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ABSTRACT 
 

Membrane distillation desalination is an emerging technology with a promise to 

considerably reduce environmental impacts associated with traditional 

desalination technologies such as thermal and reverse osmosis. Various 

membrane module configurations have been reported in the literature. The most 

popular configuration reported in the literature was the direct contact and can 

be used for both flat sheet and hollow fiber membranes. The literature study has 

shown that the bulk of studies involved either flat sheet or hollow fiber modules 

separately and no single study involved both configurations in a single research 

work. This investigation was therefore aimed at comparing the flux performance 

of flat sheet and hollow fiber direct contact modules under similar conditions 

using real seawater from the Qatar coastal area of the Arabian Gulf. Our work 

has shown that the flat sheet direct contact membrane distillation module gave 

consistently higher fluxes than the hollow fiber module. The highest flux 

measured for the flat sheet module at 65 C and 3 L/min was 37.1 L/m2.h 

compared to 5.2 L/m2.h for the hollow fiber module under identical experimental 

conditions. The large difference in flux between the flat sheet module and the 

hollow fiber module was explained in terms of difference in flow regime and 

convective heat transport in the flow compartment of the two modules. The flow 

channel Reynolds numbers ranged between 283 to 770 for the flat sheet module 

while the Reynolds numbers ranged between 106 to 287 for the hollow fiber 

module. Our work also indicated that the Nusselt number Nu can be as much 

as 11 times higher for the flat sheet module than for the hollow fiber. This clearly 
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indicates that the convective heat transfer coefficient in the hot side is much 

greater in the flat sheet module than in the hollow fiber module. The maximum 

hot side convective heat transfer coefficient for the flat sheet module was 

estimated to be 17044 W/m2.h compared to 2163 W/m2.h for the hollow fiber 

module. The values of thermal coefficients obtained in this work were consistent 

with literature values. The observed salt rejection for all used membranes is 

above 99.8% thus confirming the ability of DCMD desalination to produce very 

pure water. This work has shown that more work needs to be done in hollow 

fiber module design to enhance flow turbulence and therefore improve convective 

thermal coefficients which will lead to higher permeate fluxes.  
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a  Coefficient ranged between (1-2)  
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ℎ𝑝  Permeate heat transfer coefficient 

ℎ𝑠𝑝   Spacer thickness 

𝐻𝑣  Enthalpy of water vapor 
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𝑄  Volumetric flowrate 

Qc  Heat transfer by conduction through membrane material 

Qf  Heat transfer by convection through feed boundary layer 

Qm  Heat transfer through membrane 

Qp  Heat transfer by convection through permeate boundary layer 

𝑟  Pore radius 

𝑟𝑜   Tube outside radius  

𝑟𝑚𝑎𝑥  Maximum pore size radius 

𝑅  Gas constant 

𝑆𝑣𝑠𝑝   Specific spacer surface 

𝑇  Mean temperature in the pores 

𝑇𝑓  Feed bulk temperature 

𝑇𝑝  Permeate bulk temperature 

𝑇1  Feed temperature at membrane surface 

𝑇2  Permeate temperature at membrane surface 

𝑢  Fluid velocity 

𝑣  Gas mean molecular speed 

𝑣𝑠  Velocity in spacer-filled channel 

𝑌  Salt rejection percentage  

 

Greek Letters 

𝛼 Membrane surface area based on fiber inside diameter per unit 
length per fiber layer 

𝛽  Thermal expansion coefficient 

𝛾𝑙   Liquid surface tension 
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𝛾𝑠𝑙   Solid-liquid interfacial tension 

𝛾𝑠𝑣  Solid-vapor interfacial tension 

𝛿𝑚   Membrane thickness 

𝜀   Membrane porosity 

𝜀𝑠   Spacer porosity 

𝜃  Contact angle between solution and membrane surface 

𝜃   Hydrodynamic angle 

𝜗  Temperature polarization coefficient 

𝜇  Fluid viscosity 

𝜌  Fluid density 

𝜌𝑚  Membrane density 

𝜌𝑝𝑜𝑙  Density of Isopropyl alcohol 

σa   Collision diameter for air (3.711×10−10 m) 

σw   Collision diameter for water vapor (2.641×10−10 m) 

𝜏  Pore tortuosity 

𝜑  Concentration polarization coefficient 

𝜙   Packing density 
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Chapter 1: Introduction 

Saline water occupies approximately 97.5% of the total amount of water in our 

planet. The remaining 2.5% of water is subjected to fresh water in which 70% is 

located in the polar ice and glaciers. This means that less than 0.8% of water 

resources in the earth is fresh water that is available as rivers, lakes, air 

moisture, and groundwater and can be utilized by human. Figure (1) illustrated 

the distribution of earth surface water. All the percentages are approximated and 

rounded [1]. 

 

 

 

Figure 1: Water distribution on earth (Adapted from [1]) 

 

 

Furthermore, fresh water is not equally distributed among the all countries and 

with the industrial booming in the last decades, fresh water demand is 

increasing. Due to high population growth rate, increase of human industrial, 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwij8Nrj44jMAhVCXBoKHeyEAuYQjRwIBw&url=http://water.usgs.gov/edu/watercycle.html&psig=AFQjCNFEonTP9dTGwVC40CCfCHav-q1Puw&ust=1460539410209694
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municipal, and agricultural activities, polluting the natural water resources, and 

climate change, keeping the hydrological cycle balanced became a serious issue 

[2]. Water Health Organization (WHO) [3] reported that the main reason of fresh 

water shortage is the huge consumption of 64 billion cubic meters of fresh water 

annually, which is beyond the natural recharge. Figure (2) represent human use 

of water where approximately 90% of fresh water goes to agricultural and 

industrial usage [3]. 

 

 

 

Figure 2: Human water consumption (Adapted from [3]) 

 

 

WHO is also reported that by year 2025, more than half of the world’s population 

will be allocated in water-stressed areas [3]. Therefore, alternative water 

resources are studied and implemented to cover the shortage of fresh water, 

especially in countries that are classified as below the world’s water-poverty line 

countries. Processes like desalination that traps world’s main water resource [5] 

and wastewater treatment became the promising solutions to avoid complete 

depletion of fresh water and solve water-shortage problem [6], [7]. 
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Figure 3: Fresh water availability in the world (Adapted from [4]) 

 

 

Figure (3) illustrated water availability in the world by year 2007 and it is clearly 

shown that some regions such as Middle East region and Gulf Cooperation 

Council (GCC) countries are facing large fresh water shortage.  

 

 

1.1 Water resources and water consumption in Arabian Gulf Region  

Middle East region and Gulf Cooperation Council (GCC) countries (Bahrain, 

Saudi Arabia, Qatar, UAE, Oman and Kuwait) are considered as very scarce 

regions of water resources. This is due to the lack of natural water resources, 

low average annual rainfall, high evaporation rate and tremendous consumption 

rate of water. Raouf [8] reported that the average water consumption in GCC 

countries is between 300–750 liters per person per day which considered the 

highest in the world. In order to compare water consumption rate in GCC 

countries to the whole world, figure (4) illustrates the average daily water usage 

http://earth5r.com/wp-content/uploads/2015/04/Water-stress-Earth5R.jpg
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per person of different industrial and agricultural countries allocated in different 

continents such as Europe, Asia, and America. 

 

 

 

Figure 4: Water consumption rate in different countries in the world (Adapted from [9]) 

 

 

The lack of renewable water resources is represented in figure (5) that illustrates 

water consumption and renewable water resources in GCC countries in cubic 

meter per capita per annum and demonstrates that the consumption of fresh 

water is several times higher than the available renewable resources.  

Even when GCC countries serve as the poorest in terms of water resources, they 

have one of the highest population growth rates, consequently, the highest 

consumption rate. With high water demand and growing population, 

desalination became the only solution of solving water shortage problem. 

There are several desalination technologies, and mainly the selection of 

desalination process is based on several factors. These factors include salinity 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiMkpCry4nMAhUDRhQKHdEaDpgQjRwIBw&url=https://www.e-education.psu.edu/geog030/book/export/html/341&bvm=bv.119028448,d.ZWU&psig=AFQjCNHzzHy5C2JfZDJlBhnwot5gcXSi_w&ust=1460567287291286
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range of the water and its temperature, plant capacity, site conditions, qualified 

labor, the form of available energy source, and the cost of energy [6], [11]. 

 

 

 

Figure 5: GCC countries water consumption and renewable water resources (Adapted from [10]) 

 

 

Seawater salinity and its temperature are the main factors that affect selection 

of desalination method. As shown in table (1), the salinity of Arabian (Persian) 

Gulf is the highest.  

 

 

Table 1: Salinity and temperature of different seawater sources [12] 

Seawater Source 
Typical TDS 

Concentration (mg/L) 

Temperature 

(℃ ) 
Pacific and Atlantic Oceans 35,000 9 – 26 (avg 18) 

Caribbean Sea 36,000 16 – 35 (avg 26) 
Mediterranean Sea 38,000 16 – 35 (avg 26) 
Gulf of Oman, Indian Ocean 40,000 22 – 35 (avg 30) 

Red Sea 41,000 24 – 32 (avg 28) 
Arabian Gulf 45,000 16 – 35 (avg 26) 
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High salinity of seawater source restricts the type of used desalination process. 

Process such as Reversed Osmosis (RO) is highly affected by the level of salinity 

as RO process is limited by 46,000 mg/L salinity level [12]. However, thermal 

desalination processes including Multiple effect distillation (MED) and Multiple 

stage flash desalination (MSF) are usually not affected by the salinity level of the 

sea. The measure of seawater salinity, its classifications and different salinity 

ranges are covered in Chapter 2. 

 

 

1.2 Desalination History 

Over the past 50 years, desalination process has made tremendous progress in 

some regions such as the Middle East and the Mediterranean region. 

Desalination plants start to be applied in Gulf region after the Second World War 

(WWII) with the discovery of oil and gas [13]. Nowadays, desalination plants are 

distributed all over the world in more than 150 countries [12]. Figure (6) 

illustrates the worldwide desalination capacity that produce more than 70,000 

cubic meter per day.  

It is clearly shown in figure (6) that more than 75% of desalination plants are 

allocated in the Arabian Peninsula and half of them are in Saudi Arabia.  

Currently, desalination process is responsible for more than 70% of water supply 

in GCC countries producing more than 11 million cubic meters per day (MCM/d) 

as reported by year 2013 in which 6.3 MCM/d are produced by United Arab 

Emirates, Saudi Arabia 2.3 MCM/d, Kuwait 1.7 MCM/d, Qatar 0.9 MCM/d, 

Bahrain 0.4 MCM/d [12], [15]. In 2015, desalination process was responsible for 

approximately 86 million cubic meter of produced water per day. With Water 

demand that is approximately doubling every 20 years, complete relay on 

desalination process occurs in Gulf region [16]. In order to cover the need of high 

water demand, more desalination plants are planned to be built in different areas 

of the world especially in the Gulf countries with fresh water shortage problem. 

Figure (7) represents the present and the predicted demand for desalination 

plants in the middle east and GCC countries. According to 2011–2012 IDA 
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Desalination Year book [Global Water Intelligence (GWI) and International 

Desalination Association (IDA), 2012], approximately 16,000 desalination plants 

are installed worldwide with total capacity of 70 million cubic meters of produced 

desalinated water per day [12]. 

 

 

 

Figure 6: Desalination capacity worldwide (Adapted from [14]) 

 

 

Different types of desalination processes are implemented in Gulf countries such 

as Multiple effect distillation (MED), Multiple stage flash desalination (MSF), and 

Reverse Osmosis (RO). The selection of desalination process is limited by the 

physical characteristics of seawater. Countries like Qatar, Bahrain, and Kuwait 

are limited by high saline water of the Gulf. Therefore (MED) and (MSF) are 

dominating in these countries. On the other hand, KSA, UAE, and Oman have 
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the choice of other water bodies [13]. The majority of the used desalination 

processes are explained in details in Chapter 2.   

 

 

 

Figure 7: The demand for desalination plants Global, Middle East and GCC (Adapted from [17]) 

 

 

Table (2) below lists the number and the type of desalination plants in each Gulf 

country where it is shown that the usage of RO plants is narrowed by KSA, UAE, 

and Oman. Small desalination plants with very limited production capacities are 

not listed in table (2).  
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Table 2: The existing and future planed desalination plants in GCC countries [18] 

Technology UAE Bahrain KSA Oman Qatar Kuwait Total 

MSF 20.0 1.0 20.0 3.0 6.0 7.0 57.0 

RO 25.0 3.0 79.0 45.0 2.0 1.0 155.0 

MED 9.0 2.0 9.0 - 2.0 - 21.0 

VC - 1.0 - - - - 1.0 

ED - - - - - - - 

RO+MSF 2.0 1.0 - 1.0 - - 4.0 

Total 55.0 7.0 108.0 49.0 10.0 8.0 237.0 

 

 

Moreover, figure (8) shows the number and the location of these desalination 

plants on the Arabian Gulf with its corresponding technology and capacity.  

 

 

 

Figure 8: The number and location of desalination plants on the Arabian Gulf coastal (Adapted from [18]) 

 

http://seekingalpha.com/article/700111-energy-recovery-a-long-story
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Taking Qatar as an example, 974,222 m3/day of fresh water is produced by MSF 

technology, 28,384 m3/day by MED technology, and 5,790 m3/day by RO 

technology as recorded by year 2009. 

 

As it is mentioned before, due to Gulf’s harsh conditions such as high 

temperatures, high salinity, and high turbidity [13], the implementation of RO 

technology shares only 30% of the total global capacity. RO technology is 

practiced more in Europe and USA where the turbidity and the salinity of water 

is much less than the Gulf seawater. 

 

 

 

Figure 9: Desalination capacity by technology in GCC and worldwide, 2012 (Adapted from [13]) 

 

 

Figure (9) compares the desalination technology of GCC countries to the 

worldwide showing that GCC countries are responsible for the majority of 

thermal and especially the MSF desalination processes in the world. 

 

 

1.3 Desalination in Qatar 

Qatar met the fresh water demand for drinking, domastic and industral use, and 

irrigation mainly through desalination process. The first desalination plant in 
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Qatar was operated in 1962. Nowadays, several desalination plants are operating 

in Ras Laffan and Ras Abu Fantas. The Ras Abu Fantas desalination and power 

plants are corresponded for approximately 50% of fresh water supply. 

Desalination and power plants allocated to each other are usually practesed 

worldwide to provide the high temperatures from the low grade heat. 

Figure (10) illustrates the location and the capacity of desalination plants in 

Qatar that produces more than 50,000 m3/day of water. A small RO desalination 

plant was build in Dukhan city to treat high saline water and produce 

approximately 750 m3/day of fresh water. 

 

 

 

Figure 10: Desalination Plants in Qatar (Adapted from [13]) 

 

 

Figure (11) illustrates the total desalination technology share only in Qatar where 

more than 70% of desalination processes is dominated by MSF technology.  
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Figure 11: Technology market share in Qatar (Adapted from [19]) 

 

 

As mentioned before, Arabian Gulf seawater has harsh conditions; high 

temperature, high salinity level, and high turbidity. Therefore, RO technology is 

rarely used in Qatar and MSF technology is dominated as it is independent on 

water salinity.  

 

 

1.4 Environmental Impact  

As seawater desalination became the only promising solution of solving fresh 

water shortage in Gulf area, more desalination plants are planned in order to 

satisfy water need.  

Most desalination plants on the Arabian Gulf costal are allocated with power 

generation plants and approximately, all the desalination plants are using 

natural gas as fuel which is more environmental friendly than petroleum, more 

efficient, and cheaper [15]. Even though natural gas is more efficient than 

petroleum, huge amount of GHG gases such as Cox, Sox, and Nox are result as 

desalination products. Desalination can be sorted as serious environmental 
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issue that negatively affect the environment. The negative impacts of 

desalination plants are summarized as: 

 High energy consumption  

 Water pollution 

 Air pollution in a form of greenhouse gasses (GHG) emissions such as Cox, 

Sox, and Nox 

 Seawater intake that affect the aquatic life of sea organism due to massive 

seawater feed consumption 

 Increased temperature of the sea that affect the aquatic life 

 Rejected brine that is produced from desalination plant is returned back 

to seawater with high temperature and increased level of salinity. Rejected 

brine also contains amounts of chemical byproducts and heavy metals 

that are also discharged to the sea [20]. The amount of discharged brine 

into the sea is estimated to be 33 MCM/day. Due to the weak circulation 

of tides in the Gulf region, low average annual rainfall, and high 

evaporation rates, the accumulation of salts occurs causing the rise of 

salinity level [15]. 

 Chemical discharge into the sea including biocides and chlorination [15]. 

Different environmental impacts on the land, water, and atmosphere from the 

desalination processes is covered more in details in Chapter 2. 

 

 

1.5 Promising Solution 

Due to the massive amount of negative effects of desalination process, other 

technologies are emerging in order to reduce some of the harmful effects and 

develop more environmental-friendly methods of producing water. Membrane 

Distillation (MD) desalination process combined with the low-grade heat is 

studied as an alternative solution for desalination. Renewable energy resources 
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such as solar, biomass, or wind energy can be used instead of fossil fuels. MD 

process can provide the production of fresh water with less energy consumption 

and lower environmental impact. High quality produced water, effective 

treatment of highly saline water, utilization of low-grade heat, low operating and 

capital cost provide more advantages of MD process over RO. 

 

 

1.6 Objective and Scope of Work 

Desalination is the main source of fresh drinkable water in Qatar. Currently, 

thermal desalination provides the bulk of fresh water production. It is well known 

that thermal desalination is energy intensive and has a negative environmental 

impact in terms of CO2 emissions. Reverse Osmosis (RO) has not been considered 

a viable alternative to thermal desalination because of its sensitivity to the high 

salinity of the Arabian Gulf and the potential for biofouling by abundant 

phytoplankton. Clearly, there is a need for an alternative desalination technology 

that is less energy intensive and less sensitive to salinity. In that respect 

membrane distillation (MD) has been reported as a promising solution.  

Membrane distillation can take advantage of abundant low grade heat currently 

dissipated by a wide range of industries and also solar energy that is abounded 

by abundant in the Gulf region. Since low grade heat is generated in industrial 

processes, integration of membrane distillation with these industries becomes 

important, in particular in terms of space footprint. There are currently two 

competing membrane configuration: flat sheet and hollow fiber, and therefore 

there is a need to study their performance on a comparative basis. 

 

It is the objectives of this work to investigate: 

 Flux performance by flat sheet and hollow fiber direct contact membrane 

distillation modules under a range of conditions and using real Arabian 

Gulf seawater. 
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 Distillate quality and salt rejection by flat sheet and hollow fiber contact 

membrane distillation modules using real Arabian Gulf seawater. 

 The convective heat transfer in the hot side of the flat sheet and hollow 

fiber direct contact membrane distillation modules in order to interpret the 

flux performance and potentially suggest improvements. 
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2 Chapter 2: Background and Literature Survey 

This chapter will mainly cover the technologies and processes used worldwide in 

order to produce fresh drinkable water. The main desalination technologies such 

as thermal desalination and main pressure-driven processes like RO will be 

explained in details. The schematic diagram represented in figure (12) 

summarized all the widely used technologies in water desalination. 

 

 

 

Figure 12: Schematic diagram of classification of desalination processes 

 

 

In order to understand and differentiate between all types of desalination 

processes, the meaning of desalination should be evaluated. 
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2.1 Desalination 

Desalination can be defined as the process of removing ions (salts) dissolved in 

seawater or brackish water to generate freshwater. Desalination can produce 

water for different applications such as drinking, domestic and industrial use, 

and irrigation. Desalination can be sorted into two categories; thermal 

desalination and using membranes. Both categories can use conventional source 

of energy or renewable source of energy such as wind or solar [6]. 

 

 

2.2 Thermal Desalination 

The term distillation is used for thermal desalination as it requires phase change 

in order to produce freshwater from heated saline water source. The five common 

steams that are present in every thermal desalination process are: source water; 

steam that is used for evaporation; cooling water to condense evaporating steam; 

resulted low-saline distillate; and resulted high concentrated saline water (brine) 

[12]. By year 2000, thermal desalination occupies 50% of desalination processes 

[21]. Usually thermal desalination is used for high saline water sources 

(seawater, brine) as evaporation doesn’t relate to salinity concentration and to 

desalinate low-saline water (brackish) will require high amount of energy. For 

the Gulf and Middle Eastern countries surrounded by the most saline water 

bodies on earth and lack of other water resources, thermal desalination is 

considered as the main source of produced drinkable fresh water. As thermal 

desalination requires large amount of steam and power generation can offer this 

steam as low-cost steam, desalination plants and power generation stations are 

usually combined together [12]. The waste heat is used to evaporate seawater 

and provide cooling requirements to the power generation plant simultaneously 

(co-generation plants). The most frequently used thermal desalination methods 

are Multistage Flash Distillation (MSF), Multiple Effect Distillation (MED) and 

Vapor Compression Desalination (VCD) [12], [21]. A short summary about the 

main processes is covered in sections below. 
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2.2.1 Multiple Effect Distillation (MED) 

The MED process is one of the oldest desalination processes that go back to late 

1950s and early 1060s [21]. Then the MED process was implemented by oil 

production companies to produce fresh water during first and second wars. 

Significant production rate using MED process occurs in 1960s with a 

production capacity of 5,000 m3/day and in 2006 it reached 36,000 m3/day [5]. 

However, comparing MED process to other thermal desalination technologies 

concludes the limitation to small production capacities that doesn’t exceed 

12.5% [5]. 

The main feature of MED process is that feed water doesn’t need to be heated. 

Seawater at ambient temperature is sprayed over tubes with hot steam [12]. The 

steam can be generated as waste heat from power plants. The operating 

temperature of MED process doesn’t exceed 70 ℃ due to the horizontal 

configuration of vessels which helps in reducing scale formation [5], [12]. 

Furthermore, easier combination with thermal and mechanical vapor 

compression can be achieved and thus Gained Output Ratio (kg distilled 

water/kg steam) is increased. Additionally, less expensive materials such as 

aluminum can be used for heat transfer areas. All these benefits due to lower 

process temperature, increase lifetime of the equipment and reduce corrosion 

hence less frequent cleaning is required. 

The basic idea behind MED system is a series of evaporators that are gradually 

decreased in temperature and pressure to allow water to evaporate without 

introducing more heat [16]. In the first heat exchanger, the steam is recirculated 

back to the boiler for further usage. The evaporated steam is introduced to the 

next effects consequently where it is condensed and collected. The brine collected 

in the first effect is spayed on the tubes of collected vapor in the second effect. 

The same process is repeated until the last stage where distillate temperature 

reduced to 30-40 ℃ and the brine is discharged out of the system. Process 

efficiency and energy utilization increased as the number of effects increase [22]. 

However, 12 effects in average is the optimum number that is applied for MED 
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systems in industry [5], [23]. MED systems can collaborate with thermal vapor 

compression system (MED/TVC) where portion of the low-pressure vapor formed 

in the final stage is compressed to certain temperature that can help evaporation 

to occur in the first stage. This combination enhances thermal efficiency of the 

evaporator and increase GOR. Vertical tube evaporator design raises GOR from 

15 to 24 (kg water/kg steam) [5], [12], [24]. Figure (13) represents the schematic 

diagram of MED system. 

 

 

 

Figure 13: Schematic diagram of Multiple Effect Distillation (MED) (Adapted from [25]) 

 

 

The production capacity of MED system in Qatar, Saudi Arabia, and Oman 

together reaches 100,000 m3/day. The largest MED production capacity is found 

in UAE that reaches 600,000 m3/day even when it represents only 10% of (MSF) 

total production [5]. 

 

 

2.2.2 Multiple Stage Flash Distillation (MSF) 

The MSF process is considered as the simplest and most common method for 

thermal desalination that is applying for the last 60 years. Similar to MED 

process, MSF technology starts to be used in the late 1950s [21]. MSF systems 
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are account for 40% of desalination worldwide with a production capacity more 

than 75,000 m3/day and 80% for thermal desalination processes [5], [12]. The 

main difference between MSF and MED systems is that MED achieve evaporation 

through heat transfer between the steam and sprayed seawater, while MSF by 

flashing that happen when seawater is heated and passed through chambers 

with reduced pressure in evaporation chambers [12]. MSF plant requires large 

quantity of high-temperature steam as it operates near boiling point of water 

[12]. A typical MSF system consists of three major sections; heating section, flash 

and heat recovery section, and heat rejection section [24]. Seawater is heated to 

a temperature of 90℃ to 110℃ by low-grade steam in the heating section and 

sent to the chambers therefore the heating and the evaporation occur in two 

different sections [26]. When heated seawater undergoes pressure reduction in 

the first chamber where the pressure is below equilibrium, part of the water will 

flash. The same process is repeated through each chamber. At each chamber 

portion of seawater is evaporated due to pressure reduction. The produced vapor 

is passed through demister pads in each chamber to remove the entrained brine 

droplets from the flashed off vapor and achieve product salinity of 10 ppm only 

[5], [12], [23]. Then the flashed vapor condensed on the outer tube surface when 

comes in contact with seawater leading to raise its temperature [25]. The 

condensate is collected on distillate trays and conveyed to the next stage. The 

brine is collected at the end of each stage and sent to the next one. All highly 

concentrated brine is collected in the last section and part of it is recycled and 

mixed with feed seawater in order to regulate the temperature and the volume of 

the feed. The remaining brine is discharged to the sea [5], [12], [23], [24]. Usually 

a MSF plant has from 19 to 26 stages or effects and the maximum achieved GOR 

(kg distilled water/kg steam) is 10 [23]. Even though MSF is a preferable process, 

it has some disadvantages and the main problems are scaling and corrosion. As 

this method requires high temperature (~110℃), scale formation occurs in the 

system. Coatings are applied to reduce scaling and prevent corrosion. De-gassing 

of the dissolved oxygen is able to reduce scale formation [23], [25]. 
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Figure 14: Schematic diagram of Multiple Stage Flash Distillation (MSF) (Adapted from [25]) 

 

 

Figure (14) illustrated the schematic diagram of Multiple Stage Flash Distillation 

(MSF) process. 

Schematic diagrams of Multiple Effect Distillation (MED) and Multiple Stage 

Flash Distillation (MSF) processes are proposed by Reif and Alhalabi [16] in order 

to differentiate between the processes. These schematic diagrams could be found 

in APPENDIX A. 

 

 

2.3 Membrane Desalination 

Membrane separation processes use membranes in order to separate water 

molecules from undesirable other molecules which can be salts, bacteria, 

viruses, and metals. Membranes can be manufactured from different materials 

such as cellulose, acetate, and non-polymeric materials. However, polymeric 

material is the most widely used for desalination purpose [27]. Membrane 

technologies can be either pressure driven or electrical driven processes. 

Electrical-driven processes include Electrodialysis (ED) and Electrodialysis 

Reversal (EDR). Pressure-driven processes include Ultrafiltration (UF), 

Microfiltration (MF), Nanofiltration (NF), Reverse Osmosis (RO), and Forward 
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Osmosis (FO) [27]. Pressure driven processes are classified according to their 

ability to separate different-size molecules. Figure (15) illustrates some of the 

molecules that are separated by different membrane technologies. 

 

 

 

Figure 15: Pressure-Driven membrane processes (Adapted from [28]) 

 

 

Membrane distillation (MD) is also considered as membrane technology that 

combine thermal desalination process. Membrane technologies became one of 

the most promising technologies in the last decades due to several advantages 

over conventional thermal desalination which are [6]: 

 Continuous separation process 

 Hybrid technology with other desalination processes 

 Function under mild conditions 

 Relevant scaling-up  

 Adjustable membrane properties  
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The main membrane technologies that are used for desalination will be discussed 

in details in the sections below. 

 

 

 

2.3.1 Reverse Osmosis (RO) 

Comparing to conventional thermal desalination processes, Reverse Osmosis 

(RO) is considered as a new process which implementation starts in 1970s [21]. 

Worldwide, RO technology is the most used one with 59% among all desalination 

methods [16]. The driving force in RO process is the pressure difference that is 

applied to overcome the osmotic pressure. The operating pressure increases with 

increasing water salinity. Seawater with 35 g/Kg salinity level and osmotic 

pressure of 25 bar is suitable for RO process [16]. RO system operates at ambient 

temperature (35 – 40℃) and 60 – 80 bar pressure. Higher feed temperature is 

recommended for high salinity desalination process to enhance membrane 

performance [23]. 

In RO, water is transported from saline side through semipermeable synthetic 

membrane to freshwater side by applied pressure [23], [27]. Figure (16) 

illustrates the principle of reverse osmosis process. The used membranes in RO 

are manufactured as flat sheet membranes and then rolled into spirals to provide 

higher surface area. The diameter of one RO spiral can reach 18 in [24]. Feed 

water is passing through spiral sheets and the treated water is collected through 

the central tube. Hollow fiber membranes can also be used for Reversed Osmosis 

(RO) system, but not as common as spiral [21]. Feed water pre-treatment is 

needed in RO systems to avoid biofouling, chemical scaling, and particulate 

blockade of the membrane [24]. 
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Figure 16: Reverse Osmosis principle (Adapted from [29]) 

 

 

Typical pre-treatment consists of cartridge, sand filtration, coagulation, 

softening, and flocculation to remove large particles, organic matter, suspended 

solids, bacteria, oil, and grease [24], [27]. Ultrafiltration (UF) and Microfiltration 

(MF) is also a solution to be used before RO process [23].  

 

 

 

Figure 17: Schematic diagram of Reverse Osmosis (RO) desalination process (Adapted from [30]) 
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Figure (17) illustrates the schematic diagram of Reverse Osmosis (RO) 

desalination process stages.  

After RO section, post-treatment unit is used to treat water. pH and alkalinity 

adjustment is required to lower the potential of carbonate and silica scale 

formation [24]. Concentrated seawater from RO unit is disposed back to the sea. 

Recovery rate is used to evaluate RO membrane efficiency. Typical recovery rate 

of RO system varies between 35 – 50% depending on seawater salinity level. Low 

recovery rates occur in close water intakes such as Persian Gulf. Two-pass RO 

process is preferable for higher flux and quality. The typical achieved flux for 

first stage of RO system is ranged as 13 – 17 L/m2.h and 30 – 40 L/m2.h for 

second stage [23]. 

 

 

2.4 Membrane Distillation (MD) 

Membrane distillation is a combination of thermal distillation and membrane 

desalination processes in which phase-change process occurs that allows only 

vapor permeation through non-wettable porous hydrophobic membrane [6]. 

Membrane distillation (MD) process is an encouraging desalination technology 

that is highly studying these days. MD has been investigated as a cheap and less 

energy intensive technology compering to thermal desalination [31]. The first 

research on membrane distillation was conducted in 1963 [32]. However, 

membrane distillation attracts the huge interest in the early 1980s 

[33].Moreover, the “research boom” about MD is noticed in the last 10 years due 

to attractive features and advantages over thermal desalination and reverse 

osmosis (RO) that MD processes have in the academic field and can be 

implemented in industry [34]. These features are listed below [12], [31], [33], [34], 

[35], [36]: 

 Low operating temperature in comparison to conventional thermal 

desalination where the temperature requires to reach boiling point. 

 Low operating pressure in comparison to pressure-driven processes (RO, 

NF, UF, MF, FO) 
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 Low environmental foot print in comparison to conventional thermal 

desalination [37] 

 Less fouling performance comparing to pressure-driven processes (RO, NF, 

UF, MF, FO) [35] 

 High salt rejection in desalination process (approximately 100%) [32] 

 Low sensitivity to feed concentration [2], [32] 

 Cost effective process where cheap materials are used 

 The possibility to use renewable energy resources such as solar energy 

[16], [37], [38], [39], [40], [41] and low-grade heat 

 Less requirements of membrane mechanical properties [32] 

Membrane distillation (MD) term comes from the combination of using 

membranes and thermal distillation that is based on vapor pressure theory that 

requires heat for separation. So MD is thermal driven separation process 

involving the use of micro-porous membrane [42]. Hydrophobic semi-permeable 

membrane separates the cold distilled from hot saline feed solution. The 

difference of temperatures between the feed and distilled sides across the 

membrane creates vapor pressure gradient which is the driving force of the 

membrane distillation process. Due to this vapor pressure difference and the 

morphology of the membrane, only vapor molecules can pass the membrane 

through membrane pores from high pressure side (feed) to low pressure side 

(permeate). Bouchrit et al. [42] summarized the MD process in three steps; 

evaporation at feed side, vapor molecules transport through membrane, and 

condensation on the distilled side. Feed temperature can vary for a range of 60 

to 90℃ [41]. 

