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Simple Summary: This paper aims to highlight the latest advancements in the application of artificial

intelligence in the diagnosis of myelodysplastic syndrome. This research focuses on a group of blood

disorders called Myelodysplastic Syndrome (MDS), which can potentially develop into a more severe

condition called Acute Myeloid Leukemia (AML). Detecting MDS early is crucial, but the current

methods are time-consuming and labor-intensive. We aim to explore how artificial intelligence (AI)

and machine learning (ML) can make the diagnosis of MDS faster and more accurate. AI involves

computer programs that can think like humans, and ML is a part of AI that helps computers learn

patterns and make predictions. By using these technologies, doctors can improve how they diagnose

MDS, leading to better treatment and outcomes for patients.

Abstract: Myelodysplastic syndrome (MDS) is composed of diverse hematological malignancies

caused by dysfunctional stem cells, leading to abnormal hematopoiesis and cytopenia. Approximately

30% of MDS cases progress to acute myeloid leukemia (AML), a more aggressive disease. Early

detection is crucial to intervene before MDS progresses to AML. The current diagnostic process

for MDS involves analyzing peripheral blood smear (PBS), bone marrow sample (BMS), and flow

cytometry (FC) data, along with clinical patient information, which is labor-intensive and time-

consuming. Recent advancements in machine learning offer an opportunity for faster, automated,

and accurate diagnosis of MDS. In this review, we aim to provide an overview of the current

applications of AI in the diagnosis of MDS and highlight their advantages, disadvantages, and

performance metrics.

Keywords: myelodysplastic syndrome diagnosis; artificial intelligence; machine learning; bone

marrow smears; peripheral blood smears; flow cytometry

1. Introduction

Myelodysplastic syndrome (MDS) is a diverse group of hematological malignan-
cies characterized by dysfunctional pluripotent stem cells that fail to undergo proper
hematopoiesis and maturation within the bone marrow. Consequently, this leads to an
excessive production of immature cells and dysplastic changes in the bone marrow. This
disruption in stem cell activity results in a reduction in the formation of healthy blood
cells, which manifests as cytopenia in one or more cell types, such as thrombocytopenia,
erythrocytopenia, or leukocytopenia [1]. While the majority of adult MDS cases have no
known etiology (primary or idiopathic), a small percentage of cases might be linked to an
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underlying illness (secondary), some of which are linked to autoinflammatory conditions
termed VEXA syndrome [2,3]. This illness predominantly affects the elderly and usually
has a gradual clinical course [4]. Patients’ presentation typically depends on the manifested
cytopenia. They may develop anemia-related symptoms such as fatigue, weakness, and
pallor. Recurrent infections and petechial bleeding may also develop as a result of a low
number of functional leukocytes and platelets [5–8]. To establish a diagnosis of MDS, blood
tests, a bone marrow biopsy, and genetic analysis are necessary. The diagnosis of MDS
requires persistent cytopenia that cannot be explained by any other drug or cause, the
presence of < 20% blasts on peripheral blood (PB) or bone marrow biopsy (BM) along with
cytogenetic/molecular features (such as mutated SF3B1), or the presence of dysplastic mor-
phology greater than 10% in a specific hematopoietic lineage without another explainable
cause [9].

It is important to note that approximately 30% of patients with MDS will eventually
develop acute myeloid leukemia (AML), which is more aggressive [10]. Hence, early
diagnosis and treatment of MDS are crucial to improving patient outcomes [11]. MDS is
a complex medical condition that can benefit from advancements in artificial intelligence
(AI) and machine learning (ML). AI refers to the development of computer programs that
emulate human intelligence. In healthcare, AI has the potential to improve the diagnosis,
early detection, prognostication, and monitoring of diseases. Machine learning, a subset
of AI, plays a crucial role in harnessing the power of datasets to recognize patterns and
generate predictions. What sets ML algorithms apart is their ability to analyze both linear
and nonlinear variables simultaneously, enabling them to identify complex patterns and
make highly accurate predictions [12–15]. With the integration of AI and ML, healthcare
providers can enhance the accuracy and efficiency of diagnosing MDS. The early diagnosis
of MDS can lead to more informed decisions and early treatment plans for patients, leading
to improved outcomes and better patient care.

In this review, we aim to summarize the current state of the use of AI in the diagnosis
of MDS. We will be discussing the advantages and disadvantages of various ML models
and reporting their performance matrices.

2. Materials and Methods

To develop our comprehensive search strategy, we employed a combination of med-
ical subject heading (MeSH) terms from PubMed and relevant terms in article titles and
abstracts. For our specific disease of interest, MDS, we included terms such as “myelodys-
plastic syndrome”, “preleukemia”, “MDS”, “myelodysplasia”, and other related terms to
ensure inclusiveness. To ensure that our search covered articles discussing the application
of AI in MDS, we also incorporated terms related to ML such as “artificial intelligence”,
“machine learning”, “AI”, and “deep learning”. This initial search was not limited by
language or timeframe. We utilized a polyglot translator to adapt the initial search strategy
to Embase, Web of Science, and Scopus [16].

