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ABSTRACT 

Over the past two decades, studies have documented the wide-range anti-cancer effects of 

Nigella sativa, known as black seed or black cumin. Thymoquinone (TQ), its major active 

ingredient, has also been extensively studied and reported to possess potent anti-cancer 

properties. Herein, we provide a comprehensive review of the findings related to the anti-cancer 

activity of TQ. The review focuses on analyzing experimental studies performed using different 

in vitro and in vivo models to identify the anti-proliferative, pro-apoptotic, anti-oxidant, 

cytotoxic, anti-metastatic, and NK-dependent cytotoxic effects exerted by TQ. In addition, we 
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pinpoint the molecular mechanisms underlying these effects and the signal transduction 

pathways implicated by TQ. Our analysis show that p53, NF-

and PI3K/AKT signaling pathways are among the most significant pathways through which TQ 

mediates its anti-cancer activity. Experimental findings and recent advances in the field highlight 

TQ as an effective therapeutic agent for the suppression of tumor development, growth and 

metastasis for a wide range of tumors.  
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INTRODUCTION 

Cancer remains a major public health problem and one of the leading causes of death in 

the world. In fact, global cancer burden has risen to 14.1 million new cases in 2012 (Stewart and 

Wild, 2014). The mechanisms underlying cancer development and progression vary widely 

among different cancer types and many are not fully understood. However, mutations in genetic 

or epigenetic pathways including tumor suppressor genes and oncogenes have been reported in a 

great number of cancer cases (You and Jones, 2012). Unfortunately, the pharmacological 

treatments and chemotherapy have shown limited potential in achieving long-term treatment to 

various types of cancer, which is partially due to their high cost but also due to their tendency to 

alter the functioning of cell signaling pathways and potentially cause toxicity. This has driven the 

search among naturally occurring products for a non-pharmaceutical agent with a higher efficacy 

and a lower risk relative to pharmaceuticals. It is intriguing that despite the great advancement in 

the field of conventional medicine and the arena of drug design and discovery, the use of herbal 

formulations remains to be extremely widespread throughout the world, indicative of peoples’ 

perception of the safety and therapeutic efficacy of such medicinal herbs. Although herbal 

medicine is more prevalent in Asia, Africa, and to a lesser extent in Europe, the use of medicinal 

herbs has witnessed a significant, gradual increase in North America (El Gazzar et al., 2007). It 

is most likely the nourishing, efficacious, synergistic, cost-effective, and safe properties of 

medicinal herbs that make them an attractive option for many people as therapeutic agents 

(Donaldson, 1997; Barrett et al., 1999). In fact, the discovery and design of many conventional 

drugs are based on the chemical, physiological, and therapeutic actions of one more bioactive 

constituents of specific medicinal herbs. It is undeniable that recent advancement in pharma and 
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medicine, manifested through the development of biotechnologies and mass production of highly 

specific, chemically-synthesized drugs, has revolutionized the therapeutic approach to health 

care and disease management worldwide. However, herbal medicine appears to remain a primary 

ideology in many populations today and a very common practice in different parts of the world, 

particularly to treat diseases where pharmacological drugs have shown a limited potential. 

Natural herbs have been used for thousands of years in the treatment of many diseases 

including various types of cancer. Their therapeutic implications in various tumor types are 

manifested by inhibiting processes that are critical to cancer progression such as angiogenesis, 

metastasis, and the activation of tumor suppressor genes, which along with a number of other 

cellular processes aid in tumor suppression. Earlier studies have reported that diet rich in fruits, 

vegetables, cereal grains, and spices alleviate the risk of cancer growth and its progression 

(Rajamanickam and Agarwal, 2008). One of the most promising, intensively studied herbs in the 

field of tumor suppression is Nigella sativa (N. sativa). Increased attention and intensive research 

efforts have been recently devoted towards understanding the potent anti-cancer activities of N. 

sativa. That being said, research pinpointing the exact molecular pathways underlying its 

mechanisms of action remains in its infancy.  

N. sativa is an annual flowering plant that grows in many parts of the world but is native 

to South and Southwest Asia and commonly found in Northern Africa, the Middle East, and 

Southern Europe (Banerjee et al., 2010; Khan et al., 2011). N. sativa is also known as nigella, 

blackseed, black cumin, black caraway, Roman coriander, fennel flower, nutmeg flower, 

“kalonji” (in India), “Kalo jeera” (in Bangladesh), “Hak Jung Chou” (in China), and “habbat al-

barakah” (in the Middle East). N. sativa belongs to the botanical family Ranunculaceae (Ali and 
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Blunden, 2003; Salem, 2005). Thymoquinone (TQ) (2-isopropyl-5-methyl-1,4-benzoquinone), 

which is a yellow crystalline molecule that was extracted about five decades ago using thin layer 

chromatography on silica gel, is one of the major bioactive phytochemical constituents of the oil 

and other extracts of N. sativa seeds (El-Dakhakhny, 1963). It has a molecular weight of 164.2 

g/mol and C10H12O2 chemical formula (Woo et al., 2012; AbuKhader, 2013; Schneider-Stock et 

al., 2014). TQ constitutes around 30-48% of N. sativa seeds, indicative of its importance (Ahmad 

et al., 2013). Aside from its use as a food flavoring additive, N. sativa seeds oil and extracts have 

been used since ancient times to treat several diseases and medical conditions. Both N. sativa 

crude extracts and purified compounds, including TQ, have proven to possess anti-microbial, 

anti-histaminic, anti-diabetic, anti-inflammatory, anti-oxidant, hypolipidemic, and anti-cancer 

properties that could be of potent therapeutic efficacy in the prevention/treatment of various 

infectious and non-infectious diseases (Ali and Blunden, 2003; Salem, 2005; Banerjee et al., 

2010; Butt and Sultan, 2010; Khan et al., 2011; Randhawa and Alghamdi, 2011; Woo et al., 

2012; AbuKhader, 2013; Ahmad et al., 2013; Shabana et al., 2013; Ahmad and Beg, 2013a; 

Ahmad and Beg, 2013b; Ahmad and Beg, 2014; Rahmani et al., 2014; Schneider-Stock et al., 

2014; Ahmad and Beg, 2016). 

This review provides a comprehensive account of the in vitro and in vivo anti-cancer 

properties of TQ in the literature. It thoroughly discusses all the molecular and cellular 

mechanisms that mediate the anti-proliferative, pro-apoptotic, and anti-oxidant effects of TQ. It 

also underscores recent advances in the establishment of TQ as an effective therapeutic agent, 

leading to suppressed tumor initiation and progression in various cell lines. 

Anti-proliferative and pro-apoptotic effects of TQ 
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A great deal of research has focused on the anti-cancer activity of TQ both in vitro and in 

vivo using different tumor cell lines and animal models. In one study, Badary and Gamal El-Din 

examined the effects of TQ on male Swiss albino mice treated with 20-methylcholanthrene (MC) 

to induce fibrosarcoma (Badary and Gamal El-Din, 2001). Oral administration of TQ (0.01% in 

drinking water) one week before or after MC treatment led to significantly reduced tumor 

development and tumor burden by 43% and 34%, respectively (Badary and Gamal El-Din, 

2001). Moreover, TQ administration also caused a delayed onset of MC-induced fibrosarcoma 

tumors and significantly reduced MC-induced mortality (Badary and Gamal El-Din, 2001). MC 

treatment caused lipid peroxide accumulation, decreased glutathione (GSH) content, and 

decreased activities of glutathione S-transferase (GST) and quinone reductase (QR) in the livers 

of treated mice, and TQ treatment reversed all these phenotypes (Badary and Gamal El-Din, 

2001). TQ treatment significantly inhibited the proliferation and survival of fibrosarcoma cells at 

IC50 (Badary and Gamal El-Din, 2001). It is speculated that TQ exerts such anti-cancer 

effects possibly by interfering with DNA synthesis and enhancing the detoxification processes. 

Several other studies demonstrated that TQ can potently inhibit the proliferation of various 

cancer cell lines. Shoieb and colleagues 

cancer cell lines including canine osteocarcinoma (COS31) and its cisplatin-resistant variant 

(COS31/rCDDP), human breast adenocarcinoma (MCF-7), and human ovarian adenocarcinoma 

(BG-1), as well as Madin-Darby Canine Kidney (MDCK) cells, a cell line derived from normal 

dog kidney. It exerted these effects by causing a cell cycle arrest at G1 phase (Shoieb et al., 

2003). However, research suggests that non-cancerous cells are resistant to TQ-induced 

apoptosis. In a study by Ivankovic and colleagues, four intra-tumoral injections of TQ (5 mg/kg) 
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modulated tumor growth kinetics leading to 52% tumor growth inhibition in SCC VII and FsaR 

murine tumor models compared to the control sample (Ivankovic et al., 2006). In another study, 

TQ was shown to cause significant, dose-dependent inhibition of cell growth in androgen-

dependent LNCaP human prostate cancer cells (Richards et al., 2005). The viability and 

proliferation of human pancreatic carcinoma cell line (PANC-1) was shown to be significantly 

suppressed by a co-treatment with TQ and epigallocatechin gallate (EGCG), a major component 

of green tea (Tan et al., 2005). Using human epithelial carcinoma type 2 (Hep-2) cells, it was 

post treatment, and a greater effect was observed with prolonged TQ treatment for 48 and 72 

hours, indicating that TQ could potentially alter cell viability (Womack et al., 2005). (Figure 1) 

In an in vivo study using 1,2-dimethyl hydrazine (DMH) mouse colon cancer model, it 

was demonstrated that a weekly intraperitoneal injection of TQ for 30 weeks significantly 

reduced the size and number of aberrant crypt foci (ACF) by 86% as early as 10 weeks after 

injection in DMH-challenged mice (Gali-Muhtasib et al., 2008b). TQ injection caused a 

significant 4-fold decrease in tumor multiplicity 20 weeks post injection (Gali-Muhtasib et al., 

2008b). Interestingly, TQ treatment has induced a very effective suppression of tumor 

progression, which lasted for around 10 weeks after TQ injection was stopped (Gali-Muhtasib et 

al., 2008b). Consistently, TQ injection significantly suppressed tumor growth in a xenograft 

model of HCT-116 colon cancer cells (Gali-Muhtasib et al., 2008b). In both models, TUNEL 

staining revealed that TQ induced apoptosis of tumor cells (Gali-Muhtasib et al., 2008b). In 

another in vivo study, a rat model of DMH-induced colon carcinogenesis was used to 

demonstrate that daily dose of TQ (10 mg/kg) in the initiation phase significantly suppressed 
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tumor incidence, multiplicity, invasion, and mean tumor volume as well as the proliferation of 

tumor cells (Asfour et al., 2013). These findings were previously reported in vitro, whereby TQ 

treatment at non-

colorectal carcinoma cells by 50%, significantly inhibited the three-dimensional growth of C26 

mouse colorectal carcinoma spheroids, and induced apoptosis (Gali-Muhtasib et al., 2008b). In 

vivo pharmacokinetic analysis revealed that the % recovery of TQ from serum is relatively low 

(2.5% and 72% recovery at 10 μg/ml and 100 μg/ml of TQ, respectively) due to its extensive 

binding (94.5 ± 1.7% and 99.1 ± 0.1%) to major plasma proteins, bovine serum albumin (BSA) 

and alpha-1 acid glycoprotein (AGP), respectively (El-Najjar et al., 2011). Consistently, an in 

vitro experiment revealed that TQ-induced apoptosis in DLD-1 and HCT-116 human colon 

cancer cells was abrogated when cells were pre-incubated with BSA, indicating that covalent 

binding with BSA prevented TQ from exerting its pro-apoptotic effects (El-Najjar et al., 2011). 