MD process can fulfill in many applications such as desalination of seawater and 

brackish water, separation of different concentrations of non-volatile 

components, food industry, medical field [41], waste water treatment, extracting 

organic and heavy metals, separation of volatile components, radioactive waste 

treatment, and produced water treatment [32], [35], [42]. As examples of different 

membrane distillation, Hou et al. [43] conducted research on fluoride removal 
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from groundwater and Gryta et al. [44] studied the treatment of saline water 

using hollow fiber membranes. 

MD Desalination process receives major interests and the first sweater MD plant 

is planned to be constructed in Maldives with production capacity of 10,000 

L/day utilizing low grade heat [34]. Goh et al. [7] reported that MD process can 

be applicable for high saline water with electrical conductivity of 70 mS/cm. 

Commercial different hydrophobic membranes are used in MD process such as 

capillary, hollow fiber, and flat sheet membranes. [33] Fabricated membrane 

from (PTFE, PP, PVDF) material are also used [41]. 

 
As membrane distillation has many advantages over conventional thermal and 

pressure- driven processes, it also has some drawbacks that potentially can 

limit processing MD in large scales [31]: 

 Membrane pore wetting 

 Permeate flux declination in comparison to pressure-driven processes (RO, 

NF, UF, MF, FO) 

 Trapped air in the system and heat loss due conduction cause mass 

transfer resistance  

 Unstable economic cost [33], [35] 

 High energy consumption in comparison to pressure-driven processes 

(RO) [32] 

 Lack of commercial high performed membranes [32] 

With ongoing research globally, most of the above drawbacks will be addressed 

to improve prospects of membrane distillation in desalination. 

Membrane distillation (MD) process has basics four configurations which are: 

Air Gap Membrane Distillation (AGMD), Sweeping Gas Membrane Distillation 

(SGMD), Vacuum Membrane Distillation (VMD), and Direct Contact Membrane 

Distillation (DCMD). All different processes will be studied in details in the 

section below [33], [35], [41]. Figures (18 – 21) illustrate the schematic diagrams 

of the four different configurations of membrane distillation that are adapted 

from [31], [45]. 
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2.4.1 Air Gap Membrane Distillation (AGMD) 

Air Gap Membrane Distillation (AGMD) system consists of the membrane, thin 

air gap, and a polymer surface that used for condensation. The air gap is 

introduced between the membrane surface and cooling plate. The main purpose 

of having air gap is to minimize heat loss from membrane surface by conduction 

and this is the main advantage of the system in addition to lower energy 

consumption [5], [35], [36]. However, air gap performances as resistance to mass 

transfer that cause lower flux production [32]. In AGMD system, feed saline 

solution occurs in direct contact with the hot membrane surface. Vapor 

molecules are passing the introduced air gap through membrane to reach the 

polymeric surface and be condensed. Figure (18) illustrates the schematic 

diagram of Air Gap membrane distillation (AGMD) system.  

 

 

 

Figure 18: Schematic diagram of Air Gap membrane distillation (AGMD) system (Adapted from [45]) 

 

 

Khayet [33] and Lawson [41] reported that AGMD system can be applied on 

hollow fiber and flat sheet membranes and are applicable for desalination 
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process. Furthermore, as there is no direct contact of the distilled side with the 

membrane, membrane wetting is not considered as problem.  

 

 

2.4.2 Sweeping Gas Membrane Distillation (SGMD) 

Sweeping Gas Membrane Distillation (SGMD) system is very similar to direct 

contact membrane distillation system with additional cold inert gas that pass 

through the distilled side in order to carry permeate vapor. After vapor molecules 

are collected, they are transported by the sweeping gas to be condensed outside 

the system. Figure (19) represents the schematic diagram of (SGMD) system. As 

External condenser is used in the system, higher operational cost is required in 

addition to more difficult design of the system [32], [36]. Moreover, sweeping gas 

temperature is increased when it passes along membrane surface causing a drop 

in the driving force across the membrane [33]. Another disadvantage of SGMD is 

that the introduction of sweeping gas enlarges the total volume of permeate vapor 

in large sweeping gas volume that requires high condensing capacity [5]. 

 

 

 

Figure 19: Schematic diagram of Sweeping Gas Membrane Distillation (SGMD) system 
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Due to many disadvantages, Khayet [45] concludes that SGMD configuration is 

the less applied MD systems in use. The only advantage of SGMD system is that 

higher flux than in AGMD system is produced due to mobile layer of sweeping 

gas that reduce mass transfer resistance [35]. 

 

 

2.4.3 Vacuum Membrane Distillation (VMD) 

In Vacuum Membrane Distillation (VMD) system a vacuum is applied on the 

distillate side by installing a pump. The pump must be operated at pressure less 

than the liquid-vapor pressure in order to condensate the vapor outside the 

module [36]. There is no cooling stream in the system so external condenser is 

used as in SGMD system to condense the vapor. VMD and SGMD systems are 

similar in terms of functions also as it is recommended for Volatiles Organic 

Components (VOC) separation [32]. The main advantage of VMD is that heat lose 

is negligible in this system [35], [41]. 

 

 

 

Figure 20: Schematic diagram of Vacuum Membrane Distillation (VMD) system 
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Figure (20) represents the schematic diagram of vacuum membrane distillation 

(VMD) system. Different types of membranes such as capillaries, hollow fiber, 

and flat sheet membranes can be used in VMD system [33]. 

 

 

2.4.4 Direct Contact Membrane Distillation (DCMD) 

More than 60% of studies carrying membrane distillation are dealing with DCMD 

[33]. In Direct Contact Membrane Distillation (DCMD) system hot feed solution 

(seawater) is separated from the cold distilled solution by a hydrophobic porous 

membrane. Peristaltic pumps are used to flow the feed and distilled solutions. 

DCMD process starts with evaporation of feed solution on the feed membrane 

side. Due to pressure difference across the membrane, vapor molecules pass 

through the membrane to the permeate side.  

 

 

 

Figure 21: Schematic diagram of Direct Contact Membrane Distillation (DCMD) system 
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DCMD is the most applied and studied configuration of membrane distillation 

processes because of its simplicity without need of external condensers [7]. 

Alkhudhiri et al. [35] reported that this configuration is applicable for 

desalination process with real seawater and have been widely studied in lab-

scale experiments by different researchers [38], [42], [46], [47], [48], [49], [50], 

[51], [52], [53]. In addition, Khayet [33] stated that flat sheet, capillary, and 

hollow fiber membranes can be conducted in both co-current and counter-

current configurations for DCMD system.  

 

Figure (21) illustrates the schematic diagram of Direct Contact Membrane 

Distillation (DCMD) system. The main drawback of DCMD is that it has the 

highest heat loses through conduction in the all four configurations of MD 

systems as the only barrier between the hot feed and cold distillate solutions is 

the membrane [32], [36]. 

 

 

2.5 Desalination Energy Consumption 

Desalination technologies in general is an energy intensive process which 

consumes enormous amounts of energy. Energy can be generated from different 

resources. The main source of the energy in GCC countries is fossil fuels. The 

combustion process of fossil fuels has a negative effect on environment in terms 

of GHG emissions. However, some variation of energy consumption occurs based 

on desalination technology. For example, thermal desalination consumes much 

more energy than reverse osmosis (RO) process. 

Table 3 represents the energy use for the most common desalination 

technologies. Thermal energy use can be calculated as (1 kW h is equal to 3.6 

MJ) with power generation efficiency of 0.33. Therefore, for 1 kW h energy, 10.9 

MJ fuel equivalent is required [24]. 
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Table 3 Desalination technologies energy use (Adapted from [24]) 

Technology 
Electrical Energy 

(kW h 𝒎−𝟑) 

Thermal Energy 

(MJ 𝒎−𝟑) 

Multiple-stage flash distillation (MSF) 3.6 – 4.4 200 – 380 
Multiple-effect distillation (MED) 2.3 200 – 300 

Seawater Reverse Osmosis (RO) 2.0 – 
Membrane distillation (MD) 0.75 100 – 200 

 
 

 
Clearly, thermal desalination requires more energy than other desalination 

processes. The salinity of seawater and the capacity of desalination plant are 

also considered as important factors in evaluating the amount of required 

energy. The energy used for RO desalination process is reported by other 

researcher [5], [32] as (2.0 – 5.5 kW/m3) approximately. Alternatively, the energy 

used for MED desalination process is (6.5 – 11 kW/m3), and the energy used for 

MSF desalination process is (13.5 – 25.5 kW/m3) [16]. A huge difference between 

RO and thermal desalination energy requirements is noticed. Even though, the 

consistency and huge field implementation in thermal desalination technologies 

keeps its production cost reasonable compared to the RO process. As technology 

works to improve and enhance thermal desalination processes, less energy is 

required to process desalination. Reif et al. [16] reported that, nowadays thermal 

desalination requires only (0.86 kW/m3) amount of energy in order to desalinate 

seawater at 34,500 ppm salinity level and 25℃ temperature. This process will 

cost approximately (0.5 – 1.0 $) per cubic meter of produced water.  

 

2.6 Seawater Salinity 

Salinity is a measure of the total dissolved solids (TDS) in seawater, usually 

expressed in parts per thousand (ppt) by weight. It is also can measured as parts 

per million (ppm) by weight and milligram per liter (mg/L). Seawater salinity is 

considered as a key parameter for classification of desalination technology. Table 

(4) represents salinity range of different water resources. According to Water 

Health Organization (WHO), [3] the salinity of drinking water should be less than 
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5000 ppm while the salinity of water bodies in the Gulf regions ranges between 

(35,000 – 45,000 ppm). In the coastal areas, the salinity of Arabian Gulf seawater 

is even higher. 

 

 

Table 4: Salinity range for different water bodies [16] 

Water source Salinity Range (TDS) Water Class 

Fresh water < 500 mg/L (< 0.5 ppt) Non-saline 

Irrigation water  500-1500 mg/L (0.5 – 1.5 ppt) Slightly saline 

Groundwater  1500-7000 mg/L (1.5 – 7.0 ppt) Moderately saline 
Drainage water  7000-15000 mg/L (7.0 – 15.0 ppt) Saline 

Seawater  30,000-50,000 mg/L (30 – 50 ppt) Very highly saline 
Brine  > 50,000 mg/L (> 50 ppt) Extremely saline 

 

 

Membrane desalination technology such as reverse osmosis (RO) is capable for 

seawater salinity level less than (35,000 ppm) only, therefore other desalination 

technologies should be applied for high saline water bodies such as thermal 

desalination and membrane distillation. 

 

 

2.7 Environmental Impact  

Desalination process accounts for production of fresh water in many countries 

especially Middle east and Gulf countries. Moreover, desalination is increasing 

rapidly in Gulf countries, doubling the installed capacity in the last 15 years 

[54]. Seawater desalination in GCC region is responsible for 45% of worldwide 

production of fresh water and it is increasing each year. However, concerns are 

raised due the negative environmental impacts of desalination [18]. Negative 

environmental effects are classified by effluent discharge to the air, nearby land, 

sea, marine, and environment [23]. As shown in figure (22), the sea and 

atmosphere are the main affected regions of the environment due to GHG 

emissions and concentrated brine discharge.  
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Figure 22: Schematic diagram of desalination process 

 

 

As desalination outputs affect the environment from different aspects and all 

types of environmental effects are connected together. The effect of GHG 

emissions and concentrated brine are studied in details in the sections below. 

 

 

2.7.1 Gas discharge to Atmosphere 

Air pollution and emissions contribute with type of energy used for desalination 

process. Most desalination plants on the Arabian Gulf are allocated to power 

generation plants. Therefore, Environmental Impact Assessment (EIA) should 

consider gaseous emissions from power generation and desalination plants [15]. 

The main source of energy in the Gulf is fossil-fuel that generates greenhouse 

gasses (GHG). The major GHG are carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and other gasses like NOx, SO2, and volatile components [23]. 

Nowadays, emissions as NOx are reduced as new technologies are implemented 

and SO2 is emitted if crude oil is used instead of natural gas as fuel resource. 

The main GHG emission left is carbon dioxide (CO2) which can be reduced only 

if renewable source of provided energy is used such as solar, biomass, and wind 

energy rather than fossil-fuels [18]. Table (5) represents the amount of CO2 as 

GHG emissions in million metric tons in GCC countries.  
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Table 5: CO2 GHG emissions for the GCC (million metric tons) Adapted from [18]) 

Year Bahrain KSA UAE Kuwait Qatar Oman 

1996 15.6 248.9 103 49.1 30.9 14.5 

1997 18.3 254.0 111 52.0 32.0 17.8 
1998 19.1 256.8 116 56.0 33.2 21.7 
1999 20.2 262.7 117 60.0 31.0 20.4 

2000 20.3 289.3 109.0 59.0 34.5 21.6 
2001 20.7 299.9 118.0 60.0 27.4 22.1 
2002 21.6 309.6 125.0 55.0 29.1 22.8 

2003 22.3 344.7 126.0 63.0 32.4 22.5 
2004 23.0 385.7 132.0 67.0 38.5 24.2 

2005 25.2 415.4 137.8 76.7 53.5 29.7 
2006 26.0 433.0 141.0 79.0 56.0 31.0 
2007 27.1 452.0 145.0 82.0 58.0 33.0 

2008 28.0 470.0 149.0 85.0 61.0 34.0 
2009 29.0 489.0 153.0 88.0 63.0 36.0 
2010 30.0 507.0 157.0 92.0 66.0 38.0 

 

 

Air emissions produced by using RO technology are lower than the emissions 

associated with the thermal desalination technologies [24]. Therefore, countries 

such as KSA, UAE, and Oman that have alternative water bodies than the 

Arabian Gulf seawater, are implementing RO technologies to reduce the amount 

of GHG emissions. 

 

 

2.7.2 Effluent discharge to Sea 

Brine from thermal desalination and concentrate from RO process are 

discharged to the sea. The concentration of the brine is double the concentration 

of seawater [23]. As it mentioned in the introduction, the amount of brine 

discharges to the Arabian Gulf daily is 33 million cubic meters. It is not a huge 

amount comparing to the total amount of water in the Gulf, nevertheless, it 

causes localized hypersaline coastal water. It is estimated that for every cubic 

meter of fresh water, two cubic meters of brine is produce [18]. The Gulf is 

considered as semi-enclosed water body so weak water circulation is provided 

causing water salinity build-up [15]. Low capacity production desalination plants 
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don’t show significant negative effects. However, large-scale production plants 

cause serious damage to the aquatic life. It is reported that enormous damage of 

coral, loss of plankton, and fish take place in the Hurghada sea coastal, Egypt, 

on Red sea due to desalination activities and brine discharge [20]. 

Various chemicals such as anti-scalants, inorganic salts, chlorine, surfactants, 

and acids at low concentration levels are also discharged to the sea [18], [23]. 

The main sources of these chemicals are pre-treatment, disinfection, and post-

treatment units of seawater. Some heavy metals are found in the discharged 

brine such as iron, copper, nickel, chromium, and molybdenum that came with 

the cooling water. However, the concentration of heavy metal in the brine does 

not exceed their range in the oceans (0.1 – 100 𝜇g/L) [18]. In absent of mixing, 

denser brine plume than seawater sank to the bottom of the sea, affecting the 

organisms there [20], [24]. 

Another effect of discharging the brine to the sea is localized temperature rising. 

When the hot brine is discharged to the sea, the average temperature is 

increased. This causes dissolved oxygen depletion, salinity, and alkalinity 

increasing that affect the aquatic life in the discharged area [18]. It is reported 

that (MSF) is discharging brine into sea with (10 – 15 ℃) higher than ambient 

temperature of the sea [20]. 

 

 

2.8 Mitigation Methods 

In order to reduce the harmful effects of desalination processes, different 

mitigation methods are applied. Nowadays, different techniques are practiced in 

desalination plants to reduce the effects of discharging brine to the sea. Several 

techniques are reported by different researchers [18], [23], [24] such as: 

 Diluting the brine to make it close to seawater concentration  

 Mixing the concentrate with cooling water of large plants before 

discharging it to the sea 

 Discharging the brine to surface water  

 Discharging the brine to wastewater treatment plants 
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 Deep well injections 

 Evaporation ponds 

 Land disposal  

 The use of diffusers 

Every mitigation method has its advantages. However, the chemicals and toxic 

materials present in the brine can affect the soil and groundwater while land 

disposal method. Chemicals in the brine can be treated before discharging or 

replaced with other substances that are less hazardous. For example, to 

minimize the effect of chlorine in brine, sodium bisulfite is added [18]. The 

simplest, cheapest, and the most popular way is discharging brine to surface 

water. Discharging the brine to sever or wastewater treatment plants is capable 

only if the plant is applicable for brine treatment, and won’t reduce its efficiency. 

Evaporating ponds depends on the evaporating rates, land cost, and are not used 

with high volumes of rejected brine [24]. 

It is expected that brine discharge became more serious problem in the future 

because of several factors [24]: 

 The increase of regional salinity of desalination intakes 

 The decrease of seawater quality lead to produce more brine with time 

Several methods are applied to desalination technologies to reduce energy use 

in order to minimize GHG emissions. These methods are: 

 Using energy recovery equipment or variable frequency pumps for RO 

technology 

 Renewable energy sources desalination (e.g. solar, biomass, wind, 

geothermal, etc.) 

Renewable energy source such as solar energy is started to be applied for 

desalination. In Abu Dhabi, UAE, 30 small RO desalination units are constructed 

to desalinate brackish water and groundwater with salinity range of (5,000 – 

20,000 ppm) using photovoltaic solar cells. Each unit is designed to produce 5 

m3/hr. Another solar powered desalination plant; the biggest in the world is 
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building in Al-Khafji city, KSA. The plant is designed to produce 30,000 m3/day 

of fresh water [18]. 

 

 

Table 6: Main environmental impacts and mitigation methods of desalination process 

Problem Environmental Impacts Mitigation Methods 

Brine discharge 
Salinity rise 

Brine dilution 

Brine harvesting 

Temperature increase Brine dilution 

Air pollution NOx, SO2, CO2 emissions 
Natural gas as fuel source 

Renewable energy 

Noise Increase in noise level --- 

Land Use High land coast value 
Proper selection of 
desalination site 

 

 

Even though, brine discharge and the atmospheric pollution are considered as 

the main problems of desalination processes. There are other less important 

factors that affect the environment in negative way such as noise pollution and 

land usage. Dawoud et al. [18] summarized different negative effects, their 

impacts, and some mitigation methods in table (6) for desalination technologies. 

Another novel possible technique to reduce brine discharge is Zero Liquid 

Discharge (ZLD) that convert liquid concentrate into dry solid. Solid waste can 

be disposed into appropriate liner based landfills to avoid land contamination. 

(ZLD) technique replaces the dealing with liquid discharge into solid waste 

disposal [55]. 

 

 

2.9 Membrane Characterization Techniques 

Membrane characterization is one of the essential components of membrane 

study. It used to evaluate membrane structure and morphology. The main 
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purpose of membrane characterization is to evaluate membrane ability to 

proceed assigned separation process.  

There are several methods to identify the membrane morphology. The traditional 

way of membrane characterizing is to estimate pore size and pore size 

distribution of the membrane.  

 

 

Table 7: Main characterization tests (Adapted from [57]) 

Method Characteristic 

Bubble pressure Maximum pore size 

Mercury Porosimetry (MP) Pore size distribution 

Scanning Electron Microscopy (SEM) 

Top layer thickness 

Surface porosity 
Pore size distribution 

Atomic force microscopy (AFM) Surface porosity 

Gas adsorption/desorption (GAD) Pore size distribution 

Contact angle measurement Surface studies (hydrophobicity) 

 

 

Another important step in membrane characterization is to study membrane 

surface. The estimation of membrane pore size, maximum pore size, pore 

distribution, smoothness of membrane surface, membrane porosity, membrane 

layer thickness, and permeability all undergo membrane characterization 

techniques [56], [57]. 

Table (7) below summarizes main membrane characteristics such as membrane 

pore size distribution and membrane surface studies and the commonly used 

methods in order to evaluate these characteristics. 

However, physical characterization and the separation application of the 

membrane evaluate the type of the required test. In addition to the methods 
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mentioned in table (7), different other tests and methods are discussed below for 

different membrane characterization: 

 To evaluate membrane pore size and pore distribution, Gas and liquid 

displacement methods, Permporometry, Liquid Solid Equilibrium Method, 

Gas Permeability Method, and mass transportation [56], [57]. 

 To evaluate membrane surface studies, sessile drop method [58], 

Spectroscopic Method, and Microscopic Method [56], [57]. 

 

 

2.10 Desalination Water Quality 

Seawater is a mixture of different salts and particles. Salt concentration is 

different at each water body. It can vary from 0.5% salt concentration at Baltic 

Sea to 4.2% at the Arabian Gulf [23]. 

Table (8) compares seawater salt concentration of the Arabian Gulf to the global 

distribution. Bromide at low concentration is also contained in the seawater. 

Alkaline earth metal cations calcium and magnesium and the polyatomic anions 

sulfate and bicarbonate are responsible for scaling in membrane technologies 

[25]. Bromide concentration in seawater is reported to be 0.007%. Bromide is 

responsible for taste and odor of the permeate. Therefore, disinfection of 

permeate water by using ozonation is preferable especially in RO technology [23]. 

 

Rather than dissolved salt, seawater has other impurities such as turbidity, 

metals, pathogens, organic components, suspended matter, microorganisms, 

and algal blooms. Organic contamination comes from the aquatic life including 

molecules, colloids, viruses, and bacteria that should be removed in the earlier 

stages of RO desalination. These organic components are the main cause of 

biofouling in membrane technologies. Another cause of rapid membrane 

biofouling is algal blooms that increase water turbidity and act like food for other 

microorganisms [23]. 
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Table 8: Seawater salt composition (Adapted from [25], [23]) 

Component 
Global distribution 
concentration (%) 

Arabian Gulf 
concentration (%) 

Calcium 0.042 0.044 

Magnesium 0.13 0.158 
Sodium 1.07 1.295 
Potassium 0.04 --- 

Bicarbonate 0.015 0.012 
Sulfate 0.27 0.32 

Chloride 1.94 2.39 
Total Dissolved Solids (TDS) 3.5 4.37 

 

 

The quality of water is measured by its purity. In order to purify seawater, all 

salts and particles should be removed.   

 

 

2.11 State of the Art in Membrane Distillation  

Membrane distillation is receiving high attention in theoretical studies and 

research. As it was mentioned before, 60% of the research papers about 

desalination are targeting membrane distillation due to the advantages this 

process has. The historical timeline and the membrane developments in the 

recent studies are present in this section below. 

One of first patents in membrane distillation is received by Dah Y. Cheng in 1981 

[59] on examining composite microporous membrane with a thin hydrophobic 

and hydrophilic layers to separate salty water from distillate fresh water. 

Hydrophobic layer helps the evaporation and condensation processes to occur 

and the hydrophilic layer prevents membrane wetting. 

Jonsson et al. [60] were the first group who investigated heat and mass transfer 

in air gap membrane distillation (AGMD) system theoretically. Heat and mass 

transfer equations were studied without including the effect of temperature 

polarization. 
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Drioli et al. [61], [62], [63] had investigated the effect of feed temperature and 

concentration on distillate, concluding that membrane distillation is capable to 

produce very pure water from saline and sugar solutions using different flat 

sheet and capillary membranes with different materials such as PP, PTFE, and 

PVDF and with different porosities. A non-linear relationship was found between 

generated flux and temperature gradient. Moreover, Calabro et al. [64] studied 

the implementation of membrane distillation in textile wastewater treatment 

processes and the results indicated that membrane distillation is capable of pure 

water production in wastewater treatment plants. 

Sarti et al. [65] and other researchers [66], [67] studied the mass and heat 

transfer theoretically and experimentally on different membrane configurations 

(DCMD, AGMD) in order to produce fresh water from saline water. Different 

simulated models were developed that predict the experimental results. 

One of the earlier studies that introduced temperature polarization to the heat 

and mass transfer in membrane distillation was conducted by Schofield et al. 

[68], [69] A theoretical model was evaluated to incorporate temperature 

polarization with heat transfer in terms of Knudsen-Poiseuille transition flow. 

Moreover, hollow fiber membranes offer the most effective performance with least 

temperature polarization. 

Schneider et al. [70] were one of the first researchers who studied capillary 

membrane configurations in counter-current flow. Bundles with twisted or 

braided capillaries performed the best results. Moreover, different membrane 

morphology such as membrane pore size, diameter, and porosity were tested to 

generate high permeate fluxes.  

Costello et al. [71] studied fluid flow dynamics and mass transfer in (PP) hollow 

fiber membrane bundles with different packing densities (32 – 76%). It was found 

that mass transfer increases with increasing packing densities in counter-

current MD system until reaching the optimal one. 
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Gryta et al. [72] studied capillary modules and developed Nusselt number 

correlations for heat transfer in heat exchangers and the experimental work 

proved the validity and applicability of the model. 

Phattaranawik et al. [73], [74], [75], [76] examined the effect of spacers in 

enhancing flux performance in flat sheet DCMD systems. The presence of spacer 

increased permeate flux by (26 – 56%) and enhanced heat transfer coefficients 

by 2.5 times. Moreover, temperature polarization decreased in spacer-filled 

channels. A model was predicted for spacer-filled channels that gives reliable 

results compared to experiments. 

Hsu et al. [77] were one of the first who examined synthetic and real seawater as 

feed solution into DCMD system. Results showed that permeate flux decreased 

to the half when real seawater is used instead of NaCl solution. The measured 

conductivities of the permeate were ranged between (7 – 12 𝜇m/cm) and 

indicated good quality water. However, fouling was observed after one week only 

using the real seawater. 

Wirth and Cabassud [78] were the first who examine hollow fiber membrane 

configurations in terms of placing the feed water (lumen side or shell side) in PE 

and PVDF membranes. Results shown that no difference occurs for PVDF 

membrane. However, more flux achieved for PE membrane when feed water is 

used in the lumen side. Moreover, the effect of salinity is studied on the 

generated flux. A decrease of 30% for the flux is reported when the salinity of 

feed water is raised from 15 g/L to 300 g/L. 

Li and Sirkar [79] were one of the first researchers who studied PP hollow fiber 

membranes in DCMD for desalination. In this study, rectangular modules were 

used with different fibers diameters and thickness. The operating temperature 

of the brine ranged between (60 – 90 ℃). Permeate flux achieved was (41 – 79 

kg/m2.h) where the highest flux generated at maximum feed temperature and 

high brine velocity of (150 𝜇m) wall thickness and (330 𝜇m) inner diameter 



45 
 

membrane. The calculated Reynolds number (Re) for the highest permeate flux 

was 70. 

Cath et al. [80] had investigated DCMD performance using vacuum 

enhancement on three different configurations: traditional DCMD, vacuum 

enhancement on permeate side, and vacuum enhancement on two sides of the 

membrane. The results showed that less temperature polarization and higher 

mass transfer performed with vacuum enhancement. Almost 99.9% salt rejection 

is obtained for NaCl synthetic seawater. 

On of the first studies on mass transfer in DCMD systems was conducted by 

Srisurichan et al. [81] on flat sheet membrane. Mass transfer model was 

proposed based on Dusty gas model concluding that molecular diffusion is 

dominated and most suitable describing the flux. Fouling was investigated using 

humic solution that contains natural salts. The results indicate that fouling layer 

cake occur on membrane surface. 

Criscuoli et al. [82] had studied three different PP flat sheet modules with 0.2 𝜇m 

pore size that are fabricated in the lab: longitudinal, transversal and cross-

counter membranes for testing DCMD and VMD experiments. The results 

compared in term of achieved flux, membrane configuration, and energy 

consumption. Highest flux (56.2 kg/m2.h) was generated by cross-counter 

configuration comparing to the other two configurations that performed similar 

flux results. Also, in this study, DCMD had lower flux performance than VMD 

system. 

M. Gryta [83] investigated the demineralization of lake surface water using 

hydrophobic capillary PP membranes in DCMD configuration. The electrical 

conductivity of the used raw water was found to be in the range of (620 to 650 

𝜇S/cm). Permeate flux was declined with time due to bicarbonate 

decompositions on membrane surface. Mainly calcium carbonate is accumulated 

and causes membrane fouling. Results indicated that high feed temperature 

enhances the decompositions. 
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Teoh et al. [84] and Yang et al. [85] investigated novel configuration on hollow 

fiber membrane modules. These configurations included spaces, baffles, and 

modified hollow fiber geometries such as curly and braided fibers. Results 

showed that flax enhancement from 53% to 92% occur when the novel modified 

configurations were used. The highest flux enhancement achieved when curly 

and braided fibers were used. Moreover, heat transfer coefficients were 

calculated for the membranes before and after the modifications. Heat transfer 

coefficient increased from 2600 W/m2. k to 3150 W/m2. K when baffles are 

introduced.  

Hou et al. [43] used PVDF hollow fiber membranes in DCMD for fluoride removal 

from brackish groundwater. The highest achieved permeate flux was (35.6 

kg/m2.h) with 80℃ feed and 20℃ distilled temperatures. Results showed that 

high rejection of fluoride salt. 

Chen and Ho [6] studied the combination of DCMD system with a solar absorber 

used for desalination of seawater. The operating hot feed temperature ranged 

between (35 – 50 ℃) and PTFE flat sheet membrane was used. The absorber was 

integrated within membrane module. The highest permeate flux achieved by the 

system (4.1 kg/m2.h) with high purity.  

He et al. [52] examined nine different commercial membranes for DCMD system. 

Different operating settings were examined such as flow mode, feed and 

permeate flowrate, feed and permeate temperature, and feed salinity. Three 

membrane materials were tested and PTFE membranes represented the best 

performance in terms of flux and conductivity. Examining membrane pore sizes 

showed that 0.22 𝜇m PTFE membranes generated the highest flux (25.6 kg/m2.h) 

at 60℃ feed and 20℃ distilled temperatures and synthetic seawater. The flux 

dropped to (14.4 kg/m2.h) approximately when real seawater is used as feed 

solution. 

Nghiem et al. [53] investigated the effect of seawater, RO concentrate, and 

synthetic solution of containing 2000 mg/L of CaSO4 on the permeate flux in 

DCMD system using flat sheet membranes. A graduate decline in the flux 
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occurred when seawater and RO concentrate were used for the first 1200 min, 

then dramatic decrease of the flux happened to reach zero. However, a dramatic 

decrease of the flux after 300 min only occurred using CaSO4 solution. 

Ibrahim and Alsalhy [86] were able to come out with a new heat and mass 

transfer simulated model for hollow fiber membranes in DCMD system. Various 

membrane characteristics and operating conditions were taken into account to 

evaluate the new model. Feed and permeate temperature and concentration, flow 

regime, membrane characteristics like membrane material, membrane pore size, 

and length, in addition to module characteristics are considered to present this 

model. The proposed simulated model showed high agreement with various 

experimental results found in literature.  

Bahmanyar et al. [87] had simulated and studied the effect of operating 

conditions such as feed flowrate, temperature, and salinity concentration in 

DCMD system on temperature and concentration polarization. The simulated 

model on heat and mass transfer used MATLAB in solving. The model showed 

acceptable agreement with different experimental results. Moreover, the study 

found that membrane thickness of (30 – 60 𝜇m) is the optimal choice to overcome 

temperature and concentration polarization. 

Adham et al. [88] investigated the performance of different flat sheet membranes 

under various operating conditions used for DCMD desalination of Arabian Gulf 

brine. High permeate flux of 25 LMH is achieved at 80℃ feed temperature. 