All the studies identified through the search strategy were organized in EndNote,
where duplicates were systematically removed. Subsequently, the remaining studies
were imported into Rayyan, a screening tool, to eliminate any remaining duplicates and
initiate the screening process [17]. It is worth noting that this methodology mirrors the
approach we employed in our previous article on thrombocytopenia [18]. By employing
this rigorous search methodology, we aimed to ensure a comprehensive and unbiased
selection of relevant studies for our review. This review focused on original full-text
research articles that specifically explore the application of ML algorithms in the diagnosis
of MDS among human subjects. To maintain the study’s relevance and scope, certain
studies were excluded based on the following criteria: (1) studies conducted on animals;
(2) reviews or non-original articles; (3) conference abstracts; and (4) articles not written
in English.
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The collected data in this paper include various aspects such as the type of study,
publication year, assessed outcomes, methods used to create models, specific ML models
employed, evaluation metrics for the models (including sensitivity (SEN), specificity (SPE),
accuracy (ACC), and area under the receiver operating curve (AUC)), strengths, and
limitations. The AUC values for the models were categorized into different performance
levels: unsatisfactory (<0.6), satisfactory (0.6 to <0.7), good (0.7 to <0.8), very good (0.8
to <0.9), and excellent (0.9 to 1.0). In cases where multiple models were utilized within
a study, we extracted the metrics for the best-performing model(s). By adhering to these
guidelines, we aimed to ensure a thorough analysis of the included studies and provide
meaningful insights into the application of ML algorithms in MDS diagnosis.

3. Results

The initial search strategy yielded a total of 313 articles from the three databases.
These articles were imported into EndNote, where 116 duplicate articles were automatically
identified and removed. Subsequently, the remaining articles were transferred to Rayyan,
where an additional 19 duplicates were manually identified and excluded. The inclusion–
exclusion process was conducted within Rayyan. A total of 178 articles were eligible for
screening, of which 29 conference abstracts were excluded, and another 117 articles were
excluded due to reporting outcomes irrelevant to our study. Sixteen review articles and
4 non-English articles were excluded. In total, 12 articles met all the inclusion criteria
and were included in the final review. A schematic representation of the identification,
screening, and inclusion processes is provided in Figure 1, illustrating the flow of articles
throughout the review process. Table 1 summarizes the aim of each study and the main
advantages and disadvantages of their ML models. Table 2 summarizes the data sources
and performance metrics of the best-performing ML models utilized.

ff

Figure 1. Schematic representation of the review process.
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Table 1. Data extraction summary for the full-text articles included.

Study Method Outcome Advantages Disadvantages

Wang, M. et al.
[19]

BMS
Diagnosing MDS and

distinguishing it from AA
and AML

• Excellent performance
metrics

• Internally and externally
validated

• Requires clinician
assistance

Lee, N. et al. [20] BMS
Detection of dysplastic

erythrocytes, granulocytes,
megakaryocytes, and blasts

• Excellent performance
metrics

• Competes with
hematologists

• Detects dysplastic cells
• Internally validated

• Does not quantify
dysplasia

• Not externally
validated

Mori, J. et al. [21] BMS
Diagnosing MDS using

hypogranulated dysplastic
neutrophils

• Excellent performance
metrics

• Classifies dysplasia by
severity

• Detection of dysplastic
neutrophils

• Internally validated

• Small sample size
• Not externally

validated

Wu, J. et al. [22] BMS and PBS
Diagnosing hypocellular

MDS and distinguishing it
from AA

• Very good performance
metrics

• Internally validated

• Not externally
validated

• Poor performance
compared to other
studies

Wu, Y. et al. [23] BMS
Detection of elevated blasts

to diagnose MDS
• Quantifies dysplasia
• Internally validated

• Not externally
validated

• Only looks at
blasts

Acevedo, A. et al.
[24]

PBS

Detection of
hypogranulated dysplastic

neutrophils to diagnose
MDS

• Excellent performance
metrics

• Internally validated
• Detects dysplastic

neutrophils

• Not externally
validated

Kimura, K. et al.
[25]

PBS
Diagnosing MDS and

distinguishing it from AA

• Excellent performance
metrics

• Internally validated

• Not externally
validated

Zhu, J. et al. [26] PBS
Diagnosing MDS using

CBC and immature platelet
fraction

• Model outperforms current
MDS-CBC scoring

• Not externally
validated

Clichet, V. et al.
[27]

FC
Diagnosing MDS using

MFC

• Internally and externally
validated

• Lower misclassification
rates

• Excellent performance
metrics

• Lack of
standardization of
FC methodology

Duetz, C. et al.
[28]

FC
Diagnosing MDS in

suspected patients using
FC

• Excellent performance
metrics

• Enhanced accuracy and
reduced processing time

• Internally and externally
validated

• Lack of
standardization of
FC methodology
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Table 1. Cont.

