
Received: 1 October 2022 Revised: 24 August 2023 Accepted: 5 October 2023 IET Control Theory & Applications

DOI: 10.1049/cth2.12578

ORIGINAL RESEARCH

Robust stabilization of LTI negative imaginary systems using the

nearest negative imaginary controller

Mohamed Mabrok1 Mahmoud Abdelrahim2,3

1Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar

2Renewable Energy Laboratory, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia

3Department of Mechatronics Engineering, Assiut University, Assiut, Egypt

Correspondence

Mohamed Mabrok, Mathematics Program,
Department of Mathematics, Statistics and Physics,
College of Arts and Sciences, Qatar University, P.O.
box 2713, Doha, Qatar.
Email: m.a.mabrok@gmail.com

Funding information

Qatar National Library

[Correction added on 28-October-2023, after first
online publication: acknowledgement has been
updated in this version].

Abstract

This paper considers the problem of robust stabilization of linear time-invariant systems
with respect to unmodelled dynamics and structure uncertainties. To that end, a method-
ology to find the nearest negative imaginary system for a given non-negative imaginary
system is presented first. Then, this result is employed to construct a near optimal lin-
ear quadratic Gaussian controller achieving desired performance measures. The problem
is formulated using port-Hamiltonian method and the required conditions are defined
in terms of linear matrix inequalities. The technique is presented using the fast gradient
method to solve the problem systematically. The designed controller satisfies a nega-
tive imaginary property and guarantees a robust feedback loop. The effectiveness of the
approach is demonstrated by a simulation on a numerical example.

1 INTRODUCTION

Robustness is a crucial aspect of feedback control systems to
cope with model uncertainties such as disturbances, unmod-
elled dynamics and plant parameter variations. These issues can
severely affect the performance and stability of the closed-loop
system. For instance, highly resonant modes in flexible sys-
tems such as aerospace systems [1–3], robot manipulators [4],
atomic force microscopes [5–8]) can affect robustness and sta-
bility characteristics [9–11]. Moreover, relatively small stimuli or
perturbations in the environment, such as changing temperature
can result in significant impact on the system’s phase and gain
at a given frequency, which can lead to instability or poor per-
formance of the closed-loop system. These dynamical systems
are infinite-dimensional systems [9, 12, 13], which are hard to
model and control. Instead, finite-dimensional models are used
as approximation models to be used in controller synthesis [9,
13].

Negative imaginary (NI) systems theory provides powerful
tools to establish robustness for dynamical systems with flex-
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ible structures [11, 14–26]. The NI property can be defined,
in the case of the single-input single-output (SISO), based on
the properties of the imaginary part of the complex function
of the frequency response. For instance, this NI property is
known to be satisfied for flexible structure dynamics when
force actuators are collocated with position or acceleration sen-
sors. A fundamental result of NI systems theory is concerned
with feedback-interconnected NI systems. That is, the feedback
interconnection between an NI system and a strictly NI (SNI)
system is stable under a given DC gain condition. Hence, if the
system under control satisfies the NI property, one can design
a strictly NI controller so that robust stability is guaranteed for
free. This has attracted several attempts to synthesise NI con-
trollers that preserve certain performance measures [11, 27, 28].
However, to our knowledge, there are no available results on
the design of output optimal controllers for NI systems in the
literature, which is the objective of this work.

We aim to design robust and optimal output feedback
controllers against unmodelled dynamics and parameter uncer-
tainties for a class of multi-input multi-output (MIMO), linear
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2 MABROK and ABDELRAHIM

time-invariant (LTI) systems that satisfy the NI property. The
proposed methodology consists of two steps: synthesizing an
optimal linear quadratic Gaussian (LQG) controller for the
given NI model and then using a developed algorithm to find
the nearest NI model for the synthesized LQG controller.

