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Abstract 

 The zebrafish has emerged to become a powerful vertebrate animal model for 

cardiovascular research in recent years. Its advantages include easy genetic manipulation, 

transparency, small size, low cost, and the ability to survive without active circulation at early 

stages of development. Sequencing the whole genome and identifying orthologue genes with 

human genome enabled to induce clinically relevant cardiovascular defects via genetic 

approaches. Heart function and disturbed hemodynamics need to be assessed in a reliable manner 

for these disease models in order to reveal mechanobiology of induced defects. This effort 

requires precise determination of blood flow patterns as well as hemodynamic stress (i.e. wall 

shear stress and pressure) levels within the developing heart. While traditional approach involves 

time-lapse brightfield microscopy to track cell and tissue movements, in more recent studies fast 

light sheet fluorescent microscopes are utilized for that purpose. Integration of more complicated 

techniques like particle image velocimetry and computational fluid dynamics modeling for 

hemodynamic analysis holds a great promise to the advancement of the zebrafish studies. Here, 

we discuss the latest developments in heart function and hemodynamic analysis for zebrafish 

embryos and conclude with our future perspective on dynamic analysis of zebrafish 

cardiovascular system. 
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Introduction 

 Mouse is the established mammalian model for cardiovascular research. Knock out 

mouse models enabled to investigate numerous congenital heart defect (CHD) types (Li et al., 

2015; Ta-Shma et al., 2016). Embryonic chick is a commonly used vertebrate model with the 

advantage of resembling human heart structure with four chamber/four valve configuration and 

enabling clinically relevant surgical manipulations. Embryonic zebrafish has emerged more 

recently for cardiovascular research to be used in high throughput studies. Even though zebrafish 

heart is different from human heart with only systemic circulation, heart structure and physiology 

are similar between two species. Unique characteristics for zebrafish embryos make them 

particularly attractive for cardiovascular research. For example, there are available practical 

genetic interference approaches like morpholino injections to induce cardiac defects in zebrafish. 

These embryos are transparent and can be imaged noninvasively throughout cardiac 

development. Heart chambers and vessels as well as blood flow can be visualized easily in vivo. 

At early stages of development, zebrafish embryos are not dependent on circulatory system, 

since passive diffusion is sufficient for oxygen delivery (Pelster and Burggren, 1996). Therefore, 

embryos having severe heart defects survive early development enabling investigation of 

mutations for which mammalian models are not appropriate. This way, cardiac valve 

development in the absence of blood flow was investigated and these studies demonstrated the 

significant influence of blood flow dynamics on heart valve development (Kalogirou et al., 2014; 

Steed et al., 2016a).    

 With the advancement of forward and reverse genetics approaches, it is now possible to 

induce a variety of clinically relevant cardiac defects in zebrafish embryos. Analysis of blood 

flow hemodynamics is needed in these animal models for investigating mechanobiological 
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mechanisms of induced defects. There are a variety of microscopic imaging and computational 

modeling approaches for qualitative and quantitative hemodynamic analysis. These analyses 

involve determination of flow patterns, measuring flow velocities, calculating heart function 

parameters, and calculating hemodynamic stress levels.  Below, after a brief review of zebrafish 

heart development and genetic interference approaches, we will discuss these analysis techniques 

on zebrafish embryos for cardiovascular studies.  

 

Zebrafish heart development 

 The first organ that forms and starts functioning in vertebrate embryos is the heart. As 

opposed to bi-ventricular mammalian heart, adult zebrafish heart is composed of one ventricle, 

one atrium, one atrioventricular (AV) valve and one outflow valve. Genetic pathways are 

conserved among vertebrate species and zebrafish heart development proceeds through similar 

steps with other vertebrates. It begins with the specification of pre-cardiac cells as early as 5 

hours post-fertilization (hpf) in the anterior lateral plate mesoderm and continues with 

gastrulation resulting in the formation of ectoderm, endoderm and mesoderm germ layers 

(Stainier, 2001). Gastrulation is completed at 10 hpf, which is followed by the fusion of bilateral 

heart fields at the embryonic midline at 16 hpf. This results in the formation of a cardiac cone 

which then extends anteriorly and transforms into a linear heart tube (Glickman and Yelon, 

2002; Poon and Brand, 2013). Outer layer of the linear heart tube is composed of contractile 

myocytes, whereas inner layer is composed of endocardial cells.  The two layers are separated by 

an acellular extracellular matrix layer known as cardiac jelly. Following its formation, linear 

heart tube starts to contract in a rhythmic peristaltic manner at 24 hpf. First heart beat starts at 3 

weeks in human, at E8.5 in mice and at HH 10 in chicken (Lindsey et al., 2014). Degree of 
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contractility in zebrafish embryos for subsequent stages can be quantified using high-speed time 

lapse video microscopy to determine ventricular fractional shortening, which is a comparison of 

ventricular dimensions at diastole and systole (Houk and Yelon, 2016). Even though there are no 

valves present at this stage, blood is pumped out at 250 µm/s peak velocity without significant 

backflow (Goetz et al., 2014; Boselli et al., 2015). Shortly later, lumen starts to open and stroke 

volume as well as heart beat rises quickly. At 28 hpf, heart beat is regular at 2.6 Hz (Boselli et 

al., 2015). Heart tube undergoes a leftward looping into an S-shape at 33 hpf, which displaces the 

ventricle into the right of the atrium. At 36 hpf, pumping mechanisms transits from slow 

peristaltic waves into sequential chamber contractions suggesting the onset of cardiac conduction 

system.  By 2 days post-fertilization (dpf), ventricular chamber balloons out with distinct outer 

and inner curvatures. At this stage, cardiomyocytes start delaminating from the ventricle wall to 

start trabeculation, and by 72 hpf ventricle has obvious trabecular ridges (Liu et al., 2010). 