Study Method Outcome Advantages Disadvantages

Herbig, M. et al.
[29]

FC
Diagnosing MDS using

RT-DC

• Potential for efficient
quantification

• Excellent performance
metrics

• Lack of
standardization of
FC methodology

• Small sample size
• Not externally

validated

Li, J. L. et al. [30] FC
Diagnosing MDS and
distinguishing it from

AML using FC

• Excellent performance
metrics

• Lack of
standardization of
FC methodology

• Potential
challenges in
categorizing MDS
due to data
complexity

• Not externally
validated

Table 2. Data sources and performance metrics for the best models in the included full-text articles.

Study Data Source Outcomes
Model

Utilized Validation AUC ACC SEN SPE

Wang, M.
et al. [19]

American Society of
Hematology image bank and
Hospital BMS samples (AA,

AML, MDS)

Diagnosing MDS CNN
Internal 0.985 0.914 0.992 0.881

External 0.942 0.921 0.886 0.938

Distinguishing MDS
from AA and AML

CNN
Internal 0.968 0.929 0.857 0.967

External 0.948 0.915 0.887 0.929

Lee, N.
et al. [20]

Hospital BMS (MDS and
healthy controls)

Detecting dysplastic
erythrocytes

CNN Internal 0.972 0.988 0.790 0.992

Detecting dysplastic
granulocytes

CNN Internal 0.996 0.993 0.900 0.999

Detecting dysplastic
megakaryocytes

CNN Internal 0.971 0.931 0.899 0.948

Detecting blasts CNN Internal 0.973 0.932 0.831 0.951

Mori, J.
et al. [21]

Hospital BMS (MDS, “other
hematological diseases”)

Diagnosing MDS
using severe dysplasia

(DG-3)
CNN Internal 0.944 0.972 0.910 0.977

Diagnosing MDS
using dysplasia and

severe dysplasia
CNN Internal 0.921 0.982 0.852 0.989

Wu, J. et al.
[22]

Hospital BMS and PBS
(Hypo-MDS, AA)

Diagnosing
hypocellular MDS and
distinguishing it from

AA

Decision
tree

Internal 0.800 0.805 0.765 0.837

Wu, Y. et al.
[23]

Hospital BMS (MDS, multiple
myeloma, MPD, AA,

lymphoma)
Detecting > 5% blasts

CNN:
BMSnet

Internal 0.948 NR NR NR

Acevedo, A.
et al. [24]

Hospital PBS samples (MDS
and healthy controls)

Detecting
hypogranulated

dysplastic neutrophils

CNN:
model M1

Internal 0.982 0.949 0.955 0.943
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Table 2. Cont.

Study Data Source Outcomes
Model

Utilized Validation AUC ACC SEN SPE

Kimura, K.
et al. [25]

Hospital PBS data (MDS, MPN,
AML, ALL, multiple myeloma,

multiple lymphoma)

Diagnosing MDS and
distinguishing it from

AA

CNN with
Xgboost

Internal 0.990 >0.900 0.962 1.000

Zhu, J. et al.
[26]

Hospital PBS (MDS and
non-MDS controls)

Diagnosing MDS CART Internal NR NR 0.845 0.978

Clichet, V.
et al. [27]

Hospital MFC data (MDS) Diagnosing MDS
Elasticnet
(LinearR)

External 0.935 NR 0.918 0.925

Duetz, C.
et al. [28]

Hospital FC data (MDS, healthy
controls, non-neoplastic

cytopenia)

Diagnosing MDS in
suspected patients

Random
forest

Internal 0.964 NR 0.850 0.950

External NR NR 0.970 0.950

Herbig, M.
et al. [29]

University Hospital RT-DC data
(MDS, AML, CML, AA)

Predicting MDS
Random

forest
Internal 0.950 0.910 0.860 1.000

Li, J. L. et al.
[30]

Hospital FC data (AML, MDS,
normal)

Classification of MDS
vs. Normal

LogR using
AGF-P

Internal 0.956 0.960 NR NR

Classification of MDS
vs. AML

LogR using
AGF-P

Internal 0.911 0.875 NR NR

3.1. Diagnosis of MDS Using BM Samples

BM smears are considered a prerequisite for the diagnosis of MDS. They provide
a comprehensive view of cellular composition, morphology, and cytogenetics. The hall-
marks of MDS on BM smears include dysplasia and elevated blasts that are <20%. The
diagnosis of MDS with dysplasia is only possible when dysplasia reaches 10% in at least
one lineage [31]. However, the analysis of BM samples for dysplasia and blasts, along
with their quantification, can be difficult and time-consuming for pathologists, which can
occasionally lead to the oversight of critical findings. Moreover, the assessment of dysplasia
is subjective. Operators have to undergo years of training in order to become competent
in the assessment of BM samples, and even then, inter- and intra-variations are present
amongst experienced hematologists [32–34]. Herein lies the potential for AI to revolutionize
MDS diagnosis. By harnessing AI’s capacity for rapid pattern recognition and data analysis,
many challenges posed by manual examination of bone marrow samples can be mitigated.