Future studies could aim for modulating TQ in ways that could overcome this challenge and 

allow greater efficacy.  

In a recent study by Ng and colleagues using human cervical squamous carcinoma cells 

(SiHa), TQ treatment (1- anied by a significantly higher level of p53 and a 

lower level of Bcl-2, leading to apoptosis and cell cycle arrest at the G1/S phase (Ng et al., 

2011). Recently, it was shown that TQ treatment in HepG2 cells was accompanied by cell cycle 

arrest at the G2/M phase and apoptosis that was induced by Bax over-expression and Bcl-2 

under-expression, leading to elevated Bax/Bcl-2 ratio (ElKhoely et al., 2015). Another recent 

study demonstrated that TQ was shown to exert time- and dose-dependent chemo-preventive, 

anti-cancer effects against different types of cancer including those of the brain, colon, cervix, 
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and liver by modulating phase I cytochrome P450 and phase II GST drug-metabolizing enzymes 

(ElKhoely et al., 2015). Thus, the inhibition of cytochrome P450 and the elevation in both 

glutathione level as well as GST activity in HepG2 cells all seem to be mediated by TQ 

(ElKhoely et al., 2015). In an attempt to examine the anti-cancer effects of TQ in hormone-

refractory prostate cancer, Kaseb and colleagues demonstrated that TQ (20-

significantly inhibited DNA synthesis, proliferation, and viability of cancerous prostate epithelial 

cells (LNCaP, C4-B, DU145, and PC-3) with no such effects in normal, non-cancerous prostate 

epithelial cells (BPH-1) (Kaseb et al., 2007). Indeed, such TQ-induce effects were mediated by 

down-regulation of androgen receptor (AR) and E2F-1, regulators of cell growth and 

proliferation, associated with a marked increase in the expression of p21, p27, and Bax leading to 

cell cycle arrest at the G1/S phase (Kaseb et al., 2007). Using a xenograft prostate tumor model, 

in which mice were inoculated with C4-2B-derived tumors, TQ treatment (20 mg/kg/day) for 31 

days potently attenuated tumor growth by inducing apoptosis in tumor cells via AR, E2F-1, and 

cyclin A down-regulation (Kaseb et al., 2007). These findings suggest that TQ may be a potent 

therapeutic agent against androgen-sensitive and hormone-refractory prostate cancer (Kaseb et 

al., 2007). Similarly, TQ treatment (0.01- A-MB-468 and T-47D breast cancer 

cells caused an early cell cycle arrest at the G1 phase, followed by a phase shift to sub-G1, 

indicating induction of apoptosis, 24 hours post treatment (Rajput et al., 2013a). TQ-induced 

apoptosis was associated with suppressed expression of cyclin D1, cyclin E, and p27 (Rajput et 

al., 2013a). Furthermore, TQ induced the mitochondrial pro-apoptotic pathway, leading to loss of 

mitochondrial membrane potential, enhanced cleavage of PARP, up-regulated expression of Bax, 

p53, cytochrome c, and caspase-3, as well as suppressed expression of Bcl-2, Bcl-xL, and 
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survivin (Rajput et al., 2013a). Recently, TQ was shown to potently inhibit the viability of 

hepatocellular carcinoma cells in a time- and dose-dependent manner by causing a G2/M cell 

cycle arrest (Ashour et al., 2014). TQ treatment also potently enhanced TRAIL-induced 

apoptosis by activating caspase-3 and caspase-9, inducing PARP cleavage, suppressing Bcl-2 

expression, and up-regulating Bcl-xL and TRAIL death receptors expression (Ashour et al., 

2014; Ke et al., 2015). Other studies suggest that the anticancer effect of TQ might be explained 

by its tendency to increase nitric oxide (NO) levels in ovarian cancer cell line (Harpole et al., 

2015). Further studies are required to investigate and validate the relation between TQ, NO and 

tumorigenesis in other cell lines. (Figure 1) 

The pathways involved in TQ-mediated protection of hepatocellular carcinoma remained 

unclear until a recent paper by Ke and colleagues demonstrated that TQ exerts a suppressive 

effect on the Notch signaling pathway. Over expression of notch receptors such as NICD was 

shown to rescue the inhibitory effect of TQ on cell proliferation. These findings were reported in 

vivo and in vitro, highlighting the notch pathway as a target in HCC patients (Ke et al., 2015). 

Aside from hepatocellular carcinoma, the effects of TQ were also studied in murine leukemia, 

whereby Salim and colleagues demonstrated that TQ (1.5-100 µg/ml) significantly reduced the 

viability of WEHI-3 cells in a time- and dose-dependent manner (Salim et al., 2014). TQ induced 

early apoptosis with condensed chromatin and apoptotic bodies in WEHI-3 cells, which was 

associated with cell cycle arrest at the G1/S phase, down-regulation of Bcl-2, and up-regulation 

of Bax, leading to increased Bax/Bcl-2 ratio (Salim et al., 2014). An in vivo study revealed that 

oral administration of TQ (100 mg/kg/day) for 3 weeks resulted in a significant decrease of 

neoplastic cells and increase in apoptotic cells in the spleen and liver tissues of BALB/c mice 
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inoculated with WEHI-3 cells (Salim et al., 2014). Along the same line, Ichwan and colleagues 

have shown that TQ induces apoptosis SiHa and C33A cells, two human cervical cancer cell 

lines, by enhancing p53 expression and caspase-3 activation, respectively (Ichwan et al., 2014). 

The study further revealed that p53 signaling is crucial in mediating the pro-apoptotic effect of 

TQ in SiHa cells, but not as much in C33A cells (Ichwan et al., 2014). Along the same line, a 

recent study by Paramasivam and colleagues examined the effect of TQ on a mouse-derived 

neuroblastoma cell line (neuro-2a) (Paramasivam et al., 2015). Findings suggest a profound pro-

apoptotic activity of the compound via caspase 3 activation and down-regulation of XIAP. 

Further analysis revealed that TQ increased the levels of P53 and p21 expression levels, leading 

to cell cycle arrest at G2/M phase as well as sub-G1 phase (Paramasivam et al., 2015). The above 

findings reveal that the involvement of p53 signaling in TQ-induced apoptosis is not very clear, 

and it may certainly depend on experimental conditions including TQ dose, cell type, and 

methods of assessment. Hence, carefully designed in vitro and in vivo experiments are needed to 

unravel the importance of p53 in mediating the potent anti-cancer activity of TQ. It has been 

long recognized that frequent inflammatory reactions promote a biological environment that sets 

the stage for cancer development. Therefore, interference with inflammation can hinder cancer 

progression and consequently improve patient morbidity and mortality. Arachidonic acid, one of 

the precursors of several classes of transduction molecules, is altered metabolically in human 

carcinogenesis. In the case of inflammation, 5-lipoxygenase (5-LO) catalyzes the conversion of 

arachidonic acid into 5-hydroxyeicosatetraenoic acid (5-HETE) and Leukotrienes (LTs), which 

can enhance cell proliferation and suppress apoptosis (Hoque et al., 2005). As highlighted above, 

TQ and N. sativa oil significantly inhibit 5-LO activity and the formation of its products 
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(Houghton et al., 1995; El-Dakhakhny et al., 2002; Mansour and Tornhamre, 2004; El Gazzar et 

al., 2006). Hence, TQ-mediated inhibition of 5-LO activity in yet another mechanism of action 

that contributes to the potent anti-cancer function of TQ. (Figure 1) 

Using an orthotopic model of pancreatic cancer, Banerjee and colleagues assessed the in vitro 

and in vivo chemo-sensitizing effect of TQ on conventional chemotherapeutic agents (Banerjee 

et al., 2009). Pre-treatment of BxPC-

for 48 hours followed by treatment with gemcitabine or oxaliplatin, effective chemotherapeutic 

drugs against pancreatic cancer, led to 60-80% inhibition of cell growth compared to 15-25% 

inhibition when the cells were treated with gemcitabine or oxaliplatin alone (Banerjee et al., 

2009). Further analysis revealed that the anti-proliferative and pro-apoptotic potential of TQ is 

due to its ability to down-regulate Bcl-2, NF- - -dependent anti-apoptotic genes 

(COX-2, survivin, and XIAP). Hence, the chemo-sensitization provided by TQ is due to its 

ability to inhibit NF- , which tends to be enhanced as a side effect of gemcitabine or 

oxaliplatin treatment (Banerjee et al., 2009). Similar findings were reported recently on the 

chemo-sensitization effect induced by TQ and mediated through inhibition of NF-

colon cancer cells (Zhang et al., 2016). In the aforementioned study by Banerjee and colleagues, 

the therapeutic efficacy of TQ against pancreatic tumors was evaluated in vivo using SCID mice 

bearing orthotopically implanted HPAC cells. Intragastric administration of 3 mg/mouse/day 

caused 38% suppression of pancreatic tumor weight 35 days post treatment, and the combination 

of TQ with gemcitabine or oxaliplatin significantly enhanced the anti-cancer effects of either 

drug alone (Banerjee et al., 2009). At a molecular level, TQ co-treatment potently abrogated 

constitutive NF- -3 activity, and the expression of NF-κB-regulated factors 
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including Bcl-xL, survivin, and XIAP in the pancreatic tumors, indicating induction of apoptosis 

(Banerjee et al., 2009). Using single pot synthesis, Banerjee and colleagues synthesized a series 

of 27 novel analogs of TQ by modifications at the carbonyl sites or the benzenoid sites and 

evaluated their anti-proliferative and pro-apoptotic potential in MIA PaCa-2 cells, a human 

pancreatic cell line (Banerjee et al., 2010). Experimental evidence indicated that three TQ 

analogs (TQ-2G, TQ-4A1, and TQ-

inhibiting cell growth and inducing apoptosis MIA PaCa-2 cells by suppressing NF-

signaling (Banerjee et al., 2010). The three TQ analogs were further demonstrated to sensitize 

gemcitabine/oxaliplatin-induced apoptosis in MIA PaCa-2 cells, which are gemcitabine-resistant 

pancreatic cells, effects that were accompanied by down-regulated expression of NF- -

regulated cell cycle factors including Bcl-2, Bcl-xL, survivin, XIAP, COX-2, and PGE2 

(Banerjee et al., 2010). Hence, such TQ analogs hold a great hope as anti-cancer therapeutic 

agents especially when used in combination with conventional chemotherapeutic agents used in 

the treatment of pancreatic cancer. (Figure 1) 

A few other studies proposed that TQ may manifest its anti-proliferative effects by modulating 

the activity of AKT, a known positive regulator of cell survival. In an attempt to investigate the 

effect of TQ on the survival of dendritic cells (DCs), Xuan and colleagues demonstrated that TQ 

(1- -induced survival of mouse bone marrow-derived DCs (Xuan et 

al., 2010). Further examination revealed that LPS-induced phosphorylation, and hence 

activation, of the pro-survival factors AKT and ERK1/2 in DCs was potently abolished by TQ 

treatment (Xuan et al., 2010). Using doxorubicin-resistant human breast cancer MCF-7/DOX 

cells, Arafa and colleagues 
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in AKT activity due to enhanced expression of PTEN (Arafa et al., 2011). Interestingly, PTEN 

silencing by target specific siRNA abrogated the anti-proliferative and pro-apoptotic effects of 