Trabecular myocardium expands towards the ventricular cavity as the cardiac wall undergoes 

significant remodeling along with the compact myocardium proliferation and maturation of the 

conduction system (Samsa et al., 2013; Brown et al., 2016). Genetics screening studies revealed 

molecular regulation of these early events in zebrafish. GATA factors in association with Nkx2.5 

were shown to control cardiomyocyte progenitor migration and regulation of cardiac fate 

specification by restriction of Wnt signaling (Kuo et al., 1997; Lu et al., 2016). Hand2 plays role 

in cardiac differentiation and morphogenesis (Trinh et al., 2005; Garavito-Aguilar et al., 2010) 

whereas Nkx2.5 maintains cardiac chamber identity  (Targoff et al., 2008; Targoff et al., 2013). 

More recently, cardiac contraction and resulting fluid forces were shown to activate Notch 

signaling to modulate cardiac trabeculation in zebrafish (Samsa et al., 2015; Lee et al., 2016b). 
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Heart valves composed of leaflets ensure unidirectional blood flow in zebrafish. There is 

one valve in the AV canal between atrium and ventricle and one valve in the outflow tract 

between ventricle and bulbus arteriosus. AV valve development starts with the myocardial 

expression of bmp4, tbx2b, and vcana and endocardial expression of notch1b, has2 and 

neuregulin at 37 hpf (Poon and Brand, 2013). Hemodynamic forces are important mechanical 

stimuli for AV valve development in zebrafish. For example, klf2a expression were shown to be 

dependent on the presence of reversing flows (Vermot et al., 2009) whereas shear stress governs 

differential expression of miR-21 in AV canal (Banjo et al., 2013). At 40 hpf, endocardial 

cushions start to transform into primitive valve leaflets (Beis et al., 2005; Martin and Bartman, 

2009). The presence of epithelial-to-mesenchymal transition for zebrafish valvulogenesis has 

been debated but not confirmed yet (Pestel et al., 2016; Steed et al., 2016b). Endocardial 

cushions remodel into primitive valve leaflets to prevent retrograde flow completely at 76 hpf 

(Scherz et al., 2008). Blood velocity through endocardial cushions at this stage is at about 3.0 

mm/s peak velocity with max wall shear stress (WSS) level of 70 dynes/cm
2
  (Hove et al., 2003).  

Formation of endocardial cushions occurs at 4.5 weeks in human, at E12 in mice and at HH24 in 

chicken (Lindsey et al., 2014). There are four cusps in zebrafish AV valve (Hu et al., 2001). In 

the outflow tract, bulbous arteriosus is composed of a thick outer layer with smooth muscle cells 

and a thin inner layer with endothelial cells. This small chamber is elastic and ensures 

preservation of high pressures to prevent backflow from the aorta. The outflow valve has only 

two leaflets as opposed to three leaflet mammalian aortic valve. Zebrafish heart development is 

summarized in Figure 1. 

 Flow through primitive zebrafish heart can be measured by simply tracking individual 

erythrocytes. Alternatively, for more detailed flow analysis, digital particle image velocimetry 
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(DPIV) can generate spatial flow maps through correlations of particle locations (in most case 

fluorescing eryhthrocytes) between sequential frames (Jamison et al., 2013). Both of these 

techniques require fast image acquisition of at least 150 frames per second (fps). Either 

erythrocytes or blood plasma should be fluorescently labeled for enhanced contrast. A different 

approach which was recently introduced is to computationally estimate the flow field based on 

deformations of the myocardial walls (Boselli and Vermot, 2016). DPIV and computational 

modeling identified oscillatory flow regimes within zebrafish hearts which were shown to be 

critical for regulating gene expressions for valve development (Hove, 2006; Heckel et al., 2015). 

 

Genetic approaches in zebrafish 

 While embryonic chick is widely used in surgical/mechanical interference studies (Yalcin 

et al., 2010a; Yalcin et al., 2010b; Yalcin, 2014; Gould et al., 2016), zebrafish embryos are 

suitable for genetic interference. Zebrafish genome sequence is known and forward/reverse 

genetic approaches were successfully applied on zebrafish embryos to identify molecular 

pathways for studying function of specific genes. Forward genetics is determining the genetic 

basis leading to a specific phenotype for an organism. Reverse genetics on the other hand is to 

selectively manipulate a previously identified gene and analyze the impact of this manipulation 

on the organism (Bournele and Beis, 2016). For zebrafish, forward genetics based random 

mutations were successfully induced via radiation or chemical treatment and stable lines were 

generated for incrossed generations (Chico et al., 2008). Hundreds of mutants with abnormal 

cardiovascular development were generated with this approach (Chen et al., 1996). For example, 

several mutations leading to valve defects and aortic coarctation were identified by forward 

genetics screening (Weinstein et al., 1995; Stainier et al., 1996). Another example for forward 
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genetics is the double mutant line, casper. This mutant does not have melanocytes and 

iridophores, which makes it transparent through its life enabling non-invasive imaging (White et 

al., 2008). 