The idea of finding the nearest NI model was inspired by a
similar technique of finding the nearest positive real system (pas-
sive system) presented in [29–34]. In [31], some assumptions
are imposed on the dimensions of the control input and the
output measurement to prevent singularities. Also, [31] restricts
the perturbation to the output matrix only. The methods in [32]
and [33] allow perturbations on both the matrices of the control
input and the output measurement, while in [35], perturba-
tions are allowed for all system matrices. Similar results for
the NI system were developed in [36], where an algorithm was
developed for enforcing negative imaginary property in case
of any violation during system identifications. This assumes
that the underlying dynamics ought to belong to the negative
imaginary system class. The method is based on the spectral
properties of Hamiltonian matrices. This paper uses the result
developed in [29] to develop similar results for finding the
nearest negative imaginary system. One of the main advan-
tages of this method over the other perturbation methods is
that no assumptions are imposed on the given system. Also, in
the positive real case, it allows for perturbations of all system
matrices.

The contribution of this paper is twofold:

(1) We propose a methodology for finding the nearest NI sys-
tem for a non-NI system based on the Port–Hamiltonian
formulation.

(2) The nearest NI result is employed to find a near optimal
LQG for a given negative imaginary plant.

Sufficient conditions are provided in terms of the feasibil-
ity of an LMI condition to ensure the closed-loop stability.
Moreover, we present an algorithm based on fast gradient
method to solve the problem systematically. The effective-
ness of the approach is demonstrated by a simulation on a
numerical example.

The paper is organized as follows: Section 2 presents the pre-
liminaries used throughout the paper. In Section 3, we discuss
the problem formulation of finding the nearest negative imagi-
nary system. We present an algorithmic solution for the nearest
negative imaginary system problem in Section 4.1. Finally, we
discuss the optimal control design problem in Section 4.2.

2 PRELIMINARIES

The notation is standard throughout. The sets of all real and
complex numbers are denoted by ℝ and ℂ, respectively. We
denote the minimum and maximum eigenvalues of the real
matrix A as 𝜆min(A) and 𝜆max(A), respectively. The transpose
of the matrix A is denoted by AT while A∗ refers to the com-
plex conjugate transpose of a complex matrix A. We write

(x, y) ∈ ℝnx+ny to represent the vector [xT , yT ]T for x ∈ ℝnx

and y ∈ ℝny . We denote the real part of a complex variable s as
Re[s]. The Frobenius Norm of matrix A is written as ‖A‖2

F .
For the sake of convenience, we present the definitions and

fundamental results of NI systems and we refer the reader to
[16] for more details. Consider the following LTI system

ẋ(t ) =Ax(t ) + Bu(t ),

y(t ) = Cx(t ) + Du(t ),
(1)

where x ∈ ℝn is the plant state, u ∈ ℝm is the control
input, y ∈ ℝp is the measured output and A,B,C ,D are
constant matrices with appropriate dimensions. The trans-
fer function matrix G (s) = C (sI − A)−1B + D of system (1)
is said to be strictly proper if G (∞) = D = 0. The nota-
tion (A,B,C ,D) will be used to denote the state space
realization (1).

The following definitions establish the required conditions
for the NI and SNI properties of the LTI system (1).

Definition 1 ([16]). A square transfer function matrix G (s) is
NI if the following conditions are satisfied:

1) G (s) has no pole in Re[s] > 0.
2) For all 𝜔 > 0 such that s = j𝜔 is not a pole of G (s),

j
(
G ( j𝜔) − G ( j𝜔)∗

) ≥ 0. (2)

3) If s = j𝜔0 with 𝜔0 > 0 is a pole of G (s), then it is a sim-
ple pole and the residue matrix K = lim

s⟶ j𝜔0
(s − j𝜔0) jG (s)

is Hermitian and positive semidefinite.
4) If s = 0 is a pole of G (s), then lim

s⟶0
skG (s) = 0 for all k ≥ 3

and lim
s⟶0

s2G (s) is Hermitian and positive semidefinite.

Definition 2 ([37]). A square transfer function matrix G (s) is
SNI if the following conditions are satisfied:

1) G (s) has no pole in Re[s] ≥ 0.
2) For all 𝜔 > 0, j (G ( j𝜔) − G ( j𝜔)∗ ) > 0.

The following lemma provides a state-space characterization
of NI systems in terms of linear matrix inequalities (LMIs) [37].

