sampling distributions for every testing group (BVP and ECGS amplitudes are 
doubled). Red dotted lines are sampling distributions means. TFD parameters (EMB, N = 480, Fs = 32 
Hz, FFT_N = 1024, Lag Window = 479, Alpha = 0.01, Beta = 0.9, time resolution = 1) 

 

H.3.3 One-way Analysis of Variance 

The ANOVA evaluation process for the time, frequency, and time-frequency 

representations for all testing groups is done by calculating the mean values for every 

testing group segments, then generating the mean sampling distributions for every 

testing group. Sampling distributions mean differences are calculated to test the null 

hypothesis of equal means along with the 95% confidence interval upper and lower 

limits. F-ratios and error probabilities when rejecting the null hypothesizes are 

calculated at 5% significance for all group combinations in all domains. 

Table A.7, Table A.8, and Table A.9 illustrate negligible zero error probabilities when 

rejecting the null hypothesizes of equal means in all domains. This is due to the 

differences between the mean values when considering corrupted epochs (Figure A.39, 
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discriminated in the frequency domain, followed by the time-frequency domain, and 

finally by the time domain (Large F-ratios suggest more distance between means 

“discrimination/identification”). 

 

Table A.7: ANOVA evaluation results in time domain (ANOVA Table). 𝑆𝑆𝑆𝑆: Sum of squared 
deviations, df: degrees of freedom, F: F-ratio, p > F: error probability when rejecting the null 
hypothesis 

Source SS 𝒅𝒅𝒅𝒅 MS F 𝒑𝒑 > 𝑭𝑭 
Time Domain 1.8387 3 0.6129 87.9468 3.7170e-49 

Error 5.5474 796 0.0070 
Total 7.3861 799 

 

 

Table A.8: ANOVA evaluation results in frequency domain (ANOVA Table). 𝑆𝑆𝑆𝑆: Sum of squared 
deviations, df: degrees of freedom, F: F-ratio, p > F: error probability when rejecting the null 
hypothesis 

Source SS 𝒅𝒅𝒅𝒅 MS F 𝒑𝒑 > 𝑭𝑭 
Frequency Domain 0.1535 3 0.0512 1338.6 2.0971e-310 

Error 0.0304 796 3.8227e-05 
Total 0.1839 799 

 

 

 

Table A.9: ANOVA evaluation results in time-frequency domain (ANOVA Table). 𝑆𝑆𝑆𝑆: Sum of squared 
deviations, df: degrees of freedom, F: F-ratio, p > F: error probability when rejecting the null 
hypothesis 

Source SS 𝒅𝒅𝒅𝒅 MS F 𝒑𝒑 > 𝑭𝑭 
TF Domain 2.2463e+08 3 7.4876000 216.1568 1.5098e-102 

Error 2.7573e+08 796 3.46400 
Total 5.0036e+08 799 
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Figure A.39: ANOVA evaluation results in time domain (Boxplot) 

 

 

Figure A.40: ANOVA evaluation results in frequency domain (Boxplot) 
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Figure A.41: ANOVA evaluation results in time-frequency domain (Boxplot) 

 

Table A.10, Table A.11, and Table A.12 show the Tukey’s Honest Significant 

Difference (Tukey’s HSD) results, which is used to identify the means that are 

significantly different from each other. 

Table A.10 illustrate the Tukey’s HSD results for all the testing groups in the time 

domain. The 95% confidence intervals for the clean background versus clean seizure 

and the corrupted background versus corrupted seizure group combinations include the 

zero mean difference. This suggests that background versus seizure epochs, and 

corrupted background versus corrupted seizure epochs are relatively difficult to identify 

in the time domain. These results can be visualized in Figure A.39. 

Table A.11 illustrate the Tukey’s HSD results for all the testing groups in the frequency 

domain. The 95% confidence for all testing groups do not include the zero mean 
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group 95% confidence interval values are relatively smaller when compared to the other 

testing groups. This suggests that corrupted background and corrupted seizure epochs 

are the hardest to distinguish between them in the frequency domain. These results can 

be visualized in Figure A.40. 