To address the issue of identifying dysplasia, Lee and colleagues presented a convolu-
tional neural network (CNN)-derived ML model that automatically detects dysplasia from
images of bone marrow aspirates. The investigators acquired BM aspirates from 34 patients
diagnosed with MDS and 24 patients without MDS. They manually captured images within
well-spread areas containing nucleated cells to use as examples for the program. In order
for the model to function, it had to be able to identify the cells and then classify them.
For this, the researchers labeled the boundaries of 946 cells and classified 8065 cells into
eight types (normal erythrocytes, normal granulocytes, normal megakaryocytes, dysplastic
erythrocytes, dysplastic granulocytes, dysplastic megakaryocytes, blasts, and others). This
was used to help train the model to identify and classify these cell types. Eighty percent
of the cell images were used for training, 10% were used for testing, and 10% were used
for validation. The models created showed excellent AUC for the detection of dysplasia in
each cell type, with the AUC ranging from 0.945 to 0.996 [20]. The details for each cell type
can be found in Table 2.

The model proposed by Lee and colleagues demonstrated excellent ability in identify-
ing the presence of dysplastic cells in three different lineages, but it is important to note that
this model is not able to quantify the percentage of dysplasia. This makes it an excellent
auxiliary tool to assist hematologists in recognizing dysplasia when attempting to diagnose
MDS. Although the model by Lee was validated by competing with hematologists, it was
not externally validated. This form of verification only provides insight into the quality of
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the model’s prediction and not its generalizability to other samples. Moreover, the model
was not trained to distinguish specific changes in different cell types within the BM. Instead,
it relied on having an adequate number of normal cells to make accurate predictions about
abnormal ones. Furthermore, it is important to note that the study solely evaluated the
algorithm’s performance in identifying dysplastic cells without assessing its capability to
accurately diagnose MDS [20].

Another model for the detection of dysplasia was proposed by Mori, J. et al. [24] Similar
to the one by Lee, the model utilized images of BM smears from MDS and non-MDS patients
with labeling performed by morphologists to assist the training of the model. However,
Mori’s model utilized decreased granules (DGs) as a marker of dysplasia in granulopoiesis.
They classified dysplasia on a 4-point scale, with 0 being normal, 1 intermediate, 2 dysplasia,
and 3 severe dysplasia (i.e., severely decreased granules). A total of 1797 labeled images
were obtained, with morphologists identifying 134 DGs categorized as DG1 (46), DG2 (77),
and DG3 (11). When considering DG1–3 as positive, the classifier demonstrated an AUC
of 0.944, ACC of 0.972, SEN of 0.910, and SPE of 0.977. However, since DG1 is vague and
ideally the model should be able to identify obvious dysplasia, the researchers excluded the
DG1 labels from the analysis and classified the DG1 samples as DG0 or DG2. This yielded
an AUC of 0.921, ACC of 0.982, SEN of 0.852, and SPE of 0.989 [21].

The notable distinction of the model presented by Mori, J. et al. is that it relies on
cellular features (granules) to detect dysplasia, unlike the model presented by Lee and
colleagues. Moreover, the model classifies dysplasia by severity, not just dysplastic vs.
non-dysplastic, which can be clinically useful. However, this model was neither externally
validated nor challenged by hematologists. Nevertheless, the researchers proposed a
“doctor in the loop” strategy (where the expert is supplied with the information acquired)
to help limit the number of mistakes made by the model. Another issue was that the
number of samples used for the training of the model was small [21].

To address the issue of detecting blasts and quantifying them, Wu, Y. and colleagues
presented an AI model that can detect and quantify blasts. BM smears were taken from
patients with various hematological conditions. They were divided into a training sample
(42), a testing sample (70), and a competition sample (10). Over seventeen thousand images
of cells captured by hematologists from the training set were labeled and classified into
one of seven cell categories (erythroid, blasts, myeloid, lymphoid, plasma cells, monocyte,
and megakaryocyte) by three independent hematologists. If three hematologists could not
agree on a cell’s type, they marked it as “unable to identify”. This information was used to
train the CNN model to identify and categorize these cell types. To evaluate how well the
CNN model performed compared to hematologists, a human-machine competition was
conducted involving six visiting staff members. These staff members analyzed the same
10 BM samples from the competition cohort as the model. The results obtained from flow
cytometry (FCM) were considered the established and accurate reference for comparison.
For the identification of > 5% of blasts in the validation group, BMSNet (AUC 0.948)
surpassed hematologists (AUC 0.929) but lagged behind pathologists (AUC 0.985). For the
detection of over 20% of blasts, hematologists (AUC 0.981) and pathologists (AUC 0.980)
showed similar but higher AUC values compared to BMSNet (AUC 0.942) [23].