 Several reverse genetic techniques are available as well for zebrafish embryos to 

selectively knock down gene function. The most commonly utilized technique is injecting 

antisense morpholino oligonucleotides (MOs) into the fertilized egg. MOs can inhibit translation 

by targeting transcriptional start site, or by targeting splice junctions and inducing abnormal 

splicing. Protein synthesis for the targeted gene(s) is effectively prevented for 3-5 days 

(Nasevicius and Ekker, 2000). Due to easy utilization in zebrafish, MOs have enabled 

widespread analysis of gene function. It quickly became apparent that some MOs work very 

well, and there are many MO phenotypes that effectively recapitulate mutant phenotypes without 

any major side effects. However, MOs can induce p53-dependent apoptosis and off-target cell 

specific effects in gene expression that might compromises phenotypic analysis (Kok et al., 

2015). In a large collection of knockout lines, nearly 80% of MO morphant phenotypes failed to 

be observed in the corresponding mutants, leading to questioning widespread utilization of MOs 

in zebrafish research (Lawson, 2016).  It has been suggested that MOs should not be injected in 

excessive amounts to limit off-target effects and stable mutants must be generated and 

appropriately characterized to validate MO morphant phenotypes (Rossi et al., 2015). Two 

alternative techniques for reverse genetics have been recently introduced for zebrafish: TALENs 

and Crispr/Cas9 (Schulte-Merker and Stainier, 2014). These techniques affect genomic DNA, 

rather than RNA transcripts. Therefore, their molecular effects can be determined at the single 

embryo level (which is more difficult with MOs) to obtain a clear phenotype/genotype 
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correlation. Off-target effects of these techniques were shown to be negligible (Stainier et al., 

2015). 

 These genetic approaches were used to generate human cardiovascular diseases on 

zebrafish embryos to uncover molecular mechanisms. One widely investigated condition is 

cardiomyopathy. Cardiomyopathy is the disease of heart muscle. There are two prevalent forms: 

dilated cardiomyopathy and hypertrophic cardiomyopathy.  Forward genetic screening of 

zebrafish mutants with cardiomyopathy revealed that mutation in titin, laminin alpha4 and 

integrin-linked kinase result in heart failure mimicking human clinical condition. In a reverse 

genetic study, after identification of EYA4 mutations for human patients with DCM, EYA4 gene 

in zebrafish was knocked down via morpholino injection. Resulting phenotype possessed 

cardiomyopathy demonstrating the role of EYA4 mutation on the condition (Chico et al., 2008). 

Our group has identified several mutations in myosin binding protein C in hypertrophic 

cardiomyopathy patients and recapitulated these mutations in the zebrafish model via 

morpholino injections (unpublished data). Heart function analysis and hemodynamics assessment 

are important in these and similar animal defect models. Below, we explain these analysis 

techniques for zebrafish embryos.   

 

Heart function analysis from brightfield time-lapse image sequences 

At early stages of zebrafish development (3-4 dpf), the embryos are transparent with 

good visibility of internal organs including heart and blood circulation. Therefore, video 

brightfield microscopy can be used for quantification of heart function and morphology at this 

stage. Approach is based on recording 2D image sequences for further cardiovascular analysis. 

For this purpose, the animal is positioned in a lateral position with the ventricle clearly visible 
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throughout the full cardiac cycle. In this configuration, atrium is not visible (Figure 2A, B). 

Myocardial wall velocity can be measured for ventricular function using automated video edge 

detection systems (Denvir et al., 2008). 120 frame per second (fps) video capturing speed is 

sufficient for this application. Systolic wall velocity levels were measured as about 200 µm/s at 

2dpf and about 275 µm/s at 6 dpf embryos.  Ventricular wall motion can also be practically 

analyzed with an approach analogous to M-mode echocardiography. The aim here is to follow 

continuous changes in ventricular wall position throughout cardiac cycle. This can be done by 

first identifying a linear region of interest. This region would be either short axis or long axis of 

the ventricle. The pixel intensity of every point in this line can be measured in all the recorded 

images of the cardiac cycle (Shin et al., 2010) (Figure 2B). For the M-mode image, the intensity 

values along this line is Y axis and each frame of the video is represented in the X axis. This 

way, changes in ventricular short axis and long axis diameters can be measured throughout 

cardiac cycle. M-mode analysis enables to track myocardial wall thickness and ventricle 

diameter. Short axis diameters for diastole and systole are represented as Dd and Ds and 

myocardial thicknesses are represented as MTd and MTs in Figure 2B. Images should be captures 

at 250 fps for good temporal resolution for this application.  