Table A.12 illustrate the Tukey’s HSD results for all the testing groups in the time-

frequency domain. The 95% confidence intervals for all combination groups do not 

include the zero mean difference. These results can be visualized in Figure A.41. 

 

 

Table A.10: Tukey’s HSD results in time domain, [L] 95% confidence interval lower bound, [U] 95% 
confidence interval upper bound, µt: time domain sampling distribution mean. B: Background, S: 
Seizure, CB: Corrupted Background, CS: Corrupted Seizure 

Likelihood 
Umbrella 

Testing 
Groups 

Means Difference 
[𝑳𝑳] 𝝁𝝁𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩 [𝑼𝑼] 

Se
lf-

L
ik

el
ih

oo
d 

B versus CB -0.11729 -0.09584 -0.07439 

S versus CS -0.11729 -0.09584 -0.07439 

M
ut

ua
l L

ik
el

ih
oo

d B versus S -0.02435 -0.0029 0.018545 

CB versus S -0.11438 -0.09294 -0.07149 

CB versus CS -0.02435 -0.0029 0.018545 
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Table A.11: Tukey’s HSD results in frequency domain, [L] 95% confidence interval lower bound, [U] 
95% confidence interval upper bound, µf: frequency domain sampling distribution mean 

Likelihood 
Umbrella 

Testing 
Groups 

Means Difference 
[𝑳𝑳] 𝝁𝝁𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩 [𝑼𝑼] 

Se
lf-

L
ik

el
ih

oo
d 

B versus CB -0.02918 -0.02759 -0.02601 

S versus CS -0.02501 -0.02342 -0.02184 

M
ut

ua
l L

ik
el

ih
oo

d B versus S -0.01428 -0.01269 -0.0111 

CB versus S -0.01649 -0.0149 -0.01331 

CB versus CS -0.01011 -0.00852 -0.00693 

 

Table A.12: Tukey’s HSD results in time-frequency domain, [L] 95% confidence interval lower bound, 
[U] 95% confidence interval upper bound, µtf: time-frequency domain sampling distribution mean 

Likelihood 
Umbrella 

Testing 
Groups 

Means Difference 
[𝑳𝑳] 𝝁𝝁𝑨𝑨𝑨𝑨 − 𝝁𝝁𝑩𝑩𝑩𝑩 [𝑼𝑼] 

Se
lf-

L
ik

el
ih

oo
d 

B versus CB -698.388 -547.187 -395.985 

S versus CS -704.505 -553.304 -402.103 

M
ut

ua
l L

ik
el

ih
oo

d B versus S -1053.88 -902.677 -751.475 

CB versus S 204.2886 355.4898 506.6911 

CB versus CS -1060 -908.794 -757.592 
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Appendix I: Probability-Probability Plots 

The material presented in this appendix are used to explain probability-probability 

plots in details as it was used to validate the EEG propagation model in Section 3.2.6, 

page 62. 

Probability-Probability (P-P) plots are graphical techniques for assessing the 

similarities between a distribution of data against a given distribution such as the normal 

or Weibull distributions. P–P plots can be used as graphical adjunct to test the fit of 

probability distributions. It plots the cumulative distribution function (CDF) of a 

variable against the CDF of the reference distribution. Data under-analysis are ranked 

and sorted, and the corresponding z-score is calculated for each rank using 

Equation A.120, where 𝑆𝑆 is the standard deviation. This is the expected value that data 

should have in a normal distribution. The computed scores are then converted to z-

scores and the actual z-scores are plotted against the expected z-scores. If the data are 

normally distributed, the result would be a straight diagonal line [129]. 

This methodology can be extended to test the alikeness of N distributions, as P-P plots 

can be plotted for two processes and if the processes have the same distribution (does 

not have to be normal) their semi-diagonal lines would be on each other. 

 

𝑍𝑍 =  
𝑋𝑋 − 𝑋𝑋�
𝑆𝑆

 Equation A.120 
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Appendix J: Supplementary Material 

The material presented in this appendix include all supplementary results that do 

not contribute to the main research question, or have been moved due its large quantity. 