In this study, the model presented showed great potential as a tool for hematologists to
properly quantify blasts, which is essential in the diagnosis of MDS and other hematological
malignancies. It was suggested by the researchers that well-trained hematologists should
review the results of the AI interpretation before relying on them for patient decisions.
Nevertheless, this would still save hematologists a lot of time in evaluating bone smears.
One of the main drawbacks of this model, however, is that it was only internally validated
and not externally validated. Moreover, the model was trained to only classify cells into
8 categories due to the difficulty of detecting intricate details that distinguish other cell
types. Since this model required slide scanning, combining automatic slide scanners with an
AI model would cut down the screening time for bone marrow samples dramatically [23].
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Another issue that pertains to the diagnosis of MDS is its differentiation from AA
and leukemia. It is important to rule out AA when diagnosing MDS because these two
conditions share some similar clinical and hematological features, especially hypocellular
MDS [35,36]. Since both hematological conditions result in cytopenia, they can sometimes
be confused for one another. Current diagnostic methods include hematologic analysis,
bone marrow biopsy, cytogenetics, and flow cytometry (FC). Pathological hematopoiesis
is nonspecific and occurs in both states. Once thought to be dependable, cytogenetic
abnormalities are no longer reliably unique to MDS. While FC has grown in popularity, its
single marker usage and limitations in detecting erythroid malignancies make it difficult
to diagnose MDS in general [37–39]. In addition to their similarities, MDS and AA are
difficult to distinguish clinically due to the poor specificity of numerous indications.

To address this issue, a study by Wang et al. presented a deep learning model for
the automatic diagnosis of MDS and the distinction between AA and AML based on BM
smears [19]. The model was developed using a CNN and trained with data extracted from
the American Society of Hematology (ASH) Image Bank, while external validation was
performed using data from the clinic. Data from the ASH were randomly divided in a 7:3
ratio into training and testing datasets. Three different epochs were used for each model
(30, 50, and 200). This determines the number of times the training set is presented to the
learning model. The model had two output layers: whether the patient has MDS or not
(two classifications) and whether they have AA, MDS, or AML (three classifications). The
best model training effect was achieved with an outcome weight and epoch of 1:9 and
200, respectively. On external validation, the model exhibited high performance metrics in
distinguishing MDS from non-MDS (AUC: 0.942, ACC: 0.921, SEN: 0.886, SPE: 0.938) and
in distinguishing MDS, AA, and AML (AUC: 0.948, ACC: 0.915, SEN: 0.887, SPE: 0.929) [19].
Overall, the image-net pretrained model provided a convenient and accurate tool for
clinicians to differentiate AA, MDS, and AML based on bone marrow smear images.

A similar model was also proposed by Wu, J. and colleagues that focused solely on
the differential diagnosis of MDS from AA using decision tree ML models [22]. They
developed multiple ML models, including SVM, LogR, a decision tree, and a BP network.
Their models utilized data from peripheral blood counts, peripheral blood morphology,
and bone marrow cell morphology from 130 patients with hypo-MDS and 156 patients
with AA. These data were divided into 73% and 27% for the training and testing sets,
respectively. Out of all the ML models utilized, the decision tree model outperformed all
other models for the differentiation between MDS and AA with an AUC of 0.8, ACC of
0.805, SEN of 0.765, and SPE of 0.837 [22].

3.2. Diagnosis of MDS Using PBS

The conventional diagnosis of MDS from peripheral blood smears (PBS) presents
its own set of challenges. PBS offer a snapshot of hematological abnormalities and can
provide crucial insights into the diagnosis of MDS. However, similar to BM smears, the
manual examination of PBS is time-consuming, subject to human error, and often requires
experienced hematologists [40]. These challenges have paved the way for the application
of AI techniques to enhance the accuracy, efficiency, and objectivity of MDS diagnosis using
peripheral blood smears.

Multiple studies have shown that hypogranulated dysplastic neutrophils on PBS can
provide valuable insights into the diagnosis of MDS [41–44]. However, it is sometimes
challenging for pathologists to identify them on PBS. Hence, Acevedo and colleagues aimed
to address the issue of identifying hypogranulated dysplastic neutrophils in peripheral
blood by developing eight ML models labeled M1 to M8 using a CNN to undertake this
task [24]. These models varied in architectural elements and training methodologies but
were all trained for 20 epochs. The researchers established cut-off values for a granularity
score to help the model distinguish between normal and dysplastic neutrophils, and they
determined a threshold for identifying a minimum proportion of dysplastic neutrophils
indicating a potential MDS diagnosis. The top five performing models were further trained
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for 100 epochs. Of these, the highest-performing model was M1. This model was internally
validated, demonstrating high performance with an AUC value of 0.982, an ACC of
0.949, a SEN of 0.955, and a SPE of 0.943 [24]. Their work introduces an automated and
objective method for identifying hypogranulated neutrophils, with potential application as
an evaluation tool for MDS diagnosis within clinical laboratory workflows.