Blood flow velocities are measured to quantify cardiovascular function for zebrafish 

embryos. This can be achieved by simply tracking movements of red blood cells (RBCs) in the 

embryo`s body, which are easily identifiable due to transparent skin (Shin et al., 2010) (Figure 

2C). Acceleration, deceleration, and peak velocity for RBC movements (hence for blood flow) 

can be calculated for analysis. RBC movements in two main vessels through the body, in dorsal 

aorta and in cardinal vein can be imaged for this purpose. Location of individual cells are 
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determined from sequential frames and RBC velocity is calculated from coordinates of the 

location of the cell and time interval between the frames as follows: 

���	����	
�� = 	
�(�� − ��)� − (�� − ��)�

∆�
 

 Mean RBC velocity in dorsal aorta were shown to increase from 291 µm/s at 2 dpf to 766 

µm/s at 6dpf (Bagatto and Burggren, 2006).  

 Structural analysis of the zebrafish hearts is based on taking 2D images at specific 

timepoints to measure chamber dimensions. For example measurement of myocardial thickness 

is essential to assess severity of induced defect for hypertrophic cardiomyopathy condition 

(Figure 2D). Fractional area change (FAC) is an established parameter for ventricular function to 

evaluate contractility in zebrafish embryos (Haendchen et al., 1983). It can be calculated from 

analyzing 2D still frames of ventricle at end-diastole (ED) and end-systole (ES) (Figure 2D). ED 

is the fully dilated ventricle and ES is the fully contracted ventricle. Ventricular areas (EDA and 

ESA) are calculated at these two points and FAC is calculated as follows: 

��� = 100	 ×	
(��� − ���)

���
 

Fractional shortening (FS), another measure of ventricular contractility can be calculated 

from ventricular diameters at end diastole and end systole (Dd and Ds) as follows (Shin et al., 

2010): 

�� =
(	�� − ��)

��
 

Ventricular volumes need to be calculated for evaluating stroke volume, ejection fraction 

and cardiac output. This is done by first measuring long and short axis diameters (DL and DS) 

from 2D still images. By assuming a prolate spheroidal shape for the ventricle, following volume 

formula can be used: 
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 ��!"� = 	
1
6
	× $ × �% × �&

�	 

Stroke volume (SV) is the blood volume pumped from the ventricle for each beat and is 

simply calculated from ventricle volumes at end-diastole (EDV) and end-systole (ESV) 

(DeGroff, 2002) : 

� = (�� − �� ) 

SV was found to increase from 0.146 nanoliter at 2 dpf  to 0.297 nanoliter at 6dpf 

(Bagatto and Burggren, 2006). 

Ejection fraction (EF) is defined as the fraction of blood ejected from the ventricle with 

each heart beat and can be calculated from the following formula: 

��	(%) = 	
(�� − �� )

�� 
× 100 =

� 
�� 

× 100 

Cardiac output (CO) can be calculated from SV and heart rate (HR): 

CO (nanoliter/min) = SV (nanoliter/beat) × HR (beats/min) 

HR is simply determined by measuring the time between two identical successive points 

(i.e. ED or ES) in the recorded images (Hoage et al., 2012). CO was found to increase from 9.3 

nanoliter/min at 2 dpf to 55.6 nanoliter/min at 6dpf (Bagatto and Burggren, 2006).  

A protocol explaining functional analysis for zebrafish hearts is provided as a 

supplemental material. See supplemental movie 1 for ventricular wall movements and 

supplemental movie 2 for RBC movements for a 3dpf embryo.   

Abovementioned 2D cell and tissue tracking techniques usually require high frame rate 

imaging (~250 fps) systems and automated image analysis algorithms. Several groups use 

custom made systems (Shin et al., 2010; Liu et al., 2014) . Manual cell tracking protocols are 
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available as well (Hoage et al., 2012). There are also a number of software that can be used for 

that purpose. SOHA is a free example application (Fink et al., 2009; Cammarato et al., 2015). 

Calculation of ventricular volumes from 2D length measurements involves errors because 

of the heart`s irregular shape and asymmetry (as opposed to symmetric prolate spheroid shape 

assumption). Therefore calculating stroke volume, ejection fraction and cardiac output based on 

2D measurements does not allow precise results. Generating 3D ventricular volumes by 

combining 2D images from different angles resulted in a better representation for the shape of 

the heart. CO calculated from more accurate 3D shapes were about 10% higher than the 2D 

method values (Bagatto and Burggren, 2006). Therefore, 2D volume calculation method should 

be utilized with caution especially with disease models having significant irregular shapes. 

Integration of confocal or micro-CT based 3D volume generation methods will enhance accuracy 

for these measurements. We have previously established a micro-CT based technique for 3D 

cardiac geometry generation for fixed chicken embryos (Butcher et al., 2007; Yalcin et al., 

2011). We then extended the work by limiting radiation exposure to image live chicken embryos 

(Henning et al., 2011). Integration of these approaches to embryonic zebrafish studies will 

enhance accuracy for volume measurements. Ultrasound biomicroscopy is another imaging 

technique which has provided useful information for adult zebrafish cardiovascular function (Lee 

et al., 2016b; Nair et al., 2016; Wang et al., 2016). The development of higher frequency probes 

(>100MHz) is expected to enable embryonic zebrafish imaging using this technique in the near 

future. 