TQ (Arafa et al., 2011). Hussain and colleagues examined the effects of TQ on the growth of 

several human primary effusion lymphoma cell lines (PEL) including BC-1, BC-3, BCBL-1, and 

HBL-6 (Hussain et al., 2011). TQ (10- d the growth and enhanced 

apoptosis of the examined PEL cell lines in a dose-dependent manner, with no such effects 

against normal peripheral blood mononuclear cells isolated from normal human subjects 

(Hussain et al., 2011). It was also revealed that TQ down-regulated the AKT signaling leading to 

suppressed phosphorylation, and hence, activation of FKHR and GSK3; key AKT-regulated 

proteins involved in cell proliferation and apoptosis (Hussain et al., 2011). Other studies further 

confirmed that TQ-induced anti-cancer effects can be explained by its ability to inhibit AKT 

signaling, leading to the activation of the mitochondrial pro-apoptotic pathway and DNA damage 

(Attoub et al., 2013). TQ exerts a synergistic effect with cisplatin, a DNA-damaging agent, to 

cause DNA damage and diminish cell viability (Attoub et al., 2013). In the same study, the in 

vivo effects of TQ were assessed in athymic mice that were inoculated with LNM35 tumor lung 

cells. Intraperitoneal injection of TQ (10 mg/kg) for 18 days was associated with significant 39% 

inhibition of LNM35 xenograft tumor growth, with a significant increase in caspase-3 activity 

and a significant decrease in histone deacetylase-2 (HDAC2) activity (Attoub et al., 2013). This 

was further confirmed by another study, where in vitro analysis as well as in silico findings 

collectively uncovered an active participation of TQ in attenuation of HDAC activity (Parbin et 

al., 2015). The anti-cancer effect of HDAC inhibitors, such as TQ, is explained by activation of 

HDAC-target genes including p21, Maspin, Bax as well as down-regulation of Bcl2, all of which 
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aid in the process of apoptosis and cell cycle arrest. Rajput and colleagues performed in vitro and 

in vivo experiments to assess the potential of TQ, alone in combination with Tamoxifen, to 

regulate AKT signaling in breast cancer cells (Rajput et al., 2013b). TQ (0.01-

-positive MCF-7 and T-47D cells 

-negative MDA-MB-231 and MDA-MB-468 breast cancer cells, with negligible effect 

on NIH/3T3, HaCaT, and HMEC normal cell lines (Rajput et al., 2013b). TQ treatment 

significantly enhanced Tamoxifen-induced apoptosis in MCF-7 and MDA-MB-231 cells, leading 

to increased percentage of apoptotic cells in the sub-G1 phase (Rajput et al., 2013b). 

Intriguingly, such pro-

compared to high -G1 cell cycle 

arrest that was associated with a time-dependent decrease in Bcl-2 expression and increase in 

Bax expression, leading to increased Bax:Bcl-2 ratio (Hussain et al., 2011). TQ treatment in PEL 

cells was also associated with conformational changes in Bax, leading to loss of mitochondrial 

membrane potential, release of cytochrome C from the mitochondria to the cytosol, as well as 

enhanced caspase-3 and caspase-9 activation and PARP cleavage, effects that were abrogated in 

presence of NAC or zVAD-FMK (Hussain et al., 2011). TQ was demonstrated to significantly 

induce COX-2 expression and prostaglandin E2 (PGE2) production in human breast cancer cell 

line (MDA-MB-231) in a dose-dependent manner (Yu and Kim, 2012). Such effects of TQ were 

shown to be mediated via p38 and AKT/PI3K signaling pathways since TQ treatment enhanced 

AKT and p38 activation (Yu and Kim, 2012). Indeed, LY294002 and SB203580; potent 

inhibitors of PI3K and p38, respectively, abrogated TQ-induced positive regulation of COX-2 

and PGE2 (Yu and Kim, 2012). Other studies reported similar findings in vivo, whereby a 
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combination of paclitaxel, an anti-cancer drug, and TQ showed a clear therapeutic potential in 

triple negative breast cancer cell line in both cell culture and mice (Şakalar et al., 2016). Similar 

to the aforementioned findings, the study showed that TQ manifested its effect through up-

regulating tumor suppressor genes (p21, BRCA1, and Hic1) and elevated protein levels of 

various caspases and PARP. The study highlights an intriguing finding linked to TQ resistance, 

where high doses of TQ lead to activation of several growth factors and down-regulation of 

caspases, revealing key pathways altered by cancer cells. (Figure 1) 

Also, a very recent study examined the efficacy of TQ to induce autophagy as a mode of 

cell death in an irinotecan-resistant (CPT-11-R) LoVo colon cancer cell line (Chen et al., 2015). 

TQ (2- -dependent increase in total cell death index. Intriguingly however, 

decrease at higher concentrations of TQ (4- (Chen et al., 2015). TQ, in a dose-dependent 

manner, induced autophagic cell death at the initiation of autophagosome formation by 

stimulating mitochondrial outer membrane permeability (MOMP) indicated by up-regulated 

levels of JC-1, Atg5, Atg7, Atg12, Beclin-1, LAMP2, LC3, LC3-II, and SQSTM1/p62, proteins 

involved in autophagy (Chen et al., 2015). JNK and p38 inhibitors (SP600125 and SB203580, 

respectively) prevented TQ-induced autophagic cell death, indicating that TQ triggers JNK and 

p38 signaling to mediate its ability to provoke autophagic cell death in LoVo cells (Chen et al., 

2015). Furthermore, TQ-induced autophagy was shown to be caspase-independent since co-

treatment with z-DEVD-FMK, a specific caspase-3 inhibitor, did not abrogate TQ-induced 

autophagic cell death especially at higher concentrations of TQ and at a later stage of TQ 

treatment (Chen et al., 2015). These findings suggest that apoptosis (caspase-dependent) is the 
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main mode of cell death early after TQ treatment at low concentrations but then cell death mode 

switches to autophagy (caspase-independent) later in the response to TQ treatment at high 

concentrations. (Figure 1) 

In addition, Breyer and colleagues evaluated the efficacy of 4-acylhydrazones and 6-alkyl 

derivatives of TQ to inhibit the growth of human HL-60 leukemia, 518A2 melanoma, KB-

V1/Vbl cervix, and MCF-7/Topo breast carcinoma cells (Breyer et al., 2009). TQ derivatives 

displayed differential abilities to inhibit the growth of the studied cancer cells, whereby the 6-

hencosahexaenyl conjugate 3e was the most effective. It was also demonstrated that unsaturated 

side chains allowed for a great anti-survival function compared to saturated chains of equal 

length, and the chain length was more critical than the number of C=C bonds in determining the 

potency of inhibited cell growth (Breyer et al., 2009). This study also revealed that some of the 

studied TQ derivatives utilize signaling pathways other than those triggered by TQ since the 

induced apoptosis occurred in a caspase-independent fashion (Breyer et al., 2009). Effenberger 

and colleagues synthesized TQ derivative compounds bearing terpene-terminated 6-alkyl 

residues, and they evaluated the anti-cancer activity of such compounds against human HL-60 

leukemia, 518A2 melanoma, multidrug-resistant KB-V1/Vbl cervix, and MCF-7/Topo breast 

carcinoma cells (Effenberger et al., 2010). Depending on the cancer cell type, synthetic TQ 

derivatives displayed 4-7 times greater anti-proliferative and pro-apoptotic activity compared to 

TQ, with no marked effect against normal, non-cancerous human foreskin fibroblasts 

(Effenberger et al., 2010). (Figure 1) 

It is evident from the findings highlighted above that TQ-induced pro-apoptotic effects 

seem to be more potent against cancerous cells, making non-cancerous cells more resistant to 
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such effects. However, a very clear experimentally-proven rationale explaining the differential 

survival behaviour of cancerous and non-cancerous cells in vitro and in vivo is lacking. Hence, 

future studies are needed to shed light on the specific receptors and signaling mediators that are 

targeted by TQ, which may offer a plausible explanation behind the differential, selective 

potency of TQ to exercise its pro-apoptotic function in cancerous and non-cancerous cells. 

(Figure 1) 

Although TQ has been demonstrated to exert potent anti-cancer effects, Samarakoon and 

colleagues concluded that compounds other than TQ can also potentially mediate the anti-cancer 

effects of N. sativa since both the aqueous and ethanolic extracts the polyherbal mixture of N. 

sativa, H. indicus, and S. glabra caused cytotoxicity in HepG2 cells despite the fact that the 

former extract lacked TQ (Samarakoon et al., 2010). Indeed, α-hederin, a pentacyclic triterpene 

saponin found in N. sativa seeds has been shown to exert potent anti-cancer effects in vitro and 

in vivo (Swamy and Tan, 2000, Villani et al., 2000, Kumara and Huat, 2001, Rooney and Ryan, 

2005, Rooney and Ryan, 2005, Bun et al., 2008, Cheng et al., 2014). Thymohydroquinone 

(THQ), dithymoquinone (DTQ), thymol (THY), carvacrol, nigellimine-N-oxide, nigellicine, and 

nigellidine are also major ingredients of N. sativa, and several studies have reported on their 

potential cytotoxic and anti-cancer function (Worthen et al., 1997; Kruk et al., 2000; Marsik et 

al., 2005; Ivankovic et al., 2006; Archana et al., 2011; Deb et al., 2011; Randhawa and 

Alghamdi, 2011; Tesarova et al., 2011; Liang and Lu, 2012; Satooka and Kubo, 2012; 

Horvathova et al., 2014). 

Anti-oxidant and cytotoxic effects of TQ 
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It has been well established that TQ possesses significant hepato-protective properties, yet a 

body of research suggests that administration of TQ has been associated with liver toxicity in 

animals. This has directed biochemical, pharmacological, and histopathological investigations to 

assess the possible toxicity and potential therapeutic safety in relation to the efficacy of TQ. 

Accumulative research has focused on the anti-oxidant and cytotoxic activity of TQ both in vitro 

and in vivo using various animal models and tumor cell lines. Badary and colleagues used Swiss 

albino mice to assess the acute and subchronic oral toxicity of TQ. Upon acute oral 

administration, signs of hypoactivity and difficulty in respiration were observed, with LD50 value 

of 2.4 g/kg (Badary et al., 1998). Also, TQ treatment led to a significant reduction in the level of 

reduced glutathione (GSH) in the liver, kidney, and heart tissues 24 hours post TQ administration 

(2-3 g/kg) (Badary et al., 1998). TQ treatment also caused a significant elevation in the levels of 

plasma urea and creatinine as well as in the catalytic activity of various enzymes such as alanine 

amino transferase (ALT), lactate dehydrogenase (LDH), and creatine phosphokinase (CPK) 

(Badary et al., 1998). In the subchronic experiment, TQ supplementation in drinking water at 

concentrations of 0.01, 0.02, 0.03%, equivalent to a daily intake of approximately 30, 60, 90 

mg/kg, respectively, for a period of 90 days led to no mortality or changes of toxicological 

importance, with no significant effects on tissue GSH content, TP, urea, creatinine, and 

triglycerides plasma levels, ALT, LDH, and CPK enzyme activity, nor gross or microscopic 

tissue damage (Badary et al., 1998). The cyto-protective effects of TQ against CCl4-induced 

hepatotoxicity in Swiss albino mice were also assessed by Nagi and colleagues (Nagi et al., 

1999). Injection with CCl4 induced damage to the hepatic tissue, which was accompanied by an 

increase in ALT activity 24 hours post CCl4 challenge. A single oral dose of TQ (100 mg/kg) 
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abrogated the CCl4-induced hepatotoxic effects (Nagi et al., 1999). In the same study, it was 

demonstrated that TQ has a high tendency to be reduced to dihydrothymoquinone (DHTQ), the 

Km and Vmax values of this enzymatic conversion of TQ to DHTQ in the liver homogenate 

(Nagi et al., 1999). In vitro, it 

was demonstrated that both TQ and DHTQ significantly inhibited non-enzymatic lipid 

peroxidation in liver homogenate in a dose-dependent manner, DHTQ being more potent than 

TQ (IC50 (Nagi et al., 1999). 