These results are referred to in Chapter 5, page 88 (Results and Discussions). 

 

J.1 EEG Propagation Model Validation 
 

 

Figure A.42: P-P plot of models A, B, and C output (Linear) SBR against the reference distribution 
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J.2 Neonatal EEG Artifacts Model 

 

Figure A.43: Simulated blood vessel pulsation artifact. TFD parameters (MB, N = 480, Fs = 32 Hz, 
FFT_N = 1024, Lag Window = 479, Alpha = 0.01, time resolution = 1). Time and frequency steps are 
(0.0313, 0.0313) respectively 

 

Figure A.44: Simulated ECG Spike artifact. TFD parameters (EMB, N = 480, Fs = 32 Hz, FFT_N = 
1024, Lag Window = 479, time resolution = 1, Alpha = 0.99, Beta = 0.01). Time and frequency steps 
are (0.0313, 0.0313) respectively 
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J.3 Artifact Detection Optimisation 
Detection optimisation maximises the detection balanced accuracy by spanning all 

possible correlation thresholds. This procedure is done for the time and time-frequency 

BSS algorithms.  

Time and time-frequency BSS optimisation results consist of 100,100 and 303 samples 

for each performance curve respectively, thus average curves are drawn and denoted 

by a thick black curve (Figure A.45-Figure A.49 and Figure A.51-Figure A.55). The 

detection thresholds that maximises the balanced accuracy for all BSS algorithms are 

extracted, normal distributions are fitted and mean values and standard deviations are 

calculated along with their 95% confidence intervals (Figure A.50, Table A.13, Figure 

A.56, and Table A.14). 

J.3.1 Time Domain Artifact Detection 

 

Figure A.45: Time domain Fast ICA detection performance curves 
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Figure A.46: Time domain Robust ICA detection performance curves 

 

Figure A.47: Time domain BSS-CCA detection performance curves 
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Figure A.48: Time domain SOBI detection performance curves 

 

Figure A.49: Time domain JADE detection performance curves 
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Figure A.50: Time domain optimised correlation thresholds for all BSS algorithms 

 

Table A.13: Time domain artifact detection optimisation results. µL is the mean 95% confidence 
interval lower bound, µU is the mean 95% confidence interval upper bound, µ is the detection threshold 
mean, σL is the standard deviation 95% confidence interval lower bound, σU is the standard deviation 
95% confidence interval upper bound, σ is the detection threshold standard deviation 

BSS 
Algorithms 

Time Domain Optimised Detection Threshold Parameters 

𝜇𝜇𝐿𝐿 𝝁𝝁 𝜇𝜇𝑈𝑈 𝜎𝜎𝐿𝐿 𝝈𝝈 𝜎𝜎𝑈𝑈 

Fast-ICA 0.243130 0.244078 0.245026 0.031509 0.032165 0.032849 

Robust-ICA 0.243432 0.244430 0.245429 0.033351 0.034042 0.034763 

BSS-CCA 0.259972 0.260944 0.261916 0.037681 0.038356 0.039055 

SOBI 0.291865 0.292784 0.293704 0.040910 0.041549 0.042210 

JADE 0.247396 0.248297 0.249198 0.030231 0.030856 0.031506 
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J.3.2 Time-Frequency Domain Artifact Detection 

 

Figure A.51: Time-Frequency domain Fast ICA detection performance curves 

 

Figure A.52: Time-Frequency domain Robust ICA detection performance curves 
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Figure A.53: Time-Frequency domain BSS-CCA detection performance curves 

 

Figure A.54: Time-Frequency domain SOBI detection performance curves 
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Figure A.55: Time-Frequency domain JADE detection performance curves 

 

Figure A.56: Time-Frequency domain optimised correlation thresholds for all BSS algorithms 
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Table A.14: Time-Frequency domain artifact detection optimisation results. µL is the mean 95% 
confidence interval lower bound, µU is the mean 95% confidence interval upper bound, µ is the 
detection threshold mean, σL is the standard deviation 95% confidence interval lower bound, σU is the 
standard deviation 95% confidence interval upper bound, σ is the detection threshold standard 
deviation 