 

3D live imaging via light sheet fluorescent microscopy 
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Zebrafish embryos have been used for decades now for developmental biology research. 

High resolution imaging for zebrafish embryonic hearts is very demanding due to the fast heart 

rate of 2-4 hz and the relatively large size of about 250 µm. Therefore, in-vivo functional and 

structural imaging for the zebrafish cardiovascular system requires an advanced microscope that 

can record optical sections at high temporal and spatial resolution. Conventional confocal laser-

scanning fluorescence microscopy (CLSM) is based on point scanning of the object. Therefore, 

the technique is naturally slow and causes high photo-bleaching/photo-toxicity because of the 

non-selective excitation with high laser powers. The depth penetration is also relatively low, 

therefore it is challenging to capture beating zebrafish embryonic hearts especially for older 

embryos. Light sheet fluorescence microscopy (LSFM) was introduced in 2004 to eliminate the 

limitations of CLSM (Huisken et al., 2004). The technique is known as selective plane 

illumination microscopy (SPIM). The working principle is based on illumination of a 

fluorescently labeled specimen from the side with a thin laser sheet, excitation of the 

fluorescence only in the focal plane of the detection objective, and simultaneous recording of the 

emission light (Weber and Huisken, 2011) (Figure 3A). The detection system in LSFM includes 

CCD/sCMOS cameras rather than a scanning photomultiplier tube detector as in CLSM. 

Therefore, LSFM provides several important advantages including improved acquisition speeds, 

high signal-to-noise ratio, low photo bleaching and large penetration depths (Huisken and 

Stainier, 2009) (Figure 3B). Additionally, in most applications, sample is housed in a dedicated 

vertical mount (a transparent syringe or a capillary) and is immersed into a medium-filled 

imaging chamber. The sample is embedded into low concentration agarose cylinders, which 

represents a less stressful environment for live biological samples than traditional glass slides  

(Tomer et al., 2011). Vertical mounting also enables rotating the delicate samples without 
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deforming them and facilitates 360° imaging. Therefore, LSFM became the new standard 

imaging modality for zebrafish studies, since it enables fast and high-resolution dynamic 

imaging within a physiological imaging medium.  

LSFM enhanced cardiac function analysis for zebrafish embryos significantly. Specific 

regions inside the heart can now be imaged in vivo at high resolutions. These high-speed movies 

from a single plane can be used to calculate many parameters to describe heart function. Figure 

4A shows AV canal for a 60 hpf embryo for which myocardial cells are labeled green and RBCs 

are labeled red (Lee et al., 2016a). Myocardial wall deformations and RBC movements can be 

tracked for this configuration at the selected plane. However, for a complete and accurate 

functional analysis of the heart, 3D analysis is needed on 3D reconstructed beating heart images. 

The constant and fast movements of the heart in all dimensions make it very difficult to capture 

such high-resolution images. One solution is to suppress the heart as in the silent heart model 

(Chi et al., 2010). However, this model is not applicable to investigate the hemodynamics and 

cardiac contraction during heart development. An alternative method is obtaining a still 3D heart 

using prospective gating techniques. Here, while the heart continues to beat, it is slowly moved 

in small steps through the focal plane of the imaging objective. At each plane, a fluorescent 

image is taken for a predefined phase in the cardiac cycle. These images are then 3D 

reconstructed to generate a model of the heart at this specific phase (Taylor et al., 2012a; Taylor 

et al., 2012b; Weber and Huisken, 2015). However, dynamics of the heart beat cannot be studied 

this way. Dynamics of a beating heart can be fully analyzed only via 4D imaging (3D+time), 

which requires extremely fast image acquisition and depth penetration. Advancement in post-

acquisition synchronization techniques enabled to capture the dynamics of zebrafish embryonic 

beating hearts in 4D. In this technique, retrospective temporal registration of image stacks 
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enables to reconstruct the dynamic motion of cardiac tissues (Liebling et al., 2006). At 

successive optical sections for entire depth of the heart, short movies of the beating heart are 

recorded. Image sequences from consecutive z-planes are then retrospectively registered in time 

to produce a 4D movie of the beating heart (Mickoleit et al., 2014; Trivedi et al., 2015). 

Pericardial cells, myocardial cells and RBCs can be fluorescently stained, and 3D movies 

recorded at 70-85 fps can be used to make 4D movies enabling detailed and dynamic heart 

function analysis (Trivedi et al., 2015; Weber and Huisken, 2015; Lee et al., 2016a) (Figure 4B). 