Moreover, high salt rejection of 99.99% and high quality of distilled (conductivity 

less than 10 𝜇m is accomplished. 

Maab et al. [51] were the first to investigate the performance of fabricated 

Polyazole PVDF hollow fiber membranes for DCMD desalination of real Red sea 

water. Polyazole hollow fiber membranes includes fluorinated polyoxadiazole and 

polytriazole hollow fiber membranes. The enhanced Polyazole PVDF membranes 

achieved high permeate flux of (35 and 41 kg/m2.h) at 80℃ feed temperature 

and 20℃ distilled water which is approximately (13 – 32%) higher flux than using 

normal PVDF hollow fiber membranes. High salt rejection of 99.95% is achieved. 
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Macedonio et al. [89] tested DCMD system for the treatment of oilfield produced 

water. Several commercial hollow fiber membranes were examined (PVDF and 

PP) under various thermal and hydrodynamics conditions. Results indicated that 

hollow fiber membranes showed reliable and stable performance with 99% salt 

rejection and 90% carbon rejection. 

Ho et al. [90] conducted one of the latest studies on enhancing flux production 

in counter-current DCMD systems using artificial roughness surface. PTFE 

membranes were investigated in this study under various feed temperatures and 

flowrates. Both theoretical and experimental studies were conducted and the 

results showed that flux production increased by approximately 42% when 

rough surface was used. 

Bouchrit et al. [42] examined the capability of PVDF hollow fiber membranes to 

treat hyper-saline water. The flux was predicted by Knudsen-molecular 

mechanism model. The results showed a noticeable decline of the flux from 8.43 

to 4.06 kg/m2.h when concentration factor of RO concentrate increased four 

times. Membrane wetting was noticed at 90% of the operated time when 

crystallization phenomena occurred. 

Zhu et al. [2] studied new design of dual-layer composite hollow fiber membranes 

used for DCMD systems. The outer layer of the membrane consists of 

polyvinylidene fluoride (PVDF) and polyvinylpyrolidone (PVP) and the inner layer 

of the membrane consists of polyvinylidene fluoride (PVDF) and polyvinyl alcohol 

(PVA). The new composite is used to enhance the hydrophility of inner layer and 

the pore forming agents in the outer layer. Results indicated high permeate flux 

approximately (7.5 kg/m2.h) for more than seven days. High salt rejection of 

more than 99% is observed. 

Ho et al. [91] conducted one of the latest studies on the flux performance of 

hollow fiber membrane at laminar flow in DCMD system. Theoretical and 

experimental work was evaluated under co-current and counter-current flow 

configurations. The experimental work showed close agreement with the 

theoretical estimates with small error of (2 – 6%). Average and local Nusselt 

number were calculated that fall in the range of (3.5 – 7.5). 
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Zuo et al. [92] exanimated polyethylene (PE) flat sheet membrane with synthetic 

(3.5 wt% sodium chloride) feed solution. Different pore size and porosity were 

examined. The permeate flux reached (123 L/m2.h) at feed temperature of 80℃ 

with pore size of 0.2 𝜇m and approximately 66% porosity. The achieved flux 

exceeded the majority of the reported fluxes of flat sheet and hollow fiber 

membranes in the literature. Stable permeate flux was observed for 100 hours 

of operating period. 

One of the latest mathematical dynamic model was proposed by Eleiwi et al. [93] 

that used 2D Advection-Diffusion Equation (ADE) that describe mass and heat 

transfer in DCMD system. In order to conduct the experimental part, PTFE flat 

sheet membrane was used with Red seawater as feed solution. Time variation 

phase was examined experimentally in temperature range of (30 – 75℃) with and 

increment of 0.1℃ every 2 min and through the proposed model with an error 

less than 5.0 %. 
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3 Chapter 3: Direct Contact Membrane Distillation Theory 

The performance of direct contact membrane distillation (DCMD) in terms of flux 

production, membrane life time and environmental impacts depends on many 

factors but three factors have major impact on DCMD performance and water 

quality produced. These factors are: 

 Membrane configuration: DCMD, VMD, AGMD, SGMD 

 Membrane physical properties and morphology  

 Module configuration and flow arrangement 

 The operation conditions: temperature and flowrate 

Each parameter that affect the flux will be discussed in details in this chapter. 

 

 

3.1 Membrane Distillation Configuration 

As explained before in Chapter 2, membrane distillation has four different 

configurations that are classified according to permeate flux configuration and 

collecting techniques [7], [94]. The feed side remains the same for the four 

systems. These four configurations are: 

 Air Gap Membrane Distillation (AGMD) 

 Sweeping Gas Membrane Distillation (SGMD) 

 Vacuum Membrane Distillation (VMD) 

 Direct Contact Membrane Distillation (DCMD) 

DCMD is the easiest configuration to be conducted where cold and hot sides are 

in direct contact, separated only by the membrane. However, VMD is used for 

high permeate production even when additional complexity occurs due to 

vacuum pump. SGMD and AGMD have the advantage of minimizing heat lose. 

Drioli et al. [34] and other researchers [32] proposed Several novel configurations 

of membrane distillation which are under research: Multi-effect membrane 
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distillation (MEMD), Vacuum Multi-effect membrane distillation (V-MEMD), 

Material Gap membrane distillation (MGMD), and Permeate Gap membrane 

distillation (PGMD).  

The Direct Contact Membrane Distillation (DCMD) is the most studied 

configuration among the four systems due to the simplicity of installation in the 

laboratories. Nearly 64% of published research papers up to December 2010 

were on DCMD [5]. 

Moreover, it is the oldest technology and most commonly used [95]. As explained 

in Chapter 2, the mechanism of DCMD is divided into several steps. First of all, 

hot feed water is evaporated at the feed side of the membrane (reach 90℃). Due 

to vapor pressure difference across the membrane and its morphology, only 

vapor molecules can transport through membrane pore to the distilled side to be 

condensed. As an effect of this process, the hot feed stream decreases in 

temperature and the cold stream increases. Therefore, a cooler and a heater are 

used to recover the heat lose. DCMD system is operating at consistently low 

operating pressure. Therefore, it is important to monitor pressure across the 

membrane to avoid membrane wetting. Membrane wetting can be easily 

determined by measuring the permeate electrical conductivity [5]. Another main 

advantage of DCMD is that permeate water can be produced at low temperature 

(40 – 80℃) [38] and no need to reach the boiling point of water. Last but not 

least, DCMD comparing to conventional thermal processes result low vapor 

space [6], [41]. 

DCMD can use waste heat to operate in a widespread range of different 

applications in which water flux is the major component. These applications 

include treatment of oilfield produced water, desalination of seawater and 

brackish water, and removal of small molecule contaminants.  

Macedonio et al. [89] conducted an experimental research on oilfield produced 

water using two different membrane materials (PP and PVDF) in DCMD system. 

A flux of 9 kg/m2.h of clean treated water can be reached in this system. The 

removal of small molecule contaminants is studied by treatment of the produced 
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water. A study on simulated produced water was conducted by Singh and Sirkar 

[96] using compressible PTFE membranes in DCMD process. Maximum 

permeate flux of 195 kg/m2.h was achieved. Lawson [41] reported that the first 

DCMD desalination system was established in 1964 with a production of 1 

kg/m2.h permeate flux. With time, DCMD operating conditions are developed 

and permeate flux of 75 kg/m2.h can be reached for desalination. Almost 

complete salt rejection is observed in DCMD desalination system. Brackish water 

desalination is also attracting research projects and industrial implementation 

[32]. Potential DCMD experimental researches in lab bench scale that involved 

real saline feed water achieved consistently good results.  

DCMD desalination research with hollow fiber membranes [51] and flat sheet 

membranes [48] achieved high permeate flux. Permeate flux can reach as high 

as 41 kg/m2.h and 88.8 kg/m2.h for hollow fiber and flat sheet membranes, 

respectively. 

Furthermore, desalination is studied in wide range with modifications such as 

additional renewable source of energy, hybrid configurations, optimum operating 

conditions, and new materials for membranes [6]. 

As mentioned before, the main problem of DCMD is heat lose through 

conduction. Alkhudhiri et al. [35] explained that this heat lose occurs through 

three types of mechanisms. First type is heat lose through membrane 

conduction, second type is heat loss due the trapped air in the membrane, and 

finally heat lose because of temperature polarization. Temperature polarization 

is explained in details in section (3.5) further in this chapter. 
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Table 9: Advantages and disadvantages of different membrane distillation configurations 

Configuration Advantages Disadvantages 

DCMD 

Easiest and simplest 
configuration, More stable 

flux than VMD, Most 
appropriate for removal of 

volatile components. 
Operated at low pressure, 
Low feed pre-treatment is 

needed. Flexible scale-up 
[97], 100% salt rejection, 
low vapor space [6] 

Lower flux than VMD, Highest 
temperature polarization, 

Permeate quality is 
dependable on membrane 

wetting, Appropriate for 
aqueous solutions, Mass 
transfer resistance due to air 

trapped within the 
membrane, Huge heat lose 
through conduction 

VMD 

High flux, Permeate quality 
is stable even with 

membrane wetting, 
Impossible wetting from 
distillate side, Temperature 

polarization is low. 

Higher possibility of pore 
wetting, High fouling, 

Vacuum pump and external 
condenser are required. 

AGMD 

Low thermal loss, 
Impossible wetting on 

distillate side, Less fouling. 

Air gap resistance to mass 
transfer, Complex module 

designing, Modeling 
difficulties, Lowest gained 

output ratio 

SGMD 

Low temperature 
polarization, Impossible 

wetting from permeate side, 
Permeate quality 

independent of membrane 
wetting. 

Complexity due to extra 
equipment, difficult heat 

recovery, low flux, 
pretreatment of sweep gas 

might be needed 

 

 
 

As conclusion, each configuration has its benefits and drawbacks in different 

applications that have been discussed in details in Chapter 2. Table (9) 

summarizes the main advantages and disadvantages of each system. 
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3.2 Membrane Modules 

There are a large diversity of membrane arrangements and modules that depend 

on the application of the membrane. Flat sheet membranes including plate-and-

frame and spiral wound and tubular membranes that include capillary and 

hollow fibers are the most common types of membranes [12], [36]. Two types of 

these (flat sheet and hollow fiber) membranes are explained in details in the 

sections below as this study focuses on them. Zhang et al. [98] mentioned two 

different researches involved hollow fiber and flat sheet membranes to study the 

permeate flux at (40 – 60℃) feed temperature. The generated fluxes were (1 – 4) 

L/m2.h and (20 – 30) L/m2.h for hollow fiber and flat sheet membranes, 

responsivity. Figure (23) illustrates the schematic diagrams of hollow fiber and 

flat sheet membranes. 

 

 

 

Figure 23: Schematic diagram of a) hollow fiber membrane b) flat sheet membrane 

 

 

A detailed evaluation between flat sheet and hollow fiber membranes is 

represented in the sections below including the modified designs on the hollow 

fiber membrane module.  
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3.2.1 Flat Sheet membrane 

Flat sheet membranes are usually manufactured as sheets that could be placed 

with spacers between two rectangular cells. Figure (23b) illustrates the 

schematic diagram of flat sheet membrane. Flat sheet membranes are chosen 

over hollow fiber membranes due to simple preparation, cleaning and handling 

[12], [36]. They can be easily removed and replaced [41]. However, the packing 

density and effective surface area per unit volume are very low. Moreover, 

membrane support is required in flat sheet membranes. Desalination and water 

treatment researches are the preferable fields for flat sheet membrane 

applications [35]. Earlier mentioned in this chapter that many researchers 

studied saline water treatment using flat sheet membranes. Some of these 

experimental researches include real seawater, synthetic seawater, and thermal 

brine are covered in these papers [38], [47], [50], [52]. 

 

 

3.2.2 Hollow fiber membrane  

Hollow fiber membranes are consisting of many membrane tubes that are placed 

in a shell and tube type housing. Figure (23a) illustrates the schematic diagram 

of hollow fiber membrane. Membrane tubes are glued and permanently fixed 

inside the bundle and can not be replaced. Therefore, cleaning is hardly 

controlled in hollow fiber membranes and high tendency of fouling occur [99]. 

Also, replacing hollow fiber membranes is more expensive than flat sheet. 

Nevertheless, these membranes have the highest packing density and effective 

surface area per unit volume so from industrial perspective these membranes 

are more attractive [5], [36], [99]. Furthermore, membrane support is not 

required in hollow fiber membranes resulting low boundary layer resistance [41]. 

Feed solution can be placed either in the tube side or shell side in co-current or 

counter-current configuration [100]. Flow arrangements applied for hollow fiber 

membranes that can be also applicable for flat sheet membranes are explained 

in details in section (3.8). Similar to flat sheet membrane, many researchers 
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studied saline water treatment using hollow fiber membranes. Some of these 

experimental researches include real seawater, synthetic seawater, and thermal 

brine are covered in these papers [46], [49]. 

 

 

3.3 Novel Designs of Hollow Fiber membrane 
 

Modified fiber geometrics, spacers and baffles can improve the hydrodynamics 

of hollow fiber membrane process. All these novel designs are made to modify 

the commercial membranes. Spacers enhance permeate flux by preventing the 

membranes from sticking to each other by increasing the effective membrane 

surface area. Baffles enhance permeate flux by increasing heat transfer 

coefficients of the hot feed stream. Yang et al. [85] reported that an enhancement 

of 300% permeate flux can be reached when the fibers are modified inside the 

hollow fiber module. 

 

 

3.3.1 Structured-Straight module 

The Structured-Straight module is arranged by placing all the hollow fibers into 

a fiber sheet and then rolling them together to produce a bundle that could be 

placed into the module house. The main objective of this module is to spread 

hollow fibers from others leading to uniform flow distribution in the shell-side of 

the module [85]. 

 

 

3.3.2 Central-tubing module 

Central-Tubing module is prepared by arranging hollow fibers in a wavy way 

around a central tube. In this design, the central tube represents the shell side 

of the module and has two drawtubes that are allocated for the feed inlet and 

outlet. Thus the hot feed water will pass through the central tube to be collected 

as permeate from fiber lumen. All the space between the fibers, central tube, and 

module housing is sealed using epoxy (Araldite®). As the main objective of this 
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design is to create more turbulence flow pattern and more uniform fiber 

arrangement in a module, designing the central tube is the major challenge. It 

includes the hole interval, distribution, and shape in addition to size, material, 

and wall thickness of the tube [85]. 

 

 

3.3.3 Modified fiber geometrics 

Modified fiber geometrics include two types of fibers: the braided fibers and the 

twisted fibers. Teoh et al. [84] reported that an enhancement of 36% of permeate 

flux occurs when braided and twisted configurations are introduced to the 

system. The increase in flux happen for un-straight membrane configurations 

due to the increase of heat transfer coefficients. 

 

 

3.3.3.1 Braided (curly-fiber geometry) module 

The modified fiber geometrics membranes include braided (curly-fiber geometry) 

and twisted modules. The fabrication of curly-fiber geometry requires proper 

temperature and specific winding angle. The fibers are wrapped around stainless 

steel rods with certain diameters that indicate the winding angles. Then the 

fibers are placed in oven for certain temperature and period of time until the 

curly shape occur. This configuration with wavy membrane surface is aimed to 

increase the turbulence and improve hydrodynamics under laminar flow 

conditions [85]. Teoh et al. [84] reported that permanent braided hollow fibers 

could be created by placing the fibers in a wryer net for half an hour in an oven 

of 80 ℃. Gryta et al. [101], [102] reported that the enhancement of permeate flux 

occurs with braided fibers as they are performed as static mixers that increase 

heat transfer coefficients.  

 

 

3.3.3.2 Twisted modules 

The fabrication of twisted modules can be completed in two easy steps. First step 

is to twist the hollow fibers in one direction and tie them with a rope or a sting 
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with uniform intervals. The other step is to untwist the hollow fibers in the other 

direction to return to its previous position. Repeating these actions is creating 

an outward “bow” configuration of the hollow fibers [84]. 

 

 

 

Figure 24: Schematic Diagrams of braided and twisted fibers preparation. Adapted from Ref. [84] 

 

 

The schematic diagram of preparing braided and twisted modules is illustrated 

by Teoh et al. [84] in figure (24) above. 

 

 

3.3.4 Spacers 

Hollow fiber membranes stick together when become wet and lower membrane 

effective surface area. Spacers are used in hollow fiber modules to separate fibers 

from each other in order to enhance the effective surface area of the membranes 

[84]. Therefore, two configurations with spacer which are spacer-wrapped and 

spacer-knitted modules are explained below. Teoh et al. [84] reported that an 

enhancement of 30% of effective membrane surface area occurs when spacers 

are introduced to the system. Chen et al. [103] mentioned that the 
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implementation of spacer not only increasing the flux, also reducing scaling 

deposition.  

 

 

 

Figure 25: schematic diagram of hollow fiber tubes with in/out spacer  

 

 

Figure (25) illustrates the water contact and effective surface area of wet 

membrane and the effective membrane surface area with spacer.  

The spacer in hollow fiber membrane can be either wrapped or knitted with the 

fibers. 

 

 

3.3.4.1 Spacer-wrapped module  

Yang et al. [85] suggested spacer-wrapped configuration in which the fibers are 

wrapped by woven fabric sheet (spacer) and rolled up inside the module. 

Turbulent flow occurs when the water flow between membrane and spacer 

layers. This configuration is very sensitive as the incorrect placement of the 

spacer across the fibers can cause fluid immobilization inside the module that 

inversely affect the hydrodynamic conditions.  
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3.3.4.2 Spacer- knitted module  

In spacer-knitted configuration, membrane fibers are woven into the mesh sheet 

of the spacer. Similar to the spacer-wrapped module, turbulent flow occurs when 

the water flow between membrane and spacer layers. However, the incorrect way 

of knitting the spacer could cause over-packing of the membranes in the module. 

Therefore, fluid immobilization occurs inside the module that inversely affect the 

hydrodynamic conditions [85]. 

 

 

3.3.5 Baffles  

Baffles avoid the formation of the dead zones inside the hollow fiber module. 

However, lower enhancement of flux is reached when baffles are used instead of 

spacers. This can be explained as the baffles occupy more volume in the module 

than the spacers that cause high compactness of the fibers.  

 

 

 

Figure 26: Original hollow fiber module and the introduction of spacers and baffles (Adapted from [84]) 

 

 

Teoh et al. [84] reported that enhancement of 20 - 28% of permeate flux occurs 

when baffles are introduced to the system. Flux enhancement occur in baffled 
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configurations due to increasing thermal coefficients that reduce temperature 

polarization in the module and overcome boundary layer resistance [34]. 

Figure (26) represents the introduction of baffles into the original hollow fiber 

membrane. Baffles in hollow fiber membrane can be either helical or window. 

 

 

3.3.5.1 Helical baffle 

Helical baffles are placed in the middle of hollow fiber modules and the fiber 

tubes are surrounding and covering the baffle across the module. Teoh et al. [84] 

reported that combining more than one design like the usage of braided 

membranes in helical baffled designs leads to additional 11% increase of the flux. 

 

 

3.3.5.2 Window baffle  

Window baffles are placed along the membranes with specific spacing between 

them (usually 5 cm). The effect of window baffled configuration is achieved at 

high feed temperature.  

High permeate fluxes are achieved when these novel designs of hollow fiber 

modules were introduced. The highest permeate flux is related to the knitted 

fibers with spacer due to the transverse flow across the curved fibers that don’t 

appear with straight parallel fibers [104]. 

 

Teoh et al. [84] reported that permeate flux enhancement of approximately 50% 

is achieved at 75℃ feed temperature when hollow fiber module modifications are 

applied. The highest permeate flux of approximately (8 kg/m2.h) is achieved for 

helical baffled with spacer module configuration when feed temperature reached 

75℃. At 50℃ feed temperature, very low permeate flux enhancement of less than 

15% is achieved only. However, Yang et al. [85] reported that the highest 

permeate flux of approximately (12 kg/m2.h) at 50℃ feed temperature is achieved 

at spacer knitted fibers. Moreover, heat transfer coefficients at the hot side were 

calculated by Teoh et al. [84] for the original and baffled hollow fiber modules. It 
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was found that heat transfer coefficients increased from (2600 W/m2.K) for the 

original configuration to (3150 W/m2.K) and (3750 W/m2.K) for window baffled 

and helical baffles, respectively . 

 

 

3.4 Heat and Mass Transfer in MD 

Heat transfer and Mass transfer are combined together to represent the most 

important concepts in membrane distillation (MD). Same direction is taken for 

heat and mass flow in MD system. Heat and mass transfer would be explained 

in details for flat sheet and hollow fiber membranes. 

 

 

3.4.1 Heat Transfer 

The mechanism and the theory of heat transfer in both flat sheet and flat sheet 

membranes is covered in details in these sections below. 

 

3.4.1.1 Heat Transfer (Flat Sheet membrane)  

Heat transfer occurs in Membrane Distillation (MD) as it is a thermal driven 

process. The main mechanisms that are responsible for heat transfer from the 

hot feed side to the cold permeate side are latent heat of vaporization, and 

conductive heat transfer [35], [45]. Heat Transfer in MD follow 3 steps as 

illustrated schematically in figure (27) and explained later in details: 

i. Heat Transfer by convection through feed boundary layer, Qf 

ii. Heat Transfer through membrane, Qm 

iii. Heat Transfer by convection through permeate boundary layer, Qp 

 

Different experimental researches on flat sheet DCMD evaluate the equations of 

calculating heat transfer and thermal coefficients [98], [105], [106], [107], [108]. 



63 
 

The method of evaluating heat transfer in flat sheet membrane [7], [100], [109] 

is explained in details in the section below.  

 

 

 

Figure 27: Heat and Mass Transfer through membrane in DCMD system (Adapted from [12]) 

 

 

Starting with the heat transfer in the feed boundary layer Qf, the temperature of 

hot feed Tf is decreased until it reaches membrane side temperature T1. The heat 

is transferred by convection due to this temperature difference. Maximizing this 

heat transfer by turbulent flow pattern can avoid temperature polarization [5]. 

Heat transfer is calculated by equation (1): 

𝑸𝒇 = 𝒉𝒇 ( 𝑻𝒇 − 𝑻𝟏 ) (1) 
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where ℎ𝑓 is feed heat transfer coefficient and ( 𝑇𝑓 − 𝑇1 ) is the temperature 

difference between the feed and hot membrane surface. Next, the heat is 

transferred through the membrane. This heat transfer is a summation of latent 

heat of vaporization Qv and conductive heat transfer through membrane material 

and pores Qc [110]. Equation (2) represents the energy balance across the 

membrane. 

𝑸𝒎 = 𝑸𝒗 +𝑸𝒄 (2) 

Water vapor is created when water is evaporated in the interference of hot feed 

water and membrane pores. Then water vapor is condensed at the interference 

of membrane pores and permeate side. This heat is transported with the 

permeate flux through the membrane Jp. Equation (3) is used to calculate the 

heat transfer of latent heat of vaporization Qv: 

𝑸𝒗 = 𝑱𝒑  ∆𝑯𝒗 
(3) 

where ∆𝐻𝑣 is the enthalpy of vapor water that is a function of absolute 

temperature (K) and can be calculated using equation (4) 

𝑯𝒗(𝑻) = 𝟏𝟖𝟓𝟎. 𝟕 + 𝟐. 𝟖𝟐𝟕𝟑𝑻 − 𝟏. 𝟔 × 𝟏𝟎
−𝟑 𝑻𝟐 (4) 

The second part is conductive heat transfer through membrane material and 

pores Qc. It can be evaluated by the following equation (5) 

𝑸𝒄 = 
𝒌𝒎
𝜹𝒎

 ( 𝑻𝟏 − 𝑻𝟐 ) (5) 

where 𝛿𝑚 is membrane thickness and 𝑘𝑚 is thermal conductivity that can be 

calculated using equation (6) 

𝒌𝒎 = ( 𝟏 −  𝜺 )𝑲𝒔 +  𝜺𝑲𝒈 (6) 

where 𝜀 is porosity of the membrane, 𝐾𝑠 is thermal conductivity of membrane 

material and 𝐾𝑔 is thermal conductivity of the gas in membrane pores.  
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Therefore, following equation (2), the resulted heat across the membrane is 

summarized by equation (7) 

𝑸𝒎 = 
𝒌𝒎

𝜹𝒎
 ( 𝑻𝟏 − 𝑻𝟐 ) + 𝑱𝒑  ∆𝑯𝒗 (7) 

This part of heat transfer across the membrane should be lowered as possible as 

it is considered as heat loss which doesn’t take part in evaporation. Air Gap 

Membrane Distillation (AGMD) is the best solution to decrease conductive heat 

loss as the air gab provides thermal insulation. However, this air gap limits the 

mass transfer. In order to enhance mass transfer, air gap is replaced with 

stripping gas (SGMD). In Vacuum Membrane Distillation (VMD), the heat 

transferred through membrane can be negligible. For DCMD systems, using 

multi-layer membranes can also reduce heat loss [5], [33], [111]. Latent heat 

𝑄𝑣 is responsible for 50% - 80% of vapor production and the remaining is 

achieved by conductive heat transfer through membrane Qc. At higher operating 

conditions, conductive heat Qc effect become less significant [45]. 

The last part is heat transfer in the permeate boundary layer Qp that can be 

evaluated by equation (8) 

𝑸𝒑 = 𝒉𝒑 ( 𝑻𝟐 − 𝑻𝒑 ) (8) 

where ℎ𝑝 is permeate heat transfer coefficient and ( 𝑇2 − 𝑇𝑝 ) is the temperature 

difference between membrane surface and the permeate. In order to enhance 

mass transfer (permeate flux), heat boundary layers that work as resistance 

should be minimized. To minimize temperature polarization, as in feed boundary 

layer, turbulent flow is recommended [45].  

At steady state conditions, heat transfer equations are equated as shown in 

equation (9) in order to evaluate the temperature at the hot and cold surfaces of 

the membrane that can’t be measured experimentally or calculated. The resulted 

equations of temperature are expressed in equations (10) and (11).  
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𝑸𝒇 = 𝑸𝒎 = 𝑸𝒑 (9) 

𝑻𝟏 = 𝑻𝒇 − 
𝑱𝒑 

𝒉𝒇
 ∆𝑯𝒗 [

𝑻𝟏 − 𝑻𝟐
𝟐

]  (10) 

𝑻𝟐 = 𝑻𝒑 − 
𝑱𝒑 

𝒉𝒑
 ∆𝑯𝒗 [

𝑻𝟏 − 𝑻𝟐
𝟐

]  (11) 

Temperatures across the membrane T1, T2 are essential terms of evaluating 

temperature polarization coefficient (𝜃) that will be covered in Temperature 

Polarization in Section (3.5).  

The convective heat transfer coefficients in the feed and permeate boundary 

layers represented in equation (13) can be estimated by Nusselt correlations that 

has an empirical formula expressed in equation (12): 

𝑵𝒖 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝑹𝒆𝒂 𝑷𝒓𝒃 (12) 

𝒉 = 
𝒌

𝒅𝒉
 𝑵𝒖 (13) 

where a, b, are constants and 𝑑ℎ is hydraulic diameter. Reynolds (Re), Prandtl 

(Pr), and Grashoff (Gr) numbers that are required to evaluate Nusselt correlations 

are represented in equations (14), (15), and (16). 

𝑹𝒆 = 
𝒗 𝒅 𝝆

𝝁
 (14) 

𝑷𝒓 = 
𝑪𝒑 𝝁

𝒌
 (15) 

𝑮𝒓 = 
𝒈 𝜷 ∆𝑻 𝒍𝟑 𝝆𝟐

𝝁𝟑
 (16) 

where 𝑣, 𝑑, 𝜌, 𝜇, 𝑘, 𝐶𝑝, 𝑔, 𝛽, ∆𝑇 and 𝑙 are fluid velocity, diameter, density, viscosity, 

thermal conductivity, heat capacity, gravity, thermal expansion coefficient, 

temperature difference and characteristic length, respectively [35]. 

Different Nusselt number corrections generated experimentally for various 

operating conditions, flow patterns, and membrane configurations in flat sheet 

membrane DCMD process are present in APPENDIX B. 
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The boundary layers of heat transfer coefficients are found using the heat 

transfer empirical correlations which take into consideration some 

dimensionless numbers such as Reynolds Prandtl and Nusselt. These 

correlations were used by some researchers to model the heat transfer in MD 

using the heat transfer correlations for rigid non-porous heat exchangers. 

However, the heat transfer in MD is associated with mass transfer and involves 

non-rigid and porous surface. This study will take into consideration all these 

factors in order to study the convective heat transfer taking place inside MD 

systems by starting with the basic heat balance equation described above. 

 

 

3.4.1.2 Heat Transfer (Hollow Fiber membrane)  

Similar procedure to flat sheet membrane distillation occurs for hollow fiber Heat 

transfer occurs in MD systems as thermal driven process. The main mechanisms 

that are responsible for heat transfer from the hot feed side to the cold permeate 

side in hollow fiber membrane are latent heat of vaporization, and conductive 

heat transfer. [35], [45] Heat Transfer in Hollow fiber membrane follow 3 steps 

as illustrated schematically in figure (28) and explained later in details: 

i. Heat Transfer within tube feed boundary layer, Qf 

ii. Heat Transfer across membrane, Qm 

iii. Heat Transfer within shell permeate boundary layer, Qp 
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Figure 28: Heat and mass transfer in hollow fiber DCMD system 

 

 

Different experimental researches on hollow fiber DCMD evaluate the equations 

of calculating heat transfer and thermal coefficients [98], [105], [106], [107], 

[108]. The method of evaluating heat transfer in hollow fiber membrane is 

explained in details in the section below [86], [100], [109]. 

Starting with the heat transfer within tube feed boundary layer Qf, the 

temperature of hot feed Tf is decreased until it reaches membrane side 

temperature T1. The heat is transferred by convection due to this temperature 

difference. Maximizing this heat transfer by turbulent flow pattern can avoid 

temperature polarization [5]. Heat transfer is calculated in hollow fiber 

membranes by equation (17): 

𝑸𝒇 = 𝒉𝒇 𝑨𝒓
𝒇 𝜶 ( 𝑻𝒇 − 𝑻𝟏 ) (17) 
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where ℎ𝑓 is heat transfer coefficient at membrane feed side and ( 𝑇𝑓 − 𝑇1 ) is the 

temperature difference between the feed and membrane surface, 𝛼 =  𝜋𝑁𝑑 and 

𝐴𝑟
𝑓 = 1 [100], [109]. 

Next step is the heat transferred through the membrane. This heat transfer is a 

summation of latent heat of vaporization Qv and conductive heat transfer 

through membrane material and pores Qc. Previously mentioned, equation (2) 

represents the energy balance across hollow fiber membrane also. 

Water vapor is created when water is evaporated in the interference of hot feed 

water and membrane pores. Then water vapor is condensed at the interference 

of membrane pores and permeate side. This heat is transported with the 

permeate flux through the membrane Jp. Equation (18) is used to calculate the 

heat transfer of latent heat of vaporization Qv in hollow fiber membrane: 

𝑸𝒗 = 𝑨𝒓
𝒎 𝜶 𝑱𝒑  ∆𝑯𝒗 (18) 

Where 𝛼 =  𝜋𝑁𝑑, 𝐴𝑟
𝑚 =

𝑑𝑙𝑚
𝑑𝑖
⁄  where 𝑑𝑙𝑚 is the log-mean radius difference of the 

fiber, and ∆𝐻𝑣 is the enthalpy of vapor water that is a function of absolute 

temperature (K) [100] and can be evaluated using equation (4) mentioned by 

Ibrahim and Alsalhy [86]. 