BSS 
Algorithms 

Time-Frequency Domain Optimised Detection Threshold Parameters 

𝜇𝜇𝐿𝐿 𝝁𝝁 𝜇𝜇𝑈𝑈 𝜎𝜎𝐿𝐿 𝝈𝝈 𝜎𝜎𝑈𝑈 

Fast-ICA 0.089416 0.0945 0.099584 0.004888 0.007106 0.012973 

Robust-ICA 0.075245 0.094 0.112755 0.003931 0.00755 0.047449 

BSS-CCA 0.092018 0.099 0.105982 0.004865 0.00755 0.016625 

SOBI 0.093552 0.099 0.104448 0.005238 0.007616 0.013903 

JADE 0.083207 0.0905 0.097793 0.004338 0.00695 0.017045 
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J.4 Feature Selection 
 

 

Table A.15: Fused multichannel time-frequency features ordered according to their Fisher’s scores 

# Feature Label Fisher Score 
12 𝑭𝑭𝟕𝟕 10.89603343 

9 𝑭𝑭𝟔𝟔 8.408607824 

1 𝑻𝑻𝟏𝟏 6.802327383 

11 𝑻𝑻𝟓𝟓 5.799446158 

5 𝑭𝑭𝟒𝟒 5.637856925 

3 𝑻𝑻𝟑𝟑 4.005305596 

4 𝑻𝑻𝟒𝟒 2.911641887 

2 𝑻𝑻𝟐𝟐 1.683835312 

6 𝑭𝑭𝟏𝟏 0.790666701 

8 𝑭𝑭𝟑𝟑 0.416335709 

7 𝑭𝑭𝟐𝟐 0.364105607 

16 𝑬𝑬𝟐𝟐 0.212894762 

15 𝑬𝑬𝟏𝟏 0.105505172 

10 𝑭𝑭𝟓𝟓 0 

13 𝑰𝑰𝑰𝑰𝟏𝟏 0 

14 𝑰𝑰𝑰𝑰𝟐𝟐 0 
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Table A.16: Combined extended and fused multichannel time-frequency features ordered according to 
their Fisher’s scores 

# Feature Label Fisher Score 
17 𝑴𝑴𝟏𝟏 13.10198119 

12 𝑭𝑭𝟕𝟕 10.89603343 

9 𝑭𝑭𝟔𝟔 8.408607824 

1 𝑻𝑻𝟏𝟏 6.802327383 

11 𝑻𝑻𝟓𝟓 5.799446158 

5 𝑭𝑭𝟒𝟒 5.637856925 

3 𝑻𝑻𝟑𝟑 4.005305596 

4 𝑻𝑻𝟒𝟒 2.911641887 

2 𝑻𝑻𝟐𝟐 1.683835312 

21 𝑭𝑭𝟏𝟏 0.790666701 

6 𝑭𝑭𝟑𝟑 0.416335709 

8 𝑭𝑭𝟐𝟐 0.364105607 

7 𝑴𝑴𝟓𝟓 0.344553663 

16 𝑬𝑬𝟐𝟐 0.212894762 

19 𝑴𝑴𝟑𝟑 0.193284894 

20 𝑬𝑬𝟒𝟒 0.105505172 

15 𝑴𝑴𝟒𝟒 0.039815504 

18 𝑴𝑴𝟐𝟐 0.03667936 

10 𝑭𝑭𝟓𝟓 0 

13 𝑰𝑰𝑰𝑰𝟏𝟏 0 

14 𝑰𝑰𝑰𝑰𝟐𝟐 0 
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J.5 Abnormality Detection 

 

Figure A.57: Time domain filtered EEG abnormality detection accuracy profiles when using the fused 
and the combined extended and fused time-frequency multichannel features. SAR level is equal to 0 dB 

 