More recently, integration of two photon excitation to LSFM resulted in enhancement of 

penetration depth and preservation of light sheet thickness enabling high acquisition speed (>70 

fps) and low photodamage (Truong et al., 2011). Recent approaches have been developed for 

further advancing scanning speeds. One is multicolor LSFM. Mahou et.al. implemented mixed-

wavelength excitation to achieve fast multi-color two photon imaging (Mahou et al., 2014). This 

way, they could simultaneously image CFP, GFP and DsRed labeled pericardial, myocardial and 

RBCs respectively. Fast time series images were acquired at 85 fps, which were then used to 

generate 4D movies for heart`s periodic motion. The technique did not produce additional 

photodamage compared to one color LSFM. Simultaneous imaging of myocardial, and RBCs 

resulted in improved dynamic analysis (Mahou et al., 2014). Finally, advances in image 

acquisition enabled the direct recording of 4D movies for beating hearts (Figure 4C). Here, a 

tunable electric lens was used as a remote focusing system and synchronization of this system 

with the scan mirror of LSFM resulted in the elimination of moving the sample or any other 

microscope component. The modification enabled to reach scanning speeds way beyond 

conventional volumetric imaging modalities (Fahrbach et al., 2013). The entire heart could be 

instantaneously recorded in rapid sequence. This high-speed microscope was used to deliver 3D 
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snapshots of a beating zebrafish heart imaged from 17 planes at 510 fps equivalent to 30 volume 

scans per second.  

Light sheet microscopes can now record dynamic motion of the myocardial walls and 

RBCs and this advancement resulted in the application of advanced techniques like particle 

image velocimetry and computational modeling to zebrafish cardiovascular hemodynamic 

analysis. In the next sections, these advanced techniques are explained. 

 

Shear stress analysis via digital particle image velocimetry (DPIV)  

Wall shear stress (WSS) is the frictional force in the cardiovascular system acting on the 

blood vessel walls and valve leaflet surfaces. It is the product of shear rate (velocity derivative 

with respect to vessel radius) and dynamic viscosity of blood (i.e. viscosity of a fluid is a 

measure of its resistance to gradual deformation by stress). Quantitative and qualitative analysis 

of WSS in the cardiovascular system is important since both its magnitude and orientation are 

thought to contribute to cardiogenesis. There is significant evidence suggesting that, WSS on 

cardiovascular endothelial cells can substantially influence vascular and valvular development as 

well as pathogenesis of vascular and valvular disease in adult organisms (Langille, 1995; Hove, 

2006; Buskohl et al., 2012). Flows with different fluid mechanics characteristics (i.e. steady vs. 

unsteady, laminar vs. turbulent, anterograde vs. oscillatory) were shown to differentially regulate 

specific gene expression pathways in endothelial cells (Braddock et al., 1998; Barbee, 2002; Lieu 

et al., 2004). Therefore accurate determination of shear stress patterns and shear stress levels are 

significantly important for clinical as well as for in-vivo studies on cardiovascular diseases. In 

vivo mapping of the WSS in the cardiovascular system is extremely difficult. Since WSS is 

Page 17 of 47

John Wiley & Sons, Inc.

Developmental Dynamics
D

ev
el

op
m

en
ta

l D
yn

am
ic

s



18 

 

directly proportional to axial velocity gradient at the vessel wall, velocity gradient at that 

location should be determined to calculate WSS. However, this is not an easy task for several 

reasons: complex geometry, unsteady pulsed flow behavior, moving boundaries (i.e. blood vessel 

walls and valve leaflets), and Non-Newtonian behavior of blood (i.e. viscosity of blood changes 

with shear rate, shear thinning characteristics). Therefore, simplifying assumptions like ideal 

geometries, steady flow, simple parabolic velocity profile, Newtonian behavior etc. for WSS 

calculations are usually adapted but these lead to unreliable results. DPIV has emerged as a 

powerful tool to determine velocity vectors and WSS levels in the cardiovascular system for in-

vivo studies. The technique has been used since 1970s for general flow studies and in the last 15-

20 years, it has been adapted to biological research. DPIV is based on tracking reflective 

particles in a flow. Once appropriate particles are selected and added to flow, these particles will 

move with the flow velocities.  Two consecutive images of these particles are acquired at a short 

time interval using a high-speed camera. Displacement vectors for each particle are obtained 

from these images and this information is then used to determine velocity vectors for the 

particles (hence for the flow field). For studies involving large geometries (like the flow around 

an automobile), small reflective particles are seeded in the fluid and these are illuminated as they 

pass through a laser sheet. For small geometries like zebrafish cardiovascular flow, DPIV 

requires microscopic analysis of the flow fields. Here the diameter of tracer particles is critically 

important such that, these should be large enough to be individually identified and at the same 

time small enough to follow local flows.  

For DPIV of zebrafish blood flow, either erythrocytes or injected beads can be tracked. In 

the pioneering study by Hove et.al., velocity and WSS levels were determined by tracking 

erythrocytes. At 37 hpf, peak velocities in AV canal were 0.9 mm/s and in outflow tract 1.5 
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mm/s corresponding to peak WSS of 2.5 – 10 dynes/cm
2
. Peak WSS in AV canal were calculated 

as 76 dynes/cm
2
 at 4.5 dpf (Hove et al., 2003). For enhanced accuracy for DPIV, cells can be 

fluorescently labeled or alternatively, injected fluorescent particles can be tracked  (Hove, 2006). 