This kinetic study suggests that the inhibited CCl4-induced hepatotoxicity is likely due to a 

compound effect of TQ itself and its reduced form, DHTQ. These findings were contradicted by 

another study that tested the effect of TQ on CCl4-induced hepatotoxicity in Swiss albino mice 

(Mansour et al., 2001). Although CCl4 treatment caused marked biochemical changes such as 

increased enzymatic activities of serum ALT, aspartate transaminase (AST), and lactate 

dehydrogenase (LDH), intraperitoneal administration of TQ (4, 8, 12.5, 25 and 50 mg/kg) had no 

significant effect on the reported biochemical changes, while doses higher than 50 mg/kg caused 

lethality with LD50 value of 90.3 mg/kg (Mansour et al., 2001). CCl4-induced hepatotoxicity was 

abolished when mice were pre-treated with TQ (only at the 12.5 mg/kg dose) 1 hour before CCl4 

challenge. The seemingly contradictory findings of TQ effects on CCl4-induced hepatotoxicity 

may be, at least partially, due to the mode of administration (i.e. oral, intraperitoneal, etc). 

Carefully controlled studies are definitely needed to resolve the discrepancy regarding the 

possible effects of TQ on CCl4-induced hepatotoxicity in mice. In an in vitro study, oral 

administration of TQ (10 mg/kg/day) for 5 days prior to and during doxorubicin treatment caused 

a significant suppression of doxorubicin-induced cardiotoxicity in male albino rats (Nagi and 
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Mansour, 2000). The suppressed cytotoxicity was demonstrated to be due to TQ capacity to 

inhibit lipid peroxidation and to serve as a potent superoxide radical scavenger that is as effective 

as superoxide dismutase against superoxide (Nagi and Mansour, 2000). Such superoxide radical 

scavenging capacity and lipid peroxidation inhibitory potential of TQ have also been reported in 

other in vitro studies (Badary et al., 2003) and in cadmium-induced renal toxicity in mice 

(Erboga et al., 2016). In a study mentioned earlier, Shoieb and colleagues evaluated the potential 

of TQ to induce cytotoxicity in cancer cell lines including COS31 and its cisplatin-resistant 

variant (COS31/rCDDP), MCF-7, and BG-1, as well as MDCK cells (Shoieb et al., 2003). They 

reported that TQ induced selective cytotoxicity in vitro for both human and canine tumor cell 

lines tested, without causing significant cytotoxicity to normal cells, hence suggesting that TQ 

possesses the properties that make it a potentially effective chemotherapeutic agent (Shoieb et 

al., 2003). In an attempt to assess possible TQ toxicity in vivo, the LD50 values of TQ as well as 

autopsy and histopathology of liver, kidney, heart, and lungs were evaluated after oral and 

intraperitoneal injection in mice and rats (Al-Ali et al., 2008). After intraperitoneal and oral 

administration of TQ, the LD50 values were found to be 104.7 mg/kg and 870.9 mg/kg in mice 

and 57.5 mg/kg and 794.3 mg/kg in rats, respectively. Based on these findings, the researchers of 

the study concluded that the determined LD50 values after intraperitoneal and oral administration 

of TQ are 10-15 times and 100-150 times, respectively, greater than doses of TQ reported be 

effective in manifesting its anti-oxidant, anti-inflammatory, and anti-cancer activity (Al-Ali et 

al., 2008). This study confirms TQ’s wide margin of safety and therapeutic efficacy in vivo. To 

further assess its toxicity, Khader and colleagues evaluated the cytotoxic and genotoxic effects of 

TQ in primary rat hepatocytes (Khader et al., 2009). Cytotoxicty was evaluated by determining 
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the mitotic indices and the rates of apoptosis and necrosis, while genotoxicity was assessed by 

observing chromosomal aberrations and detection of micronucleated cells. The findings 

demonstrate that TQ (1.25- -dependently caused both cytotoxic and genotoxic 

effects (Khader et al., 2009)

significantly induced the rate of necrosis at 2.5-

(Khader et al., 2009). Nagi and Almakki 

assessed the potential of TQ to modulate the level and activity of hepatic GST and QR; two key 

detoxifying enzymes, in vivo (Nagi and Almakki, 2009). Intraperitoneal overdose injection of 

TQ significantly reduced levels of hepatic glutathione in a time- and dose-dependent manner 

(Nagi and Almakki, 2009). Moreover, oral administration of TQ (1-4 mg/kg/day) for 5 days 

caused a significant enhancement of GST and QR activity (147-197% and 125-154%, 

respectively) in the liver tissue, indicative of TQ potential to enhance the chemical inducibility of 

these two key detoxifying enzymes and exert protective roles against chemical toxicity and 

carcinogenesis (Nagi and Almakki, 2009). In an in vivo study, intragastric injection of TQ in 

male albino rats significantly abrogated the hepatic and blood toxicity associated with 

intraperitoneal administration of the anti-cancer drug cyclophosphamide, which induces lipid 

peroxidation and over-expression of ROS (Alenzi et al., 2010). These findings underscore the 

potential of TQ to be used as a co-treatment to minimize the toxic effects associated with anti-

cancer therapeutic drugs. Ng and colleagues demonstrated that TQ (1-

cytotoxicity in human cervical squamous carcinoma cells (SiHa) with IC50 value around 10 

g/ml, but not in normal, non-cancerous 3T3-L1 and Vero cell (Ng et al., 2011). TQ was more 

potent cytotoxicity than cisplatin against SiHa cells (Ng et al., 2011). Interestingly, TQ induced 
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significant cytotoxicity in all tested cancer cell lines, whereas the normal, non-cancerous MDCK 

cells were the least sensitive to TQ (Shoieb et al., 2003). Similarly, Ivankovic and colleagues 

demonstrated that TQ (10- -dependent cytotoxicity in 

squamous cell carcinoma (SCC VII) and fibrosarcoma (FsaR) cancer cell lines (Ivankovic et al., 

2006). However, normal, non-cancerous L929 mouse fibroblasts were relatively resistant to TQ-

induced cytotoxicity compared to the tested cancer cell lines (Ivankovic et al., 2006). These 

findings collectively suggest that non-cancerous cells seem to be resistant to TQ-induced 

cytotoxicity. Recently, Sener and colleagues highlighted several protective effects of TQ 

treatment (intragastric 10 mg/kg for 15 days) against arsenic-induced kidney toxicity in rats 

(Sener et al., 2016). Although the study did not directly examine the anti-cancer activity of TQ, 

but it revealed that TQ possesses a potent ability to impede oxidative stress. (Figure 1) 

In a phase I study, Al-Amri and Bamosa assessed the general toxicities and possible 

therapeutic potential of TQ in patients with advanced refractory malignant disease (Al-Amri and 

Bamosa, 2009). Patients received an oral dose of 1-10 mg/kg/day for a period of 1-20 weeks. 

During the span of the study, physical examination, histological confirmation of the malignant 

tumor, blood analyses to assess changes in CBC, RFT, LFT, lipid profiles, RBS, ESR, PT, PTT, 

and tumor markers (CEA, CA125, CA199, CA153, BHCG, AFP, PSA, and LDH) were 

performed. CAT scans and ultrasounds as well as evaluation of changes in body weight, vital 

signs, and symptom presentation were also performed. Physical, histological, and blood sample 

analyses revealed that TQ, at the administered doses, presented no clinical toxicities or 

laboratory abnormalities (Al-Amri and Bamosa, 2009). Although this study did not confirm any 

anti-cancer therapeutic potential of TQ in patients with advanced malignant cancer, it is a crucial 
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study in the sense that it demonstrated that TQ doses ranging from 75 mg/day to 2600 mg/day 

are tolerable and do not cause any form of toxicity or side effects in humans (Al-Amri and 

Bamosa, 2009). Nevertheless, the maximum tolerable dose of TQ was not determined in this 

study. The authors of the study argued that the absence of side effects in patients who received 

TQ is consistent with the extremely low toxicity associated with oral administration of TQ at a 

daily dose of 2.4 g/kg in mice (Badary et al., 1998). (Figure 1) 

Although enhancement of NK cytotoxic function has been demonstrated by several 

studies as a plausible mechanism that mediates the anti-cancer activity of N. sativa (El-Kadi et 

al., 1987, Abuharfeil et al., 2000, Abuharfeil et al., 2001, Shabsoug et al., 2008, Majdalawieh et 

al., 2010), experimental evidence suggesting that TQ exploits this mechanism to manifest its 

anti-cancer potential is lacking. In a very recent study, Salim and colleagues reported on the in 

vitro and in vivo anti-leukemic effects of TQ on murine leukemia WEHI-3 cells, and they 

concluded that TQ promoted NK cytotoxic activity (Salim et al., 2014). However, the 

researchers of that study did not provide experimental evidence that clearly supports this 

conclusion. Future studies are needed to examine the likely possibility that TQ manifests its anti-

cancer effects, at least partially, by provoking NK cytotoxic activity. (Figure 1) 

Anti-angiogenic effects of TQ 

Another palpable mechanism that is proposed to explain the ability of TQ to suppress 

tumor progression in vivo relates to its potential anti-angiogenic activity. Since angiogenesis is a 

crucial biological event involved in tumor progression and metastasis, Yi and colleagues 

evaluated the potential inhibitory effect of TQ against tumor angiogenesis (Yi et al., 2008). TQ 

(20-100 nM) was demonstrated to effectively impede human umbilical vein endothelial cell 
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(HUVEC) migration, invasion, and tube formation in a dose-dependent manner (Yi et al., 2008). 