Figure A.58: Time domain filtered EEG abnormality detection accuracy profiles when using the fused 
and the combined extended and fused time-frequency multichannel features. SAR level is equal to -
7.2206 dB 
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Figure A.59: Time domain filtered EEG abnormality detection accuracy profiles when using the fused 
and the combined extended and fused time-frequency multichannel features. SAR level is equal to -
13.2412 dB 

 

Figure A.60: Time domain filtered EEG abnormality detection accuracy profiles when using the fused 
and the combined extended and fused time-frequency multichannel features. SAR level is equal to -
16.763 dB 
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Figure A.61: Time domain filtered EEG abnormality detection accuracy profiles when using the fused 
and the combined extended and fused time-frequency multichannel features. SAR level is equal to -
19.262 dB 
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Table A.17: Time domain filtered EEG abnormality detection average performances when using the 
fused and the combined extended and fused time-frequency multichannel features. SAR level is equal 
to 0 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ 0 dB 99 99.5 100 100 100 100 98 99 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 95 97.625 100 92 99.375 100 90 95.875 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 95 98.0625 100 90 99.25 100 92 96.875 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 89 96.9375 100 78 98.25 100 88 95.625 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 92 98.5625 100 84 98.75 100 96 98.375 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 95 97.625 100 90 99.25 100 90 96 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ 0 dB 75 97.8125 100 66 97.875 100 84 97.75 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 94 97.8125 100 98 99.875 100 88 95.75 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 94 98.25 100 94 99.625 100 90 96.875 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 92 98.0625 100 100 100 100 84 96.125 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 95 98.6875 100 94 99.625 100 90 97.75 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 95 98.0625 100 98 99.875 100 90 96.25 100 
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Table A.18: Time domain filtered EEG abnormality detection average performances when using the 
fused and the combined extended and fused time-frequency multichannel features. SAR level is equal 
to -7.2206 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -7.22 dB 96 98.1875 100 98 99.75 100 92 96.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 94 96.75 100 90 99 100 88 94.5 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 94 96.875 100 88 98.875 100 88 94.875 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 94 96.75 100 92 99.25 100 88 94.25 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 93 96.6875 100 92 99.375 100 86 94 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 94 96.625 100 90 99 100 88 94.25 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -7.22 dB 94 98.125 100 98 99.875 100 88 96.375 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 69 95.25 100 68 97.375 100 70 93.125 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 66 94.9375 100 64 97.125 100 68 92.75 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 83 95.6875 100 86 98.875 100 80 92.5 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 85 95.8125 100 90 99.25 100 80 92.375 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 70 95.3125 100 68 97.5 100 72 93.125 100 
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Table A.19: Time domain filtered EEG abnormality detection average performances when using the 
fused and the combined extended and fused time-frequency multichannel features. SAR level is equal 
to -13.241 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -13.241 dB 73 93.0625 99 60 93.5 98 84 92.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 91 95.8125 99 82 97.625 100 86 94 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 87 96.5 100 86 99.125 100 88 93.875 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 90 95.625 99 90 99.125 100 88 92.125 98 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 86 94.75 100 88 97.375 100 84 92.125 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 94 96.3125 99 88 99 100 88 93.625 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -13.241 dB 90 97.75 100 100 100 100 80 95.5 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 77 94.9375 99 76 96.75 100 78 93.125 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 77 95.75 100 76 98.375 100 78 93.125 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 69 94.1875 99 64 97 100 74 91.375 98 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 73 95.1875 100 66 97.625 100 80 92.75 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 79 95.8125 100 80 98.625 100 78 93 100 
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Table A.20: Time domain filtered EEG abnormality detection average performances when using the 
fused and the combined extended and fused time-frequency multichannel features. SAR level is equal 
to -16.763 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -16.763 dB 60 82.8125 90 40 82 90 66 83.625 90 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 87 93.125 97 78 95.375 100 86 90.875 96 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 83 94.625 100 78 96.875 100 88 92.375 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 90 94 98 90 97.25 100 88 90.75 96 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 83 90.1875 95 88 95.5 98 78 84.875 94 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 88 93 96 78 94.5 100 86 91.5 98 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -16.763 dB 88 97.625 100 100 100 100 76 95.25 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 81 93.75 97 80 96.875 100 82 90.625 96 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 83 95.0625 100 82 97.875 100 84 92.25 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 80 94.625 98 70 96.875 100 86 92.375 98 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 82 92.375 97 74 95.875 98 76 88.875 96 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 85 94.375 98 86 97.5 100 84 91.25 96 
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Table A.21: Time domain filtered EEG abnormality detection average performances when using the 
fused and the combined extended and fused time-frequency multichannel features. SAR level is equal 
to -19.262 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -19.262 dB 49 70.9375 77 40 71.25 80 50 70.625 76 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 84 89.625 96 74 90.375 98 86 88.875 96 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 78 86.875 91 72 89 96 80 84.75 92 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 88 91.0625 93 90 94.25 98 86 87.875 92 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 81 84.8125 86 86 91 94 76 78.625 82 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 81 87.875 91 72 88.25 96 82 87.5 94 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -19.262 dB 88 97.4375 100 94 99.25 100 76 95.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 87 94.25 98 86 95.625 100 88 92.875 98 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕 86 93.9375 98 84 96.875 100 82 91 98 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕 82 93.6875 97 72 96 100 86 91.375 98 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕 81 88.3125 93 72 92.5 96 72 84.125 92 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕 87 93 96 88 95.75 100 86 90.25 94 
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Figure A.62: Time-frequency domain filtered EEG abnormality detection accuracy profiles when using 
the fused and the combined extended and fused time-frequency multichannel features. SAR level is 
equal to 0 dB 