A recent study compared the accuracy of flow measurements with tracking RBCs and tracer 

particles and found out that, at high magnification (25X), tracing RBCs results in significant 

errors by underestimating velocities. At medium magnification (12.5X), there is no difference in 

using RBCs or particles as tracers (Poelma et al., 2012). Identification of vessel wall locations is 

critically important for DPIV analysis. Inner surface of the vessel walls are not directly 

identified. Instead, locations of the tracer particle limits are identified via computer algorithms.  

DPIV can be done in either 2D planes or 3D volumes. Jamison et.al. captured brightfield 

image series of RBCs for 3dpf to 6dpf embryos at 2000fps. 2D velocity vector maps were 

determined for ventricular flows (Jamison et al., 2013) (Figure 5). They found that, while the 

maximum velocity at the outflow valve was around 3 mm/s at 3dpf, it gradually decreases to 

lower values for older embryos since outflow valve expands as the embryo grows. As a result, 

max wall shear rate at the outflow valve at peak systole was about 440 s
-1

 for 3 dpf embryos 

which corresponds to about 31 dynes/cm2 (with dynamic viscosity assumption of 0.07 dynes 

s/cm
2
 ) and decreases gradually to about 180 s

-1
 at 6 dpf which corresponds to about 13 

dynes/cm
2
. In contrary to outflow valve, peak AV canal velocities were shown to increase as the 

embryo develops: ~0.8 mm/s at 30 hpf, ~3.5 mm/s at 70 hpf and ~5 mm/s at 120 hpf (Lee et al., 

2013). Tracing injected fluorescent particles instead of RBCs facilitates image acquisition due to 

better control of particle size and density. As a rule of thumb, frame capturing speed should be at 

least ten times the heart rate of the embryos, 30fps for 3hz heartbeat. Higher capturing speeds are 

necessary for older embryos because of higher blood velocities (Hove and Craig, 2012).  0.2µm  
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- 1µm fluorescent beads are appropriate for 3dpf – 6dpf embryos (Hove and Craig, 2012). 

Appropriate concentrations should be determined for preventing bleeding and interference with 

normal cardiac physiology (Goktas et al., 2015). For DPIV analysis, tracking software such as 

Image J, Improvision Volocity or Metamorph are generally used (Hove and Craig, 2012). More 

recently, 3D DPIV for obtaining 3D velocity fields became possible by the introduction of high-

speed light sheet fluorescent systems. For example, a conventional light sheet fluorescent 

microscope with confocal platform can scan about 240 image planes in each second which 

corresponds to generating thirty 8-plane z-stacks in one second (at moderate resolution of 256 x 

512), which is suitable for 3D imaging of 3-4dpf zebrafish hearts with 3 hz heart beat (Hove and 

Craig, 2012).    

 

Hemodynamics analysis via computational fluid dynamics (CFD): 

CFD modeling is very beneficial in cardiovascular research to investigate complex fluid 

behavior for which experimental measurements would provide only limited information. For this 

technique, first an accurate representation of the problem geometry is generated. The second step 

is defining the conditions in the model boundaries. The third step is dividing zones into smaller 

elements (meshing), and the last step is numerically solving appropriate governing fluid flow 

equations in each small element to obtain a solution field of interest (i.e. velocity vectors, WSS, 

pressure etc.) within the entire geometry. The technique has gained significant attention in the 

last years to investigate the influence of disturbed hemodynamics on cardiovascular diseases 

(Caiazzo et al., 2015; Nguyen et al., 2015; Doost et al., 2016). These patient-specific models 

contributed to the clinical decision making of physicians. CFD modeling has also been used for 

in vivo studies aiming to investigate hemodynamics in a developing heart. Embryonic chick 
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model has been used widely for this purpose. Our group and others have documented 

characteristics of evolving hemodynamics environment for cardiogenesis of this species (Wang 

et al., 2009; Yalcin et al., 2011; Bharadwaj et al., 2012; Lindsey et al., 2015). Zebrafish is 

another animal model that is used very common for cardiovascular research. Previous studies 

have shown that, similar to other animal systems, mechanical signals contribute to zebrafish 

heart development.  More specifically, fluid shear stress and transmural pressure were shown to 

affect vascular, chamber and valve morphogenesis through triggering mechano-biological 

mechanisms within endothelial cells (Hu et al., 2001; Peshkovsky et al., 2011). Disturbing blood 

flow through a developing heart resulted in altered heart development similar to human CHDs 

(Hove et al., 2003).  

However, interestingly, there is scarcity of CFD studies for detailed hemodynamics 

investigation on zebrafish model in the literature. In one study, a 2D CFD model was developed 

for a simplified heart geometry approximating 4.5 dpf zebrafish heart (Miller, 2011). The model 

is a linear channel with two staggered chambers bulged from opposite sides of the channel, 

representing atrium and ventricle (Figure 6). Endocardial cushions exist on the dorsal and ventral 

sides of the inflow tract, AV canal and the outflow tract. Blood flow simulations were executed 

in two different ways: in the first approach, velocity inlet condition (steady, parabolic velocity 

profile) is defined in the inlet boundary through a rigid geometry; in the second approach, atrium 

and ventricle were defined as elastic materials and the flow was enforced by the contracting 

atrium, which elastically stretches the ventricle (Figure 6A). In both cases, governing fluid flow 

equations (Navier-Stokes and Continuity) were solved to obtain velocity streamlines patterns and 