The next part is the conductive heat transfer through membrane material and 

pores Qc. It can be evaluated by the following equation (19) 

𝑸𝒄 = 𝑨𝒓
𝒎 𝜶 

𝒌𝒎
𝜹𝒎

 ( 𝑻𝟏 − 𝑻𝟐 ) (19) 

where 𝛿𝑚 is membrane thickness and 𝑘𝑚 is thermal conductivity that can be 

calculated using equation (6) 

Therefore, combining equations (18) and (19), resulted heat transfer across the 

membrane that is represent by equation (20) 

𝑸𝒎 = 𝑨𝒓
𝒎 𝜶 [

𝒌𝒎
𝜹𝒎

 ( 𝑻𝟏 − 𝑻𝟐 ) + 𝑱𝒑  ∆𝑯𝒗] (20) 
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The last part is heat transfer in the tube permeate boundary layer Qp that can 

be evaluated by equation (21) 

𝑸𝒑 = 𝑨𝒓
𝒑 𝜶 𝒉𝒑 ( 𝑻𝟐 − 𝑻𝒑 ) (21) 

Where 𝛼 =  𝜋𝑁𝑑, 𝐴𝑟
𝑝 =

𝑑𝑜
𝑑𝑖
⁄  where 𝑑𝑜 is the outside diameter of the fiber, and 

ℎ𝑝 is permeate heat transfer coefficient and ( 𝑇2 − 𝑇𝑝 ) is the temperature 

difference between membrane surface and the permeate [100]. To minimize 

temperature polarization, as in feed boundary layer, turbulent flow is 

recommended [5]. 

Similar to heat transfer with flat sheet membranes, at steady state conditions, 

heat transfer equations are equated as was shown in equation (9) in order to 

evaluate the temperature at the hot and cold surfaces of the membrane that can’t 

be measured experimentally or calculated.  

The convective heat transfer coefficients in hollow fiber membranes are evaluated 

similar to flat sheet membrane mentioned in the previous section using 

equations (12 – 16). 

Different Nusselt corrections generated experimentally for various operating 

conditions, flow patterns, and membrane configurations in Hollow fiber 

membrane DCMD process are present in APPENDIX B. 

 

 

3.4.2 Mass Transfer 

Mass transfer in DCMD process can be defined as the vapor molecules collected 

in the permeate side after been transferred through the membrane. Since the 

DCMD process is a thermal driven process, mass and heat transfer is occurring 

together. The main objective of studying mass transfer in DCMD process is to 

identify and quantify the effect of concentration and temperature polarization in 

mass and heat transfer analysis to achieve maximum permeate flux.  

Starting with the mass transfer that occurs based on three stages: 
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1. The water molecules vaporize and transfer from liquid to vapor phase. 

2. The vapor molecules from hot side transport through membrane pores to 

the cold side where the driving force is vapor pressure difference across 

the membrane. 

3. The vapor molecules condense and transfer from vapor phase to liquid 

phase [42]. 

Consequently, the main factors that control the mass transfer in DCMD process 

are the vapor pressure difference across the membrane and the permeability of 

the membrane itself [33]. Figure (27) mentioned before in heat transfer section, 

explains heat and mass transfer in DCMD system. Feed temperature (Tf) drops 

down to reach temperature at feed side of the membrane (T1). This temperature 

evaporates water at feed membrane layer and the vapor transport through the 

pores to reach the permeate side where it condenses. Permeate temperature at 

membrane side (T2) decreases toward the permeate side (Tp). Vapor Pressure 

difference across the membrane at (T2 – T1) is less than feed and permeate vapor 

pressures at (Tf – Tp) which create the driving force of mass transfer [98]. 

Generally, the mass transfer mechanism in the membrane pores is occurring 

due to four well-known mechanisms known as Knudsen-diffusion (K), Poiseuille-

flow (P) and Molecular-diffusion (M) and a combination between Knudsen-

diffusion and Molecular-diffusion known as the Transition Mechanism [73], [98]. 

These mechanisms indicate the collision process of the molecules between each 

other and the membrane [35]. These mechanisms are explained as: 

Knudsen-diffusion (K): takes place with small membrane pore size with the 

dominant collusion is occur between the molecules and membrane wall while 

the collision of molecules with each other can be ignored [35]. 

Molecular-diffusion (M): takes place when the molecules undertake the 

concentration gradient [35]. 
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Poiseuille-flow (P): takes place in viscous media when the molecules undertake 

the pressure gradient [35]. 

Transition-Mechanism: is a combination of the three previous methods [73]. 

Phattaranawik et al. [73] and other researchers [68] mentioned that transition-

mechanism is the most relevant with the experimental results. The Knudsen 

number (Kn) is used to show the leading mass transfer mechanism in the 

membrane pores according to specifications in table (10) below: 

 

Table 10: Dominant mass transfer mechanism in membrane pore [98] 

𝑲𝒏 < 𝟎. 𝟎𝟏 𝟎. 𝟎𝟏 < 𝑲𝒏 < 𝟏 𝑲𝒏 > 𝟏 

Molecular diffusion 

Knudsen-molecular 

diffusion transition 
mechanism 

Knudsen mechanism 

 

 

The Knudsen number (Kn) is expressed in equation (22): 

𝑲𝒏 = 
𝑳

𝒅
 (22) 

where d is the main pore size of the membrane and L is the mean free path of 

the molecules. The transport mechanism in MD system is changed according to 

the mean free path of the molecules. 

 Phattaranawik et al. [73] and Andrjesdottri et al. [112] evaluate the mean free 

path (L) as a binary mixture of air and water as shown in equation (23) 

𝑳 =  
𝒌𝑩 𝑻

𝝅 (
𝝈𝒘 + 𝝈𝒂

𝟐 )
𝟐

𝑷𝒑𝒐𝒓𝒆

 
𝟏

√𝟏 + 
𝒎𝒘
𝒎𝒂

 
(23) 
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where 

kB: Boltzman constant (1.381×10−23 JK−1) 

T: mean temperature in the pores 

Ppore: gas phase pressure in pores  

σw: collision diameter for water vapor (2.641×10−10 m) 

σa: collision diameter for air (3.711×10−10 m) [15] 

𝑚𝑤 : Molecular weights of water  

𝑚𝑎 : Molecular weights of air 

 

As an example, at a temperature of 60℃ membrane distillation, the mean free 

path of water vapor molecules (L) in the membrane pores is calculated to be 

0.11𝜇𝑚 [33], [35]. As the usual pore size used for membrane distillation varies 

from 0.2 to 1.0 𝜇𝑚, this results of a Knudsen number (Kn) that occur in the range 

of 0.1 to 0.5. Referring to table (10), this proves that the dominant mass transfer 

mechanism in DCMD is Knudsen-molecular diffusion transition mechanism.  

Khayet et al. [113] reported the mean free path of water vapor molecules (𝐿) in 

different expression as shown in equation (6) below 

𝑳𝒊 = 
𝒌𝑩 𝑻

√𝟐 𝝅 𝝈𝒊
𝟐𝑷
  (24) 

where 𝜎𝑖 is collision diameter for water vapor (2.641×10−10 m), and P mean 

pressure within the membrane pores [33], [114]. 

For Knudsen mechanism(𝐾𝑛 > 1), Khayet at al. [113] reported that membrane 

transfer coefficient can be estimated using equation (25) 

𝑪𝑲𝒏 = 
𝟐 𝝅

𝟑
 
𝟏

𝑹𝑻
 (
𝟖 𝑹𝑻

𝝅 𝑴𝒘
)
𝟎.𝟓 𝒓𝟑

𝝉 𝜹
 (25) 

where 𝜏, 𝛿, 𝑟, and 𝑀𝑤 are pore tortuosity, membrane thickness, pore radius, and 
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water vapor molecular weight, respectively. Bouchrit et al. [42] suggested a 

correlation to evaluate the tortuosity by equation (9). 

𝝉 =  
(𝟐 −  𝜺)𝟐

𝜺
  (26) 

where 𝜀 is membrane porosity. For Molecular mechanism(𝐾𝑛 < 0.01), Alkhudhiri 

at al. [35] reported that membrane transfer coefficient can be estimated using 

equation (27).  

𝑪𝑴 =  
𝝅

𝑹𝑻
 (
𝑷𝑫

𝑷𝒂𝒊𝒓
)
𝟎.𝟓 𝒓𝟐

𝝉 𝜹
 (27) 

where 𝑃, 𝐷 and 𝑃𝑎𝑖𝑟 are the total pressure inside the pore which is equal to the 

partial pressure of air and water vapor, diffusion coefficient, and the air pressure 

within the membrane pore, respectively. Phattaranawik et al. [73] reported that 

the diffusivity of water vapor through the stagnant air inside the pores can be 

evaluated using equation (28). 

𝑷𝑫 =  𝟏. 𝟖𝟗𝟓 × 𝟏𝟎−𝟓 𝑻𝟐.𝟎𝟕𝟐 (28) 

For Transition mechanism(0.01 < 𝐾𝑛 < 1), Khayet at al. [113] reported that 

membrane transfer coefficient can be estimated using equation (29) 

𝑪𝒄 = 
𝝅

𝑹𝑻

𝟏

𝝉 𝜹
[(
𝟐

𝟑
  (
𝟖 𝑹𝑻

𝝅 𝑴𝒘
)
𝟎.𝟓

𝒓𝟑)

−𝟏

+ (
𝝅

𝑹𝑻
 𝒓𝟐)

−𝟏

]

−𝟏

 (29) 

After evaluating membrane transfer coefficient, mass transfer flux (J) can be 

evaluated according to Darcy’s law represented by equation (30).  The simplified 

mass transfer model through porous media is mentioned by Alkhudhiri at al. 

[35] in equation (31) below. A linear relation between mass transfer flux and 

membrane transfer coefficient is shown in equation (31). 

𝑱 = 𝑲 ∆𝑷𝒐 (30) 
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𝑱 = 𝑪𝒎 ∆𝑷 = 𝑪𝒎 [𝑷𝟏 − 𝑷𝟐] (31) 

where 𝐶𝑚 is membrane transfer coefficient, 𝑃1 is the vapor pressure at feed side 

of membrane and 𝑃2 is the vapor pressure at permeate side of membrane [34], 

[35], [42], [115]. 𝐾 is a coefficient that depends on temperature, pressure, 

composition with the membrane in addition to membrane structure. Vapor 

pressure at membrane feed and permeate surfaces can be evaluating using 

Antoine equation (32) [112]. Therefore equation (31) can be rewrite as equation 

(33) and Clausius-Clapeyron equation (34) can be used to evaluate vapor and 

temperature relationship [35], [63], [116]. 

𝒑𝒊 = 𝒆𝒙𝒑 (𝟐𝟑. 𝟏𝟗𝟔𝟒 − 
𝟑𝟖𝟏𝟔. 𝟒𝟒

𝑻𝒎,𝒊 − 𝟒𝟔. 𝟏𝟑
) 

(32) 

𝑱 = 𝑪𝒎  
𝒅𝑷

𝒅𝑻
 (𝑻𝒇,𝒎 − 𝑻𝒑,𝒎) 

(33) 

𝒅𝑷

𝒅𝑻
=  [

∆𝑯𝒗
𝑹𝑻𝟐

]𝑷𝒐(𝑻) (34) 

This relation is applicable for temperature difference of 10℃ across the 

membrane [35], [113], [117]. As ∆𝑃𝑜 is a complex function of temperature at 

membrane surface, not the bulk solutions. Therefore, iterative process has to be 

applied in order to evaluate the variables. Several assumptions are proposed by 

Lawson [41] to provide an analytical solution. The limitation allows this method 

for very dilute ideal aqueous solutions (e.g. desalination). 

Gryta [101] reported that permeate flux in membrane distillation (MD) process 

as it is shown in equations (25, 27, 29) above, is very sensitive to membrane 

porosity, pore size, and membrane thickness. Zhang et al. [98] summarizes 

membrane characteristics that affect mass transfer coefficient in equation (35) 

below 

𝑪𝒎𝒆𝒎𝒃𝒓𝒂𝒏𝒆  ∝  
𝒓𝒂 𝜺

𝒃 𝝉
 (35) 

where 𝑟, 𝜀, 𝜏, 𝑎 and 𝑏 are nominal membrane pore size, membrane porosity, pore 
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tortuosity, coefficient in a range of (1-2), and membrane thickness. 

Other models can be used to determine mass transfer in MD systems. Hitsov et 

al. [114] reported several models for mass transfer inside the membrane 

evaluation. These models include: Fick’s law model, Dusty gas model, Simplified 

Dusty gas model, Pore size distribution model, Schofield’s model, and other 

models.  

As an example, the Dusty gas model that describes mass transfer across the 

membrane is evaluated by many researchers [81], [114]. It consists of four 

mechanisms: viscous flow, Knudsen diffusion, molecular diffusion, and surface 

diffusion. For DCMD viscous flow and surface diffusion are neglected. Equation 

(36) demonstrates the general flux in Dusty gas model [111]. 

𝑱 =  
𝑴𝒘

𝑹𝑻
[(𝑲𝒐 𝒗 + 

𝑩𝒐 𝑷𝒑𝒐𝒓𝒆

𝝁
) 
𝑷𝟏 − 𝑷𝟐

𝜹
] (36) 

where 𝑣 is gas mean molecular speed, 𝐾𝑜 and 𝐵𝑜 can be evaluated using 

equations (37,38) 

𝑲𝒐 = 
𝟐 𝜺 𝒓

𝟑 𝝉
 (37) 

𝑩𝒐 = 
 𝜺 𝒓𝟐

𝟖 𝝉
 (38) 

where 𝑟 is membrane pore radius [114]. 

 

3.5 Temperature Polarization 

Temperature Polarization is a significant phenomenon that affects MD 

performance. As it was mentioned before, the driving force for membrane 

distillation is temperature difference between the hot feed and cold permeate 

sides. The temperature polarization phenomena occur when the water evaporate 

from the hot side through the membrane pores absorbing the heat and leading 

to cool down the region corresponded to the membrane. As a consequence, a 
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thermal boundary layer occurs next to the membrane [72] and causes vapor 

pressure decrease across the membrane [101]. Therefore, permeate flux 

production is reduced. Figure (29) represents the thermal boundary layer that 

cause temperature polarization.  

 

 

 

Figure 29: Schematic diagram of temperature polarization 

 

 

Mathematically, temperature polarization can be quantified as the ratio of the 

difference of hot and cold bulk temperatures over the difference of hot and cold 

temperatures close to the membrane. This can be expressed as temperature 

polarization coefficient (TPC) shown in equation (39). Temperature polarization 

is also used to describe heat loss effect on MD process efficiency [31]. 

𝝑 = 
𝑻𝟏 − 𝑻𝟐
𝑻𝒇 − 𝑻𝒑

 (39) 

where 𝜗 is temperature polarization coefficient, 𝑇1 and 𝑇2 are the hot feed 

temperature and cold permeate temperature and membrane surface, 
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respectively. Similar, 𝑇𝑓 and 𝑇𝑝 are bulk feed temperature and bulk permeate 

temperature, respectively. 

In figure (29), temperature at point 1 is lower than temperature at point 0 from 

the feed side. Moreover, temperature at point 2 is greater than temperature at 

point 3. Therefore, temperature difference across the membrane is reduced 

causing less vapor pressure difference to occur. As the driving force reduced, 

less mass transfer (permeate flux) is generated [118]. Temperature polarization 

coefficient can vary from 0.2 to 0.9 but to achieve higher flux, it should be as 

close as possible to one [47], [80]. For DCMD, TPC is reported as a value between 

0.4 – 0.7 [35], [76]. Ignoring temperature polarization leads to overestimating the 

mass transfer. Schofield et al. [68] reported that temperature polarization 

coefficient is found to be 0.6 at 60℃ feed temperature that cause 40% mass 

transfer overestimation if TPC is not taking into account. Termpiyakul et al. [119] 

ensured that temperature polarization is more noticeable at high feed 

concentration, salinity, and low feed flowrate.  Bouchrit et al. [42] studied the 

effects of feed and permeate temperature and flowrate on temperature 

polarization coefficient. Maintaining feed temperature as high as possible and 

permeate temperature as low as possible helps to overcome temperature 

polarization [80]. Different techniques are applied to increase the coefficient such 

as changing membrane properties and morphology, enhancing flow pattern, 

increase mixing and operating at high feed velocities [120]. Gryta et al. [102] and 

other researches [34], [101] mentioned that module design in hollow fiber 

membrane highly affect temperature polarization coefficient. All these 

techniques are required to operate in the turbulent system and therefore 

increase feed heat transfer coefficient. Promoters like mesh spacers are most 

common used to overcome temperature polarization [68], [90], [99]. 
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3.6 Concentration Polarization 

The term of concentration polarization is defined by Alkhudhiri et al. [35] as the 

rise of solute concentration across membrane surface comparing to bulk solution 

concentration. As hydrophobic porous membrane is used in DCMD system that 

permit only water vapor molecules to pass, an accumulation of non-volatile 

particles near feed membrane surface occurs [36], [99]. 

 

 

 

Figure 30: Concentration and Temperature boundary layers in DCMD system (Adapted from [42]) 

 

Figure (30) illustrates concentration polarization boundary layer in DCMD 

system. Concentration polarization coefficient (𝜑) can be evaluated using 

equation (40). 

𝝋 = 
𝑪𝒎
𝑪𝒇

 (40) 

where 𝐶𝑚 is salt concentration on the membrane surface from feed side and 𝐶𝑓 

is salt concentration in the feed bulk [118]. Martinez-Diez et al. [121] evaluated 
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a correlation to calculate salt concentration on the feed membrane surface using 

equation (41). 

𝑪𝒎 = 𝑪𝒇 𝒆𝒙𝒑(
𝑱

𝝆 𝑲𝒎
) (41) 

where 𝐽 is mass flux through membrane, 𝜌 is fluid density, and 𝐾 is mass transfer 

coefficient that can be evaluated by equation (42) [42]. 

𝑲𝒎 = 
𝑫

𝜹
 (42) 

where 𝐷 is the molecular diffusion and 𝛿 is membrane thickness. Bouchrit et al. 

[42] reported several methods and correlations to evaluate molecular diffusion 

thus concentration polarization coefficient. The effect of concentration 

polarization is studied by different researches [116], [122]. Banat and Simandl 

[116] conducted in the research that increasing feed concentration from (1 – 10 

wt%) cause permeate flux decline by 6%. However, concentration polarization 

can be ignored when comparing to temperature polarization effect [36], [42], [45]. 

The main effect of concentration polarization is that it stimulates scaling 

formation and fouling of the membrane [35], [99]. 

 

 

3.7 Membrane Characteristics  

In addition to mass transfer, wetting phenomena, and module configuration, 

membrane characteristics are highly affecting membrane selection [36]. 

Membrane distillation was poorly studied in the late 1960 and never 

commercially employed due to low performance. However, after membrane 

characteristics were improved, the research about MD started again. Nowadays, 

MD research is booming to find optimum membrane characteristics that provide 

highest flux with least drawbacks [58], [123]. 

Common membrane characteristics [58] that are preferable to be available in MD 

processes are listed below: 

 Low membrane thickness 

 Low pore tortuosity 
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 Low membrane thermal conductivity to minimize conductive heat loss  

 Large pore size 

 High membrane porosity to maximize water vapor transport 

 High membrane hydrophobicity or low surface energy 

 High thermal stability that can tolerate as high temperature as 100℃ [33] 

 High permeability [45] 

 High chemical resistance to feed solutions if other applications than 

desalination is performed and membrane has to be cleaned [45] 

All these characteristics would be explained in details in the section below. 

 

 

3.7.1 Membrane Porosity 

Membrane porosity is identified as the volume of pores divided by the total 

volume of the membrane [124]. Membrane porosity represents the void fraction 

of the membrane that indirectly expresses vapor permeability [33]. Membranes 

with high porosity provide higher flux as evaporation surface is increased and 

more space is occupied by the vapor in the membrane [33], [36], [125]. Therefore, 

it was agreed that membranes with high porosity provide high permeate flux [35], 

[36]. Alkhudhiri et al. [35] mentioned that membrane porosity can be evaluated 

using Smolder-Franken equation (43). Membrane porosity (𝜀) is simply 

determined by measuring membrane material density (𝜌𝑝𝑜𝑙) using isopropyl 

alcohol (IPA) that can penetrate membrane pores and measuring membrane 

density (𝜌𝑚) using pure water that can not penetrate through the pores. This 

method is applicable for different membranes such flat sheet and hollow fiber 

membranes [45], [126]. Another process of measuring membrane porosity is 

proposed by Zhang et al. [58] and Francis et al. [48]. For hollow fiber membrane 

porosity calculation, a method reported by Hou et al. [125] can be used. 



82 
 

𝜺 =  𝟏 −
𝝆𝒎
𝝆𝒑𝒐𝒍

 (43) 

Membrane porosity is also important in term of evaluating heat loss through 

membrane conduction (ℎ𝑚) as was represented in equation (44).  

𝒉𝒎 = 𝜺 𝒉𝒎𝒈 + (𝟏 − 𝜺)𝒉𝒎𝒔 (44) 

where ℎ𝑚𝑔 and ℎ𝑚𝑠 are heat transfer coefficients of vapor within membrane pores 

and membrane material, respectively [36], [41]. Al-Obaidani et al. [105] reported 

that increasing membrane porosity increases permeate flux production and 

decreases thermal conductivity of the membrane. Commercial membranes that 

are used in MD system are having porosity of 75% for PVDF membranes, 70% 

for PP membranes, and 60% for PTFE membranes [36], [41], [105]. 

 

 

3.7.2 Membrane Pore Size 

Membrane pore sizes are ranged from 100 nm to 1 𝜇m according to different MD 

applications [41], [127]. As pore sizes increase, more permeate flux is produced 

[128]. However, large membrane pore sizes cause membrane wettability [33], 

[35], [36], [41]. The optimum membrane pore size as reported by different 

researchers [52], [129] is between 0.2 and 0.5 𝜇m. Lawson et al. [41] reported 

that permeate flux (N) is directly affected by pore size according to equation (45).  

𝑵 𝜶 
𝒓 𝒂𝜺

𝜹 𝝉
 (45) 

where 𝑟 is mean pore radius of membrane pores, 𝛿 is membrane thickness, 𝜀 is 

membrane porosity, 𝜏 is membrane tortuosity, and 𝑎 is a constant (1 for Knudsen 

diffusion or 2 for viscus flux) [41], [86]. Therefore, mass transfer mechanism is 

chosen according to membrane pore size. Knudsen diffusion mechanism is 

applied with small pore size and Knudsen viscous mechanism is applied with 

large pore size [41], [73]. 

 

 



83 
 

3.7.3 Pore Size Distribution  

The membranes used for MD processes have non-uniform pore size distribution. 

Therefore, different mass transfer mechanisms are occurring at once [73]. 

Standard test method is used to determine pore size distribution [124]. Uniform 

pore size and as narrow as possible distribution is preferable to avoid membrane 

wetting through maximum pore size [45]. 

 

 

3.7.4 Membrane Material  

Membrane material is considered as one of the most important membrane 

characteristics. Polymeric, hydrophobic, and microporous membranes are 

encouraged for MD processes [36], [41]. Single-layer or multi-layers hydrophobic 

membranes can be used [33]. Polytetrafluoroethylene (PTFE), polypropylene (PP), 

polyethylene (PE), and polyvinylidenedifluoride (PVDF) materials are the most 

common commercial membranes used for MD processes. [32], [45]. These 

polymers are preferable due to their low surface tension values and each material 

is selected based on MD applications. Different methods are used for membrane 

fabrication such as traditional phase inversion, thermal induced phase 

separation, and stretching of dense films [41]. MD membranes can be fabricated 

in laboratories with specific membrane characteristics. Composite membranes 

that consist of a hydrophobic and a hydrophilic layers or a hydrophobic layer 

placed between two hydrophilic layers are receiving interest recently [41]. Khayet 

and Matsuura [45] summarized all the commercial flat sheet and hollow fiber 

membranes commonly used for MD. Desalination is one of the most studied 

fields of MD process where plenty of researches are conducted in order to 

examine different membrane materials. Francis et al. [46] tested four different 

membrane materials fabricated in the lab to conclude that PVDF membranes 

generate highest flux.   
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3.7.5 Membrane thickness 

Membrane thickness is significant membrane characteristic that determine flux 

amount. Permeate flux is inversely proportional with membrane thickness [35], 

[36]. The thicker the membrane, the less flux is achieved as membrane thickness 

provides more resistance to mass transfer. However, heat loss through 

conduction decreases as membrane thickness increases [35]. Therefore, 

optimum membrane thickness should be chosen. In this case, multi-layered 

membranes provide high permeate flux by applying hydrophobic layer as thin as 

possible and low heat transfer by making the overall membrane thickness 

(hydrophobic and hydrophilic layers) as thick as possible [35]. The optimum 

membrane thickness is estimated to be 30 – 60 𝜇m [35], [36]. 

 

 

3.7.6 Pore Tortuosity  

Pore tortuosity is defined as the actual pores length divided by membrane 

thickness. Pore tortuosity is measured due to fact that molecules travel larger 

distance than membrane actual thickness. [49] Therefore, high pore tortuosity 

leads to low permeate flux [33], [36]. As pore tortuosity is hardly measured, a 

constant value of (𝜏 = 2) is assumed for water vapor in MD processes [33], [49], 

[127]. Different correlations are suggested in order to evaluate pore tortuosity 

(equation 26, 46). 

𝝉 =  
𝟏

𝜺 
 (46) 

where 𝜀 is membrane porosity [35], [49], [96]. 

 

3.7.7 Thermal Conductivity 

Heat conduction through membrane occurs by heat transfer through membrane 

material and vapor in pores. Conductive heat loss through membrane material 

is a major drawback in MD system, especially in DCMD. Therefore, membrane 

material with low thermal conductivity should be chosen. Thermal conductivity 

of polymer membranes used in MD fall in the same region, approximately with 
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slight difference. Khayet [33] and other researchers [74], [130], [131] evaluate 

thermal conductivity for commercial membranes between (0.04 – 0.06 𝑊𝑚−1𝐾−1). 

However, thermal conductivity of membrane materials differs according to 

temperature, degree of crystallinity, and shape of crystals [35], [41] Table (11) 

summarized thermal conductivities of most common membranes used in MD 

process. Al-Obaidani et al. [105] reported that (PP) membranes have the lowest 

thermal conductivity, while (PTFE) is the highest.  

 

 

Table 11: Thermal conductivity of different materials [35], [36], [86] 

Membrane Material Thermal Conductivity (𝑾𝒎−𝟏𝑲−𝟏) 

PP 0.11 – 0.16 (at 23℃), 0.20 (at 75℃) 
PVDF 0.17 – 0.19 (at 23℃), 0.21 (at 75℃) 
PTFE 0.25 – 0.27 (at 23℃), 0.29 (at 75℃) 
Air 0.020 (at 25℃), 0.029 (at 60℃) 

Water vapor 0.026 (at 25℃), 0.022 (at 60℃) 

 

 

Thermal conductivity for PP, PTFE, and PVDF membranes can be estimated 

using equation (6) mentioned before. [35], [41], [86] 

The thermal conductivity of polymeric materials can be calculated using 

equations (47 – 51) that are valid at temperature range of (0 - 100℃).  

𝒌𝒘𝒂𝒕𝒆𝒓
𝑮 (𝑻) = 𝟐. 𝟕𝟐 × 𝟏𝟎−𝟑 + 𝟓. 𝟕𝟏 × 𝟏𝟎−𝟓 𝑻 (47) 

𝒌𝒂𝒊𝒓
𝑮 (𝑻) = 𝟐. 𝟕𝟐 × 𝟏𝟎−𝟑 + 𝟕. 𝟕𝟕 × 𝟏𝟎−𝟓 𝑻 (48) 

𝒌𝑷𝑽𝑫𝑭
𝑴 (𝑻) = 𝟗. 𝟐𝟑𝟎𝟖 × 𝟏𝟎−𝟑 + 𝟓.𝟕𝟕 × 𝟏𝟎−𝟒 𝑻 (49) 

𝒌𝑷𝑻𝑭𝑬
𝑴 (𝑻) = 𝟎. 𝟎𝟖𝟕 + 𝟔 × 𝟏𝟎−𝟒 𝑻 (50) 

𝒌𝑷𝑷
𝑴 (𝑻) = −𝟎. 𝟐𝟒𝟖 × 𝟏𝟎−𝟑 + 𝟏. 𝟑 × 𝟏𝟎−𝟑 (51) 
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The substituted temperature in equations (47 – 51) should be in K. From the 

above equation (42), it is shown that thermal conductivity is a function of 

membrane porosity. 

Lawson and Lloyd [41] also reported that PP membranes have the lower thermal 

conductivity of (0.15 – 0.20 𝑊𝑚−1𝐾−1) while PVDF and PTFE membranes have 

thermal conductivities of (0.22 – 0.45 𝑊𝑚−1𝐾−1). 

In order to reduce heat loss through conduction, several methods are applied 

rather than using materials with low thermal conductivity. Khayet et al. [33] 

suggested using high porosity and thicker membranes. High porous membranes 

have more air trapped in the pores and therefore lower thermal conductivity [35], 

[36]. Another possible technique to lower thermal conductivity is to use multi-

layered membranes. As mentioned before, very thin layer of hydrophobic 

material and thicker layer of hydrophilic material is suggested. The purpose of 

using hydrophilic layer is to resist conductive heat, [33] while the hydrophobic 

is to resist liquid penetration [35]. 

 

 

3.8 Membrane Flow Arrangement  

Different membrane flow configurations are studied in order to enhance flux 

production and reduce fouling phenomena. Counter-current flow, cross-current 

flow, and co-current flow arrangement can be used in both hollow fiber and flat 

sheet membranes.  

 



87 
 

 

Figure 31: Flow arrangements (A) co-current, (B) counter-current, and (C) cross-current (Adapted from 

[129]) 

 

Figure (31) illustrates different flow arrangements. Different studies [52], [120], 

[129] conclude the counter-current flow provide slightly high performance in 

term of flux than co-current flow due to higher turbulence.  Manawi et al. [47] 

showed that counter-current flow result higher flux comparing to co-current flow 

by approximately 3%. Cross-current flow produces the highest flux among the 

three arrangements. 

More arrangements are applied for hollow fiber membrane in order to enhance 

the flux and increase membrane life as hollow fiber membranes have higher 

tendency for fouling [99], [130]. In addition to novel hollow fibers arrangements 

discussed in section (3.8), placing feed water in the shell side instead of lumen 

side is recommended to reduce membrane fouling [99], [132]. Gas bubbling is a 

novel method that is used to control fouling. Chen et al. [103] investigated gas 

bubbling method through four different arrangements. Figure (32) illustrated 

these flow arrangements which are 45° inclined, horizontal, upflow vertical, and 

downflow vertical. According to Chen et al. [103], 45° inclined module produced 

highest permeate flux.  
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Figure 32: Hollow fiber flow arrangements investigated by Chen et al. [103] 

 
 

Moreover, different hollow fiber modules such as cylindrical, rectangular, helical, 

and shell-and-tube bundles are studied by Wickramasinghe et al. [132] showing 

that better results are achieved through flow outside the fibers.  

 

 

3.9 Liquid Entry Pressure (LEP) 

In membrane distillation (MD) processes, porous hydrophobic membranes are 

used. Hydrophobic membranes allow vapor molecules to penetrate and prevent 

liquid from passing through the membrane. Liquid entry pressure (LEP) is 

particular characteristic of membrane that is defined as minimum pressure that 

allow feed vapor molecules to penetrate through the membrane. Sometimes LEP 

is defined as wetting pressure [124]. Overcoming LEP will lead to membrane 

wetting thus, lowering permeate water quality and declining permeate 

production [33]. When membrane pores are wetted, saline feed water can 

penetrate through membrane contaminating permeate side. To overcome 
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penetration, permeate hydrostatic pressure should be kept higher than feed 

hydrostatic pressure [41]. LEP can be determined using Laplace-Young (Cantor) 

equation [35], [36], [41], [58], [80]. represented by equation (52). 