In vitro aortic ring assays and in vivo matrigel plug assays clearly indicated that TQ significantly 

inhibited VEGF-induced angiogenesis in vitro and in vivo (Yi et al., 2008). Furthermore, using a 

xenograft mouse model with human prostate cancer cells (PC3 cells), co-injection of TQ (6 

mg/kg/day) for 15 days was accompanied by 6-fold and 23-fold decrease in the size and weight 

of prostate tumors, respectively (Yi et al., 2008). TQ significantly inhibited tumor angiogenesis 

in this xenograft mouse model (Yi et al., 2008). Further investigation revealed that TQ inhibit 

angiogenesis by suppressing VEGF-induced ERK activation, without having any direct effect on 

the activation of VEGFR2, a specific receptor of VEGF that is critically involved in VEGF-

dependent angiogenesis (Yi et al., 2008). TQ also induced HUVEC apoptosis by inducing 

caspase-3 activation and PARP cleavage as well as by suppressing AKT signaling in a dose-

dependent manner, both in presence and absence of VEGF (Yi et al., 2008). This important study 

underscores the efficacy of TQ as a potent blocker of tumor angiogenesis, providing yet another 

mechanism by which TQ manifests its anti-cancer activity in vivo. Sethi and colleagues 

demonstrated that treatment of human chronic myeloid leukemia cells (KBM-

was accompanied by down-regulated expression of NF- -targeted angiogenic factors MMP-9 

and VEGF (Sethi et al., 2008). Using, multiple myeloma U266 and RPMI-8226 cells, TQ (5-20 

ificantly inhibited the expression of the angiogenic factor VEGF in a time- and dose-

dependent manner (Li et al., 2010). An and colleagues further demonstrated that TQ treatment 

(10-40 nM) cause a significant dose-dependent inhibition of the tube-forming capacity of 

endothelial progenitor cells (EPCs) isolated from human umbilical cord blood EPCs (Randhawa 

and Alghamdi, 2011). TQ also inhibited the expression of VEGF in human pancreatic carcinoma 
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cell line (PANC-1). In the same study, a daily intragastric intubation of TQ (20 mg/kg) for 14 

days effectively reduced angiogenesis and pancreatic tumor weight in a metastatic model of 

human pancreatic cancer, which was developed by orthotropic implantation of human tumor 

tissue into the pancreatic wall of nude mice (Randhawa and Alghamdi, 2011). In a study 

mentioned earlier by Asfour and colleagues, TQ treatment was associated with significantly 

reduced production of VEGF production in tumor-bearing rats (Asfour et al., 2013). Peng and 

colleagues explored the anti-angiogenic effects of TQ against osteosarcoma both in vitro and in 

vivo (Peng et al., 2013). TQ potently suppressed HUVEC tube formation and angiogenesis in a 

dose-dependent manner (Peng et al., 2013). Such effects were associated with significantly 

inhibited NF- B signaling and VEGF expression (Peng et al., 2013). In agreement, in vivo 

analyses revealed that TQ effectively blocks tumor angiogenesis and tumor growth via inhibited 

activity of NF- B and its downstream targets including VEGF (Peng et al., 2013). In a study 

aiming at assessing the synergistic anti-cancer effects of TQ and Tamoxifen, TQ (0.01-

significantly reduced angiogenesis as well as the in vitro -positive 

MCF-7 and T-47D cells and ER -negative MDA-MB-231 and MDA-MB-468 breast cancer 

cells (Rajput et al., 2013b). Indeed, TQ synergistically enhanced Tamoxifen-mediated 

suppression of both in vitro and in vivo angiogenesis (Rajput et al., 2013b). Using HepG2 cells, 

Elkhoely and colleagues very recently demonstrated that TQ significantly suppressed the 

expression of VEGF in a dose-dependent manner, confirming the anti-angiogenic activity of TQ 

(ElKhoely et al., 2015). (Figure 1) 

Anti-metastatic effects of TQ 
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Wu and colleagues assessed the anti-metastatic potential of TQ on pancreatic cancer in 

vitro and in vivo (Wu et al., 2011). In a dose-dependent manner, TQ potently inhibited the 

migration and invasiveness of human pancreatic carcinoma cell line (PANC-1), effects that were 

accompanied by down-regulation of NF- -9 (Wu et al., 2011). Using a xenograft 

model established by orthotropic implantation of histologically intact pancreatic tumors into the 

pancreatic wall of nude mice, intragastric administration of TQ caused a significant suppression 

of NF- B and MMP-9 activity, leading to diminished tumor growth and metastasis (Wu et al., 

2011). In a similar in vivo study using the same xenograft model, intragastric administration of 

TQ (5-20 mg/kg/day) for 2 weeks was associated with dose-dependent down-regulation of XIAP 

and MMP-9, downstream targets of NF- (Wang, 2011). In a 

recent study, Attoub and colleagues investigated the involvement of AKT signaling in mediating 

the negative effects of TQ on the survival and invasiveness of cancer cells in vitro and on tumor 

growth in vivo (Attoub et al., 2013). An in vitro investigation revealed that TQ, at non-cytotoxic 

concentrations, significantly inhibited the viability and invasive potential of tumor cells derived 

from different tissues including the lung (LNM35 cells), the liver (HepG2 cells), the colon 

(HT29 cells), the skin (MDA-MB-435 cells), and the breast (MDA-MB-231 and MCF-7 cells) in 

a dose-dependent manner (Attoub et al., 2013). Also, in a study discussed earlier by Rajput and 

colleagues, in vitro and in vivo experiments were conducted to examine the potential of TQ, 

alone in combination with Tamoxifen, in regulating AKT signaling using breast cancer cell line 

(Rajput et al., 2013b). Results revealed that TQ enhanced Tamoxifen-induced suppression of the 

in vitro migration and invasion of cancer cells (Rajput et al., 2013b). Recently, TQ was shown to 

inhibit epithelial to mesenchymal transition (EMT), a key process that promotes metastasis, via 
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two independent pathways. The first one is down-regulation the transcriptional activity and 

expression of TWIST1 promoter, a protein needed for EMT. This occurs through the ability of 

TQ to induce DNA methylation of the TWIST1 gene in BT 549 cells and cause an increased 

expression of TWIST1-repressed genes such as E-cadherin, resulting in reduced invasion and 

metastasis (Khan et al., 2015). The second pathway is manifested via the attenuation of mTOR 

activity and the downstream components in its signaling cascade (Iskender et al., 2016). (Figure 

1) 

Effects of TQ on NK cytotoxic activity 

As outlined earlier, the anti-cancer potential of N. sativa can be attributed, at least in part, 

to its ability to augment NK cytotoxic activity against cancer cells, a mechanism that was 

supported by many studies (El-Kadi and Kandil, 1986; El-Kadi et al., 1987; Abuharfeil et al., 

2000; Abuharfeil et al., 2001; Shabsoug et al., 2008; Majdalawieh et al., 2010). 

Whether TQ in N. sativa extracts is responsible for the reported enhancement of NK cytotoxic 

activity remains an open question. In a study aiming at assessing the anti-leukemic effects of TQ 

against murine leukemia WEHI-3 cells, the researchers proposed that TQ can enhance NK 

cytotoxic activity (Salim et al., 2014). Yet, the experimental findings reported in that study do 

not lucidly support such a conclusion. As such, convincing, crystal-clear evidence supporting a 

positive effect of TQ on NK cytotoxic activity is still wanting. Future carefully-designed in vitro 

and in vivo studies are needed to examine the likely possibility that TQ may potentially promote 

NK cytotoxic activity, which will provide more insight regarding the molecular mechanisms 

underlying the reported anti-cancer effects of TQ. (Figure 1) 

Signaling pathways underlying the anti-cancer effects of TQ  
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 Many of the key cellular and molecular mechanisms underlying the documented anti-

cancer effects of TQ have been largely explained by its ability to (i) modulate the activity of key 

enzymes (Houghton et al., 1995; Swamy and Huat, 2003; Awad et al., 2005; Shabsoug et al., 

2008; Chehl et al., 2009; Khader et al., 2010; Rastogi et al., 2010; Velho-Pereira et al., 2012; 

Abdel-Hamid et al., 2013; Sultan et al., 2015), (ii) suppress inflammation (Hirschberg et al., 

1990; Houghton et al., 1995; Nieto et al., 2000; Koch et al., 2000; Choudhary et al., 2001; Al-

Ghamdi, 2001; El-Dakhakhny et al., 2002; Mahgoub, 2003; Mahmood et al., 2003; Mohamed, et 

al., 2003; Ali and Blunden, 2003; Mahgroub, 2003; Al-Naggar et al., 2003; Chakrabarty et al., 

2003; Mansour and Tornhamre, 2004; Hajhashemi et al., 2004; Mohamed et al., 2005; El-

Gouhary et al., 2005; Sayed and Morcos, 2007; El Gazzar et al., 2007; Sayed, 2008; Sethi et al., 

2008; Chehl et al., 2009; Nikakhlagh et al., 2011; Duncker et al., 2012; Yousefi et al., 2013; 

Abdel-Aziz et al., 2014; Keyhanmanesh et al., 2014; Majdalawieh et al., 2010; Vaillancourt et 

al., 2011; Keyhanmanesh et al., 2014), and (iii) induce apoptosis in tumor cells (Shoieb et al., 

2003; Swamy and Huat, 2003; Gali-Muhtasib et al., 2004a; Gali-Muhtasib et al., 2004b; Hoque 

et al., 2005; El-Mahdy et al., 2005; Thabrew et al., 2005; Roepke et al., 2007; Kaseb et al., 2007; 

Sethi et al., 2008; Gali-Muhtasib et al., 2008a; Gali-Muhtasib et al., 2008b; Shafi et al., 2009; 

Chehl et al., 2009; El-Najjar et al., 2010; Badr et al., 2011a; Badr et al., 2011b; Dergarabetian et 

al., 2013; Attoub et al., 2013; Ichwan et al., 2014; El-Baba et al., 2014; Salim et al., 2014; Hadi 

et al., 2016) through the following pathways: (Figure 1) 

1. p53 signaling pathway 

A number of molecular mechanisms have been proposed to explain the anti-proliferative 

and pro-apoptotic effects of TQ, which allow it to manifest itself as a potent anti-cancer agent. 
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Many of these mechanisms revolve around its ability to modulate the expression and activity of 

various target proteins involved in the cell cycle. Gali-Muhtasib and colleagues published several 

articles reporting on the anti-cancer activity of TQ using different in vitro and in vivo models, 

and they shed light on the molecular mechanisms and signaling pathways underlying such 

activity. Their first study revealed that non-cytotoxic concentrations of TQ significantly inhibited 

the proliferation of mouse keratinocyte-derived papilloma (SP-1) and spindle (I7) carcinoma 

cells (Gali-Muhtasib et al., 2004). Indeed, the former cells were as twice as sensitive to TQ 

treatment compared to the latter cells, indicating that the efficacy of TQ anti-cancer activity is 

dependent on the stage of tumorigenesis (Gali-Muhtasib et al., 2004b). Interestingly, TQ 

inhibited the proliferation of SP-1 and I7 carcinoma cells by targeting different stages of the cell 

cycle. In SP-1 carcinoma cells, TQ treatment caused a G0/G1 cell-cycle arrest due to decreased 

cyclin D1 level and increased expression of p16, a CDK inhibitor (Gali-Muhtasib et al., 2004b). 

In I7 carcinoma cells, TQ treatment caused a G2/M cell-cycle arrest due to decreased cyclin B1 

level and increased expression of p53, a tumor suppressor protein (Gali-Muhtasib et al., 2004b). 

With more potent effects in SP-1 carcinoma cells, TQ significantly induced apoptosis in both cell 

lines by increasing the Bax/Bcl-2 ratio and decreasing Bcl-xL expression (Gali-Muhtasib et al., 

2004b). Sethi and colleagues demonstrated that treatment of human chronic myeloid leukemia 

cells (KBM- -regulated expression of NF- -

targeted anti-apoptotic factors (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin) and proliferative 

factors (cyclin D1, COX-2, and c-Myc) due to suppressed NF- (Sethi et al., 2008). 