Lemma 1. Let (A,B,C ,D) be a minimal realization of the transfer

function matrix G (s) for the system in (1). Then, G (s) is NI if and only if

D = DT and there exists a matrix P = PT ≥ 0 such that the following

LMI is satisfied:[
PA + AT P PB − AT C T

BT P −CA −(CB + BT C T )

]
≤ 0. (3)

Furthermore, if G (s) is SNI, then det(A) ≠ 0 and there exists a matrix

P > 0 such that (3) holds.
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MABROK and ABDELRAHIM 3

FIGURE 1 A negative-imaginary feedback control system.

One of the important results in the NI system’s theory is the
robustness property that emerges in the case of positive feed-
back interconnection between an NI and an SNI system, as
shown in Figure 1. The following theorem from [11, 14] states
this results.

Theorem 1. Consider an NI transfer function matrix G (s) with no

poles at the origin and an SNI transfer function matrix Ḡ (s), and suppose

that G (∞)Ḡ (∞) = 0 and Ḡ (∞) ≥ 0. Then, the positive-feedback

interconnection (see Figure 1) of G (s) and Ḡ (s) is internally stable if and

only if 𝜆max (G (0)Ḡ (0)) < 1.

Theorem 1 characterizes the conditions for the stability of the
feedback interconnection of two NI and SNI systems through
phase stabilization. In the case of phase stabilization, it is
allowed to have arbitrarily large gains; however, the phase must
be such that the Nyquist critical point is not encircled by the
Nyquist plot. In other words, in the case of NI interconnected
systems, the NI system has a phase lag in [−𝜋, 0] where the
SNI system has a phase lag in (−𝜋, 0). Thus, the two systems
in cascade have a phase lag in the interval (−2𝜋, 0). That is, the
Nyquist plot excludes the positive-real axis.

To establish the results in this paper, we use the fol-
lowing lemma to formulate the NI system in terms of the
Port–Hamiltonian formulation (see [38, 39]).

Lemma 2. The system given in (1) has a negative imaginary transfer

function if and only if it can be written as

ẋ(t ) = (J − R)(Qx(t ) −C T u(t )),

y(t ) = Cx(t ) + Du(t ),
(4)

for some matrices Q, J ,R, where,

Q = QT > 0, J = −J T , R = RT ≥ 0. (5)

3 PROBLEM FORMULATION

The problem of robust stabilization of linear time-invariant
systems with respect to unmodelled dynamics and structure
uncertainties can be formulated as follows:

Given a strictly negative imaginary plant with the state-space
model given in (1). Suppose that our objective is to design an

output feedback controller that satisfies the negative imaginary
property, where the following quadratic cost function;

Jcost = 𝔼

[
xT

N
F xN +

N−1∑
i=0

(
xT

i Qixi + uT
i Riui

)]
, (6)

for, F ≥ 0,Qi ≥ 0,Ri > 0,

is minimized. In other words, the objective is to design an LQG
controller that satisfies the negative imaginary property at the
same time.

However, the regular LQG algorithm does not guarantee the
negative imaginary property to be satisfied, and therefore, the
above problem can be reformulated as follows:

Given a strictly negative imaginary plant G (s) and a syn-
thesized LQG controller K (s) that satisfy the quadratic cost
function given in (6); find the nearest negative imaginary trans-
fer function ̄K (s) to the designed LQG controller that satisfies
the negative imaginary property. This can be formally stated as
follows:

Problem 1. Given an LTI MIMO strictly negative imaginary plant
and a designed regular LQG controller with the following state-

space representation

[
A B

C D

]
, which satisfy the quadratic

cost function (6); find the nearest (the closest) transfer function

with the state-space representation

[
Ã B̃

C̃ D̃

]
, that satisfy the

NI property such that,

inf
(Ã,B̃,C̃ ,D̃)

 (Ã, B̃, C̃ , D̃),

where

 (Ã, B̃, C̃ , D̃) =‖A − Ã‖2
F + ‖B − B̃‖2

F

+ ‖C − C̃‖2
F + ‖D − D̃‖2

F . (7)

The above formulation has reduced the main problem to the
problem of finding the nearest negative imaginary system for a
given system, which in our case is a designed LGQ controller.