∆𝑷 = 𝑷𝒇 −𝑷𝒑 = 
−𝟐 𝑩𝜸𝒍 𝐜𝐨𝐬𝜽

𝒓𝒎𝒂𝒙
 (52) 

where 𝑃𝑓 is hydraulic pressure on feed side and 𝑃𝑝 is hydraulic pressure on 

permeate side. 𝐵, 𝛾𝑙 , 𝜃 and 𝑟𝑚𝑎𝑥 are geometric pore coefficient (𝐵 = 1 for cylindrical 

pores), liquid surface tension, contact angle between solution and membrane 

surface, and maximum pore size radius, respectively. According to equation (52), 

LEP depends on membrane hydrophobicity and pore size. [35], [42] LEP should 

be maintained as high as possible by choosing highly hydrophobic membranes 

(large contact angle between solution and membrane surface), small maximum 

pore size, low surface energy, and high liquid surface tension [33], [35], [36]. 

However, small pore size decreases membrane permeability [33]. 

 

 

Table 12: Liquid Entry Pressure at different mean pore size 

Material Mean pore size (𝝁m) LEP (kPa) 

PTFE/PP 

0.20 282 

0.45 138 
1.00 48 

 

 

Banat et al. [116] suggested membrane pore size of (0.1 – 0.6 𝜇m) to prevent pore 

wetting. Alkhudhiri et al. [35] mentioned that for same membrane material 

(PTFE/PP), LEP is affected by membrane pore size. Table (12) listed Liquid Entry 

Pressure (LEP) at different mean pore size. 
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3.10 Contact angle (𝜽) 

Contact angle is used to describe membrane hydrophobicity. Liquid entry 

pressure (LEP) and Contact angle (𝜽) are related to each other. Low contact angle 

(low membrane hydrophobicity) decreases LEP, hence membrane wetting occur. 

Therefore, membrane wetting can be directly measured by contact angle.  

The contact angle of water droplet on different membrane surfaces is listed by 

Alkhudhiri et al. [35] in table (13) below.  

 

 

Table 13: Contact angle (𝜽) of different membrane materials [27] 

Membrane material Contact angle (𝜽) 

PTFE (Teflon) 108° – 115° 

PVDF 107° 

PP 120° 

Fabricated Ceramic membrane 177° – 179° 

 

 

Figure (33) explains the relation between the contact angle and the 

hydrophobicity of the membrane. If a drop of liquid is spread on membrane 

surface and the contact angle is given between (0° - 90°), that’s mean that the 

membrane is hydrophilic and the liquid can pass the membrane. Wetting happen 

when contact angle is close to 0° [36]. 
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Figure 33: Contact angle identification of membrane hydrophobicity 

 
 

If the contact angle is given between (90° - 180°), that’s mean that the membrane 

is hydrophobic and the droplet can not penetrate the membrane [36]. Contact 

angle can be estimated by Young’s equation (53) below: 

𝜸𝒍𝒗 𝐜𝐨𝐬 𝜽 = 𝜸𝒔𝒗 − 𝜸𝒔𝒍 (53) 

where 𝛾𝑠𝑣 is solid-vapor interfacial tension, 𝛾𝑠𝑙 is solid-liquid interfacial tension, 

and 𝛾𝑙𝑣 is liquid-vapor interfacial tension. 

 

 

3.11 Pressure Drop (∆𝑷) 

Pressure drop (∆𝑃) and liquid entry pressure (LEP) are two important concepts 

in MD process. Pressure drop along the module is a natural phenomenon that 

occurs in flow channels. It can be defined as the minimum pressure that is 

maintained at channel entrance to ensure fluid flow. [80] Cath et al. [80] 

expressed the pressure drop in equation (54). 

∆𝑷 = 𝒇 
𝑳

𝒅
 𝝆 
𝒖𝟐

𝟐
 (54) 

where 𝑓, 𝐿, 𝑑, 𝑢, and 𝜌 are friction factor, channel length, hydraulic diameter of flow 

channel, fluid velocity, and fluid density, respectively.  
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Pressure drop should always maintain a value lower than liquid entry pressure 

to avoid membrane wetting. Hitsov et al. [114] reported that the best performance 

of permeate flux is achieved at lowest pressure drop. 

 

 

3.12 Flow Turbulence and Flow Distribution 

Flow turbulence is an important parameter in MD system that improve 

membrane characteristics. It can enhance permeate flux production by 

increasing the vapor pressure across the membrane [75], [133]. Increasing 

thermal coefficients is directly affecting permeate flux production. Phattaranawik 

et al. [75] mentioned that heat transferred from hot feed solution across the 

thermal boundary layer to the membrane surface at a rate of  𝑞𝑓
𝑚 + 𝑞𝑓 can be 

evaluated using equation (55, 56). 

𝒒𝒇 = 𝒉𝒇 (𝑻𝒇 − 𝑻𝟏) (55) 

𝒒𝒇
𝒎 = 𝑱 𝑯𝒍,𝒇  (

𝟏

𝟐
(𝑻𝒇 − 𝑻𝟏)) (56) 

where 𝐻𝑙,𝑓 is the enthalpy of the feed solution, 𝐽 is mass flux, ℎ𝑓 is heat transfer 

coefficient of feed solution, 𝑇𝑓 is feed bulk temperature, and 𝑇1 is temperature at 

membrane surface of feed. 

In order to enhance the heat transfer coefficient of feed solution, the thickness 

of boundary layer should be reduced.  This can be achieved by enhancing flow 

turbulence in feed side and permeate sides. Several techniques can be applied 

such as improving flow configuration, changing membrane arrangement, and 

the usage of turbulent promoters (spacers) to increase turbulence of the flow. As 

explained before in section (3.3), spacers, baffles, and membrane arrangements 

showed significant improvements of heat transfer coefficient by lowering 

temperature polarization. Tamburini et al. [134] mentioned that temperature 

polarization coefficient is ranging between 0.57 – 0.76 for channels without 

spacers, while temperature polarization coefficient is ranging between 0.90 – 

0.97 for spacer-filled channels. Additionally, placing the spacer on hot feed side 



93 
 

shows more effect than placing it on the cold permeate side. Phattaranawik et 

al. [76] by (30 – 40 %). Moreover, turbulence and better mixing can be achieved 

by finding the optimum operating conditions. Lawson et al. [41] and other 

researchers [2], [36], [40], [105], [135], [136] reported that increasing process 

flowrates improve the mixing, hence decrease temperature boundary layers. High 

flowrates decrease temperature difference between bulk and near the membrane, 

hence temperature boundary layer decreases [86]. However, very high feed and 

permeate flowrates decrease the amount of resulted permeate flux [100], [109] 

and consume pumping energy [136]. 

 

 

3.13 Drinking Water Quality 

The quality of water depends on the characteristics and purity of water. As 

mentioned before in Chapter 2, the quality of water is measured by its salinity 

level. Salinity level and other characterizations of seawater were discussed before 

in details in Chapter 2. Standards of safe drinking water and its quality are 

established by several agencies such as Environmental Protection Agency (EPA) 

in USA and European Drinking Water Directive. The World Health Organization 

(WHO) is limited the drinking water by 0.5 ppt [3]. The quality of drinking water 

in Qatar is established by KAHRAMA and the main parameters are listed in the 

table (14). Water Quality of Rayyan production company of drinking water in 

Qatar is also represented in table (14) showing high quality of water. 
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Table 14: The quality of drinking water in Qatar [137] 

Composition 
Guide level 

(mg/L) 
Maximum level 

(mg/L) 
Concentration 
level (mg/L) 

TDS 200 – 600 1,000 104 

Alkalinity 30 --- --- 
Total Hardness 60 500 52 
Chloride 25 250 32 

Chloride Residuals 0.2 0.5 --- 

Fluoride 0.7 1.5 < 1 
Sulphate 25 250 7 

Calcium 100 --- 13 
Copper 1 2 --- 
Sodium 20 200 6 

Iron 0.3 2 --- 
Manganese 0.1 0.5 --- 

Magnesium 30 50 5 
Aluminum 0.05 0.2 --- 
Nitrate 25 50 --- 

pH 6.5 – 8.5 9.5 7.2 

 

 

In order to evaluate the quality of desalinated water in MD systems, several 

analyses are conducted such as the measure of anions and cations, electrical 

conductivity, and salt rejection percentage. 

 

 

3.13.1 Membrane Salt Rejection 

Salt rejection percentage is a relative measure of the amount of salts that was 

initially present in the water and retained by the membrane. Salt rejection 

percentage (𝒀) can be evaluated through equation (57) reported by Khayet [33]. 

𝒀 = 
𝑪𝒇 − 𝑪𝒑

𝑪𝒇
 × 𝟏𝟎𝟎 (57) 

where 𝐶𝑓 and 𝐶𝑝 are salt concentration or TDS, initially in the feed and in the 

permeate, respectively. 

 

Salt rejection is important parameter in RO membranes. However, not all the 

ions are rejected equally. The higher the ion, the better the rejection is. It is also 
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important to note that RO membranes don’t reject gases. Therefore, gasses such 

as ammonia, chlorine gas, carbon dioxide, and oxygen can be present in 

permeate water. Some of these gasses can be rejected after pH adjustments [45]. 

In membrane desalination technologies, Nanofiltration membranes usually 

reject less than 30% of TDS comparing to Reverse Osmosis membranes that 

reject more than 90% of TDS. Most commercial RO membranes achieve high salt 

rejection percentage in the range of (99.60 – 99.85%) [45]. 

Singh and Sirkar [138] evaluated salt rejection for different hollow fiber 

membrane materials (PP, PVDF) finding that PP membranes provide higher salt 

rejection percentage than PVDF membranes. 

Zhang et al. [98] reported that the implementation of hollow fiber membranes in 

DCMD systems provide high salt rejection that is higher than 99%. Similar 

results are achieved by Macedonio et al. [89] investigating PVDF and PP hollow 

fiber membranes in DCMD systems in oilfield produced water treatment. 

Moreover, carbon rejection more than 90% is accomplished.  

 

Even higher salt rejection of 99.8% is achieved by Tang et al. [139] who 

investigated PVDF hollow fiber membranes in VMD system using aqueous NaCl 

solution as hot feed inlet. Alike results of 99.9% of salt rejection are reported by 

Cath et al. [80] using three different PTFE and PP hydrophobic flat sheet 

membranes with synthetic seawater at feed solution of 40℃. Vacuum enhanced 

DCMD system is responsible for high performance of permeate flux and salt 

rejection. As high as 99.95% salt rejection is performed by Maab et al. [51] and 

Khayet et al. [140] for hollow fiber and flat sheet membranes, respectively.  

The highest salt rejection is achieved by Francis et al. [46] who studied the 

performance of PVDF, PP, PTFE, and PVC hollow fiber membranes in DCMD 

system. Salt rejection of 99.99% was achieved. Similar results performed by 

Francis et al. [48] for the desalination of Red sea water by using PTFE and PP 

flat sheet membranes in DCMD system. Additionally, boron rejection of 99.41% 

is achieved at extreme operating conditions.  
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4 Chapter 4: Approach and Methodology 

This chapter discusses the methodology of conducting Direct Contact Membrane 

Distillation (DCMD) system in a Lab scale for hollow fiber and flat sheet 

membranes. In the experimental section, all the used equipment and devices are 

described in details representing their main functions. After completing the 

experimental part and evaluating the permeate flux for both membranes, a 

comparison of performance between the membranes is conducted according to 

different thermal coefficients. The used approach of calculating these thermal 

coefficients is presented in the last section of this chapter.  

 

 

4.1 Experimental Part (Methodology) 

In this section, the experimental procedure and set-up will be explained in details 

including the explanation and the function of each equipment. The specifications 

of the used membranes are presented in addition to the algorithm of conducting 

DCMD experiments. The methodology of DCMD process is followed by the 

experimental procedure and end up with water quality tests of the resulted 

permeate water.  

 

 

4.1.1 Qatar University Laboratory 

This research work was processed in the chemical engineering research 

laboratory (I 216) in Qatar University. Figure (34) pictured the Lab (I 216) from 

inside at Qatar University where all the experiments were conducted. 
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Figure 34: Chemical Engineering Laboratory (I 216) Qatar University 

 
 

All the experiments are performed in a lab scale using Direct Contact Membrane 

Distillation (DCMD) apparatus.  

 

 

4.1.2 Experimental Set-up  

The experimental set-up of the DCMD system will be will be summarized and 

explained in three main sections which are: 

 DCMD bench scale system 

 The used membranes (Flat sheet and Hollow fiber) 

 Flat Sheet Membrane Compartment 

 The Auxiliary equipment  

A brief introduction and a short description of each equipment and device will 

be present, illustrating the devices in a figure and listing the most important 

specifications. 
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4.2 DCMD Bench Scale System 

Direct Contact Membrane Distillation (DCMD) apparatus is a combination of 

different parts and devices that together represent a DCMD system. The 

schematic diagram of DCMD system in figure (35) represents all the instruments 

that involve in DCMD system. These instruments are: 

 Membrane cell (flat sheet and hollow fiber) 

 Heating and cooling circulators 

 Feed and distillate tanks 

 Feed and distillate balances 

 Pumps 

 Temperature probes and display  

 Pressure transducers and display  

 Flow meters and display 

 Data Acquisition System 

The process of DCMD Bench Scale System is explained through figure (35) and 

figure (36). Figure (36) represents DCMD Bench Scale set-up in Qatar University 

Laboratory (I 216). 

The process of DCMD systems starts with adjusting the peristaltic pumps to the 

required flowrates and setting-up the temperatures of cooling and heating 

circulators. Feed tank is filled with 5 Liters of seawater and the distilled tank is 

filled with 2.5 Liters of Deionized water. After the temperatures reached the set-

points, the valves of the distilled and feed tanks are opened to let the water 

circulate through pumps. Hot feed seawater is pumped from feed tank to the 

heating circulator by pump. The water is passed through flexible polymeric 

tubing. Temperature sensor is measuring the temperature of feed water just 

before MD cell. When the water reaches the desired temperature, feed flow is 

entering membrane compartment to face the membrane. After the MD process 

in the compartment, feed water with the rejected brine is recycled to feed tank. 

Permeate water is added to the distilled flow. Similar path of feed water, distilled 

water is taken. Distilled water is flowing through flexible tubing by another pump 
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from distilled tank to cooling circulator. Temperature sensor is measuring the 

temperature of distilled water just before MD cell. When the water reaches the 

desired temperature, distilled flow is entering membrane compartment to face 

the membrane. Distilled water is combined with the permeate and recirculated 

back to the distilled tank. Therefore, the weight of distilled tank is increasing 

and the weight of feed tank is decreasing. Each experiment runs for 4 hours 

approximately in stable operating conditions. After that, two sample bottles are 

filled with permeate water to undergo water quality tests. Conductivity of the 

brine is measured. The system is shut down and refills with distilled water as 

feed and permeate solutions. The system nearly runs for an hour at same 

operating conditions to rinse and flush the membrane from deposited particles. 

This process is called flushing and it is done at the end of each experiment. 

 

 

 

Figure 35: Schematic Diagram of DCMD Bench Scale System 
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The weight of permeate is continuously measured using permeate balance that 

hold the distilled tank. As distillation process carry on, more permeate is 

collected thus, distilled weight is increased. At the beginning, the initial weight 

of distilled tank with deionized water is measured. After that, the weight of 

distilled with the added permeate is recorded every 30 seconds with the help of 

Data Acquisition system (DAQ). DAQ analyzes the signals that collected from the 

sensors and sent them to the computer. Distilled weight data is saved as text 

files and processed in the Microsoft Excel program in order to generate permeate 

flux graphs. 

 

 

 

Figure 36: DCMD Bench Scale System in Qatar University Laboratory 

 

 

Temperature, pressure, and the flowrate of feed and distilled streams are 

contentiously measured during the whole experiment. The sensors are placed on 
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the streams before entering the membrane compartment and after exiting the 

compartment. They are measured to ensure experimental stable mode. 

Temperature profile of feed and distilled inlet and outlet streams to MD cell is 

studied. Continues measurement of feed and permeate temperatures is very 

important for hollow fiber membrane case as it was noticed that the permeate 

temperature is highly affected by membrane configuration. Conductivity and pH 

of feed water and permeate are measured to study the quality of water and to 

calculate salt rejection. Total Dissolved Solids (TDS) of resulted permeate is also 

measured. 

 

 

4.3 Feed Solution 

In this research, real saline water is used for Direct Contact Membrane 

Distillation (DCMD) system. Seawater is collected from open intake of Arabian 

Gulf from Al-Wakraa coastline.  

 

 

 

Figure 37: Location of seawater collecting on Al-Wakraa coastline 
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Gulf seawater is characterized as high saline water with an electrical conductivity 

of 65 𝜇𝑆/𝑐𝑚 approximately. pH of the used seawater is around 8. Figure (37) 

identifies the location of used seawater collection. 

 

4.4 Membrane 

Two different types of membranes are used in this study to compare their 

performance at similar operating conditions. These membranes are 

Polypropylene (PP) flat sheet membrane and Polypropylene (PP) hollow fiber 

membrane. These types of membrane materials were chosen according to their 

availability in the market, low cost, and popularity in the literature. 

Characteristics and properties of each membrane will be explained in details in 

the sections below. 

 

 

4.4.1 Flat Sheet Membrane  

In these experiments, flat sheet membranes (Accurel PP 2E HF (R/P)) that are 

purchased from MEMBRANA Company in Germany and used. The hydrophobic 

(water resistant) flat sheet membranes are made of Polypropylene (PP) and have 

intended use in microfiltration. An advantage of (PP) membranes is having lower 

thermal conductivity (k) that lies between (0.15 – 0.25 W/m.K) comparing to 

other commercial membranes that have higher thermal conductivities [32], [33]. 

This will reduce heat lost through membrane by conduction. The porosity of used 

flat sheet membrane is ranged between 73% to 75% and the average pore size is 

0.2 𝜇m. The thickness of one membrane sheet is 170 𝜇m. 

The used flat sheet membrane was 19.2 cm in length and 14.1 cm in width with 

an active membrane area of 0.014 m2. A hammer and a special steel-rule die are 

used to cut the membrane with the specific dimensions that will fit in the 

comportment.  

Figure (38) represents two flat sheet membranes used in the experiments. 

Cutting instruments are also purchased from Sterlitech to avoid membrane 

surface roughness occur while using basic cutting instruments. 
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Figure (38) represents two flat sheet membranes used in the experiments. 

Cutting instruments are also purchased from Sterlitech to avoid membrane 

surface roughness occur while using basic cutting instruments. 

 

 

 

Figure 38: Two sheets of PP flat sheet membranes 

 

 

Figure (39) represents these instruments that used to cut the membrane. After 

cutting the membrane, it has to be fitted in between two special membrane 

compartments (cells) for flat sheet membrane distillation in order to process the 

experiment. 
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Figure 39: Cutting instruments used to cut flat sheet membrane 

 
 

The characteristics of flat sheet membrane are summarized in table (15) below. 

 

 

Table 15: PP Flat Sheet Membrane Characteristics 

PP Flat Sheet Membrane 

Manufacture MEMBRANA 

Material Polypropylene (PP) 

Membrane Thickness (𝜇m) 170 

Membrane Length (cm) 19.2 

Membrane Width (cm) 14.1 

Average Pore Size (𝜇m) 0.2 

Porosity (%) 73 – 75 

Membrane Active Area (m2) 0.014 

Contact Angle (°) 134.8 

 

 

The measurement of contact angle of PP flat sheet membrane is adapted from 

Mashael Al-Obaidli [141] thesis project research measured in the same 

laboratory using drop shape analyzer (DSA25, KRUSS, Germany). The measured 
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contact angle of PP membrane with 0.2 𝜇𝑚 pore size ranged between 131.1° and 

137.8 ° with an average contact angle of 134.8°. 

 

 

4.4.2 Membrane Compartment  

In order to process membrane distillation process with flat sheet membrane, the 

membrane has to be placed between two compartments. the compartments were 

designed at Qatar University in association with ConocoPhillips GWSC and 

machined in a workshop in Hong Kong. The compartments are manufactured 

according to the design from solid Polytetrafluoroethylene PTFE (Teflon). Teflon 

material for the blocks was chosen in order to minimize heat loss through the 

blocks by conduction as it has low thermal conductivity. Teflon material is also 

corrosion resistance as seawater is used at high temperature.  

 

The MD compartment consists from two rectangular blocks (upper and lower 

plates), feed and permeate channels and O-rings.  

 

 

 

Figure 40: Membrane Compartment with C-Clamps used in DCMD system 
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Figure (40) represents the used membrane cell in DCMD system with the C-

Clamps holders along the cell membrane. 

 

 

4.4.3 Dimensions  

One cell compartment has overall dimensions of 233 x 182.8 x 30 mm. For the 

whole compartment (two plates together), the dimensions are 233 x 182.8 x 60 

mm. Figure (41) illustrates the upper and lower blocks of the compartment with 

the dimensions in mm.  

 

 

 

Figure 41: Schematic diagram of upper and lower plates of MD compartment (dimensions in mm) 

 

 

As shown in figure (41) each plate is 23.3 cm in length, 18.2 cm in width and 

3.0 cm for the thickness. More detailed graphical drawings of compartment cells 

with all the dimensions are represented in APPENDIX C. 
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Figure 42: Feed and Permeate Inlet and Outlet streams in MD system 

 

 

Membrane Distillation (MD) compartment can easily rearranged for concurrent 

or counter-current flows. For our experiments, counter-current configuration is 

used for feed and permeate flows. Hot feed flow is passing through the bottom 

plate reaching the membrane while the permeate cold flow is passing through 

the top plate. It is chosen to pass saline water through the lower cell in order to 

avoid salt precipitation on membrane surface that can happen if saline water 

have been processing through upper cell.  

Figure (42) illustrates inlet and outlet streams of feed and distilled water in/out 

membrane compartment. 

 

 

4.4.4 Membrane Installation 

 After the membrane have been cut into the proper rectangular size, it is installed 

in the inner side of the bottom plate. PP flat sheet has two different surfaces, the 

shiny face and the dull face. When placing the membrane on the bottom block, 

the shiny side has to face feed saline water where the dull side should face the 

distilled water. The membrane is placed on the bottom plate O-ring, just over the 

spacer. Bottom O-rings are made of two layers of double Viton material to provide 

a leak-proof seal. O-rings are supplied by Sterlitech and are very significant in 
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the compartment as its function is to prevent feed seawater to mix with the 

permeate flow in the upper plate. These two O-ring with a diameter of 75 mm is 

placed into the particulate space with 2 mm depth provided in the bottom cell. 

In order to fix membrane sheet on the bottom plate and prevent movement, four 

guide-pins are used along the bottom plate corners. Each membrane hole is 

placed over one guide-pin. All the components; membrane, spacer, lower and 

upper blocks are tightly fixed using four pieces of Allen screw bolt and nuts. 

Washers are used between the blocks and Allen screw bolt and nuts from both 

sides of compartment for better fixation due to the slippery nature of Teflon 

material. It also distributes the load across the plate and provides better fixation 

of the screws. C Clamp Holders are used for additional fixation of the cells.  

 

Two inlet tubes and two outlet tubes are connected to the compartment from the 

upper and lower blocks. The used tubes are 3/8-inch female national pipe thread 

(FNPT) that are fixed with National Pipe Thread (NPT) that prevent fluid from 

seeking out at connections. Figure (43) represents all the components of flat 

sheet membrane compartment. 

 

Figure (44) illustrates the sequence of flat sheet membrane installation into the 

compartment with the spacer.  
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Figure 43: The inner side of the upper and lower plates of membrane compartment 

 

 

1: Allen Screw Bolts and Nuts 

2: Guide Pin 

3: Inner O-ring 

4: Outer O-ring 

5: Membrane Cavity (Feed manifold)  

6: Feed Inlet Port 

7: Feed Outlet Port 

8: Membrane Cavity (Distilled manifold)  

9: Distilled Inlet Port 

10: Distilled Outlet Port 
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Figure 44: The order of placing the spacer and the membrane in the compartment 

 

 

It is recommended to place the spacer between the membrane sheet and the feed 

water to increase the turbulence and decrease the boundary layer. 

 

 

 

4.4.5 Fluid Mechanism  

The flow in membrane distillation (MD) system is facing counter-current 

configuration. Hot feed stream is entering the compartment from feed inlet port 

in the bottom cell. Feed stream is passing inside the compartment through the 

first manifold over the membrane cavity and exiting from the other manifold in 

the other side of the cell. Feed stream is leaving the compartment from the feed 

outlet port in the lower plate. Inside the membrane cavity, feed stream is 

passing along the spacer and membrane surface. While the feed stream is 

passing from one port to another, vapor molecules are keep permeating through 

the membrane and collecting in the membrane cavity through manifold of upper 

cell. The remaining feed water with the rejected brine is passing through the 
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opposite feed port in the lower plate to be pumped back to the heater. Same 

mechanism is applied for the upper cell where distilled cold water is entering 

from permeate inlet port into the compartment to pass through the manifold. 

In the membrane cavity, distilled water is mixed with the permeate to leave the 

upper plate from the manifold on the other side of the plate. The permeate water 

is passing out through permeate outlet port to be cooled down and sent back 

to the tank. The design of the inlet and outlet ports allocated in opposite 

directions to ensure the total circulation of water lengthwise the membrane 

surface. 

 

 

4.4.6 Material of Construction 

Membrane compartment components including MD cells, O-rings, and inlet and 

outlet fittings are made of different materials. As it was mentioned before, the 

construction material of membrane compartment is Polytetrafluoroethylene 

PTFE, commercial name (Teflon). Teflon have been chosen based on several 

advantages that this material has. First of all, Teflon is a high resistance material 

that isolates the system and prevent heat transfer through conduction. Because 

of this Teflon is considered as very good isolating material. It also resists to many 

chemicals. Another important advantage is that (PTFE) is not a sticky material 

that offers a very smooth MD process with low friction coefficient. Another 

advantages of Teflon material are: 

 Non wetting material (high hydrophobicity) 

 The ability to perform at extreme temperatures (-24 – 260 ℃) 

 Ultra Violet (UV) and weather resistance  

 

Two O-rings are made of double synthetic fluorocarbon rubber (Viton) with a 

diameter of 2 mm and placed in the inner side of lower plate. Viton material is 

preferable due to its leak-proof property in addition to many other advantages 

such as: 

 Excellent resistance to high temperatures, solvents and many chemicals 
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 The ability to perform at extreme temperatures (-26 – 204 ℃) 

 Low permeability  

 Compression set resistance [142] 

 

Last of all, the inlet and outlet fittings to the compartment are made of PFA 

(Perfluoroalkoxy) Teflon nuts and ETFE (Ethylene tetrafluoroethylene) body 

(Parker, USA). These fittings are chosen due to their high resistance to many 

solvents and chemicals in addition to the ability to perform at extreme 

temperatures (up to 200 ℃) and pressure (100 psi). 

 

 

4.4.7 Spacer Characteristics  

Spacers are used in Direct Contact Membrane Distillation (DCMD) systems to 

enhance the flow for maximum permeate flux production. Spacer’s main function 

is to distribute feed water along the membrane for maximum contact with the 

membrane. It also protects the membrane from the hydraulic pressure affected 

the membrane from feed and permeate sides. Polypropylene (PP) High Foulant 

spacer was introduces to the system with 14.5 cm in length, 9.7 cm width, and 

0.156 cm thickness supplied by Sterlitech (USA). Characteristics of the used 

spacer are listed in table (16) below. 

 

 

Table 16: PP Spacer Characteristics 

Spacer Characteristics 

Material Polypropylene (PP) 

Length (mm) 145 
Width (mm) 97 

Thickness (mm) 1.56 
Filament size (mm) 0.78 
Mesh size (mm) 3.23 

Hydrodynamic angle 90 
Voidage (%) 80 – 85 
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Figure (45) represents the real Polypropylene (PP) spacer used in flat sheet 

membrane distillation system. 

 

 

 

Figure 45: PP spacer used in MD system 

 
 
 

Figure (46) shows the main spacer dimensions such as spacer thickness, 

hydrodynamic angle, and filament size. 
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Figure 46: Spacer dimensions 

 

 

Some spacer characteristics such as filament size, mesh size and spacer voidage 

are explained in detailed in the Approach section (4.7).  

 

 

4.4.8 Hollow Fiber membrane  

The commercial hollow fiber membranes of (MD020CP2N) with the module were 

purchased from Microdyn-Nadir® Tubular and Capillary modules for 

Microfiltration that is manufactured in Germany. The module is performed at a 

cross-flow configuration that minimizes dead zones of the module and is suitable 

for membrane desalination. Inside the module, hydrophobic ACCUREL® 

polypropylene (PP) membranes are potted by special Polyurethane material. The 

hollow fiber membranes and the housing are made of polypropylene (PP). Main 

characterizations of these membranes are high porosity, symmetrical design and 

large pore distribution. High porosity of the membranes (75 – 85%) cause high 

permeability of permeate through pores. The pores size of the membranes are 

exactly 0.2 microns. The symmetrical homogenous design of the membranes 

avoids any mechanical damage and scratches. Chemical cleaning in the opposite 

direction of the flow can withdraw any depositions occur on the membrane 
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surface. Therefore, citric acid can be used for cleaning as Polypropylene (PP) 

membranes have high chemical resistance to many acids [143]. 

The module contains 40 hollow fiber capillaries with an inner diameter of 1.8 

mm and membrane inside area of 0.1 m2. More characteristics of hollow fiber 

membrane module are present in Table (17) below such as fiber inside and 

outside diameters. 

 

Moreover, figure (47) represented hollow fiber membrane module that was used 

for DCMD. The module is covered with isolated tape to minimize heat lose. 

Distilled water is chosen to be placed inside the capillaries, while feed saline 

water is placed in the shell side. 

 

 

Table 17: Characteristics of used Hollow Fiber membrane characteristics 

Hollow Fiber membrane characteristics 

Manufacture MICRODYN 

Membrane Material Polypropylene (PP) 
Housing Material Polypropylene (PP) 
Potting Material Polyurethane 

Number of fibers 40 
Fiber Inner diameter (mm) 1.8 

Membrane thickness (mm) 0.65 
Shell Inner diameter (m) 0.021 
Shell Outer diameter (m) 0.025 

Module Length (m) 0.50 
Membrane Length (m) 0.45 

Pore size (𝜇m) 0.2 

Porosity (%) 75 – 85 
Membrane Active Area (m2) 0.1 

Contact Angle (PP) 134.8 

 

 

A cross sectional view is also illustrated in the figure (47) showing the number 

of fibers in the module. 
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Figure 47: Hollow Fiber membrane module and a cross-section of the module 

 
 

More detailed graphical drawing of hollow fiber module is represented in 

APPENDIX C.  

 

 

4.5 Auxiliary Equipment 

Many units are required rather than the membrane and feed water to process 

membrane distillation. This equipment are balances, pumps, heater, cooler, 

temperature and pressure sensors, flowrate meters, and data acquisition 

system. Each equipment will be explained in details in this section. The main 

auxiliary equipment was representing before in figure (36). Other secondary 

devices are shown in the more detailed sections below. 

 

 

4.5.1 Pumps 

Two peristaltic pumps are used in the system to circulate the water into and out 

the membrane compartment. One pump is used for hot feed flow and the other 

one is used for the cool distilled flow. Peristaltic pumps are frequently used in 

DCMD systems and the advantages behind using them are the accuracy and 
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reliability of use, easily operated, and low-costed maintained. Pumps are fit 

under Thermo Scientific (FH100X) model that is digitally operated. These pumps 

are also easily cleaned and are suitable for the required flowrates. Thermo 

Scientific (FH100X) pump can operate at a flowrate less than 4 LPM. Maximum 

flowrate of 3 LPM was used.  

 

 

Table 18: Peristaltic pump (FH100X) specifications 

Peristaltic pump (FH100X) 

Pump Type  Reversible 

Flowrate Capacity (LPM) 0 – 4 
Speed (RPM) 4 – 400 
Maximum Pressure (bar) 4 

Accuracy (%) ± 0.25 
Dimensions (cm) 31.7 × 27.9 × 15.2 

 

 

Table 18 lists some specifications of the used pumps in DCMD system [144]. 