Similar findings were reported in HCT-116 human colon cancer cells, in which TQ treatment 

caused a cell cycle arrest at the G1 phase and induced apoptosis in a time- and dose-dependent 
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manner (Gali-Muhtasib et al., 2004a). TQ treatment correlated with suppressed expression of 

Bcl-2, an anti-apoptotic factor, and up-regulated expression of p53 and its downstream target 

p21, leading to blocked CDK2 activity (Gali-Muhtasib et al., 2004a). Indicative of p53 role in 

TQ-induced cell cycle arrest and apoptosis, pifithrin-alpha (PFT-alpha), a specific inhibitor of 

p53, abrogated TQ effects on p53, p21, and Bcl-2 expression levels in HCT-116 cells (Gali-

Muhtasib et al., 2004a). Indeed, the TQ-induced effects were eliminated in p53
-/-

 HCT-116 cells, 

indicating that p53 signaling pathway is a major target of TQ (Gali-Muhtasib et al., 2004a). 

Later, the same group demonstrated that TQ can exert differential anti-proliferative and pro-

apoptotic effects in two human osteosarcoma cell lines with different p53 mutation status (p53
-/-

 

MG63 cells and p53-mutant MNNG/HOS cells) and normal human osteoblasts (Roepke et al., 

2007). In p53
-/-

 MG63 cells, TQ did not cause a cell cycle arrest, but led to increased pre-G1 

apoptotic cell number (Roepke et al., 2007). In p53-mutant MNNG/HOS cells, TQ caused a 

G2/M cell cycle arrest due to up-regulated expression of p21 (Roepke et al., 2007). TQ-induced 

apoptosis did not correlate with altered Bax/Bcl-2 ratio, but the mitochondrial caspase pathway 

was involved (Roepke et al., 2007). Moreover, TQ induced oxidative stress and superoxide 

generation in the mitochondria of treated cells, and the TQ-induced oxidative damage, which 

correlated with an increase in gamma-H2AX foci and up-regulated expression of gamma-H2AX 

and NBS1 (a DNA repair enzyme), was less pronounced in p53
-/-

 MG63 cells than in p53-mutant 

MNNG/HOS cells (Roepke et al., 2007). This study reveals that TQ can induce apoptosis in a 

p53-independent manner, suggesting that apoptotic pathways other than p53 signaling pathway 

can be triggered by TQ to bring about its anti-cancer effects. These findings are consistent with 

earlier observations. Using p53
-/-

 myeloblastic leukemia HL-60 cells, El-Mahdy and colleagues 
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investigated possible p53-independent mechanism(s) underlying the anti-cancer activity of TQ 

(El-Mahdy et al., 2005). It was demonstrated that TQ significantly suppressed proliferation, 

increased apoptosis, disrupted the mitochondrial membrane potential, and up-regulated the 

activity of caspases 3, 8, and 9 in p53
-/-

 HL-60 cells (El-Mahdy et al., 2005). Namely, z-VAD-

FMK, z-DEVD-FMK, and z-IETD-FMK, representing a general caspase inhibitor, a specific 

inhibitor of caspase-3, and a specific inhibitor of caspase-8, respectively, all abrogated TQ-

induced apoptosis (El-Mahdy et al., 2005). TQ treatment correlated with increased expression of 

pro-apoptotic Bax and decreased expression of anti-apoptotic Bcl-2, leading to markedly 

increased Bax/Bcl-2 ratio (El-Mahdy et al., 2005). The TQ-induced activation of caspase-3, poly 

(ADP-ribose) polymerase (PARP) cleavage, and the release of cytochrome c from mitochondria 

into the cytoplasm were all inhibited by the specific inhibitor of caspase-8 (z-IETD-FMK), 

indicating that caspase-8 is an upstream mediator of TQ-induced, p53-independent apoptosis (El-

Mahdy et al., 2005). To better understand the role of p53 pathway in TQ-induced apoptosis of 

cancer cells, Gali-Muhtasib and colleagues compared the efficacy of TQ to induce apoptosis in 

p53
+/+

 and p53
-/-

 colon cancer HCT-116 cells (Gali-Muhtasib et al., 2008a). This study revealed 

that the TQ-induced apoptotic activity and DNA damage was more pronounced in p53
+/+

 HCT-

116 cells compared to their p53
-/-

 counterparts (Gali-Muhtasib et al., 2008a). Indeed, the 

expression and nuclear translocation of CHEK1, a survival factor that is under the inhibitory 

function of p53, was significantly up-regulated by TQ in p53
-/-

 cells, but not in p53
+/+

 cells, 

indicating that resistance to apoptosis in p53
-/-

 cells is due to augmented CHEK1-mediated 

survival (Gali-Muhtasib et al., 2008a). Interestingly, human colorectal cancer cells lacking p53 

possess significantly high levels of CHEK1, and the degree of CHEK1 overexpression positively 
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correlated with the stage of tumor development and proximal tumor localization while negatively 

correlating with clinical prognosis (Gali-Muhtasib et al., 2008a). Arafa and colleagues 

demonstrated that TQ (25- -

resistant human breast cancer MCF-7/DOX cells by forcing cell arrest at G2/M phase, DNA 

damage, and apoptosis (Arafa et al., 2011). Studies suggest that the anti-proliferative and pro-

apoptotic effects of TQ were associated with significantly increased expression of p21 and p53, 

enhanced PARP cleavage, and caspase activation (Arafa et al., 2011) as well as a decreased 

expression of mutations in BRCA1, BRCA2 and p53 (Linjawi et al., 2015). Furthermore, TQ 

treatment lead to an up-regulated Bax expression and a down-regulated Bcl-2 expression, leading 

to significantly increased Bax/Bcl-2 ratio (Arafa et al., 2011).  

2. NF-B signaling pathway 

NF- B is a survival factor that upon stimulation transactivates several target genes 

whose products are needed for cell proliferation. Regulation of the NF- B signaling pathway 

has been shown to be critical in tumorigenesis, and substances that can suppress NF- B activity 

in tumor cells are deemed effective anti-cancer therapeutic agents (Majdalawieh and Ro, 2010). 

Numerous in vitro and in vivo studies have underscored the potential of TQ to modulate various 

proteins involved in NF- B signaling, ultimately suppressing the entire NF-

pathway. One of the earliest experimental evidence suggesting a regulatory role of TQ towards 

NF-

TQ treatment was accompanied by markedly suppressed NF- B signaling in the brain and spinal 

cord (Mohamed et al., 2004). Later studies supported such a suppressive effect of TQ against 

NF- B signaling pathway. It was also demonstrated that the enhanced NF-
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following treatment with Advanced Glycation End Products (AGEs) in human proximal tubular 

epithelial cells was significantly abrogated upon co-treatment with TQ (Sayed and Morcos, 

2007). LPS- - -regulated target, was shown to be 

significantly inhibited by TQ in rat basophil cell line, RBL-2H3, which was due to blocked 

translocation of p65 to the nucleus (El Gazzar et al., 2007). The same study further revealed that 

TQ elevated the nuclear levels of the repressive NF-

nuclear levels of the transactivating NF- 0 heterodimer, with no effect on the cytosolic 

activation or nuclear expression of NF- (El Gazzar et al., 2007). Consistently, with a maximal 

-dependently suppressed angiotensin II-triggered NF-

-6 expression in human proximal tubular epithelial cells (Sayed, 2008). 

Using human chronic myeloid leukemia cells (KBM-5), Sethi and colleagues provided 

-induced NF-

time- and dose-d

due to its reduced phosphorylation status (Sethi et al., 2008). In agreement, TQ (25-75 µM) 

potently and dose-dependently blocked the nuclear translocation of p65 in pancreatic ductal 

adenocarcinoma (PDA) cells, HS766T cells, AsPC-1 cells, and MIA-PaCa cells, which was 

accompanied by suppressed NF- -regulation of its downstream pro-

inflammatory targets (IL- -1, and COX-2) (Chehl et al., 2009). Similarly, TQ 

treatment significantly reduced LPS-induced activation of NF-

expression of NF- -regulated pro-inflammatory mediators including IL- -13, 

COX-2, and PGE2 in isolated human rheumatoid arthritis fibroblast-like synoviocytes 

(Vaillancourt et al., 2011). Collectively, these findings strongly encouraged elucidation of TQ 
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involvement in modulating various aspects of NF-

likelihood of NF- for ameliorating tumor 

development and progression. 

Mu and colleagues investigated the involvement of NF-

anti-cancer activity of TQ both in vitro and in vivo (Mu et al., 2012). An in vitro study 

demonstrated that the proliferation of human bladder cancer cell line BIU-87 was significantly 

inhibited by TQ (20- -dependent manner (Mu et al., 2012). TQ-induced 

apoptosis was associated with decreased levels of NF-

diminished nuclear translocation of NF-

administration of TQ (5 mg/kg/day) for 2 weeks led to a 2-fold decrease in the weight of bladder 

tumors in a xenograft model of mice established by subcutaneous injection of BIU-87 cells into 

nude mice (Mu et al., 2012). Consistent with the in vitro findings, the expression of NF-

XIAP was significantly down-regulated in the xenograft tumors after TQ treatment (Mu et al., 

2012). Peng and colleagues investigated the anti-cancer effects of TQ against osteosarcoma both 

in vitro and in vivo (Peng et al., 2013). TQ potently induced apoptosis and growth inhibition of 

the human osteosarcoma cell line SaOS-2 in a dose-dependent manner (Peng et al., 2013). Such 

effects were associated with NF- -regulation, suppressed expression of XIAP and 

survivin, and enhanced caspase-3 activity (Peng et al., 2013). In agreement, in vivo analyses 

revealed that TQ effectively blocks tumor growth via inhibited activity of NF-  

downstream targets (Peng et al., 2013). Very recently, Ashour and colleagues examined the 

effects of TQ on the expression of IL-8, an NF- -regulated chemokine that is over-expressed 

in hepatocellular carcinoma (Ashour et al., 2014). NF- he expression of IL-8 
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and its receptors were significantly suppressed by TQ in hepatocellular carcinoma cells in a time- 

and dose-dependent manner (Ashour et al., 2014). Using a PCR array and a human cervical 

cancer cell line (HeLa), Sakalar and colleagues have recently assessed TQ-mediated 

transcriptional regulation of 84 genes that are known to play critical roles in apoptosis (Sakalar et 

al., 2013). TQ treatment (12.5- -

dependent manner (Sakalar et al., 2013)

pro-apoptotic genes (BIK, FASL, Bcl-2L10, and CASP1) while potently suppressing the 

expression of RelA, an anti-apoptotic factor implicated in NF-

Q induced the expression of 21 genes whose products are directly involved in apoptosis, 

TNF signaling, and NF-

TRAF3, RelA, and RelB (Sakalar et al., 2013). This study underscores the role that TQ plays in 

modulating TNF and NF- -proliferative and pro-

apoptotic effects. Recently, inhibition of NF-

lymphoma (L428) cell lines using thermally processed N. sativa oil. Traditionally, the 

preparation of the oil always starts with roasting of the seeds. Whilst the heat factor and its effect 

on anti-cancer activity has not been studied before, Agbaria and colleagues showed that oil from 

heated seeds (50-150°C) was associated with higher TQ content and produced significantly 

greater inhibition of NF-  (Agbaria et al., 2015). Collectively, the inhibitory effect 

that TQ exerts on NF- B activity is another mechanism of action that underlies the anti-cancer 

potential of TQ and TQ-containing oil and extracts of N. sativa. With that being said, a recent 

study provides caution regarding the potential use of TQ in clinical trials (Wilson et al., 2015). It 

highlights the effect of prolonged TQ-treatment (>30 days) as a deleterious factor for its efficacy 
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in a mouse model with ovarian cancer. This was manifested through stimulation of ascites 

formation accompanied by elevated NF-κB activity in tumors and macrophages. Importantly, 

this was contrary to the results of a 10-day TQ treatment, where down-regulation of NF-κB 

activity was reported along with reduction in tumor mass (Wilson et al., 2015). 