 

Figure A.63: Time-frequency domain filtered EEG abnormality detection accuracy profiles when using 
the fused and the combined extended and fused time-frequency multichannel features. SAR level is 
equal to -7.2206 dB 
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Figure A.64: Time-frequency domain filtered EEG abnormality detection accuracy profiles when using 
the fused and the combined extended and fused time-frequency multichannel features. SAR level is 
equal to -13.2412 dB 

 

Figure A.65: Time-frequency domain filtered EEG abnormality detection accuracy profiles when using 
the fused and the combined extended and fused time-frequency multichannel features. SAR level is 
equal to -16.763 dB 
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Figure A.66: Time-frequency domain filtered EEG abnormality detection accuracy profiles when using 
the fused and the combined extended and fused time-frequency multichannel features. SAR level is 
equal to -19.262 dB 
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Table A.22: Time-frequency domain filtered EEG abnormality detection average performances when 
using the fused and the combined extended and fused time-frequency multichannel features. SAR level 
is equal to 0 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ 0 dB 99 99.5 100 100 100 100 98 99 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 96 98.1875 100 98 99.875 100 92 96.5 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 98 99.125 100 100 100 100 96 98.25 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 98 99.125 100 100 100 100 96 98.25 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 97 99.25 100 94 99.625 100 96 98.875 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 96 98.625 100 100 100 100 92 97.25 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ 0 dB 75 97.8125 100 66 97.875 100 84 97.75 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 50 94.625 100 80 98.625 100 20 90.625 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 59 96.4375 100 70 98.125 100 48 94.75 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 61 97 100 54 97.125 100 68 96.875 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 75 97.5625 100 84 98.625 100 66 96.5 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 55 95.8125 100 66 97.875 100 44 93.75 100 

 

 

 

 

235 
 



  

 

 

 