 

 

4.5.2 Tubing 

Feed and permeate water are pumped into and out the membrane through 

flexible tubing. Vincon (C-219-A) PVC tubing (ABH02028) with 3/8” ID × 9/16” 

OD × 3/32” Wall from Saint Gobain, USA supplied by Murdock Industrial are 

used. Tubing are connecting feed and permeate tanks with the membrane 

passing through the pumps.  

Figure (48) represents Vincon tubing for feed and permeate before it has been 

covered with insulation. 
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Table 19: Vincon tubing (ABH02028) specifications 

Vincon tubing (ABH02028) 

Tubing Material  PVC 
Inner Tubing Diameter (mm) 9.5 
Outer Tubing Diameter (mm) 14.3 

Wall thickness (mm) 2.4 
Color  Transparent 

Temperature Range (℃)  -43 – 80 

 

 

Table (19) lists some of the specifications of the used tubing in lab-scale bench 

DCMD system.  

 

 

 

Figure 48: Vincon Feed and Permeate Tubing 

 

 

These types of tubes are transparent providing ease of use and are preferred for 

peristaltic pumps. It also can resist high temperatures which are applied in MD 

system.  

 

 



119 
 

4.5.3 Heater and Cooler  

A heater and a cooler are essential equipment in MD process. A heater is used 

to heat feed water to a specific temperature before facing the membrane. A cooler 

is used to cool the distilled water that will be used to condense the vapor 

molecules across the membrane. The heating and refrigerating circulators 

undergo the F32-MA model and are supplied by Julabo, Germany. One of the 

advantages that the circulators have is the LED digital screen that demonstrates 

the current temperature of the water inside the circulate and the set point 

temperature. It also has a warning alarm for the water level and exceeding set-

point temperature. Finally, the water bath can easily be opened to clean and fix 

water level from the drain screw [145]. Heating/Cooling circulators are capable 

for a wide range of temperatures (-35 – 200 ℃) that’s why they are preferable for 

MD systems. The used temperature for the heating circulator was in the range 

of (45 – 65) ± 5 ℃, while the used temperature for the cooling circulator was in 

the range of (20 ± 5 ℃).  

 

 

Table 20: Heating/Cooling circulators (F32-MA) specifications 

Heating/Cooling circulators (F32-MA) 

Supplier Julabo, Germany 

Refrigerant  R134a 

Dimensions (W × L × H) cm 31 × 42 × 64 
Heating Coils Hastelloy C-276 

Temperature Stability (℃) ± 0.02 

Temperature Range (℃) -35 – 200 

 

 

Each circulator can hold up to 8 liters of liquid and for the cooler, refrigerant 

R134a is used. The heating circulator is dealing with saline water at high 

temperature so there is a possibility of corrosion that causes failure of equipment 

and decreases water quality. Therefore, special heating coils are designed from 



120 
 

Hastelloy C-276 (Nickel (Ni) – Molybdenum (Mo) – Chromium (Cr) alloy with 

addition of Tungsten) that will resist the corrosion. Table (20) presents some 

specifications of the used Heating/Cooling circulators in MD system. 

 

 

4.5.4 Weighing Balances   

Two balances are used for the MD system. One balance is used to measure the 

weight of collected permeate flux. This balance is considerate as the most 

important auxiliary equipment as it will investigate the flux trend. Permeate flux 

is calculated by dividing the weight of permeate water over the active area of the 

membrane over time. The other balance is measuring feed weight to ensure the 

reduced amount of water. The used NewClassic precision balances have Model 

code of: VWR# 97035–640, Mettler Toledo that manufactured in Italy. The 

maximum weighting capacity is 8.2 kg, hence feed tank with no more than 6 

liters is used. The balances are very accurate as the minimum capacity range is 

0.01g.  

 

Table 21: Weighting Balances (VWR# 97035–640) specifications 

Weighting Balances (VWR# 97035–640) 

Capacity range (g) 120-8200 

Readability (g) 0.01-0.1 
Weighing pan dimensions (mm) 170 × 200 

Dimensions W × L × H (mm) 194 × 347 × 96 

 

 

Table (21) presents some specifications of the weighting balances used for 

measuring the permeate and feed tanks in MD system. 
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4.5.5 Temperature measurement 

The temperature of the inlet and outlet streams to the membrane compartment 

are measured using Thermo resistance RTDs (Model: RTD-NPT-72-E, Omega 

Engineering, UK). The temperature is measured using probes that are fixed over 

the tubes and the maximum measuring temperature can reach 230℃. No more 

than 70 ℃ temperature for feed stream was measured. NPT fittings are installed 

online to avoid leakage. 

 

 

Table 22: Thermo resistance RTDs (Model: RTD-NPT-72-E) specifications 

Thermo resistance RTDs (Model: RTD-NPT-72-E) 

Supplier  Omega Engineering, UK 

Maximum Temperature (℃) 230 

Maximum Pressure (psi) 2500 

 

 

Table (22) presents some specifications of the thermocouples used for measuring 

the permeate and feed streams temperature. 

 

 

4.5.6 Pressure measurement 

The pressure of the inlet and outlet streams to the membrane compartment are 

measured using pressure transmitters (Model: PX309-030GI, Omega 

Engineering, UK) [146]. The measured pressure in these experiments were in the 

range of (1 psi). NPT fittings are used to avoid leakage. 
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Table 23: Pressure Transmitters (Model: PX309-030GI) specification 

Pressure Transmitters (Model: PX309-030GI) 

Supplier  Omega Engineering, UK 

Operating Temperature (℃) -40 – 85 

Pressure range (psi) 1 – 5 
Output power (mA) 4 – 20 
Accuracy (%) ± 0.25 

 

 

Table (23) presents some specifications of pressure transmitters used for 

measuring the pressure of permeate and feed streams. 

 

 

4.5.7 Flow Meter 

Two flow meters are installed to measure the flowrates of feed and permeate 

streams. The flow meter that is measuring the hot seawater flowrate has 

Magmeter model: FMG82, Omega Engineering, UK. It has NPT fittings that are 

installed online to avoid leakage. This model is corrosion and temperature 

resistance. It can handle a maximum temperature of 93 ℃ and a salinity of 

70,000 ppm. Operating range reaches 11 LPM and it covers the experimental 

range.  

 

 

Table 24: Flow meter (Magmeter Model: FMG82) specifications 

Flow meter (Magmeter Model: FMG82) 

Supplier  Omega Engineering, UK 

Maximum Temperature (℃) 93 

Maximum Salinity (ppm) 70,000 
Maximum Pressure (psi) 150 

Operating Range (LPM) 0 – 11 
Output power (mA) 4 – 20 

Accuracy (%) ± 1 
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Table (24) lists some specifications of flow meters used for measuring the flow 

rate of feed stream. 

The flow meter that is measuring the distilled flowrate has Magmeter model: FPR-

1506, Omega Engineering, UK. It has NPT fittings that are installed online to 

avoid leakage. Operating range reaches 5 LPM and it covers the experimental 

range. Pelton-type turbine wheel is used to measure the flowrate assuming a 

linear relationship between wheel’s rotations and flowrate and there is no need 

for conductivity. 

 

 

Table 25: Flow meter (Magmeter Model: FPR-1506) specifications 

Flow meter (Magmeter Model: FPR-1506) 

Supplier  Omega Engineering, UK 

Material  PTFE 

Maximum Temperature (℃) 70 

Maximum Pressure (psi) 10 

Flow Range (LPM) 0.5 – 5 

 

 
 
Table (25) lists some specifications of flow meters used for measuring the flow 

rate of distilled stream. 

 
 

4.5.8 Conductivity Meter 

The main function of conductivity meter is to test quality of distilled water. It is 

also used to measure saline water and rejected brine conductivities in order to 

calculate rejected percentage. WTW Multi 3420 Multiparameter Meter with 

Tetracon 925 conductivity measuring cell is used to determine the conductivity. 

Another device is used for measuring the conductivity and Total Dissolved Solids 

(TDS) for quality of water. It is manufactured by AQUALYTIC, Germany and has 
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a product name: SD 320 Con. This conductivity meter is very applicable for 

drinking water applications [147]. 

 

 

Table 26: Conductivity meter (Model: SD 320 Con) specifications 

Conductivity meter (Model: SD 320 Con) 

Supplier  AQUALYTIC, Germany 
Dimensions (W x H x D) mm 164 x 128 x 37 

Temperature Range (℃) -5 – 100 

Conductivity Rande (mS/cm) 0 – 2000 
TDS (mg/l) 0 – 5000 
Accuracy (%) ± 0.1 

 

 

Table (26) lists some specifications of the conductivity meter used for measuring 

the electrical conductivity of permeate water. 

 

 

Figure 49: AQUALYTIC conductivity meter 
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Figure (49) pictures AQUALYTIC conductivity meter used in these experiments 

to measure electrical conductivity of permeate water in addition to (TDS). 

 

 

4.5.9 Digital Display 

Digital displays are used to ensure temperature, pressure, and flowrate 

measurements of feed and distillate streams. These digital display meters have 

Model: DP25B-E-230-A, Omega Engineering, UK. Display meters work by 

converting the received voltage into readable values of temperature, pressure, 

and flowrate. Two colors are used to simplify monitoring the displays, blue color 

for distilled streams, and red color for feed streams. 

 

 

4.5.10 Containers 

Several liquid containers are used in MD system such as permeate and feed 

tanks and glass bottles for storing the samples. Feed and permeate tanks are 

supplied by behr Labor-Technik (Germany). These tanks are made of 

Polyethylene material that is resistant to many substances and can handle 

various range of liquids. It is also very safe for food processing and capable with 

permeate water generation. This material can be used at high temperature and 

handle temperatures of 80℃. 
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Figure 50: Glass bottles with Permeate samples 

 

 

Glass bottles that used for storing permeate samples are also supplied by behr 

Labor-Technik (Germany). The bottle is made of glass and the inner side of gasket 

inside the screw is coated with PTFE. Screw material is (PP). Therefore, permeate 

sample will face only glass and a layer of PTFE. The screw and the gasket are 

high thermal resistant that can handle a temperature of 121℃ and 50℃, 

respectively. Figure (50) represents some of the permeate samples that are stored 

in the glass bottles. 

 

 

4.5.11 Data Acquisition System 

All the measured data of the experiments including permeate weight are stores 

and controlled by Data Acquisition System. The measurements include 

Temperature, Pressure, Flowrate, Permeate weight, and time. National 

Instruments (NI) data acquisition hardware (Chasis Model cDAQ-9188) and 

analog input Module (Model: NI-9219, United States) in addition to computer are 

used. National Instruments (NI) cDAQ-9188 is an 8-slot NI Compact DAQ 

Ethernet chassis which is designed to remote and distributed sensor and 
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measured data signals. DAQ is an intermediate device between the measured 

signals and a computer. Its main function is to allow the computer to read and 

analyze the measurements. National Instruments (NI) is basically a 4 analog-to-

digital convertors (ADCs) connected in universal C-Series that analyses all the 

measurements [148]. These universal C-Series are connected to DAQ Ethernet 

chassis for functioning analog input, analog output, digital input/output, and 

counter/timer measurement system.  

 

 

 

Figure 51: schematic diagram of the Data AQ system [149] 

 

 

Ethernet serial server interfaces (Model: NI ENET 232, National Instruments, 

USA) provide additional ports RS232, RS422, and RS485 for permeate weight 

measurements. LabVIEW data acquisition software that is installed in the 

computer has a function of storing and processing all measurements data. To 

sum everything up, data acquisition system consists of sensors, Data Acquisition 

measurement hardware and a computer with programmable software [149]. 

Figure (51) simplifies the Data Acquisition System by graphical illustrations. 



128 
 

Table 27: Data Acquisition System characteristics 

Data Acquisition System (Model: NI-9219) 

Operating System  Windows 

Current Range (A)  - 0.025 – 0.025 
Voltage Range (V) -60 – 60 

Operating Temperature (℃) -40 – 70 

Measurement Type  

Current 
RTD 

Resistance 

Strain / Bridge-based sensor 
Temperature 

Thermocouple 
Voltage 

 

 

Table (27) listed some of the Data Acquisition System specifications that was 

responsible for all the collected data. 

 

 

 

Figure 52: Data Acquisition System connected to the PC 
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Figure (52) shows Data Acquisition system that is connected to the LabVIEW 

software installed in the computer. These devices were used in the Lab in order 

to evaluate all the experimental part. 

 

 

4.6 Experimental Procedure  

In this work, a comparison study between the performance of hollow fiber 

membrane and flat sheet membrane is investigated. All the experiments are 

conducted under various operating conditions to study the effect of some factors 

such as feed temperature and flowrate. Several tests are performed on the 

permeate water at the end of the experiments to ensure quality of water such as 

conductivity measurements, salt rejection, and anions/cations measurements of 

the resulted fresh water. This section is explaining the experimental procedure 

that was conducted in order to achieve the research objectives. Experimental 

details are explained in the section below. 

Several sets of experiments are made for the two types of membranes; hollow 

fiber and flat sheet membranes. All the experiments are conducted at similar 

operating conditions to meet the objectives of the study.  

 

 

4.6.1 Hollow Fiber membrane 

Starting with the hollow fiber membrane experiments, 5 experiments are 

conducted for each flowrate and 4 different experiments are processed at each 

feed temperature.  
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Table 28: Experimental codes of Hollow Fiber membrane experiments at different feed temperatures and 

flowrates 

       Feed        
Tem. 

Flowrate 
65 ℃ 60 ℃ 55 ℃ 50 ℃ 45 ℃ 

1.5 (L/m) HF6515 HF6015 HF5515 HF5015 HF4515 

2.0 (L/m) HF6520 HF6020 HF5520 HF5020 HF4520 

2.5 (L/m) HF6525 HF6025 HF5525 HF5025 HF4525 

3.0 (L/m) HF6530 HF6030 HF5530 HF5030 HF4530 

 

 

Table (28) summarizes all the experiments that are processed using hollow fiber 

membrane at different feed temperatures and flowrates. 

 

 

4.6.1.1 Effect of temperature 

The effect of feed temperature on the production of permeate flux is studied by 

conducting the experiments on various feed temperature. Five different feed 

temperatures were studied (45 - 65℃) with 5℃ temperature increment between 

the runs. Distilled temperature is kept constant at 20℃. Each experiment lasts 

4 hours.  

 

4.6.1.2 Effect of flowrate  

The effect of feed circulation rate on the production of permeate flux is studied 

by conducting the experiments on various feed and permeate flowrates. The 

flowrate is changed adjusting pump speed. Four different feed and permeate 

flowrates were studied (1.5 – 3.0 L/m) with 0.5 L/m flowrate increment between 

the runs. Each experiment lasts 4 hours.  
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4.6.2 Flat Sheet membrane 

Also the flat sheet membrane experiments are conducting 5 experiments for each 

flowrate and 4 different experiments are processed at each feed temperature.  

 

 

Table 29: Experimental codes of Flat Sheet membrane experiments at different feed temperatures and 

flowrates 

      Feed    
Tem. 

Flowrate 
65 ℃ 60 ℃ 55 ℃ 50 ℃ 45 ℃ 

1.5 (L/m) FS6515 FS6015 FS5515 FS5015 FS4515 

2.0 (L/m) FS6520 FS6020 FS5520 FS5020 FS4520 

2.5 (L/m) FS6525 FS6025 FS5525 FS5025 FS4525 

3.0 (L/m) FS6530 FS6030 FS5530 FS5030 FS4530 

 

 

Table (29) summarizes all the experiments that are processed using flat sheet 

membrane at different feed temperatures and flowrates. 

 

 

4.6.2.1 Effect of temperature 

The effect of feed temperature on the production of permeate flux is studied by 

conducting the experiments on various feed temperature. Five different feed 

temperatures were studied (45 - 65℃) with 5℃ temperature increment between 

the runs. Distilled temperature is kept constant at 20℃. Each experiment lasts 

4 hours.  
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4.6.2.2 Effect of flowrate  

The effect of feed circulation rate on the production of permeate flux is studied 

by conducting the experiments on various feed and permeate flowrates. The 

flowrate is changed adjusting pump speed. Four different feed and permeate 

flowrates were studied (1.5 – 3.0 L/m) with 0.5 L/m flowrate increment between 

the runs. Each experiment lasts 4 hours.  

 

 

4.6.3 Operating Conditions 

As it was mentioned above all the conducted experiments are varying between 

(45 - 65℃) feed temperatures and (1.5 – 3.0 L/m) feed and permeate flowrates.  

 

Table 30: Parameters and conditions of DCMD system 

Parameter Range 

Feed Operating Temperature (℃) 45 – 65 

Distilled Operating Temperature (℃) 20 

Feed Flowrate (L/m)  1.5 – 3.0 
Distilled Flowrate (L/m) 1.5 – 3.0 
Pressure range (atm) 1 

Feed Seawater 
Conductivity (𝑚𝑆/𝑐𝑚) 65.0 

pH 8 

Permeate 
(Hollow Fiber) 

conductivity (𝜇𝑆/𝑐𝑚) ~ 40.0 

pH 6 
Permeate 

 (Flat Sheet) 
conductivity (𝜇𝑆/𝑐𝑚) ~ 2.0 

pH 6 

 

 

Distilled temperature is kept constant at 20℃. Each experiment lasts 4 hours. 

Hot Seawater is used as feed solution for all experiments with 65 𝜇𝑆/𝑐𝑚 

approximately. For distilled stream, deionized cold water is used that is mixed 

with permeate during the experiments. The conductivity of deionized distilled 
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water is 65 𝜇𝑆/𝑐𝑚 approximately. All the parameters and conditions of the lab 

scale DCMD system are summarized in the table (30) above. 

By conducting all these experiments, flux results of both membranes will be 

provided in the results section before being compared and analyzed. Moreover, 

the explanation of all conditions affecting the flux in addition to heat thermal 

coefficients that affect the results will be explained in the Discussion section in 

Chapter 5. 

 

 

4.6.4 Repeatability of Experiments 

After all the experimental runs were conducted with different feed temperatures 

and flowrates, a number of randomly selected experimental runs were repeated. 

All the repeated experiments show a very low error percentage near zero that did 

not exceed 0.2%. 

 

 

4.7 Approach  

The used approach in order to evaluate the thermal convective coefficients in flat 

sheet and hollow fiber membranes is explained in this section. All the steps and 

used correlations are listed in sequent of their usage. 

 

 

4.7.1 Convective Heat Transfer Considerations 

After the permeate results of hollow fiber and flat sheet membranes are generated 

from the DCMD system, the explanation of archived flux amount is made 

according to scientific proper terms. It was noticed that permeate flux is affected 

by thermal coefficients. Therefore, heat transfer coefficients were calculated for 

both hollow fiber and flat sheet membrane to verify flux difference. In this section 
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the methodology of calculation part of thermal coefficients is provided. All the 

steps and used equations are listed in this section for both membranes. 

 

 

4.7.1.1 Flat Sheet Membrane 

The main target of this section is to calculate the heat transfer coefficient of 

DCMD system using flat sheet membrane on the hot feed side. To achieve this 

target, several dimensionless numbers should be calculated such as Reynolds 

number (Re), Prandtl number (Pr), and Nusselt number (Nu). Reynolds number 

(Re) and Prandtl number (Pr) can be calculated using equations (14) and (15) 

mentioned before in the Heat Transfer section in Chapter 3. As thermal 

coefficients are calculated for the hot side of the membrane only, Prandtl number 

(Pr) that is a dimensionless number depends only on the hot feed seawater 

properties.  

All seawater properties are calculated based on seawater salinity of 60 g/kg 

[150]. These properties include seawater density, viscosity, heat capacity, and 

thermal conductivity. Table (31) listed seawater properties at feed temperature 

of 65℃. Similar properties of seawater at 45℃, 50℃, 55℃, and 60℃ feed 

temperature are collected in order to evaluate thermal coefficient at different feed 

temperatures. 

 

 

Table 31: Seawater properties at feed temperature of 65℃ 

Seawater Property Values at temperature of 65 ℃ 

Density (kg/m3) 1024.0 
Viscosity (Ns/m2) 0.0005 

Heat Capacity (J/kg. K) 3904.0 
Thermal Conductivity (W/m. k) 0.6510 
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As turbulent promoter (spacer) is introduced in the flat sheet membrane system, 

all the used correlations are applied into spacer-filled channels. All the equations 

are used for spacer-filled channel. Some correlations are different from free-

spacer channel as the spacer affect the flow velocity and the hydraulic diameter. 

Phattaranawik et al. [51], [74], [76], [134], [151], [152] developed several 

correlations to estimate heat transfer coefficients in spacer-filled channels. 

The velocity of feed flow in the spacer-filled channel (𝑣𝑠) can be calculated using 

equation (58) below: 

𝒗𝒔 = 
𝑸

𝑨 𝜺
 

(58) 

where 𝑄 is the feed volumetric flowrate, 𝜀 is membrane porosity, and 𝐴 is cross-

sectional area of empty channel which is perpendicular to flow direction and can 

be calculated by measuring flow path length and channel height in the 

membrane compartment. 

The hydraulic diameter in the spacer-filled channel (𝐷ℎ) is calculated be using 

equation (59) below: 

𝑫𝒉 = 
𝟒 𝜺𝒔

𝟐
𝒉𝒔𝒑

+ (𝟏 − 𝜺)𝑺𝒗𝒔𝒑

 (59) 

where ℎ𝑠𝑝 is the spacer thickness, 𝜀𝑠 is spacer porosity that can be calculated 

using equation (60), and 𝑆𝑣𝑠𝑝 is specific spacer surface that is determined by 

using equation (61). 

𝜺𝒔 =  𝟏 −
𝟒 𝒅𝒇

𝟐

𝟐 𝒍𝒎 𝒉𝒔𝒑 𝐬𝐢𝐧𝜽
 

(60) 

𝑺𝒗𝒔𝒑 = 
𝟒 

𝒅𝒇
 

(61) 

where 𝑑𝑓 is diameter of spacer filament, 𝑙𝑚 is mesh size, and 𝜃 is hydrodynamic 

angle. All these parameters are measured using electronic Vernier Caliper. All 

the calculated and measured spacer characteristics are listed in table (32) below: 
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Table 32: Parameters of the used spacer 

Parameter Measured or Calculated value 

Thickness (mm) 1.56 
Diameter of spacer filament (mm) 0.78 

Mesh size (mm) 3.23 

Hydrodynamics angle 90 
Spacer porosity (%) 81 

Specific surface of spacer (mm-1) 5128 

 
 

 
After spacer parameters have be evaluated and hydraulic diameter is calculated, 

Reynolds number (Re) can be determined. Pr and Re numbers are used to 

estimate Nusselt number (Nu) according to Nu correlations. Different 

experimental conditions advise different Nu correlations. APPENDIX B 

summarizes different Nu correlations that found in literature. Nu correlation for 

spacer-filled channel suggested by Phattaranawik, [73] Manawi [47] and other 

researchers [74], [76] is expressed in equation (62). This correlation is used to 

calculate Nu number as it is applied on similar operating conditions that were 

used in our research.  

𝑵𝒖 =  𝟎. 𝟔𝟔𝟒 𝐤𝒅𝒄 𝑹𝒆
𝟎.𝟓 𝑷𝒓𝟎.𝟑𝟑  [

𝟐 𝑫𝒉
𝒍𝒎

]
𝟎.𝟓

 
(62) 

where 𝑘𝑑𝑐 is spacer correction factor that is referred to [47], [50], [73], [74], [76] 

and can be evaluated using equation (63). 

𝐤𝒅𝒄 =  𝟏. 𝟔𝟓𝟒 [
𝒅𝒇

𝒉𝒔𝒑
]

−𝟎.𝟎𝟑𝟗

𝜺𝒔
𝟎.𝟕𝟓  (𝐬𝐢𝐧 (

𝜽

𝟐
))

𝟎.𝟎𝟖𝟔

  
(63) 

After all the affected parameters by spacer are evaluated and all the 

dimensionless numbers were calculated and fitted under the proper range, heat 

transfer coefficient (h) can be easily determined with the help of equation (13) 

mentioned before in Heat Transfer section in Chapter 3. 
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4.7.1.2 Hollow Fiber Membrane 

Similar steps of heat transfer coefficient calculation in flat sheet membrane are 

applied in hollow fiber membrane. As for flat sheet membrane, several 

dimensionless numbers should be calculated such as Reynolds number (Re), 

Prandtl number (Pr), and Nusselt number (Nu) in order to achieve the objective. 

Reynolds number (Re) and Prandtl number (Pr) are calculated using equations 

(14) and (15) mentioned before in the Heat Transfer section in Chapter 3. As 

thermal coefficients are calculated for the hot side of the membrane only, Prandtl 

number (Pr) that is a dimensionless number depends only on the hot feed 

seawater properties exactly as it was proceeded for the flat sheet membrane 

thermal coefficients calculations.  

 

 

 

Figure 53: Square pitch arrangement of the hollow fiber tubes in the module 

 

 

Kern’s method of shell and tube heat exchanger design is applied on the hollow 

fiber module to calculate the equivalent diameter. The principle of hollow fiber 

membrane is very similar to the shell and tube heat exchanger. [153] Calculating 

the equivalent diameter and velocity of the flow are needed to evaluate Reynolds 



138 
 

number (Re). Starting with the equivalent diameter, square pitch arrangement 

of the hollow fiber tubes is assumed to be in the module as shown in figure (53).  

 

In order to evaluate the equivalent diameter, equation (64) is used and several 

hollow fiber tubes parameters have to be measured and estimated. These 

parameters are represented in figure (53) and are listed in table (33).  

𝐃𝒆 = 
𝟏. 𝟐𝟕

𝒅𝒐
 (𝑷𝒕

𝟐 − 𝟎. 𝟕𝟖𝟓 𝒅𝒐
𝟐)  

(64) 

where 𝑑𝑜 is the tube outside diameter, and 𝑃𝑡 is tube pitch. 

To calculate the velocity of the flow by equation (58) as it was mentioned before 

in flat sheet calculations section, the cross-sectional area of the membrane that 

is perpendicular to the flow in hollow fiber membrane module is needed to be 

evaluated. Cross-sectional area is given by equation (65) [153] and all the 

required parameters are listed in table (33) below. 

 

 

Table 33: Hollow fiber membrane parameters in square pitch arrangement 

Parameter Measured or calculated value 

Tube pitch (mm) 2.9 
Tube outside diameter (mm) 2.8 
Shell inner diameter (mm) 21 

Baffle spacing (mm) 500 
Number of fibers 40 

 

 

It is shown in table (33) that the clearance between the tubes is 5 mm and as 

baffles are not used in this configuration, baffle spacing is assumed to be the 

length of the module. 
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𝑨𝒔  =  
( 𝑷𝒕 − 𝒅𝒐) 𝑫𝒔𝒍𝒃

𝑷𝒕
 

(65) 

where 𝑄 is the feed volumetric flowrate, and 𝐴𝑠 is cross-sectional area of empty 

channel which is perpendicular to flow direction. 𝑃𝑡, 𝑑𝑜 , 𝐷𝑠 and 𝑙𝑏 are tube pitch, 

tube outside diameter, shell inside diameter, and baffle spacing.  

After calculating flow velocity in the module and equivalent diameter, Re number 

can be estimated. Pr and Re numbers are used to estimate the Nusselt number 

from Nu correlations listed in APPENDIX B. From different Nu correlations found 

in literature, one was chosen to be used in this research. Wang and Gu reported 

in their study [108] of hollow fiber membrane heat exchanger different Nu 

correlations according to seawater feed arrangement; lumen side or shell side. 

Nu correlation that applicable for feed water on the shell side of membrane was 

chosen to satisfy our operating conditions. This Nu correlation is given by 

equation (66). 

𝑵𝒖 = ( 𝟎. 𝟓𝟑 − 𝟎. 𝟓𝟖 ∅ ) 𝑹𝒆𝟎.𝟓𝟑 𝑷𝒓𝟎.𝟑𝟑  
(66) 

where ∅ is packing density of the membranes and can be evaluated using 

equation (67). 

∅ = 𝒏 [
𝟐 𝝅 𝒓𝒐
𝝅 𝑫𝒔

]
𝟐

  
(67) 

where 𝑟𝑜 is tube outside radius and 𝑛 is number of hollow fiber tubes inside the 

module. All these parameters can be found in table (33). The final step is 

evaluating heat transfer coefficient with the help of equation (13) as it was 

proceeded in flat sheet thermal coefficients calculations. 

 

 

4.8 Water Quality  

The permeate water achieved by membrane distillation system using flat sheet 

and hollow fiber membranes was tested to ensure water quality.  The presence 

of different anions and cations, electrical conductivity measurements, pH 



140 
 

measurements, and salt rejection calculations were proceeded in order to asses 

permeate quality. 

 

 

4.8.1 Cations Analysis  

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) is used to 

determine the cations of trace metals and elements present in permeate water. 

The used ICP-OES device has (iCAP 6000 Series, Thermo Scientific, USA) model. 

The procedure starts with the preparation of blank solutions of 100 ml Nitric 

Acid diluted with ultra-pure water. The next step is standards preparation. After 

that, blanks, standards, and all permeate samples generated from flat sheet 

membrane and hollow fiber membrane distillation process are placed in the 

auto-sampler rack of the ICP-OES device in order to receive cations analysis with 

compatible software.  

 

 

 

Figure 54: ICP Spectrometer apparatus  
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Figure (54) pictures the ICP-OES device used in the laboratory for cations 

analysis. 

 

 

4.8.2 Anions Analysis  

Ion Chromatography (IC) is used to determine the anions of trace metals and 

elements present in permeate water. The used IC devise has (850, Metrohm, 

Swaziland) model. Ion Chromatography (IC) can measure the concentration of 

major anions fluoride, chloride, bromide, nitrate, sulfate, and phosphate. Figure 

(55) pictures Ion Chromatography apparatus used in the laboratory for anions 

analysis.  

 

 

 

Figure 55: Ion Chromatography apparatus 
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5 Chapter 5: Results and Discussion 

In this chapter, the results of all the conducted experiments of direct contact 

membrane distillation (DCMD) process are represented. The results are 

discussed in order to understand the theory behind the observed experimental 

results. The first section will cover the experimental work that includes permeate 

flux generation for both types of membranes. The second part will cover the 

convective heat transfer considerations of some dimensionless numbers (Re, Pr, 

Nu) and heat transfer coefficients, h. Finally, water quality analysis will be done 

on the generated permeate water. 

 

 

Experimental Results 

All the achieved results from the experimental work and the convective heat 

transport study are present in the sections below. The experimental part 

includes the study of flat sheet and hollow fiber membranes performance in 

terms of generated permeate flux. The convective heat transport study explains 

the results achieved from the calculations of flow pattern and thermal 

coefficients. 

 

 

5.1 Distillate Flux Results 

 

5.1.1 Flat Sheet membrane module 

In this section, the experimental work is performed to study the effect of 

changing the operation conditions on DCMD system. Different operating 

conditions include feed and permeate temperature and feed flowrates are tested 

on flat sheet membrane. Same operating conditions that applied on flat sheet 

membranes would be applied later on hollow fiber membrane in order to compare 

between them. Permeate flux is the main characteristic parameter that is affected 

by operating conditions and indicate the optimum conditions to achieve higher 
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flux. Each parameter in this section would be discussed later in discussion 

section for better understanding. 

 

 

5.1.1.1 Effect of Feed Temperature 

The effect of feed temperature on permeate flux was studied on flat sheet 

membranes in this DCMD system. The studied feed temperatures all are varied 

between five different temperatures (45, 50, 55, 60, and 65 ℃ ) while keeping the 

flow rate constant at each run. The permeate temperature is set to 20 ℃ and all 

the experiments are run for approximately 4 hours. 

 

 

5.1.1.2 Effect of Flow Rate  

The effect of feed flow rate on the permeate flux was studied on flat sheet 

membranes in this DCMD system. Four different feed flow rates were applied for 

this section. All the flow rates were varied between (1.5, 2.0, 2.5, and 3.0 LPM). 

For each flow rate, the permeate and feed temperatures are kept constant. 

Permeate temperature is set to 20 ℃ and all the experiments are run for 

approximately 4 hours. 