4 MAIN RESULTS

As indicated in the problem formulation section, the objective
of obtaining an LQG output feedback controller that satis-
fies the negative imaginary property is reduced to finding the
nearest negative imaginary system for a given system, which in
our case is a designed LQG controller. This section presents a
systematic methodology for finding the nearest negative imagi-
nary system for a given generic system. The problem of finding
the nearest negative imaginary system is similar to the prob-
lem of finding the nearest positive real system (passive system)
presented in [29], where the port-Hamiltonian formulation is
used.
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4 MABROK and ABDELRAHIM

First, we introduce the following definition, which is based
on Lemma 2 and compares the system described in (4) with the
LTI system given in (1).

Definition 3. A system (A,B,C ,D) is said to admit a port-
Hamiltonian form if there exists a system as defined in (4) such
that

A = (J − R)Q, and,B = −(J − R)C T

Based on the above definition, the problem given in (1) can
be reduced to the following problem:

Problem 2. Suppose an LTI system with the following state space

representation

[
A B

C D

]
, find the nearest (the closest) system[

Ã B̃

C̃ D̃

]
, such that,

inf
(Ã,B̃,C̃ ,D̃)

 (Ã, B̃, C̃ , D̃),

where,

 (Ã, B̃) = ‖A − (J − R)Q‖2
F
+ ‖B − (R − J )C T ‖2

F
, (8)

where, Ã = (J − R)Q, B̃ = −(J − R)C T .

Next, we present an algorithm for finding the nearest nega-
tive imaginary system, which will be used later to design an LQG
controller that satisfies the negative imaginary property.

4.1 Algorithm for finding the nearest
negative imaginary system problem

This section proposes an algorithm to solve the problem
discussed in the above section.

The problem (2) can be written as follows:

inf
J ,R,Q

‖A − (J − R)Q‖2
F
+ ‖B − (R − J )C T ‖2

F
,

such that J T = −J ,Q = QT > 0, and RT = R ≥ 0.
(9)

The projected gradient method (FGM) presented in [40] and
[29] is used to solve the problem in (9).

As indicated in [29], the projected gradient method is much
faster and hence better to use compared to the standard
projected gradient method [41].

The steps can be summarized as follows:

∙ Compute the gradient as follows:

‖A − (J − R)Q‖2
F
⇒ ∇J1

= −2Q‖A − (J − R)Q‖,

ALGORITHM 1 Fast gradient method (FGM) with restart [29]

Input: The function under the minimization f (x ), the set  , an initial starting
point x ∈  , step length lower bound 𝛾, and a parameter 𝛼1 ∈ (0, 1),

Output: A visible solution x to the given minimization problem
argmin

z∈ f (z ).

1: y = x; initial step-length 𝛾 > 𝛾.

2: for k = 1, 2, … do

3: % Save the last iteration in memory.

4: x̂ = x.

5: % Project onto 
6: x =  (y − 𝛾∇ f (y)).

7: % Make sure that the function f has decreased, and if not, decrease 𝛾.

8: while f (x ) > f (x̂ ) and 𝛾 ≥ 𝛾 do

9: 𝛾 =
2

3
𝛾.

10: x =  (y − 𝛾∇ f (y)).

11: end while

12: % Reinitialize y if 𝛾 reaches the lower bound.

13: if 𝛾 < 𝛾 then

14: Restart the fast gradient: y = x; 𝛼k = 𝛼1.

15: Reinitialize 𝛾 at the last value for which it allowed a decrease in f .

16: else

17: 𝛼k+1 =
1

2
(
√
𝛼4

k
+ 4𝛼2

k
− 𝛼2

k
), 𝛽k =

𝛼k (1−𝛼k )

𝛼2
k
+𝛼k+1

.

18: y = x + 𝛽k (x − x̂ ).

19: end if

20: 𝛾 = 2𝛾.

21: end for

‖A − (J − R)Q‖2
F
⇒ ∇R1

= 2Q‖A − (J − R)Q‖,
‖A − (J − R)Q‖2

F
⇒ ∇Q = −2(J − R)‖A − (J − R)Q‖,

‖A − (R − J )C T ‖2
F
⇒ ∇J2

= 2C T ‖A − (R − J )C T ‖,
‖A − (R − J )C T ‖2

F
⇒ ∇R2

= −2C T ‖A − (R − J )C T ‖,
or simply, for a given term in the objective function, f (X ) =‖AX − B‖2

F the gradient is ∇Y f (Y ) = 2AT (AY − B).
∙ Project onto the feasible set of matrices Q and R that satisfy

both conditions, Q = QT > 0, and RT = R ≥ 0.