Another model was also proposed by Kimura et al. for automatic MDS differentiation
from AA through a CNN utilizing PBS data [25]. They combined a CNN-powered DLS
with the automatic detection and recognition of blood cells with an XGBoost decision-
making system. Over 690,000 blood cell images from 3281 PBS were utilized in the training
of their CNN model. Their model was able to classify 17 different blood cell types and
their 97 morphological characteristics with an impressive SEN and SPE of 0.935 and 0.960,
respectively. Their final model was able to distinguish MDS from AA utilizing PBS data
with an AUC of 0.99, SEN of 0.962, SPE of 1.00, and overall ACC of 0.900. The limitations of
their model included the adjunctive nature of the system, requiring additional diagnostic
methods, and the need for clinical and genetic data for a definitive diagnosis. The study
acknowledged the small sample size and single-center design, proposing future work to
expand the dataset and enhance accuracy using serum biochemistry data [25].

A study by Zhu et al. aimed to evaluate the diagnostic performance of the Myelodys-
plastic Syndromes Complete Blood Count (MDS-CBC) score [26]. This is a score used
clinically to exclude or suspect MDS in patients with cytopenia for unknown reasons at the
time of identification. The authors sought to enhance MDS detection and reduce excessive
smear reviews by incorporating the immature platelet fraction (IPF) into the MDS-CBC
score. A total of 525 patients were included in the study, of which 168 had MDS. A random
forest model was employed to identify the most effective predictors for MDS diagnosis.
Notably, neutrophil structural dispersion (Ne-WX) and IPF emerged as the strongest pre-
dictors. They were then integrated into a Classification and Regression Trees (CART) model
to refine the diagnostic accuracy of the current MDS-CBC score. A two-step approach was
established, wherein patients with an MDS-CBC score ≤ 0.23 were classified as low-risk,
and those exceeding this threshold were further stratified based on an IPF threshold of
3%. Results demonstrated the potential of the extended MDS-CBC score to enhance MDS
diagnosis. The algorithm achieved a sensitivity of 84.5% and a specificity of 97.8%, with
positive and negative predictive values of 94.7% and 93.1%, respectively [26].

The study leveraged machine learning techniques and included IPF as a novel pa-
rameter to enhance the MDS diagnosis by MDS-CBC score. By incorporating IPF into the
model, the e-MDS-CBC score utilized the collective predictive power of the three myeloid
lineages for MDS diagnosis. The application of random forest analysis and CART modeling
allowed for the selection of key parameters and the formulation of decision trees suitable
for laboratory middleware. However, the study also acknowledged certain limitations. The
cohort consisted of individuals with suspected MDS, potentially impacting the algorithm’s
performance in broader populations. Economic considerations were not extensively ex-
plored, and the cost-effectiveness of implementing IPF measurement for routine diagnosis
requires further investigation. Additionally, the authors emphasized the importance of
clinical judgment and the potential for slide review even in cases with low e-MDS-CBC
scores, highlighting the complementary role of laboratory findings and clinical assessment.

3.3. Diagnosis of MDS Using FC

FC serves as a crucial tool in the diagnosis of MDS, aiding in the recognition of specific
cellular attributes and counts that characterize this complex hematologic disorder. By
enabling the precise analysis of individual cells, FC assists in identifying distinct markers
and aberrant expression patterns that are indicative of MDS [45–47]. Despite its utility, the
current utilization of FC faces challenges such as labor-intensive manual data interpreta-
tion, subjectivity in gating procedures, and a lack of standardized quantification, all of
which hinder its efficiency and consistency in MDS diagnosis [45,48]. To overcome these
limitations, AI emerges as a potential solution. AI offers the capacity to automate and
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optimize the analysis of high-dimensional flow cytometry data using advanced machine
learning techniques. AI has the potential to enhance diagnostic accuracy, reduce variability,
and uncover subtle cellular features that may hold diagnostic significance. Integrating
AI into flow cytometry-based MDS diagnosis has the potential to revolutionize the field,
addressing current limitations and providing a more efficient and precise approach to
characterizing this challenging hematologic disorder.

Valentin Clichet et al. introduced an innovative approach combining AI with multi-
parametric FC to enhance MDS diagnosis and classification [27]. Their machine learning
model employed an elasticnet algorithm applied to a cohort of 191 patients suspected of
MDS. The research focused solely on flow cytometry parameters and utilized the Boruta
algorithm for feature selection in the model. Granulocyte/lymphocyte SSC peak channel
ratio, total hematogone ratio, percentage of CD34+ B-cell progenitors among all CD34+
cells, and the percentage of CD34+ myeloid progenitors were found to be the most impor-
tant predictors for MDS diagnosis by the Boruta algorithm. The AI-assisted MDS prediction
score (elasticnet model) demonstrates superior sensitivity to the existing Ogata score, main-
taining excellent specificity. An external validation cohort of 89 patients confirms its high
performance, with an AUC of 0.935. Notably, this model effectively diagnoses both high-
and low-risk MDS, achieving 91.8% SEN and 92.5% SPE. Moreover, it reveals a progressive
evolution of the prediction score from clonal hematopoiesis of indeterminate potential
(CHIP) to high-risk MDS, implying a linear progression between these stages. Importantly,
the AI-assisted prediction score significantly reduces misclassification rates, outperforming
the Ogata score and establishing itself as a reliable diagnostic tool [27].