Figures (56 - 59) illustrate the resulted permeate fluxes for flat sheet membrane 

experiments at different flowrates and feed temperatures. 
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Figure 56: Permeate Flux profile of Flat Sheet membrane at different feed temperatures (Q= 1.5 LPM, 

Tp=20 ℃) 

 

 

Figure (56) represents the effect of changing feed temperature on the permeate 

flux using flat sheet membrane. Feed temperatures were varied between (45, 50, 

55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed and 

permeate flow rates are maintained at 1.5 LPM. 
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Figure 57: Permeate Flux profile of Flat Sheet membrane at different feed temperatures (Q= 2.0 LPM, 

Tp=20 ℃) 

 

 

Figure (57) represents the effect of changing feed temperature on the permeate 

flux using flat sheet membrane. Feed temperatures were varied between (45, 50, 

55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed and 

permeate flow rates are maintained at 2.0 LPM. 

5

10

15

20

25

30

35

40

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Fl
u

x 
(L

M
H

)

Time (min)

65 C

60 C

55 C

50 C

45 C



146 
 

 

Figure 58: Permeate Flux profile of Flat Sheet membrane at different feed temperatures (Q= 2.5 LPM, 

Tp=20 ℃) 

 

 

Figure (58) represents the effect of changing feed temperature on the permeate 

flux using flat sheet membrane. Feed temperatures were varied between (45, 50, 

55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed and 

permeate flow rates are maintained at 2.5 LPM. 
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Figure 59: Permeate Flux profile of Flat Sheet membrane at different feed temperatures (Q= 3.0 LPM, 

Tp=20 ℃) 

 

 

Figure (59) represents the effect of changing feed temperature on the permeate 

flux using flat sheet membrane. Feed temperatures were varied between (45, 50, 

55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed and 

permeate flow rates are maintained at 3.0 LPM. 

All feed inlet/outlet temperatures to flat sheet membrane module during the 

experimental time and just before shutting-down the apparatus are summarized 

in table (34) below in addition to temperature difference across the membrane at 

different feed flowrates. 
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Table 34: Flat Sheet Module terminal temperatures 

Feed Flowrate 
(LPM) 

Feed Inlet 
Temperature (℃) 

Feed Outlet 
Temperature (℃) 

∆𝑇 

1.5 

45.50 43.00 2.50 

50.40 47.60 2.80 

55.10 51.70 3.40 

60.00 56.20 3.80 

65.10 60.90 4.20 

2.0 

45.50 43.70 1.80 

50.30 48.00 2.30 

55.20 52.50 2.70 

59.90 57.30 2.60 

65.30 61.70 3.60 

2.5 

45.50 43.70 1.80 

50.00 47.90 2.10 

55.10 52.70 2.40 

59.80 56.80 3.00 

65.30 62.60 2.70 

3.0 

45.40 44.20 1.20 

50.90 49.80 1.10 

54.90 52.90 2.00 

60.20 58.20 2.00 

65.40 63.10 2.30 

 

 

Results showed that temperature difference across the membrane decreases 

with increasing feed flowrate. 

 

 

5.1.2 Hollow Fiber membrane module 

In this section, the experimental work is performed to study the effect of 

changing the operation conditions on DCMD system. Different operating 

conditions include feed and permeate temperature and feed flowrates are tested 

on hollow fiber membrane in order to compare with flat sheet membrane. 

Permeate flux is the main characteristic parameter that is affected by operating 

conditions and indicate the optimum conditions to achieve higher flux. Each 
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parameter in this section would be discussed later in discussion section for 

better understanding. 

 

 

5.1.2.1 Effect of Feed Temperature 

The effect of feed temperature on permeate flux was studied on hollow fiber 

membrane in this DCMD system. The studied feed temperatures all are varied 

between five different temperatures (45, 50, 55, 60, and 65 ℃ ) while keeping the 

flow rate constant at each run. The permeate temperature is set to 20 ℃ and all 

the experiments are run for approximately 4 hours. 

 

 

5.1.2.2 Effect of Flow Rate  

The effect of feed flow rate on the permeate flux was studied on hollow fiber 

membrane in this DCMD system. Four different feed flow rates were applied for 

this section. All the flow rates were varied between (1.5, 2.0, 2.5, and 3.0 LPM). 

For each flow rate, the permeate and feed temperatures are kept constant. 

Permeate temperature is set to 20 ℃ and all the experiments are run for 

approximately 4 hours. 

Figures (60 – 63) illustrate the resulted permeate flux for flat sheet membrane 

experiments at different flowrates. 
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Figure 60: Permeate Flux profile of Hollow Fiber membrane at different feed temperatures (Q= 1.5 LPM, 

Tp=20 ℃) 

 

 

Figure (60) represents the effect of changing feed temperature on the permeate 

flux using hollow fiber membrane. Feed temperatures were varied between (45, 

50, 55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed 

and permeate flow rates are maintained at 1.5 LPM. 
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Figure 61: Permeate Flux profile of Hollow Fiber membrane at different feed temperatures (Q= 2.0 LPM, 

Tp=20 ℃) 

 

 

Figure (61) represents the effect of changing feed temperature on the permeate 

flux using hollow fiber membrane. Feed temperatures were varied between (45, 

50, 55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed 

and permeate flow rates are maintained at 2.0 LPM. 
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Figure 62: Permeate Flux profile of Hollow Fiber membrane at different feed temperatures (Q= 2.5 LPM, 

Tp=20 ℃) 

 

 

Figure (62) represents the effect of changing feed temperature on the permeate 

flux using hollow fiber membrane. Feed temperatures were varied between (45, 

50, 55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed 

and permeate flow rates are maintained at 2.5 LPM. 
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Figure 63: Permeate Flux profile of Hollow Fiber membrane at different feed temperatures (Q= 3.0 LPM, 

Tp=20 ℃) 

 

 

Figure (63) represents the effect of changing feed temperature on the permeate 

flux using hollow fiber membrane. Feed temperatures were varied between (45, 

50, 55, 60, and 65 ℃ ) while the permeate temperature was kept at 20 ℃. Feed 

and permeate flow rates are maintained at 3.0 LPM. 

 

All feed inlet/outlet temperatures to hollow fiber membrane module during the 

experimental time and just before shutting-down the apparatus are summarized 

in table (35) below in addition to temperature difference across the membrane at 

different feed flowrates. 
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Table 35: Hollow Fiber Module terminal temperatures 

Feed Flowrate 
(LPM) 

Feed Inlet 

Temperature (℃) 

Feed Outlet 

Temperature (℃) 
∆𝑇 

1.5 

46.00 40.90 5.10 

50.70 46.00 4.70 

55.40 50.40 5.00 
59.80 53.00 6.80 

65.30 58.40 6.90 

2.0 

45.60 42.00 3.60 

51.20 47.10 4.10 

55.40 50.20 5.20 

60.40 55.10 5.30 

65.10 59.60 5.50 

2.5 

46.10 42.80 3.30 

50.90 47.30 3.60 

55.50 51.70 3.80 

60.20 55.90 4.30 

65.10 60.60 4.50 

3.0 

46.60 44.00 2.60 

51.10 48.20 2.90 

56.00 52.90 3.10 
60.80 57.60 3.20 

64.80 60.70 4.10 

 

Results showed that temperature difference across the membrane decreases 

with increasing feed flowrate. 

 

 

Discussion  

All the achieved results from the experimental part are discussed and compared 

to other literature results in this section below. The results are discussed 

according to different affecting parameters. Moreover, the heat transport 

convective study of flow pattern and thermal coefficients calculations is 

presented in the sections below. 
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5.2 Permeate Flux Performance 

5.2.1 Flat Sheet membrane 

The permeate flux performance is studied at different feed temperatures and 

flowrates of flat sheet membrane of DCMD system. The results of 20 

experimental runs are combined and represented in one graph to show the effect 

of operating conditions. 

 

 

 

Figure 64: Permeate flux profile of Flat Sheet membrane at different flowrates 

 

 

Figure (64) shows that feed temperature and flowrate have direct effect on the 

permeate flux. As feed temperature rises from (45 – 65)℃ , the flux increases. 

The permeate temperature is kept constant at 20℃. Similar to feed temperature, 
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increasing feed flow rate will enhance the permeate flux. At lowest feed and 

permeate flowrates (1.5 LPM) and lowest feed temperature of 45℃, a permeate 

flux of 12 LMH is achieved. The highest permeate flux that can be achieved in 

the flat sheet membrane is 37 LMH at feed and permeate flowrates of 3.0 LPM 

and feed temperature of 65℃. Comparing to literature results, Zhang et al. [154] 

accomplished a flux of nearly 40 LPM in a spacer filled channel of compressible 

PTFE membrane. A permeate flux of almost 40 LPM is also obtained by Nguyen 

et al. [155] at similar operating conditions and they pointed that at higher feed 

temperatures, membrane wetting started to occur. The results of permeate fluxes 

obtained from our experiments were in good agreement with the results found in 

literature [47], [48], [53], [58], [74], [88], [93], [129], [156], [157]. Some 

researchers found the permeate flux for flat sheet membrane can achieve as high 

as 190 LPM if operating conditions are wisely chosen [75], [117]. Other results 

that found in literature are varying a lot from what we have, and this could be 

due to different operating conditions such as higher or lower flowrates, different 

membrane materials, different membrane morphology from the one used in our 

laboratory, and many other factors that affect the flux [52], [68], [158], [159]. As 

example, a research on LDPE membrane in a spacer-filled channel generate less 

than 10 LHM flux [38]. At same operating conditions, more than 15 LHM 

permeate flux is achieved. This conclude that the membrane material is also 

affecting the flux. 

 

The increase of permeate flux due to higher flowrates is also plotted in figure 

(64). The flowrates are varying from (1.5 – 3.0) LPM and it is shown that the effect 

of increasing the flowrate is not as high as the feed temperature effect. The small 

enhancement of the flux by flowrate related to the increase of Reynolds number. 

Therefore, heat transfer coefficient became higher and the potential of driving 

the vapor from feed to distilled is increased. Shim et al. reported that an increase 

of feed flowrate from 4.5 LPM to 7.0 LPM enhances the flux by almost 20% [156]. 

Special accurateness of feed and permeate flowrates should be taken into 
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consideration at lower feed temperature, as specific temperature difference (more 

than 10) between the hot and cold sides should be maintained [47]. The values 

of flux affected by feed flowrate and obtained from our experiments are consistent 

with the majority of literature results [50], [58], [154], [157], [158]. 

All the operating conditions parameters are further discussed in details and the 

results are compared to literature results in this section below: 

 

 

5.2.1.1 Feed Temperature 

Starting with feed temperature that has greatest effect on the flux. This is due to 

exponential relation between vapor pressure and temperature in the Antoine 

equation [80], [115]. Increasing feed temperature lead to increase the difference 

of temperatures across the membrane from that generate more flux. This means 

that the highest fluxes occur at high feed temperature and low permeate 

temperature. However, the relation is not directly proportional and this is due to 

temperature polarization that lower the flux [88]. In general, the highest amount 

of flux is generated at high feed temperatures (60 – 85℃ ). Alkhudhiri et al. also 

shows that permeate flux production is more depended on the feed temperature 

than permeate temperature by keeping constant temperature difference across 

the membrane will generate more flux at higher feed temperature [35]. In 

addition, Srisurichan et al. pointed that high feed temperature increases mass 

transfer coefficient leading to higher production of flux [81]. Another factor that 

lower the flux production is temperature polarization and Phattaranawik et al. 

[74], [75] believed that at higher feed temperature, the effect of temperature 

polarization is negligible. 

 

 

5.2.1.2 Permeate Temperature 

As mentioned before, not only the feed temperature can affect the permeate flux, 

the distilled temperature is also an important factor of enhancement the flux 
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generation. However, the effect of permeate temperature is not high as feed 

temperature [35], [47], [50]. Banat and Simandl [116] represent that effect of 

distilled temperature on permeate flux is almost negligible at constant feed 

temperature. 

 

 

5.2.1.3 Feed/Permeate Flowrate 

Permeate flux is increasing as the hydrodynamic conditions increase. As feed 

velocity increases, fluid mixing is improved in the channel by increasing the 

turbulence and minimizing the dead zones [80]. By increasing the flowrates, flow 

velocities are increased. Higher velocities decrease temperature boundary layer 

resistance across the membrane hence, reduce the effect of temperature and 

concentration polarization on the flux. As a result, heat transfer coefficients are 

increased, producing more permeate flux [6], [81], [118]. Bouchrit et al. [42] 

noticed in his study that a linear increasing of flux occurs when both the 

permeate and flux flowrates increase. Alike the feed flowrate, permeate flowrate 

is also affecting the flux. However, enhancing only the cold side flowrate is 

showing negligible effect on the flux [35]. 

 

 

5.2.1.4 Turbulent Promoter (Spacer) 

A polymeric (PP) mesh spacer is used for flat sheet membrane in order to increase 

the turbulence of the flow and reduce temperature and concentration 

polarization effect. Spacer’s function was not only increasing heat transfer 

coefficients, but also increasing flow velocity inside the compartment. A study 

was done by Manawi et al. [47] showing that an increase of about 50% of the flux 

occur when a spacer is introduced to the system under identical operating 

conditions. Different spacer characteristics are explained previously in section 

(4.4.7) in chapter 4. 
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5.2.1.5 Flow Configuration 

A counter-current flow configuration was used for the system as it was 

investigated by Manawi et al. [47] in a previous research that the flux is enhanced 

by 6% when counter-current system is used. 

 

 

5.2.2 Hollow Fiber membrane 

The permeate flux performance is studied at different feet temperatures and 

flowrates of hollow fiber membrane of DCMD system. The results of 20 

experimental runs are combined and represented in one graph to show the effect 

of operating conditions. 

 

 

 

Figure 65: Permeate flux profile of Hollow Fiber membrane at different flowrates 
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Figure (65) represents the flux profile as a function of feed temperature and 

flowrate. These two parameters have direct effect on the permeate flux. As feed 

temperature rises from (45 – 65)℃ , more permeate flux is generated. The 

permeate temperature is kept constant at 20℃. Similar to feed temperature, 

increasing feed flow rate will enhance the permeate flux. At lowest feed and 

permeate flowrates (1.5 LPM) and lowest feed temperature of 45℃, a permeate 

flux of 1.8 LMH is achieved. The highest permeate flux that can be achieved in 

the flat sheet membrane is 5.2 LMH at feed and permeate flowrates of 3.0 LPM 

and feed temperature of 65℃. Experiments with similar operating conditions and 

PP membrane material conducted by Chung et al. [128] accomplished exactly 

same results that are doubled when feed temperature reached 80℃. Permeate 

flux in hollow fiber membrane can exceed 38.0 LMH at 85℃ feed temperature 

[101]. Mainly, the results obtained for hollow fiber flux are consistent with many 

results found in literature [46], [98], [107], [108], [126]. As feed temperature is 

the most important factor affecting the flux, the porosity in hollow fiber 

membrane has essential impact. Lower permeate fluxes even at higher feed 

temperature were found in these researches where low porosity membranes are 

used [39], [49], [79]. 

It is also shown in figure (65) that the permeate flux is less affected by feed and 

permeate velocities at high values of flowrates. 

All the operating conditions parameters are further discussed in details and the 

results are compared to literature in the sections below: 

 

 

5.2.2.1 Feed Temperature 

Starting with feed temperature that has great effect on the flux. This is due to 

exponential relation between saturated vapor pressure and temperature in the 

Antoine equation. As vapor pressure difference across the membrane increases, 

more flux is achieved. Related to the equation, a parabolic curve of permeate flux 

occur as the temperature increases. The highest amount of flux is achieved near 
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the boiling point temperature. However, as high feed temperature produces more 

flux, more heat transfer to the permeate side rising the temperature of the 

distilled. As permeate temperature rises, flux production drops [135]. This shows 

that all condition parameters in hollow fiber membranes are connected together. 

In addition to condition parameters, membrane morphology helps achieving 

better results. Cheng et al. [100] explained in his research that increasing feed 

temperature won’t affect the flux with long membrane fibers. As the membrane 

increases in length, less flux is generated. Geng et al. [160], [161] found that flux 

is declining slowly with increasing the length of membrane to reach 30 cm. At a 

length greater than 30 cm, insignificant amount of flux is generated. The reason 

behind flux declining is that feed temperature difference between inlet and outlet 

decreases with increasing fiber length [108], [154], [157]. Consequently, the 

driving force decreases. Therefore, flux increment is affected by fiber length and 

the optimum length should be chosen. Hollow fiber membrane material, [46], 

[161] the number of membrane modules [162] and many other factors are also 

affecting the permeate flux at high feed temperature. 

 

 

5.2.2.2 Permeate Temperature 

As mentioned before, not only the feed temperature can affect the permeate flux, 

the distilled temperature is also an important factor of enhancement the flux 

generation in hollow fiber membranes. However, the effect of permeate 

temperature is not high as feed temperature. In some researches where very low 

permeate temperature is used (8.6℃), mass flux can be doubled [100]. 

 

 

5.2.2.3 Feed/Permeate Flowrate 

In hollow fiber membrane module, flowrate is more affecting parameter than in 

flat sheet membrane.  Permeate flux is affected as the hydrodynamic conditions 

change. However, the permeate temperature and flowrate is not affecting the 
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production flux a feed temperature and flowrate do. Therefore, enhancement of 

flux according to permeate can occur only at very high permeate flowrate or very 

low permeate temperature [135]. By increasing the flowrates, flow velocities are 

increased affecting Reynolds numbers and hence the heat transfer coefficients 

[105]. As thermal convective parameters rise; more production of flux occurs. 

As vapor molecule pass through the membrane from the hot side to the cold side, 

the temperature at the surface of membrane became lower that the temperature 

at feed bulk creating a boundary layer. This phenomenon is called temperature 

polarization and it decreases the tendency of flux generation. Song et al. [135] 

explained in this research that increasing feed flowrate minimizes the boundary 

layer leading to higher flux production. Nevertheless, Yang et al. [126] mentioned 

that there is no advantage of increasing the flowrate if the flow reached turbulent 

regime as the flux would not change much.  

Song et al. [135] reported in his research that the permeate flux can be doubled 

when feed velocity increases four times at high feed temperature. However, 

increasing the flowrate in hollow fiber module can be a critical issue. From one 

side, it minimizes temperature polarization and from the other side increasing 

the flowrate lower the residence time and increase feed average temperature. As 

a result, reducing the retention time along the module, higher temperature 

difference across the membrane. As a consequence, more flux is generated. For 

this reason, only the optimum flowrate can enhance the flux. In addition to this, 

Cheng et al. [109] reported that the increase of flux due to permeate flowrate is 

temporary. After a while, flux starts to decline if permeate flowrate is increasing 

more than the feed flowrate. It happens due to the geometry of hollow fiber and 

the changes of temperature along fiber length. Maximum flux occurs at the inlet 

of permeate stream where large ∆𝑇 between hot and cold temperatures, then the 

flux starts to decline. Eventually, each hollow fiber modules with different 

dimensions has its optimum permeate flowrate that produce the highest flux. 
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Novel techniques are investigated to increase the turbulence in hollow fiber 

modules. These new designs implement spacers, different baffles, and improved 

hollow fibers such as twisted and braided fibers. These modified hollow fiber 

membranes can enhance the permeate flux up to 36% and in some specific 

designs up to 90% [84], [85]. 

 

 

5.2.2.4 Flow Configuration 

A counter-current flow configuration was used for hollow fiber membrane system 

as it was investigated by Sirkar [79] in a research that counter-current 

configuration in hollow fiber membranes generates more flux than co-current 

flow under the same operating conditions.  

 

 

5.3 Comparison of Permeate Flux 

In this section the permeate flux profiles of flat sheet membrane and hollow fiber 

membrane at identical operating conditions are graphically represent on one 

graph for an easy comparison between them. Similar graphs are conducted for 

each flowrate. 
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Figure 66: Comparison of permeate flux between flat sheet membrane and hollow fiber membrane at 

flowrate (1.5 LPM) 

 

 

In figure (66) above, a comparison between flat sheet membrane and hollow fiber 

membrane is made in terms of permeate flux generation. All the experiments 

were conducted at identical operating conditions of temperatures and flowrates. 

At a flowrate of 1.5 LPM and feed temperature of 65℃ flat sheet membrane can 

generate permeate flux of (27.2 L/m2.h) which is almost 6 times higher the flux 

of hollow fiber membrane (4.3 L/m2.h). 
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Figure 67: Comparison of permeate flux between flat sheet membrane and hollow fiber membrane at 

flowrate (2.0 LPM) 

 

 

In figure (67) below, a comparison between flat sheet membrane and hollow fiber 

membrane is made in terms of permeate flux generation. All the experiments 

were conducted at identical operating conditions of temperatures and flowrates. 

At a flowrate of 2.0 LPM and feed temperature of 65℃ flat sheet membrane can 

generate permeate flux of (34.7 L/m2.h) which is almost 7 times higher the flux 

of hollow fiber membrane (4.7 L/m2.h).  
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Figure 68: Comparison of permeate flux between flat sheet membrane and hollow fiber membrane at 

flowrate (2.5 LPM) 

 

 

In figure (68) above, a comparison between flat sheet membrane and hollow fiber 

membrane is made in terms of permeate flux generation. All the experiments 

were conducted at identical operating conditions of temperatures and flowrates. 

At a flowrate of 2.5 LPM and feed temperature of 65℃ flat sheet membrane can 

generate permeate flux of (36.0 L/m2.h) which is almost 7 times higher the flux 

of hollow fiber membrane (5.0 L/m2.h). 
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Figure 69: Comparison of permeate flux between flat sheet membrane and hollow fiber membrane at 

flowrate (3.0 LPM) 

 

 

In figure (69) above, a comparison between flat sheet membrane and hollow fiber 

membrane is made in terms of permeate flux generation. All the experiments 

were conducted at identical operating conditions of temperatures and flowrates. 

At a flowrate of 3.0 LPM and feed temperature of 65℃ flat sheet membrane can 

generate permeate flux of (37.1 L/m2.h) which is almost 7 times higher the flux 

of hollow fiber membrane (5.2 L/m2.h). 
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include operating conditions such are feed temperature and flowrate and how 

they will affect the dimensionless numbers (Re, Nu, Pr) hence the permeate flux. 

First of all, dimensionless numbers (Re, Pr) are calculated according to various 

operating conditions. Prandtl number (Pr) depends on fluid properties, so it will 

be affected by changing feed temperature. Reynolds number (Re) will be 

influenced by feed temperature and feed flowrate. A proper correlation for 

Nusselt number (Nu) is chosen depending on Reynolds number (Re) and 

operating conditions in order to evaluate the heat transfer coefficients (h), W/m2 

K. The improvement of permeate flux generation is directly related to heat 

transfer coefficients. Therefore, the effect of each parameter will be studied 

separately later in this chapter. Also, the effect of flow patter and membrane 

configuration is taking into account. All the calculations steps are applied on flat 

sheet membrane and hollow fiber membrane. For flat sheet membrane, the 

turbulent promoter (spacer) is also considered as an important factor of affecting 

heat transfer coefficients. All the studies factors can be summarized as: 

 The effect of temperature 

 The effect of flowrate 

 The effect of module configuration and turbulent promoter 

The effect of each factors will be applied on flat sheet and hollow fiber membranes 

where the results will be present, analyzed and compared to other studies and 

researches. 

 

 

5.4.1 Flat Sheet membrane 

5.4.1.1 Reynolds Number, Re 

Reynolds Number (Re) is calculated for flat sheet membrane experiments at 

different flowrates using equation (14) mentioned before in Heat Transfer section 

in Chapter 3. The procedure of calculating Re numbers is explained in details 

in the Approach section in Chapter 4. Table (34) listed the calculated values of 
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Re numbers for feed temperature of 65 ℃ only. However, Re numbers are 

calculated for all feed temperatures (45, 50, 55, 60, and 65 ℃ ). 

 

 

Table 36: Reynolds number at different flowrates of flat sheet membrane at 65 ℃ 

Flow Rate (LPM) Flow Velocity (m/s) Reynolds Number 

1.5 0.15 283 

2.0 0.20 513 

2.5 0.25 641 

3.0 0.30 770 

 

 

Table 36 represents Reynolds Number (Re) of spacer-filled channel with flat sheet 

membrane at 65 ℃. It is observed that Reynolds number increases with 

increasing the flowrate. Experiments show that Reynolds number occur between 

283 and 770 for five different temperatures (45, 50, 55, 60, and 65 ℃ ) and four 

flowrates (1.5, 2.0, 2.5, and 3.0 LPM). Even though, Reynolds number is low and 

fit in the laminar region, turbulent model is more applicable [154]. Therefore, the 

flow pattern is assumed to be transition to turbulent flow. Shakaib et al. [151] 

reported for spacer-filled channel that Re number laid between (115 – 800) for a 

velocity of (0.05 – 0.35 m/s) and the turbulent model is applied when velocity is 

higher than 0.15 m/s. The values of Reynolds number are consistent with 

literature results [118], [129]. 

 

 

5.4.1.2 Heat Transfer Coefficient, h  

Heat Transfer Coefficient (h) is calculated for flat sheet membrane experiments 

at different flowrates using equation (13) mentioned before in Heat Transfer 

section in Chapter 3. The procedure of calculating Heat Transfer Coefficient (h) 

is explained in details in the Approach section in Chapter 4. 
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In the figure (70) below, heat transfer coefficient is evaluated for flat sheet spacer-

filled channel at different flowrates (1.5, 2.0, 2.5, and 3.0 LPM) for five different 

temperatures (45, 50, 55, 60, and 65 ℃ ).  

 

 

 

Figure 70: Heat Transfer Coefficient for flat sheet membrane at different flowrates and temperatures 

 

 

Reynolds number has a proportional relationship with feed temperature and feed 

flowrate, therefore heat transfer coefficient is increased. Consequently, more 

permeate flux is generated. The conducted experiments on flat sheet membrane 

in a spacer-filled channel result heat transfer coefficient of (11246 - 17044 

W/m2 K) at different feed conditions. Phattaranawik et al. and reported for PTFE 

flat sheet membrane at similar operating conditions and for turbulent regime 

that heat transfer coefficient occur between (17026 to 21432 W/m2 K) for a 

spacer-filled channel at higher feed temperature [74]. The resulted values of heat 
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transfer coefficients are reliable and agree with many of literature results [68], 

[115]. However, for heat transfer coefficient we noticed a scatter in values of 

thermal coefficients. This is probably due to the many different dimensionless 

correlations used in order to calculate heat transfer coefficients [47], [58], [163]. 

Each correlation is valid for a specific range only with particular conditions. 

APPENDIX D summaries different heat transfer coefficients found in literature 

for flat sheet membrane.  

 

 

5.4.1.3 Prandtl number, Pr 

As Prandtl number depends on the physical properties of seawater, it will change 

according to seawater feed temperature. Feed temperature ranges from 45 – 65℃ 

in flat sheet membrane system and Prandtl number decrease from 4.3 to 3.0 as 

feed temperature became higher.  

 

 

5.4.2 Hollow fiber membrane 

5.4.2.1 Reynolds Number, Re 

Reynolds Number (Re) is calculated for hollow fiber membrane experiments at 

different flowrates using equation (14) mentioned before in Heat Transfer section 

in Chapter 3. The procedure of calculating Re numbers is explained in details 

in the Approach section in Chapter 4. Table (35) listed the calculated values of 

Re numbers for feed temperature of 65 ℃ only. However, Re numbers are 

calculated for all feed temperatures (45, 50, 55, 60, and 65 ℃ ). 
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Table 37: Reynolds number at different flowrates of hollow fiber membrane at 65 ℃ 

Flow Rate (LPM) Flow Velocity (m/s) Reynolds Number 

1.5 0.07 143 

2.0 0.09 191 

2.5 0.11 239 

3.0 0.14 287 

 

 

Table 37 represents Reynolds Number (Re) of spacer-free channel with hollow 

fiber membrane at 65 ℃. As in flat sheet membrane, Reynolds number increases 

with increasing the flowrate. Experiments show that Reynolds number occur 

between 106 and 287 for five different temperatures (45, 50, 55, 60, and 65 ℃ ) 

and four flowrates (1.5, 2.0, 2.5, and 3.0 LPM). Similar for flat sheet membrane, 

the flow fits the transitional to turbulent regime even though Re was less than 

300. Bui et al. related the small values of Reynolds number due to the tortuosity 

of hollow fibers that produce more turbulence [106]. Another comparison of 

Reynolds number proposed by Geng et al. where AGMD for PP membrane with 

similar operating conditions and it was found that Re occur in the range of (46 – 

153) [160]. For our hollow fiber membrane, the calculated Reynolds numbers are 

consistent with the majority of literature results [72], [79], [105], [107]. 

 

 

5.4.2.2 Heat Transfer Coefficient, h  

Heat Transfer Coefficient (h) is calculated for hollow fiber membrane experiments 

at different flowrates using equation (13) mentioned before in Heat Transfer 

section in Chapter 3. The procedure of calculating Heat Transfer Coefficient (h) 

is explained in details in the Approach section in Chapter 4. 

In figure (71) below, heat transfer coefficient is evaluated for hollow fiber spacer-

free channel at different flowrates (1.5, 2.0, 2.5, and 3.0 LPM) for five different 

temperatures (45, 50, 55, 60, and 65 ℃ ). All the performed experiments on 
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hollow fiber membrane at different operating conditions result heat transfer 

coefficients in the range of (1385 – 2163 W/m2 K). X. Yang et al. provided an 

increase of heat transfer coefficient by 60% when curly fibers are used instead 

of randomly packed module [85]. Moreover, heat transfer coefficient can reach 

(3150 and 3750 W/m2 K) respectively, when window baffled and helical baffled 

modules are introduced to the system at high flowrates [84]. As for flat sheet 

membrane, a scatter in values of heat transfer coefficients occur for hollow fiber 

membrane due to the variety of correlations used [72], [108], [164]. 

 

 

 

Figure 71: Heat Transfer Coefficient for hollow fiber membrane at different flowrates and temperatures 

 

 

APPENDIX D summaries different heat transfer coefficients found in literature 

for hollow fiber membrane.  
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5.4.2.3 Prandtl number, Pr 

As Prandtl number depends on the physical properties of seawater, it will change 

according to seawater feed temperature. Feed temperature ranges from 45 – 65 

℃ in hollow fiber membrane system and Prandtl number decrease from 4.3 to 

3.0 as feed temperature became higher.  

 

5.5 Summary of Results 

In this section a summary of the achieved results of flat sheet membrane and 

hollow fiber membrane is conducted in order to evaluate the difference between 

two membranes. 

The table (38) below summarizes all the significant results obtained from hollow 

fiber and flat sheet membranes for a complete comparison.  

 

 

Table 38: Summary Table of flat sheet and hollow fiber results 

 Hollow Fiber Membrane Flat Sheet Membrane 

Minimum Flux 
(L/m2.h) 

1.8 11.7 

Maximum Flux 

(L/m2.h) 
5.2 37.1 

Flow Velocity 

(m/s) 
0.07 – 0.14 0.15 – 0.30 

Re 106 – 287 283 – 770 

Nu 2 – 3 22 – 33 

h (W/m2 K) 1385 – 2163 11246 – 17044 

 

 

It was found that the flux for hollow fiber membrane at lowest feed temperature 

and lowest flowrate was (1.8 L/m2.h) while the flux for flat sheet membrane at 

the same conditions was (11.7 L/m2.h). At the highest operating conditions, the 
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flux for hollow fiber membrane was (5.2 L/m2.h) while the flux for flat sheet 

membrane at the same conditions was (11.7 L/m2.h). This represents a big 

difference between the two membranes where flat sheet produces nearly 7 times 

higher flux due to difference in flow regime as discussed before. Increasing feed 

temperature by increment of 5℃, results similar increase in the flux for flat sheet 

and hollow fiber membranes. For hollow fiber membrane, an increment of 5℃ of 

feed temperature results (15 – 30%) increase of the flux. For flat sheet membrane, 

an increment of 5℃ of feed temperature results (18 – 42%) increase of the flux. 