The FGM Algorithm 1, which is presented in [29], is used to
compute the matrices Q,R.

Similar to the implementation in [29], positive weights,
wi were added to the objective function terms in order to
give opportunity for a different importance of each term if
needed. Therefore, the objective function can be written as
follows:

 (Ã, B̃) = w1‖A − (J − R)Q‖2
F
+ w2‖B − (R − J )C T ‖2

F
.
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MABROK and ABDELRAHIM 5

FIGURE 2 Bode plot of the negative imaginary system given in (12), where N = 2.

FIGURE 3 Bode plot of the designed controller given in (13).

Parameter settings in our implementation are similar to the
parameter settings that were used in [29]. For instance, the step
length is calculated as 𝛾 = 1∕L where L = ‖Q‖2

2. Furthermore,
in the initialization step, two different initializations were used.

∙ The first initialization,

Q = In, J =
(
A − AT

)
∕2, R = P>0

(
(−A − AT )∕2

)
,

where the notation >0(X ) stands for the projection of a
matrix X on the cone of positive semi-definite matrices.

∙ The second initialization is an LMI-based: Since the given
system is not an NI system, the LMI given in (3) has no
solution. However, a solution P to the nearby LMIs should
be a good initialization for the matrix Q. We propose the

following to relax LMIs (3):

min
𝛿,P

𝛿2

such that

[
−PA − AT P −PB + AT C T

−BT P +CA (CB + BT C T )

]
+𝛿In+m ≥ 0,

(10)

4.2 Optimal control design

In this section, the nearest NI problem, which was presented in
the previous subsection, will be used in order to design a near-
optimal controller for a given NI plant.
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6 MABROK and ABDELRAHIM

FIGURE 4 Bode plot of the designed Linear–quadratic–Gaussian controller given in (13).

FIGURE 5 Step response of the Linear–quadratic–Gaussian controller and the Nearest negative imaginary controller for the system given in (12), where N = 2.

FIGURE 6 Bode plot of the plant model given in (12), with different number modes.
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MABROK and ABDELRAHIM 7

FIGURE 7 The step response of the designedLinear–quadratic–Gaussian (LQG) controller (13) and the nearest negative imaginary controller plant model
given in (12), with N = 5.

Suppose that we want to design a controller for a given NI
plant, G (s), with the state space representation given in (1). Sup-
pose also that we decided to use any standard control synthesis
methodology, such as LQG or H∞, to design a controller that
satisfied a particular performance measure. It is unlikely that
the designed controller will satisfy the NI property, and there-
fore, a robustness property will not be guaranteed. Hence, we
can use the nearest NI problem, which was presented in the
previous subsection, to find the nearest NI controller to the
designed one. The following steps summarize the NI-control
design, assuming that an LGQ is used in the design.

∙ Given an LTI NI plant in the form (1), with the transfer
function matrix G (s) = C (sI − A)−1B + D.

∙ Design an LQG controller K (s) = Cc (sI − Ac )−1Bc + Dc ,
which minimizes the following cost function:

J (u) = ∫
∞

0

{
xT Qcx + 2xT Ncu + uT Rcu

}
dt . (11)

∙ Use the methodology presented in this paper to find the near-
est NI controller Ḡ (s) = C̄ (sI − Ā)−1B̄ + D̄, to the designed
LQG controller K (s).

The new modified controller Ḡ (s) is a near-optimal controller
that satisfied the NI property.

Remark 1. The DC gain condition 𝜆max (G (0)Ḡ (0)) < 1, can be
included in the optimization process of finding the nearest NI
controller. The DC gain of the NI controller can be calculated
as follows:

Ḡ (0) = − C̄ (Ā)−1B̄ + D̄,

= C̄ ((J − R)Q)−1(J − R)C̄ T + D̄,

= C̄ Q−1C̄ T + D̄.