3.  

or and a transcription factor that is known to play vital roles in 

various biological processes including inflammation and carcinogenesis (Majdalawieh and Ro, 

2010)

critically involved in signaling pathways that mediate cellular events including cell cycle 

regulation, cholesterol homeostasis, and inflammation (Majdalawieh and Ro, 2010). Several 

- pathway, 

leading to diminished nuclear translocation and transcriptional activity of NF-

and Ro, 2010 NRS). In an attempt to identify novel signaling pathways that mediate the anti-

cancer activity of TQ, Woo and colleagues evaluated whether TQ can modulate the activity of 

-7, MDA-MB-231 and BT-474 breast cancer cells (Woo et al., 2011). TQ (20-80 

time- and dose-dependent suppression in the growth of MCF-7, MDA-MB-231 

and BT-474 breast cancer cells, MCF-7 cells being the least sensitive (Woo et al., 2011). TQ-

induced apoptosis in MCF-7 cells was associated with enhanced caspase-7, caspase-8, and 

caspase-9 activation, suppressed Bcl-2 expression, and increased Bax expression, leading to 

increased Bax/Bcl-2 ratio and a cell cycle arrest at the G1/S transition phase (Woo et al., 2011). 

Interestingly, TQ-induced apoptosis seems to be a p53-independent process since TQ treatment 

had no significant effect on p53 expression in MCF-7 cells (Woo et al., 2011). The migration of 
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MCF-7 and MDA-MB-231 cells was significantly inhibited by TQ in a dose-dependent manner, 

while the invasiveness of MDA-MB-231 cells, but not MCF-7 cells, was suppressed by TQ 

treatment (Woo et al., 2011). Given the MCF-7 cells display less invasiveness potential 

compared to other breast cancer cell lines, these findings suggest that TQ may be more effective 

in inhibiting the growth and invasiveness of highly invasive types of breast tumors. The same 

in MCF-7 cells in a dose-dependent manner, a cellular event that was abrogated by GW9662, a 

(Woo et al., 2011). Interestingly, TQ-induced apoptosis in MCF-7 

cells was abolished when cells were co-treated with GW9662 or when they were transfected with 

(Woo et al., 2011). Molecular docking analysis 

revealed that TQ can physically interact with 13 residues within the ligand-binding pocket of 

(Woo et al., 2011). 

(Woo et al., 2011). This study sheds light on another novel molecular mechanism, 

-cancer activity.  

4. STAT3 signaling pathway 

In a search for a molecular mechanism to explain the anti-proliferative and pro-apoptotic activity 

of TQ, Li and colleagues investigated the potential role of TQ to modulate STAT3 signaling 

pathway in multiple myeloma (MM) cells. TQ (5-20 

constitutive as well as IL-6-induced STAT3, but not STAT5, activation in U266 cells and RPMI-

8226 cells, respectively, in a dose-dependent manner, leading to diminished nuclear translocation 

of STAT3 (Li et al., 2010). Similar findings were reported using HGC27, BGC823, and SGC790 
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human gastric cell lines (Zhu et al., 2016). The diminished STAT3 activation was shown to be 

due to the ability of TQ to inhibit the constitutive phosphorylation of JAK2 and c-Src kinases, 

upstream regulators of STAT3 (Li et al., 2010). Furthermore, TQ significantly inhibited IL-6-

induced AKT activation in RPMI-8226 cells (Li et al., 2010; Zhu et al., 2016). Moreover, TQ-

induced suppression of STAT3 signaling was associated with a time-dependent down-regulation 

of STAT3 downstream targets including the cell cycle regulator cyclin D1 and the anti-apoptotic 

proteins Bcl-2, Bcl-xL, survivin and Mcl-1, while enhancing caspase-3 activation and PARP 

cleavage (Li et al., 2010). These effects were consistent with inhibited proliferation and induced 

G1/S cell cycle arrest in U266 and RPMI-8226 cells (Li et al., 2010). To substantiate the role of 

STAT3 signaling in the anti-cancer potential of TQ, genetic deletion of STAT3 in mouse 

embryonic fibroblasts completely abrogated TQ-induced anti-proliferative and pro-apoptotic 

effects (Li et al., 2010). These findings clearly highlight the significance of STAT3 signaling in 

mediating the anti-proliferative, pro-apoptotic, anti-angiogenic effects of TQ in MM cells. A 

study by Badr and colleagues investigated TQ effects on the actin cytoskeletal reorganization, 

viability, proliferation, and STAT signaling in MDN and XG2 cells, two human multiple 

myeloma cells (Badr et al., 2011b). In both cell lines, TQ (1-  a cell cycle arrest 

in a time- and dose-dependent manner (Badr et al., 2011b). TQ treatment interfered with CXCL-

12-mediated F-actin polymerization, leading to suppressed cell viability and proliferation (Badr 

et al., 2011b). Moreover, TQ inhibited the phosphorylation of STAT3, but not STAT5, leading to 

suppressed expression of Bcl-2 and Bcl-xL (Badr et al., 2011b). This study sheds light on a yet 

novel mechanism that implicates STAT signaling to mediate TQ-induced anti-cancer effects. 

However, the exact receptors and upstream/downstream intracellular factors involved in TQ-
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mediated modulation of STAT signaling are largely unknown. Further studies should focus on 

dissecting the TQ-targeted mediators of STAT signaling pathways.  

5. MAPK signaling pathway 

Mucin 4 (MUC4) is a high molecular weight glycoprotein that is overexpressed in 

pancreatic cancer and it plays a critical role in inducing differentiation, proliferation, metastasis, 

and chemo-resistance of pancreatic cancer cells (Singh et al., 2007). Torres and colleagues 

demonstrated that TQ (50- -overexpressing 

FG/COLO357 and CD18/HPAF pancreatic cancer cells through the proteasomal pathway and 

induced apoptosis in these cancer cells by stimulating the JNK and p38 MAPK signaling 

pathways (Torres et al., 2010). Since MUC4 is not expressed in normal pancreatic ductal cells, 

MUC4 is a potential target to inhibit the viability of pancreatic cancer cells, and TQ seems to be 

an attractive therapeutic agent to treat pancreatic cancer.  

El-Najjar and colleagues investigated the direct involvement of oxidants and MAPK 

signaling pathways in TQ-induced apoptosis using 5 different human colon cancer cell lines 

(Caco-2, HCT-116, LoVo, DLD-1 and HT-29). Interestingly, TQ significantly suppressed 

proliferation of all tested human cancer cell lines, but had no anti-proliferative effect on normal, 

non-cancerous human intestinal FHs74Int cells (El-Najjar et al., 2010). It was also demonstrated 

that TQ-induced apoptosis is due to significant generation of ROS since treatment with N-acetyl 

cysteine (NAC), a potent anti-oxidant agent that scavenges ROS, almost completely abolished 

TQ-induced apoptosis (El-Najjar et al., 2010). Moreover, TQ-induced apoptosis seems to be 

mediated by MAPK signaling pathways since TQ enhanced the phosphorylation of JNK and 

ERK, but not p38 MAPK, and treatment with SP600125 and PD98059, specific JNK and ERK 
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inhibitors, interfered with TQ-induced apoptosis (El-Najjar et al., 2010). Similarly, treatment of 

HepG2 cells with TQ caused a significant increase in the levels of ROS and the expression of 

NQO1 and HO-1, oxidative stress-related genes, leading to apoptosis (Ashour et al., 2014). 

These effects were abolished when HepG2 cells were pre-treated with NAC (Ashour et al., 

2014). Consistently, Dergarabetian and colleagues demonstrated that TQ treatment caused 

significant depletion of glutathione, leading to increased ROS levels, loss of loss of 

mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and caspase-9, 

and cleavage of PARP in HTLV-1 negative Jurkat leukemia cells (Dergarabetian et al., 2012). 

TQ effects were not as profound in HTLV-1 transformed HuT-102 and MT-2 cells, indicating 

that TQ is effective in sensitizing HTLV-I-negative T-cell lymphomas (Dergarabetian et al., 

2012). It was further demonstrated that TQ-induced apoptosis was inhibited by N-acetyl cysteine 

(NAC), a potent anti-oxidant agent, and z-VAD-FMK, an irreversible broad-spectrum caspase 

inhibitor, indicating that TQ induces apoptosis in a ROS-dependent and caspase-dependent 

manner (Dergarabetian et al., 2012). Using primary chondrocytes, TQ was shown to potently 

induce apoptosis and ROS generation in a time- and dose-dependent manner, effects that were 

completely abolished by NAC co-treatment (Yu and Kim, 2013). Moreover, TQ treatment 

caused a significant enhancement in the activity of PI3K, p38, ERK1/2, and JNK (Yu and Kim, 

2013). TQ-induced up-regulation of PI3K and MAPK signaling was abolished by NAC co-

treatment, whereas inhibitors of PI3K, p38, ERK1/2, and JNK (LY294002, SB203580, 

PD98059, and SP600125, respectively) did not abolish TQ-induced ROS generation. 

Interestingly however, LY294002 and SB203580, but not PD98059 or SP600125, abrogated TQ-

induced apoptosis in primary chondrocytes (Yu and Kim, 2013).This study suggests that TQ 
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selectively and specifically targets some MAPK signaling pathways and PI3K signaling pathway 

to mediate its pro-apoptotic effects.  

6. PI3K/AKT signaling pathway 

The various anti-cancer activities of TQ were attributed to its ability to regulate multiple 

cell signaling events including inactivation of AKT and degradation of X-linked inhibitor of 

apoptosis protein (XIAP), a constitutively expressed endogenous inhibitor of apoptosis (Rajput et 

al., 2013b). XIAP down-regulation was associated with caspase-9 activation and PARP cleavage, 

while TQ-mediated inhibition of AKT phosphorylation, and hence activation, led to inhibited 

expression of AKT-regulated downstream survival factors (Bcl-xL and Bcl-2) and enhanced 

expression of AKT-regulated downstream pro-apoptotic factors (Bax, AIF, cytochrome C, and 

p27) (Rajput et al., 2013b). A further study by the same group further analyzed the role of TQ in 

modulating different molecular targets involved in the PI3K/AKT signaling pathway (Rajput et 

al., 2013a). Using T-47D and MDA-MB-468 breast cancer cells, TQ (0.01-

reduced the phosphorylation of PTEN at Ser
380

 (inactivated form of PTEN) and PDK1 at Ser
241

 

(activated form of PDK1), leading to PTEN activation and PDK1 inactivation (Rajput et al., 

2013a). Although TQ treatment did not alter total AKT levels, phosphorylation of AKT at Ser
473

 

and Thr
308

 was significantly decreased, indicating that TQ suppresses AKT activity (Rajput et al., 

2013a). Consistently, TQ-mediated suppression of AKT activity was associated reduced 

phosphorylation of GSK-
9
) and Bad (Ser

136
) as well as inhibited mTOR-dependent 

translation of cyclin D, all downstream targets of AKT (Rajput et al., 2013a). Moreover, TQ 

significantly increased the levels of cleaved caspase-9, another downstream target of AKT 

(Rajput et al., 2013a). These findings indicate that TQ can enhance the activity of GSK-
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and caspase-9 via down-regulation of AKT. Interestingly, transient over-expression of 

exogenous AKT overcame TQ-induced effects (Rajput et al., 2013a), indicating that modulation 

of AKT signaling is a crucial molecular means by which TQ mediates its anti-cancer effects. 