This study leverages AI to discriminate between MDS patients and non-MDS patients
based on MFC profiles. The cohort encompasses patients from three distinct centers,
ensuring the robustness and generalizability of the results. The diagnostic performance
of the model was further confirmed using an external validation cohort, highlighting the
model’s reliability and transferability. However, the flow cytometry data were acquired
using different instruments, and the study acknowledges potential variability. Despite this,
the AI-assisted model demonstrated consistent performance across the varied instruments,
suggesting its widespread applicability. The model’s favorable attributes include speed,
accessibility, and alignment with the Ogata score panel. In the context of cost-effectiveness,
the AI-assisted prediction score offers a rapid and accurate approach for MDS diagnosis
and stratification.

In another study by Carolien Duetz et al., a computational tool for FC diagnostics
in suspected MDS was also developed and validated [28]. The study cohort consisted
of 230 patients, including MDS patients and non-neoplastic cytopenia patients as age-
matched controls. FC data were collected using a standardized panel of six tubes, and
the preprocessing involved quality control and the exclusion of outliers. The diagnostic
workflow incorporated the FlowSOM algorithm for cell population detection and a Random
Forest ML classifier. The workflow was compared with expert-analyzed FC scores, such
as the integrated flow cytometry score (iFS) and the Ogata score. The computational
workflows outperformed these scores in terms of accuracy, objectivity, and time investment,
with processing times reduced to less than 2 min per patient. In addition, a single-tube
computational workflow was developed, which exhibited even higher SEN (97%) and SPE
(95%) in the external validation cohort. Notably, the computational workflow revealed that
certain cellular properties, particularly those of erythroid and myeloid progenitors, played
a crucial role in diagnosing MDS patients. These properties were identified as the most
relevant features for distinguishing between MDS and control cases [28].

The study demonstrated the advantages of the computational approach, including
reduced processing time, cost-effectiveness, and enhanced diagnostic accuracy. The work-
flow’s performance was rigorously validated internally through cross-validation and exter-
nally using an independent cohort. Moreover, the study investigated different subgroups of
MDS patients, such as those with excess blasts, and demonstrated consistent diagnostic ac-
curacy. While the computational workflow holds great promise, the authors acknowledged
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certain limitations. The use of scatter parameters, although informative, posed challenges
for standardization across different centers.

A different approach was taken by Maik Herbig et al., introducing a novel approach for
diagnosing MDS using real-time deformability cytometry (RT-DC) combined with machine
learning techniques [29]. Their study aimed to enhance MDS diagnosis by leveraging the
quantitative image analysis capabilities of RT-DC and machine learning algorithms. RT-DC,
an imaging FC, enables rapid acquisition of the morphological and mechanical properties
of single cells. To assess the feasibility of this approach, BM biopsy samples from both
healthy individuals and MDS patients were measured using RT-DC. Automated image
analysis quantified seven features from each cell, capturing information related to cell
size, mechanical properties, and porosity. A random forest model was trained using these
features to distinguish between healthy and MDS samples. Internal validation of the model
yielded compelling results with an AUC of 0.950, an ACC of 0.910, a SEN of 0.860, and a
SPE of 1.000. The key features used for classification were those describing the width of cell
size distribution, indicating that MDS samples exhibited narrower distributions compared
to healthy ones [29]. This finding aligns with the WHO guidelines that consider cell size
during MDS diagnosis [49].

Although the study presents a promising approach, several limitations and future
directions were acknowledged. The sample size was relatively small, and the model’s
generalization to a larger and more diverse MDS population requires further investigation.
The current focus on HSCs should be expanded to include unsorted bone marrow to
account for potential morphological differences resulting from mutated cells. Additionally,
the technique’s effectiveness on fresh bone marrow samples should be explored.