In the iterations of finding the matrix Q, particularly in the
projection iteration, the matrix Q is scaled to satisfy the DC
gain condition. The scaling factor that preserves the DC gain
condition is:

Qnew = 𝛼Qold

where in the single-input single-output case,

𝛼 = (CQ−1
old

C T + D)G (0) + 𝜖,

with a small 𝜖 > 0.

5 EXAMPLE

In this section, we present an example to illustrate the design
approach presented in this paper.

It is well known that mechanical structures with co-located
force actuators and position sensors yield negative imaginary
systems [11]. Naturally, these systems are infinite-dimension
systems, whereas their models are not. This makes the con-
trol design for such systems challenging particularly in the case
where the synthesis methodology does not take into account the
robustness issue. Therefore, our method shows a big advantage
over optimal control methodologies.

To illustrate this fact, consider the following lightly damped
flexible structure LTI second-order system with a co-located
force actuation and position measurement with the following
structure:

G (s) =
N∑

n=1

1

s2 + 2𝜁n𝜔ns + 𝜔2
n

, (12)

where 𝜔n is the natural frequency and 𝜁n the damping factor.
Suppose that we want to design an LQG controller for the
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8 MABROK and ABDELRAHIM

system given in (12). Since this model represents an infinite-
dimension system, a finite model is chosen to design the
controller. We chose N = 2 with 𝜔1 = 2, 𝜔2 = 4 and 𝜁1 =
𝜁2 = 0.02 for the model parameters. This implies that the model
gives the transfer function given in Figure 2.

With appropriate LQG parameters, the controller is given as
follows:

LQG (s) =
−1.593s3 + 9.84s2 − 12.58s + 93.76

s4 + 3.847s3 + 26.66s2 + 46.86s + 125.1
. (13)

The bode plot of the designed LGQ controller as given in
Figure 3 shows that it is not an NI controller, since the phase
is not in the (0, −𝜋).

Now, applying our method of finding the nearest NI con-
troller to the LQG controller given in (13), we get the following
transfer function:

NILQG (s) =
13.75s2 + 6.77s + 132.5

s4 + 3.847s3 + 26.66s2 + 46.86s + 125.1
(14)

The bode plot in Figure 4 of the controller given in (14) shows
that it satisfies the NI property.

In this example, we apply the FGM algorithm defined in (1)
with the initialization given in (10). This gives a nearby standard
NI system with error

‖A − Â‖2
F + ‖B − B̂‖2

F + ‖C − Ĉ‖2
F

+ ‖D − D̂‖2
F = 0.6430.

In terms of relative error for each matrix, we have‖A − Â‖F‖A‖F

= 5.5917e−18%,
‖B − B̂‖F‖B‖F

= 0.0631%,

‖C − Ĉ‖F‖C‖F

= 0%,
‖D − D̂‖F‖D‖F

= 0%.

The step response of the closed feedback interconnection of
the plant is given in (12) and both the designed LQG (13) con-
troller and the nearest NI controller (14) are given in Figure 5.
It is clear that the response is very similar.

The more interesting part of this example is when we
add more non-modelled modes to the plant, that is, N = 5
as shown in Figure 6. This means that we include unmod-
ulated dynamics in the plant, which was regarded as
uncertainty.

As shown in Figure 7, the designed LGQ (13) will become
unstable if we consider the five-mode plant. However, the near-
est NI controller still stabilizes the system with acceptable
performance. This is due to the negative imaginary property of
both the controller and the plant.

6 CONCLUSION AND FURTHER
RESEARCH

In this paper, we have investigated the robust stabilization
of negative imaginary systems by finding the near-optimal

negative imaginary controller. The approach is based on a port-
Hamiltonian formulation and can be systematically applied by
solving LMI conditions. The effectiveness of the technique has
been verified by simulation. It has been shown in simulation
that the nearest negative imaginary controller produces a very
similar response to the nominal LQG controller while ensuring
robustness with respect to unmodelled dynamics.

Future research directions include more control design
approaches such as H∞ control. Also, a deeper analysis of the
convergence of the optimization algorithm is needed in order
to make the results more attractive. Furthermore, the results in
this paper can be extended to the class of positive real systems
as well.
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