Overall, these studies highlight the role of TQ in regulating the PI3-K/AKT signaling pathway. 

Very recently, it was shown that the expression of 50 proteins, including proteins involved in the 

AKT-MEK-ERK1/2 pathway, is up-regulated by TQ using HCT-116, DLD-1, and HT-29 

colorectal cancer cells (El-Baba et al., 2014). PAK1 is an oncogene that seems to be a novel 

target for TQ (El-Baba et al., 2014). TQ treatment markedly enhanced the phosphorylation status 

of ERK1/2, triggering the early formation of ERK1/2-PAK1 complex. Indeed, TQ treatment 

caused time-dependent changes in two phosphorylation sites in PAK1 (early phosphorylation at 

Thr
212

 and late phosphorylation at Thr
423

) (El-Baba et al., 2014). Molecular docking studies 

revealed that TQ binds to PAK1 proximal to Thr
212

, leading to modulated ERK2-PAK1 binding 

(El-Baba et al., 2014). TQ also seems to interact with the kinase domain of PAK1, interfering 

with it kinase activity (El-Baba et al., 2014). Indeed, transfection of cells with a non-

phosphorylatable mutant (T212A) PAK1 caused an increase in phosphorylation status of PAK1 

at Thr
423

 accompanied with enhanced apoptosis (El-Baba et al., 2014). Similarly, transfection 

with PAK1 siRNA or kinase-dead (K299R) PAK1 correlated with increased apoptosis (El-Baba 

et al., 2014). These findings suggest that TQ can potently alter the conformation, the kinase 

activity, and the protein-protein interaction potential of PAK1, ultimately disrupting the pro-

survival RAF/MEK/ERK1/2 pathway (El-Baba et al., 2014).  

A brief summary about the reported in vitro and in vivo anti-cancer activities of TQ is 

given in Table 1. 
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CONCLUSION 

N. sativa is one of the most studied and commonly used natural products for centuries by 

millions of people. Both the seed as well as its oil have gained a lot of popularity for their 

widespread effective therapeutic potential to alleviate signs and symptoms of many diseases 

including cancer. A plethora of anti-cancer properties have been attributed to the seed’s major 

active constituent, TQ. These include exerting anti-proliferative, pro-apoptotic, anti-oxidant, 

anti-mutagenic, anti-angiogenic, and anti-metastatic effects on various cell lines. The protective 

effects of TQ against tumor development and progression have also been explained, at least 

partially, by the compound’s ability to suppress inflammation and boost immunity, both of which 

directly correlate with reducing tumor risk. Also, the role of TQ in enhancing NK cytotoxic 

activity against cancer cells as well as its regulation of several signaling pathways including NF-

subduing tumorigenesis. A large body of evidence from in vitro and in vivo experimental 

findings suggests that TQ can potentially be implicated as a therapeutic agent for the regulation 

of various stages of tumorigenesis and treatment of many types of cancer. Further studies are 

certainly required to shed more light on the extent to which these identified pathways contribute 

to the anti-cancer effects of TQ. Such research endeavors will hopefully pave the way for a novel 

therapeutic agent to be developed and employed in suppression of tumorigenesis. 
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Table 1. A brief summary of the reported in vitro and in vivo anti-cancer activities of TQ 

Activity Proposed mechanism(s) of action References 

Anti-

proliferative and 

pro-apoptotic 

effects 

Delay in the onset of MC-induced fibrosarcoma as well 

as reduction in cell proliferation and tumor burden 

Badary and Gamal 

El-Din, 2001 

Inhibition of tumor growth in SCC VII and FsaR cell 

lines  

Ivankovic et al., 

2006 

Reduction of lipid peroxide levels, elevation of 

glutathione (GSH) content and increase in activities of 

glutathione S-transferase and quinone reductase in the 

liver 

Badary and Gamal 

El-Din, 2001 

Interference with DNA synthesis and enhancement of 

detoxification processes 

Badary and Gamal 

El-Din, 2001 

Induction of apoptosis in cancer cell lines including 

canine COS31 and its cisplatin-resistant variant 

(COS31/rCDDP), MCF-7, BG-1, and MDCK cell lines, 

while non-cancerous cells remain resistant to apoptosis 

Shoieb et al., 2003 

Suppression of viability and proliferation of LNCaP 

human prostate cancer cells 

Richards et al., 

2006 

Inhibition of cell growth in human epithelial carcinoma Womack et al., 

2006 
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type 2 (Hep-2) cells 

Reduction in size and number of ACF in DMH-induced 

colon cancer model 

Gali-Muhtasib et 

al., 2008b 

Suppression of tumor growth and induction of 

apoptosis in HCT116 colon cancer cells 

Gali-Muhtasib et 

al., 2008b 

Abrogation of apoptosis in DLD-1 and HCT-116 

human colon cancer cells when TQ-treated 

El-Najjar et al., 

2011. 

cells were pre-incubated with BSA El-Najjar et al., 

2011). 

Elevation of p53 and p21 levels and reduction of Bcl-2 

levels in human cervical squamous carcinoma cells 

(SiHa) and breast cancer cells 

Ng et al., 2011; 

Rajput et al., 

2013a; 

Paramasivam et al., 

2015 

Under-expression of Bcl-2  Hussain et al., 

2011; Elkhoely et 

al., 2015; Salim et 

al., 2014  

Over-expression of Bax  Elkhoely et al., 

2015; Kaseb et al., 

2007; Hussain et 
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al., 2011; Rajput et 

al., 2013a; Salim et 

al., 2014 

Inhibition of cytochrome P450 and elevation in both 

glutathione level and GST activity in HepG2 cells 

Elkhoely et al., 

2015  

Inhibition of DNA synthesis, proliferation, and 

viability of LNCaP, C4-B, DU145, and PC-3 with no 

such effects in normal prostate epithelial cells (BPH-1) 

Kaseb et al., 2007 

Down-regulation of AR, E2F-1, and cyclin A and 

increase in expression of p21 and p27  

Kaseb et al., 2007 

Suppressed expression of cyclin D1, cyclin E, and p27 

in MDA-MB-468 and T-47D breast cancer 

Rajput et al., 2013a 

Elevation of cytochrome c and caspase-3, along with 

suppressed expression of Bcl-xL, and surviving in 

breast cancer cell lines 

Rajput et al., 2013a 

Activation of caspase-3 and caspase-9, inducing PARP 

cleavage, suppressing Bcl-2 expression, and up-

regulating Bcl-xL and TRAIL in hepatocellular 

carcinoma and PEL  

Ashour et al., 

2014; Hussain et 

al., 2011; Ke et al., 

2015; Şakalar et 

al., 2016 
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Enhancement of p53 expression and caspase-3 

activation in cervical cancer cell lines 

Ichwan et al., 2014 

Increased NO production in ovarian cancer cell line Harpole et al., 

2015 

Inhibition of 5-LO activity Houghton et al., 

1995; El-

Dakhakhny et al., 

2002; Mansour and 

Tornhamre, 2004, 

El Gazzer et al., 

2006 

Down-regulation of Bcl-2, NF-κB, COX-2, survivin, 

and XIAP genes in BxPC-3 and HPAC cell lines 

Banerjee et al., 

2009 

Inactivation of ERK1/2 in DCs  Xuan et al., 2010 

Inactivation of FKHR and GSK3 in PEL cell lines Hussain et al., 

2000 

Inhibition of AKT signaling  Attoub et al., 2013; 

Xuan et al., 2010 

Over-expression of COX-2 and prostaglandin E2 

(PGE2) in breast cancer cell lines 

Yu and Kim, 2012 
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Induction of autophagy in CPT-11-R cell line by up-

regulation of JC-1, Atg5, Atg7, Atg12, Beclin-1, 

LAMP2, LC3, LC3-II, and SQSTM1/p62 proteins 

Chen et al., 2015 

Inhibition of HDAC activity  Attoub et al., 2013; 

Parbin et al., 2015 

Decreased expression of mutations in BRCA1, BRCA2 

and p53  

Linjawi et al., 2015 

Anti-oxidant 

and cytotoxic 

effects 

Reduction in the level of reduced GSH in the liver, 

kidney, and heart tissues  

Badary et al., 1998 

Elevation in the levels of plasma urea and creatinine  Badary et al., 1998 

Increase in the activity of ALT, LDH, and CPK  Badary et al., 1998 

Abrogation of CCl4-induced hepatotoxic effects  Nagi et al., 1999 

No effect on levels of ALT, AST, LDH  Mansour et al., 

2001 

Inhibition of lipid peroxides and potent scavenge 

against superoxide radicals 

Nagi and Mansour, 

2000; Badary et al., 

2003; Alnezi et al., 

2010; Erboga et al., 

2016 

Induction of cytotoxicity in cancer cell lines including Shoieb et al., 2003 
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canine COS31 and COS31/rCDDP, MCF-7, BG-1, and 

MDCK cell lines, and no effect in non-cancerous cell 

lines 

Enhancement of glutathione S-transferase and quinone 

reductase activity 

Nagi and Almakki, 

2009 

Amelioration of drug-induced hepatic and blood 

toxicity  

Alnezi et al., 2010 

Induction of cytotoxicity in SiHa cell lines but not in 

normal cells  

Ng et al., 2011 

Induction of cytotoxicity in SCCVII and FsaR cell lines 

but not in normal cells  

Ivankovic et al., 

2006 

Anti-angiogenic 

effects 

Inhibition of HUVEC migration, invasion, and tube 

formation  

Yi et al., 2008; 

Peng et al., 2013 

Inhibition of VEGF-induced angiogenesis in vitro and 

in vivo  

Yi et al., 2008) 

Suppression of VEGF-induced ERK activation, and no 

effect on VEGFR2 

Yi et al., 2008 

Down-regulation of VEGF expression Sethi et al., 2008; 

Li et al., 2010; An 
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et al., 2011; Peng 

et al., 2013; 

Elkhoely et al., 

2015 

Down-regulation of MMP-9 Sethi et al., 2008 

Inhibition of the tube-forming capacity of EPCs  An et al., 2011 

Inhibition of NF-κB signaling  Peng et al., 2013; 

Zhang et al., 2016 

Inhibition of migration in Panc-1 cell line  Wu et al., 2011 

Down-regulation of NF-κB and MMP-9  Wu et al., 2011; 

Wang, 2011 

Inhibition of invasiveness in HepG2, LNM35, HT29, 

MDA-MB-435, MDA-MB-231, MCF-7 cell lines 

Attoub et al., 2013; 

Rajput et al., 

2013b 

Inhibition of expression and transcriptional activity of 

TWIST1 promoter  

Khan et al., 2015 

Anti-metastatic 

effects 

Increased expression of TWIST1-repressed genes such 

as E-cadherin 

 

Inhibition of mTOR signaling pathway 

Khan et al., 2015 

 

 

Iskender et al., 
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2016 

Effects on NK 

cytotoxic 

activity 

Enhancement of cytotoxic function in WEHI-3 cells  Salim et al., 2014 
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Figure 1. A brief summary of the known molecular and cellular mechanisms underlying the anti-

proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-angiogenic, anti-metastatic, and NK-

mediated cytotoxic effects of TQ. 

 