Jeng-Lin Li et al. proposed an innovative automated algorithm for the diagnosis and
classification of hematological malignancies, including MDS, based on deep phenotype
representation [30]. The authors’ algorithm leverages a deep learning model to automati-
cally classify minimal residual disease (MRD) into AML, MDS, and normal. The research
utilizes a dataset retrospectively sourced from the National Taiwan University Hospital
(NTUH), incorporating 2424 FC specimen samples. Each sample consisted of 11 tubes,
each with a distinct channel–antibody pairing, facilitating measurement in six fluorescent
channels. The raw cytometry data was initially transformed into a latent space using
a per-tube autoencoder. Furthermore, the specimen-level representation was achieved
through the Fisher-scoring vectorization approach, which combines generative modeling
with discriminative power. A logistic regression model was utilized to perform four binary
classifications (AML and MDS vs. Normal, AML vs. MDS, AML vs. Normal, and MDS vs.
Normal). The model was subject to 5-fold cross-validation, where 20% of the dataset was
used for training and 80% for testing. For the diagnosis of MDS (distinguishing MDS from
normal), the model achieved an AUC of 0.956 with an accuracy of 0.960. For differentiating
MDS from AML, the model achieved an AUC of 0.911 with an accuracy of 0.875 [30].

The significance of the research lies not only in its accuracy but also in its insights into
disease classification. The authors emphasize that even with only half of the FC markers,
the algorithm maintains high recognition accuracy, shedding light on the discriminability
of existing markers. Moreover, the approach highlights the potential for reducing marker
redundancy through computational methods. This novel algorithm consistently outper-
forms other representations across various classification tasks, emphasizing the importance
of cell-level feature representation facilitated by autoencoder learning. While the findings
of this study hold promise for advancing MRD classification, certain limitations warrant
consideration. The observed discrepancies in classification accuracy between AML, MDS,
and normal categories might stem from inherent complexities in categorizing MDS and
potential data imbalances. Furthermore, the study’s focus on a specific dataset and markers
necessitates further exploration to validate its applicability across broader contexts.
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4. Discussion

The purpose of this study was to explore the diverse applications of ML algorithms
in the diagnosis of MDS. In our investigation, we found a limited number of studies that
have employed AI primarily for the diagnosis of MDS using PBS, BMS, and MFC data.
The performance matrices of the ML models proposed by these studies demonstrated their
great potential for the diagnosis of MDS, classifying patients at risk of MDS into low-risk
or high-risk groups, and distinguishing MDS from its differentials like AA and AML. A
significant proportion of the studies examined exhibited excellent predictive capabilities,
with an AUC greater than 0.9. However, only three of the included studies performed
external validation of their models. The collective evidence of these studies suggests that
these models could serve as auxiliary tools to assist pathologists/hematologists in the
diagnosis of MDS and offer a more cost- and time-effective diagnosis. However, these
models have not been developed and tested extensively enough to replace the need for
assessment of these samples by experienced hematologists/pathologists.

Given the extant research delving into the utilization of AI in the domain of MDS
diagnosis, it is imperative to approach their outcomes with judicious circumspection. AI
does have a more established role in other hematological conditions, such as ALL, where
there has been extensive research [50]. We have also previously discussed the role of AI
in other hematological diseases such as thrombocytopenia, sickle cell disease, chronic
myeloid leukemia, and others [18,51–54]. Although there is still a long way to go before
the diagnosis of hematological malignancies can be automated by AI, in its current state,
AI can definitely assist hematologists and pathologists in diagnosis. As shown by some of
the studies described above, AI has the potential to reduce the time, cost, and resources
needed for MDS diagnosis and, hence, lead to earlier interventions in these patients and
ultimately better patient outcomes.

A recurring observation seen in the examined studies was the lack of external vali-
dation of their models. Although these models performed exceptionally well on internal
validation, it is sometimes misleading as the model might have plotted a random error
in the sample and not true associations [55,56]. Although there are methodological ap-
proaches that limit such overfitting, they do not completely eliminate them [57,58]. Thus,
a compelling imperative arises for the pursuit of external validation endeavors aimed
at ascertaining the performance characteristics of these models when deployed across
different samples and populations, independent of their original training datasets. Such an
undertaking not only ensures the clinical applicability of these models but also safeguards
against the undue limitation of their utility to a singular sample or population archetype.

Another issue commonly seen in these models is the utilization of a single source
of data for the training of the ML models. The current diagnostic approach for MDS is
multimodal. It typically involves a combination of clinical data, PBS, BMS, and FCM.
In accordance with WHO guidelines, the diagnosis of MDS requires a combination of
cytopenia with <20% blasts on PBS or BMS along with cytogenetic or morphological
features of dysplasia [9]. Hence, AI models developed for the diagnosis of MDS should
aim to combine this information to provide a more accurate diagnosis of MDS.

5. Conclusions

In conclusion, while the utilization of machine learning algorithms holds significant
promise in the diagnosis of MDS, the current landscape is characterized by a limited
yet encouraging body of research. These studies, employing various datasets, including
PBS, BMS, and FC data, have exhibited noteworthy potential for accurately diagnosing
and stratifying MDS patients. However, the absence of comprehensive external validation,
coupled with the need for integrating diverse data sources representative of the multimodal
diagnostic approach, underscores the imperative for cautious optimism. As AI continues
its transformative journey in hematological disease diagnosis, its role as an assisting
tool for pathologists and hematologists remains a compelling avenue, warranting further
investigation and validation to unlock its full clinical potential in MDS management.
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