Table A.23: Time-frequency domain filtered EEG abnormality detection average performances when 
using the fused and the combined extended and fused time-frequency multichannel features. SAR level 
is equal to -7.2206 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -7.22 dB 96 98.1875 100 98 99.75 100 92 96.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 96 97.875 100 94 99.25 100 92 96.5 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 95 97.625 100 100 100 100 90 95.25 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 94 97.375 100 96 99.625 100 88 95.125 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 96 97.9375 100 94 99.625 100 92 96.25 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 96 98.0625 100 96 99.5 100 92 96.625 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -7.22 dB 94 98.125 100 98 99.875 100 88 96.375 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 91 97.3125 100 92 98.875 100 88 95.75 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 92 97 100 92 99.5 100 86 94.5 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 92 97.1875 100 96 99.75 100 84 94.625 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 71 95.5625 99 70 98.125 100 72 93 98 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 94 97.8125 100 96 99.5 100 90 96.125 100 
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Table A.24: Time-frequency domain filtered EEG abnormality detection average performances when 
using the fused and the combined extended and fused time-frequency multichannel features. SAR level 
is equal to -13.2412 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -13.241 dB 73 93.0625 99 60 93.5 98 84 92.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 79 94.375 99 72 94 98 86 94.75 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 81 90.5 96 74 85.625 94 86 95.375 98 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 70 92.8125 99 62 93.625 98 78 92 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 80 88.375 95 84 93.125 94 70 83.625 96 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 83 94.9375 99 72 94.25 98 92 95.625 100 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -13.241 dB 90 97.75 100 100 100 100 80 95.5 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 93 97.875 100 100 100 100 86 95.75 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 90 96.8125 100 98 98.875 100 82 94.75 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 89 97.1875 100 100 100 100 78 94.375 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 84 94.25 100 84 98.375 100 68 90.125 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 93 97.6875 100 98 99.75 100 86 95.625 100 
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Table A.25: Time-frequency domain filtered EEG abnormality detection average performances when 
using the fused and the combined extended and fused time-frequency multichannel features. SAR level 
is equal to -16.763 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -16.763 dB 60 82.8125 90 40 82 90 66 83.625 90 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 59 89.5 97 52 88.5 96 66 90.5 98 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 56 82.6875 93 52 77 90 58 88.375 96 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 64 85 94 48 83.375 96 74 86.625 92 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 75 82.125 89 82 91.875 96 58 72.375 88 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 64 87.4375 94 54 82.375 94 74 92.5 96 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -16.763 dB 88 97.625 100 100 100 100 76 95.25 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 92 97.5625 100 98 99.375 100 84 95.75 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 90 96.9375 100 82 96.625 100 80 97.25 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 88 97.0625 100 100 100 100 76 94.125 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 81 94.125 100 90 99.25 100 62 89 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 93 98.0625 100 96 99.75 100 86 96.375 100 
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Table A.26: Time-frequency domain filtered EEG abnormality detection average performances when 
using the fused and the combined extended and fused time-frequency multichannel features. SAR level 
is equal to -19.262 dB. min is the minimum value, max is the maximum value, µ is the mean value 

 Fused Multichannel Time-Frequency Features 

 Balanced Accuracy (%) Sensitivity (%) Specificity (%) 
 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝁𝝁 𝑚𝑚𝑚𝑚𝑚𝑚 

SAR ≈ -19.262 dB 49 70.9375 77 40 71.25 80 50 70.625 76 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 50 74 81 52 74 84 48 74 82 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 47 68.625 75 60 67.125 78 34 70.125 90 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 54 72.8125 80 24 70.125 80 52 75.5 86 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 65 71.75 76 70 81 86 50 62.5 70 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 42 74.3125 83 44 73.25 82 40 75.375 84 

 Combined Extended and Fused Multichannel Time-Frequency Features 

SAR ≈ -19.262 dB 88 97.4375 100 94 99.25 100 76 95.625 100 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 94 97.75 100 92 98.375 100 88 97.125 100 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 − 𝐈𝐈𝐈𝐈𝐈𝐈 𝒕𝒕𝒕𝒕 87 95.1875 100 78 91.25 100 96 99.125 100 

𝐁𝐁𝐁𝐁𝐁𝐁 − 𝐂𝐂𝐂𝐂𝐂𝐂 𝒕𝒕𝒕𝒕 88 97.375 100 96 99.25 100 76 95.5 100 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝒕𝒕𝒕𝒕 81 93.125 99 92 98.5 100 62 87.75 100 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝒕𝒕𝒕𝒕 92 97.5 100 86 97.625 100 88 97.375 100 
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