The flowrate for the two membranes was identical in a range of (1.5 – 3.0 LPM). 

However, the permeate flux is slightly affected by the operating flowrate. For 

hollow fiber membrane, an increment of 0.5 L/min of operating flowrates results 

an average increase of permeate flux by 4%. For flat sheet membrane, an 

increment of 0.5 L/min of operating flowrates results an average increase of 

permeate flux by 8%. 

However, the velocity in hollow fiber compartment was half the velocity with flat 

sheet membrane due to the morphology in hollow fiber module. Therefore, the 

feed Reynolds numbers in flow channel ranged between 283 to 770 for the flat 

sheet module while the Reynolds numbers ranged between 106 to 287 for the 

hollow fiber module. In addition to flow parameters, the convective heat transfer 

coefficients in the hot side is much greater in the flat sheet module than in the 

hollow fiber module. It is indicated by Nusselt number (Nu) that is 11 times 

higher for the flat sheet module than for the hollow fiber in the hot side of the 

membrane. The maximum hot side convective heat transfer coefficient for the 

flat sheet module was estimated to be 17044 W/m2.h compared to 2163 W/m2.h 

for the hollow fiber module. As heat transfer coefficients increases, heat transfer 

resistance (boundary layer) decreases. Therefore, more mass transfer occurs 

between the membrane. 
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5.6 Water Quality Analysis 

In this section, the quality of the permeate water collected from DCMD system 

with flat sheet and hollow fiber membranes is analyzed. Water quality analysis 

includes Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP – 

OES) analysis, Ion Chromatography (IC) analysis, pH and electrical conductivity 

measurements, and salt rejection calculations. 

 

 

5.6.1 Anions/Cations Analysis  

Water quality analysis of Inductively Coupled Plasma – Optical Emission 

Spectroscopy (ICP – OES) and Ion Chromatography (IC) is conducted on the 

permeate water achieved by bench-scale DCMD system using flat sheet and 

hollow fiber membranes. The analysis is carried out on permeate water generated 

at different operating conditions. ICP and IC analysis were conducted on whole 

samples of permeate water. Some of water quality analysis of randomly chosen 

experiments conducted by ICP and IC are summarized in tables (39 – 41).  

 

 

Table 39: Chemical Analysis of the permeate at feed temperature of 45℃ and 1.5 LPM flowrate 

Composition 
Hollow Fiber 

Concentration level 

(mg/L) 

Flat Sheet 
Concentration level 

(mg/L) 

Anions 

Chloride 12.029 0.138 

Sulphate UDL UDL 

Cations 

Calcium 0.21 0.06 

Sodium 9.03 UDL 

Magnesium 0.07 0.02 

Potassium 0.21 0.10 

pH 5.9 6.76 

Conductivity (𝝁𝒔/𝒄𝒎) 51.16 2.07 
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Table (39) represents the chemical analysis conducted on the permeate water 

generated at experimental conditions of 45℃ feed temperature and 1.5 LPM 

flowrate using both flat sheet and hollow fiber membranes. Distilled cooling 

water is at 20℃. At these experimental operating conditions, the conductivity of 

the permeate achieved by hollow fiber membrane is approximately 25 times 

higher than the conductivity of permeate achieved by flat sheet membrane. 

The analysis showed that using flat sheet membranes provides higher distilled 

water quality in terms of electrical conductivity. Moreover, more cations and 

anions are present in the distilled water generated by the hollow fiber membrane 

than flat sheet membrane. Some compositions concentration is under the 

detection limit of ICP-OES device. Table (42) listed the detection limits of some 

elements for the ICP-OES apparatus. 

 

 

Table 40: Chemical Analysis of the permeate at feed temperature of 55℃ and 2.0 LPM flowrate 

Composition 
Hollow Fiber 

Concentration level 

(mg/L) 

Flat Sheet 
Concentration level 

(mg/L) 
Anions 

Chloride 4.858 0.119 

Sulphate UDL UDL 
Cations 

Calcium 0.08 0.03 
Sodium 3.19 UDL 

Magnesium 0.25 0.02 

Potassium 0.24 0.05 
pH 5.81 5.76 

Conductivity (𝝁𝒔/𝒄𝒎) 23.32 1.83 

 

 

Table (40) represents the chemical analysis conducted on the permeate water 

generated at experimental conditions of 55℃ feed temperature and 2.0 LPM 

flowrate using both flat sheet and hollow fiber membranes. Distilled cooling 
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water is at 20℃. At these experimental operating conditions, the conductivity of 

the permeate achieved by hollow fiber membrane is approximately 13 times 

higher than the conductivity of permeate achieved by flat sheet membrane.  

 

 

Table 41: Chemical Analysis of the permeate at feed temperature of 65℃ and 3.0 LPM flowrate 

Composition 

Hollow Fiber 

Concentration level 
(mg/L) 

Flat Sheet 

Concentration level 
(mg/L) 

Anions 

Chloride 28.557 0.399 

Sulphate 0.230 UDL 

Cations 

Calcium 0.39 0.06 

Sodium 16.93 UDL 

Magnesium 1.27 0.04 

Potassium 0.86 0.08 

pH 5.95 5.05 

Conductivity (𝝁𝒔/𝒄𝒎) 84.07 3.30 

 

 

Table (41) represents the chemical analysis conducted on the permeate water 

generated at experimental conditions of 65℃ feed temperature and 3.0 LPM 

flowrate using both flat sheet and hollow fiber membranes. Distilled cooling 

water is at 20℃. At these experimental operating conditions, the conductivity of 

the permeate achieved by hollow fiber membrane is approximately 25 times 

higher than the conductivity of permeate achieved by flat sheet membrane. 
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Table 42: The ICP-OES Detection Limits 

Element Detection Limit (mg/L) Element Detection Limit (mg/L) 

Al 0.23 Mn 0.01 
Ca 0.15 Na 0.04 
Cu 0.01 Ni 0.01 

K 0.08 Ti 0.04 
Mg 0.00 Zn 0.28 

 

 

The minimum electrical conductivity achieved by flat sheet membrane is 1.83 

𝜇𝑆/𝑐𝑚. For flat sheet membrane, the electrical conductivity does not exceed 5 

𝜇𝑆/𝑐𝑚. The minimum electrical conductivity achieved by hollow fiber membrane 

is 23.32 𝜇𝑆/𝑐𝑚. The average electrical conductivity achieved by hollow fiber 

membrane is 40 𝜇𝑆/𝑐𝑚 besides it never exceed 100 𝜇𝑆/𝑐𝑚. The high values of 

electrical conductivity in hollow fiber membranes present only in the last sets of 

experiments when membrane wetting start to occur. 

 

 

Table 43: The compositions of Rayyan Drinking water in Qatar 

Composition 
Rayyan Water    

Concentration level  

(mg/L) 
Anions 

Chloride 32 

Sulphate 7 

Cations 

Calcium 13 

Sodium 6 

Magnesium 5 

Potassium < 1 
pH 7.2 
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The compositions concentration of Rayyan fresh drinking water of Qatar is 

represent in table (43) for better understanding and comparison of the achieved 

results by both membranes.  

Rayyan drinking water company is considered as low-sodium product. It is 

shown from the results that sodium concentration in the permeate water 

achieved by hollow fiber membrane is higher than the amount present in 

drinking water. However, flat sheet membrane produces extremely clean 

drinking water. All element concentrations including Sodium concentration fall 

within the permissible levels of drinking water. The concentration level of sodium 

in drinking water is suggested by World Health Organization [165] to be 20 mg/L. 

All other tested elements concentration present in the permeate water that is 

produced either by flat sheet or hollow fiber membranes is much lower than the 

compositions in drinking water. Moreover, the application of desalinated water 

directly from the sea requires pH adjustments and the addition of some anti-

sealants to minimize calcium carbonate precipitation on the membrane hence 

membrane wetting. [88] Membrane wetting lowers water quality by increasing 

the electrical conductivity of the permeate. 

 

 

5.6.2 Salt Rejection 

Salt rejection percentage is calculated based on the initial seawater feed 

concentration and final permeate concentration according to equation (57) 

mentioned before in Chapter 3. Salt Rejection percentage is calculated for four 

different randomly picked up runs of hollow fiber and flat sheet membranes are 

represented in table (44). 
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Table 44: Salt Rejection (%) of Hollow Fiber and Flat Sheet membranes 

Run 
Salt Rejection (%) 

Hollow Fiber Membrane Flat Sheet Membrane 

HF6530/FS6530 99.83 99.99 

HF5520/FS5520 99.87 99.99 

HF4515/FS4515 99.92 99.99 

HF5025/FS5025 99.92 99.99 

 

 

High salt rejection is achieved by using flat sheet (about 100%) and hollow fiber 

(about 99.9%) membranes in the bench-scale DCMD system. 

Francis et al. [46] who studied the different hollow fiber membranes in DCMD 

system achieved high salt rejection of 99.99%. Similar results are also achieved 

by Francis et al. [48] studying the desalination of Red sea water by using different 

flat sheet membranes in DCMD system. 
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Chapter 6: Conclusions and Recommendations 

Membrane Distillation (MD) is a thermally driven membrane separation 

technology that can take the advantage of low-grade heat produced by various 

industries. As the low-grade heat is a process byproduct, the integration of 

membrane distillation system into the industrial site became important in terms 

of space footprint. 

This thesis presented results from a bench-scale Direct Contact Membrane 

Distillation (DCMD) system for the desalination of real saline water collected from 

the Arabian Gulf. Two different hydrophobic Polypropylene (PP) membranes 

configurations which are flat sheet membrane and hollow fiber membranes were 

used. The main objective of this study was to compare the flux performance of 

hollow fiber and flat sheet membranes under various operating conditions. 

By the end of this research, several conclusions were made: 

 Membrane distillation is a viable technology that can produce fresh water 

from saline water. 

After evaluating permeate flux performance of flat sheet and hollow fiber 

membranes, several conclusions were made: 

 Flat sheet membranes generate much higher permeate flux than hollow 

fiber membrane under various operating conditions. The highest permeate 

flux achieved by flat sheet membrane is (37.1 kg/m2.h) which 

approximately 7 times higher than the flux achieved by hollow fiber 

membrane (5.2 kg/m2.h). Such high difference in permeate flux is referred 

to the high compactness of hollow fiber membranes.  

 The permeate flux increases with increasing feed operating temperature 

for both, flat sheet membrane and hollow fiber membrane. However, the 

effect of increasing feed temperature on flux is much greater in flat sheet 

membrane than hollow fiber membrane. An increment of 5℃ feed 

temperature results (15 – 30%) increase of the flux in hollow fiber 

membrane and (18 – 42%) increase of the flux in flat sheet membrane. 
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 The permeate flux slightly increases with increasing the operating flowrate 

for both, flat sheet membrane and hollow fiber membrane. Approximately, 

similar trends occur for both, flat sheet and hollow fiber membranes. An 

increment of 0.5 L/min of operating flowrates results an average increase 

of permeate flux of 4% in hollow fiber membrane and 8% increase of the 

flux in flat sheet membrane. 

After evaluating flow patterns and thermal coefficients of the feed side in flat 

sheet and hollow fiber, the following conclusions were made: 

 Hot feed flow velocities in flat sheet and hollow fiber modules were 

calculated at various operating conditions. The calculated velocity of the 

flow in flat sheet compartment is twice higher the velocity in hollow fiber 

module. The lower flow velocity in hollow fiber module happen due to the 

lack of turbulence promoters or equivalent. 

 Reynolds numbers (Re) of hot feed flow in flat sheet compartment and 

hollow fiber module were calculated. The Reynolds numbers of feed flow 

in flat sheet compartment ranged between (283 – 770) which is higher than 

Reynolds numbers in hollow fiber module that ranged between (106 – 287). 

The low values of Re in hollow fiber module related to the tortuosity of the 

flow in the module. Even when Re numbers are ranged in the laminar 

region, transitional to turbulent flow region is applied. 

 Nusselt numbers (Nu) of hot feed flow in flat sheet compartment and 

hollow fiber module were calculated. The Nusselt numbers of feed flow in 

flat sheet compartment ranged between (22 – 33) which is 11 times higher 

than Nusselt numbers in hollow fiber module that ranged between (2 – 3). 

 Heat transfer coefficients of hot feed flow in flat sheet compartment and 

hollow fiber module were calculated. Much higher heat transfer 

coefficients are achieved in flat sheet membrane hot side than in hollow 

fiber membrane. Heat transfer coefficients of flat sheet membrane ranged 

between (11246 – 17044 W/m2 K) while heat transfer coefficients of hollow 

fiber membrane ranged between (1385 – 2163 W/m2 K) only. This explains 
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the low amount of permeate flux generated by hollow fiber membrane. As 

heat transfer coefficient increases, the boundary layer across the 

membrane decrease, allowing more mass transfer (permeate flux) to be 

generated. 

After examining the quality of the permeate water produced by flat sheet and 

hollow fiber membranes, the following conclusions were made: 

 The DCMD system produce high quality permeate water with high salt 

rejection using flat sheet and hollow fiber membranes. Approximately 

100% salt rejection is achieved by flat sheet membrane and nearly 99.9% 

salt rejection is accomplished by hollow fiber membrane. 

 The electrical conductivity of permeate water produced by using flat sheet 

membrane is much lower than the electrical conductivity of permeate 

produced by hollow fiber membrane. The average electrical conductivity 

achieved by hollow fiber membrane is 40 𝜇𝑆/𝑐𝑚 besides it never exceed 

100 𝜇𝑆/𝑐𝑚. However, the electrical conductivity achieved by flat sheet 

membrane never exceed 5 𝜇𝑆/𝑐𝑚. High values of conductivity in hollow 

fiber membranes present only in the last sets of experiments when 

membrane wetting start to occur. 

 Cations and Anions analysis conducted by (ICP-OES) and (IC) tests 

indicated the low concentration of elements present in the permeate water 

produced by flat sheet and hollow fiber membranes. Less occurrence of 

the anions and cations in the produced permeate water is reached by flat 

sheet membrane. However, all elements concentration falls within the 

permissible limits of water quality. 

Our investigation shows that hollow fiber modules with basic configuration 

consistently gave lower distillate flux. We investigated the likely reasons and 

found that it was mainly due to the flow pattern and associated convective heat 

transfer. 
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Despite the recent work in the literature on hollow fiber module design, reported 

flux is still lower than in flat sheet modules. We recommended a step change in 

hollow fiber module design using advanced computational fluid dynamics where 

local (Re) and (Nu) numbers can be estimated numerically for various module 

configurations in terms of turbulence promoters inserts like baffles. 

Other recommendations are also proposed to improve the performance of 

membrane distillation systems: 

 Comparison of permeate flux profile of hollow fiber membranes and flat 

sheet membrane based on temperature and concentration polarization 

coefficients. 

 Membrane wetting and fouling evaluation on a comparison based between 

hollow fiber and flat sheet membranes. 

 Pretreatment of seawater in order to minimize the biological fouling of the 

membranes. 

 A greater understanding of the wetting phenomenon can minimize the risk 

of membrane wetting of the commercial membranes 

 Membrane synthesizing with specific membranes characteristics such are 

pore sizes and membrane material for particular purpose such as real 

saline water desalination. 

 Enhancement of membrane hydrophobicity by synthesizing new 

membranes to minimize membrane wetting 

 Membrane distillation integration with industrial processes and utilization 

of low-grade heat produced by various ranges of industries. 

 Membrane distillation integration with renewable source of energy such as 

solar energy. 

 For the experimental devices, using stronger tubing material is 

recommended that provide more stable performance at extreme operating 

conditions of high temperature and flowrate. 
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6 APPENDIX A: Schematic Diagrams of MED and MSF 

systems 

 

 

Figure 72: Schematic Diagram of A) MED system, B) MSF system 
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7 APPENDIX B: Nu Correlations of Laminar and Turbulent 

Flows 

Nu Correlation Ref. Nu Correlation Ref. 

Turbulent Flow 

𝑁𝑢 = 0.023 𝑅𝑒0.8𝑃𝑟
1
3 

For cooling, (0.6 < Pr < 100) 

Flat Sheet or Hollow Fiber 

[109] 
[115] 

[33] 
[35] 

𝑁𝑢 = 0.027 𝑅𝑒0.8 Pr0.3 (
𝑘𝑓

𝐷ℎ
) (

𝜇𝑝

𝜇𝑝𝑚
)

0.14

 

For cooling 

[115] 

𝑁𝑢 = 0.023  𝑅𝑒0.8 Pr0.4 
 
For heating, (0.6 < Pr < 100), Flat Sheet 

[68] 
[33] 
[35] 

𝑁𝑢 = 0.027 𝑅𝑒0.8 Pr0.4 (
𝑘𝑓

𝐷ℎ
) (

𝜇𝑝

𝜇𝑝𝑚
)

0.14

 

For heating 

[115] 

𝑁𝑢 = 0.023  𝑅𝑒0.8 Pr0.3 × (
𝜇

𝜇𝑤
)
0.14

 

(2500 < Re < 125000) 
[35] 𝑁𝑢 = 0.027 𝑅𝑒0.8 𝑃𝑟𝑛 (

𝜇𝑏𝑓

𝜇𝑚𝑓
)

0.14 

 

For cooling (n=0.3), for heating (n=0.4) 

[86] 
[74] 

𝑁𝑢 = 0.023(1 +
6𝐷

𝐿
)𝑅𝑒0.8 𝑃𝑟

1
3 

The most suitable correlation  

[86] 
[74] 

[35] 
𝑁𝑢 = 0.027(1 +

6𝐷

𝐿
)𝑅𝑒0.8 𝑃𝑟

1
3 (

𝜇

𝜇𝑤
)
0.14

 
[115] 
[33] 

[35] 

𝑁𝑢 = 0.036 𝑅𝑒0.8 𝑃𝑟
1
3 [115] 

𝑁𝑢 = 0.337  𝑅𝑒
4
5 Pr0.33 

 

Flat plate 

[117] 

𝑁𝑢 = 0.036 𝑅𝑒0.8 𝑃𝑟
1
3 (
𝐷

𝐿
)
0.055

 

[35] 
[86] 
[74] 

 

𝑁𝑢 = 0.042 𝑅𝑒0.59 Pr0.33 
 

Hollow Fiber, shell side (400 < Re < 2500) 

[86] 
[84] 

𝑁𝑢 = 0.036 𝑅𝑒0.96 𝑃𝑟
1
3 (
𝐷

𝐿
)
0.055

 

Flow in tube 10 ≤  
𝐿

𝑑
≤ 400 

[35] 

𝑁𝑢 = 0.029 𝑘 𝑅𝑒0.3 Pr0.33 

𝑘 = 1.9 (
𝑑𝑓

ℎ
)

−0.039 

𝜀0.75 (sin (
𝜃

2
))

0.086

 

Spacer-filled channel (Flat Sheet) 

[154] 

𝑁𝑢 = (1 +
6𝐷

𝐿
)

(

 
 (

𝑓
8
)𝑅𝑒𝑃𝑟

1.07 + 12.7 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1)

)

 
 

 

𝑓 = [0.79 ln(𝑅𝑒) − 1.64]−2 

[86] 
[74] 

𝑁𝑢 =  
(
𝑓
8
)𝑅𝑒 𝑃𝑟

1.07 + 12.7 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1)

 

𝑓 = [0.79 ln(𝑅𝑒) − 1.64]−2 

[115] 

𝑁𝑢 = (1 +
6𝐷

𝐿
)

(

 
 (

𝑓
8
) (𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1)

)

 
 

 

𝑓 = [0.79 ln(𝑅𝑒) − 1.64]−2 

[86] 
[74] 

𝑁𝑢 =
(
𝑓
8
) (𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1)

 

𝑓 = [0.79 ln(𝑅𝑒) − 1.64]−2 

[115] 
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𝑁𝑢 = (1 +
6𝐷

𝐿
)

(

 
 (

𝑓
8
)𝑅𝑒𝑃𝑟

1.2 + 13.2 (
𝑓
8
)

1
2
(𝑃𝑟

2
3 − 1)

)

 
 

 

𝑓 = [0.79 ln(𝑅𝑒) − 1.64]−2 

[86] 
[74] 

  

𝑁𝑢 = (1 +
6𝐷

𝐿
)(√

𝑓

8
)

[
 
 
 

12.48𝑃𝑟
2
3 − 7.853𝑃𝑟

1
3 + 3.613 ln(Pr) + 5.8 + 2.78 ln

(

 
𝑅𝑒√

𝑓
32

45

)

 

]
 
 
 
−1

 [74] 

Laminar Flow  

𝑁𝑢 = 1.86 (𝑅𝑒 𝑃𝑟
 𝑑ℎ
𝐿
)
0.33

 

Flat Sheet (Re < 2100) 

[118] 
[84] 
[35] 
[115] 

[74] 

𝑁𝑢 = 0.13𝑅𝑒0.645𝑃𝑟0.38 
[86] 
[74] 
[33] 

𝑁𝑢𝑝 = 1.86 (𝑅𝑒𝑝 Pr𝑝
𝑑ℎ𝑝

𝐿
)
0.33

× (
𝜇𝑝

𝜇𝑝𝑚
)
0.14

 if 

𝐺𝑧𝑝 = 𝑅𝑒𝑝 Pr𝑝
𝑑ℎ𝑝

𝐿
  ≥ 100, (Re < 2100) 

Hollow Fiber, Permeate Side 

[106] 
[86] 

[35] 
𝑁𝑢 = 0.13 𝑅𝑒 0.64𝑃𝑟 

1
3 

[115] 
[89] 

𝑁𝑢 = 1.86  𝑅𝑒0.96 Pr0.33 (
 𝑑ℎ

𝐿
)
0.33

 

 
[35] 𝑁𝑢 = 3.66 [115] 

𝑁𝑢 = 1.95(
𝑅𝑒𝑃𝑟

𝐿
𝐷

)

1
3

 
[86] 
[74] 

𝑁𝑢 = 3.66 +

(

 
 0.104 𝑅𝑒𝑃𝑟 (

𝐷
𝐿
)

1 + 0.0106 (𝑅𝑒𝑃𝑟 (
𝐷
𝐿
))

0.8

)

 
 

 

The most suitable correlation 

[86] 
[74] 
[35] 
[89] 

𝑁𝑢 = 1.95 (𝑅𝑒 Pr)
1
3 

[115] 
[89] 

𝑁𝑢 = 3.66 + 
0.0668 (

𝑅𝑒𝑃𝑟𝑑ℎ
𝐿

)

1 + 0.045 (
𝑅𝑒𝑃𝑟𝑑ℎ

𝐿
)

2
3

 [33] 

𝑁𝑢 = 0.74 𝑅𝑒0.2(𝐺𝑟𝑃𝑟)0.1𝑃𝑟0.2 
 

The most suitable for Plate and frame 
[35] 

𝑁𝑢𝑝 = (3.66 +
0.0668 𝐺𝑧𝑝

1 + 0.04 𝐺𝑧𝑝
2/3
) × (

𝜇𝑝

𝜇𝑝𝑚
)

0.14

 

if 𝐺𝑧𝑝 = 𝑅𝑒𝑝 Pr𝑝
𝑑ℎ𝑝

𝐿
  < 100, (Re < 2100) 

Hollow Fiber, Permeate Side 

[106] 
[86] 

𝑁𝑢 = 0.298 𝑅𝑒0.646𝑃𝑟0.316 [35] 

𝑁𝑢 = 0.332  𝑅𝑒0.5 Pr0.33 
 

Flat Plate (Re < 50000), (0.6 < Pr < 50) 
[117] 

𝑁𝑢 = 0.097𝑅𝑒0.73Pr0.13 

[33] 
[86] 

[89] 
[115] 
[74] 

𝑁𝑢 = 0.15 𝑅𝑒0.33 𝑃𝑟0.43𝐺𝑟0.1 (
𝑃𝑟

𝑃𝑟𝑤
)
0.25

 

(Re < 2100) 

[72] 
[33] 
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𝑁𝑢 = 4.36 [115] 
𝑁𝑢 = 11.5 (𝑅𝑒𝑃𝑟)0.23 (

𝐷

𝐿
)
0.5

  

 

For cooling 

[86] 

[74] 
[89] 

𝑁𝑢 = 4.36 +
0.036

𝑃𝑒
𝐿/𝑑

1 + 0.0011 [
𝑃𝑒
𝐿/𝑑

]
0.8 

(Re < 2100) 

[72] 
[33] 

𝑁𝑢 = 15 (𝑅𝑒𝑃𝑟)0.23 (
𝐷

𝐿
)
0.5

  

 
For heating  

[86] 
[89] 
[74] 

𝑁𝑢 = 4.36 + (
0.036𝑅𝑒𝑃𝑟(

𝐷
𝐿
)

1 + 0.0011(𝑅𝑒𝑃𝑟 (
𝐷
𝑙
)
0.8) 

 

[89] 

[90] 

𝑁𝑢 = 1.62(𝑅𝑒 Pr 
𝑑

𝐿
)
0.33

 

(Re < 2100), 
𝐿

𝑑
> 15 

[72] 
[33] 
[35] 

𝑁𝑢𝑥 = 4.36 + 
0.023

𝑃𝑒
𝑋/𝑑

1 + 0.0012 [
𝑃𝑒
𝑋/𝑑

]
 

(Re < 2100) 

[72] 𝑁𝑢 = 1.75√𝐺𝑧 + 0.04(
𝐺𝑟 𝑃𝑟

𝐿
𝑑

)

0.75
3

(
𝜂

𝜂𝑤
)
0.14

 
[72] 
[33] 

𝑁𝑢𝑥 =

{
 
 

 
 

4.364 +
0.2633

[(
𝑋
𝑑𝑃𝑒

)
0.506

exp (
41𝑋
𝑑𝑃𝑒

)]
}
 
 

 
 

(
𝑃𝑟

𝑃𝑟𝑤
)
𝐾

 

𝐾 = 0.19 𝑓𝑜𝑟 𝑐𝑜𝑜𝑙𝑖𝑛𝑔, 𝐾 = 0.2 𝑓𝑜𝑟 ℎeating 

[72] 𝑁𝑢 = 1.62 (𝑅𝑒 𝑃𝑟
 𝑑ℎ
𝐿
)
0.33

 

 

[109] 

Other Correlations  

𝑁𝑢 = 0.664 𝑘𝑑𝑐  𝑅𝑒
0.5 Pr0.33 (

2 𝑑ℎ
𝐿
)
0.5

 

𝑘 = 1.654 (
𝑑𝑓

ℎ
)

−0.039 

𝜀0.75 (sin (
𝜃

2
))

0.086

 

Spacer-filled channel (Flat Sheet) 

[47] 
[73] 
[74] 

𝑁𝑢 = (0.53 − 0.58∅) 𝑅𝑒0.53 Pr0.33 

∅ = 𝑛 [
2𝜋𝑟

𝜋𝐷
]
2

 

Hollow Fiber, Shell side 

[108] 

𝑁𝑢 = 0.023 𝑘𝑑𝑐  𝑅𝑒
0.8 Pr0.33 

𝑘 = 1.654 (
𝑑𝑓

ℎ
)

−0.039 

𝜀0.75 (sin (
𝜃

2
))

0.086

 

Spacer-filled channel (Flat Sheet) 

[50] 

𝑁𝑢𝑝 = 4.36 +
0.036 𝑅𝑒 Pr (

𝐿
𝑑
) 

1 + 0.0011 (𝑅𝑒 Pr (
𝐿
𝑑
))

0.8 

Hollow Fiber, Lumen side 

[108]  
[86] 

𝑁𝑢 = 0.206 Pr0.36 
 

Hollow Fiber, Shell side 
[109] 

𝑁𝑢 = 0.206(𝑅𝑒 𝑐𝑜𝑠 ∝)0.63𝑃𝑟0.36 
 

Hollow Fiber, Shell side 

[33] 

𝑁𝑢 = 0.116 (𝑅𝑒
2
3 − 125) 𝑃𝑟

1
3 [1 + (

𝑑ℎ
𝐿
)

2
3

] 

Transitional Region  

[33] 
𝑁𝑢 = 1 + 1.44 (1 −

1708

𝑅𝑒
) + [(

𝑅𝑒

5830
)

1
3
− 1] 

Not mentioned 

[35] 

𝑁𝑢 = 𝛼 [4.36 +
0.036𝑅𝑒𝑃𝑟(

𝑑ℎ
𝐿
)

1+0.0011(𝑅𝑒𝑃𝑟(
𝑑ℎ
𝐿
))

0.8]  where  𝛼 = 1.88 (
𝑑𝑓

ℎ𝑐ℎ
)
−0.039

(𝑠𝑖𝑛𝜃)1.33 × exp (−4.05 ([𝑙𝑛 (
𝜀

𝜀𝑚
)]
2

)) 

Spacer-filled channel (Flat Sheet) 

[151] 
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8 APPENDIX C: Schematic Diagram of MD Compartment  

 

Figure 73: Dimensions of the bottom plate (top view) 

 

Figure 74: Dimensions of the top plate (top view) 



214 
 

 

Figure 75: Dimensions of top and bottom plate looking from side view 

 

 

Figure 76: cross section of feed and permeate inlet and outlet looking from side view 
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Schematic Diagrams of Hollow Fiber Module 

 

Figure 77: Hollow Fiber module dimensions 
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9 APPENDIX D: Heat Transfer Coefficient Summary Table 

 

Membrane 
Operating 
Conditions 

Re 
Nu 

Heat Transfer 
Coefficient (W/m2 

K) 
Ref. 

Flat Sheet Membrane 

PP membrane 
*Spacer filled 
channel 

Flowrate: (LPM) 
1.5 

Re: (without 
spacer) 
1105 
Re: (with spacer) 
6379 

h: (without 

spacer) 

1190 
h: (with spacer) 

2163 

[47] 

PTFE/PP 
membrane 

Velocity: (m/s) 
(0.09-0.34) 

Re: 
(482-1822) 

h: 
(1705 – 3314) 

[117] 

Different 
membrane 
geometry 

Different 
conditions 

Re: 
Large range of 
values  
Nu: 
Large Range of 
values  

h: 
Large range of 
values  
 

[68] 

PVDF 
membrane 
without spacer 

Flowrate: (LPM) 
(0.5-2.5) 

Re: 
(840-4700) 
 

h: 
(186 – 1509) 

[89] 

PTFE 
membrane 
(70% porosity) 

Flowrate: (LPM) 
2.0 

Re: 
2233 

h: 
(22490 – 26230) 

[115] 

PTFE/ PVDF 
membrane 
(porosity 62 – 
90 %) 

 Re: (laminar) 
(762-2094) 
Re: (turbulent) 
(12217-19198) 

h: (laminar flow) 
(480 to 1240) 
h: (turbulent 

flow) 
(7100 to 16000) 

[74] 

Hollow Fiber Membrane 

PVDF 
membrane (82-
85% porosity) 
 

Flowrate: (LPM) 
(1.0 - 5.6) 

Re: 
less than 1901 
 

h: (random pack) 
(943) 
h: (curly fibers) 

(2300) 
[85] 
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Membrane 
Operating 
Conditions 

Re 
Nu 

Heat Transfer 

Coefficient (W/m2 
K) 

Ref. 

PP membrane 
(more 70% 
porosity) 
 

Velocity: (m/s) 
(0.86) 
 

 h: (unaltered) 

(2600) 
h: (window 

baffle) 

(3150) 
h: (helical baffle) 

(3750) 

[84] 

PVDF/PTFE/PP 
membrane 
(more 70-90% 
porosity) 

Velocity: (m/s) 
(1.6) 
 

Nu: 
(8.5 – 9.3) 

h: 
(6000 – 7000) 

[161] 

(Air Gap) PP 
membrane 
(porosity 67%) 

Flowrate: (LPM) 
(0.17-0.5) 

 h: 
(1518.9 – 3239.8) 

[164] 

Polymeric 
membrane 

  h: 
(75 – 200) 

[108] 

PP membrane 
(75% porosity) 

Velocity: (m/s) 
(0.02-0.05) 
 

Re: 
(840-4700) 
 

h: 

(190 – 238) 
[72] 

 

 

 