WSS values acting on the walls and endocardial cushions. Analysis of streamline patterns 

suggested that, moving boundaries should be considered to capture the flow patterns accurately 
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(Figure 4B). In the rigid model, maximum normal stress was 0.02 dynes/cm
2
 on chamber walls 

and maximum WSS was 2 dynes/cm
2
 on endocardial cushions.  Simulations with different 

endocardial cushion heights revealed that the development of these cushions significantly 

influences WSS distribution and magnitude within the heart as well as the levels of the pressure 

on chamber walls. Highest WSS is on the cushions and as the height increases, WSS also 

increases (Figure 4C).  Normal pressure force on the walls of the chambers also increases 

significantly with increased cushion heights due to higher resistance to flow through narrow AV 

canal. In the elastic model, for the highest cushion case (i.e. the endocardial cushions occupying 

more than half of the AV canal width), maximum WSS is about 70 dynes/cm
2
 which is in 

agreement with Hove et.al. who calculated WSS for 4.5 dpf embryos as 76 dynes/cm
2
 (Hove et 

al., 2003). Maximum normal force on the chamber walls for the highest cushion height case was 

3.5 dynes/cm
2
. 

In a following study, moving boundary modeling approach on zebrafish hemodynamics 

was applied to CFD models based on real geometries (Lee et al., 2013). In this study, transgenic 

zebrafish embryos with GFP labeled endothelial/endocardial cells and gata-1 labeled RBCs were 

used. GFP labeling enabled to track boundaries of the lumen walls whereas gata-1 labeling 

enabled to track blood flow (via DPIV) hence measuring blood velocities. Zebrafish embryos at 

stages 20-30 hpf to 110-120 hpf were included in the study. 2D images of the embryo hearts at 

20 fps were collected using a fluorescent microscope. In each image, lumen boundaries were 

determined by tracking fluorescent endothelial cells (Figure 7A). To generate a moving 

boundary computational model, for each image, fixed number of mesh nodes were generated in 

the endocardial wall segmentation.  The node movements in the segmentations were then 

interpolated to enhance temporal resolution. Two-dimensional triangular meshes were generated 
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and based on the wall motion specified by the segmentations throughout the cardiac cycle, 

meshes were forced to deform during the CFD simulation. DPIV measured velocity profiles at 

the inlet region of the geometry was used as transient velocity boundary condition in the 

simulations for different stage models. Models were validated by comparing model velocity 

results with DPIV measured values at AV canal. Maximum velocities were found to be localized 

at the AV canal, with levels of ~1 mm/s at 30hpf, ~3.5 mm/s at 70 hpf and ~5 mm/s at 120 hpf 

(Figure 7B). The results showed that, average WSS levels at AV canal at peak atrial systole were 

~3.5 dynes/cm
2
 for 20-30 hpf, ~20 dynes/cm

2
 for 40-50 hpf and ~80 dynes/cm

2
 for 110-120 hpf. 

Similarly, AV transvalvular pressure gradient increases significantly throughout development. 

Transvalvular pressures were ~0.3 dynes/cm
2 

for 20-30 hpf, ~0.35 dynes/cm
2 

for 40-50 hpf, and 

~2.5 dynes/cm
2
 for 110-120 hpf (Figure 7C).  Formation of vortices at different locations for 

different stage embryos were observed (Figure 7D) suggesting flow patterns might also affect 

cardiogenesis via mechano-biological signaling.  

More recently, a practical approach was developed to estimate WSS levels in a zebrafish 

heart. The method integrates live confocal imaging with CFD and is based on estimating WSS 

levels from heart wall dynamics (as opposed to direct determination from RBC movements) 

(Boselli and Vermot, 2016). In this study, 48 hpf zebrafish embryos were used. Live imaging of 

Gata1-DsRed labeled RBCs were performed at 120 fps to generate 4D heart views. Maximum 

projection of the synchronized z-stack gave the 2D representation of the heart volume (Figure 

8A). On this 2D geometry, a hydrodynamic centerline was then defined which provided a 1D 

parametrization of heart anatomy (Figure 8B). Cross sections of the heart were defined by the 

intersection of segments perpendicular to the walls and the centerline. The wall dynamics were 

then defined as a function of the wall velocities and the arch length positions within the 
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centerline. These wall velocity estimates were then prescribed as boundary conditions for an in 

silico computational model that allows to calculate blood velocity and WSS values within the 

geometry (Figure 8C). Peak endocardial WSS was found around 70 dynes/cm
2
 (7 Pa) which is 

consistent with other measurements. The proposed method provides a powerful practical 

methodology for future zebrafish studies. This methodology was adapted and validated in a 

recent study on zebrafish heart valve development. The computational model successfully 

identified oscillatory WSS regimes and authors found that those stress patterns modulates klf2a 

expression through trpv4 and trpp2 (Heckel et al., 2015). 

These works demonstrate the importance of CFD in zebrafish hemodynamics analysis but 

much more work is needed for better understanding the mechanics of heart development. 

Computer models need to be developed in 3D and must incorporate, both wall dynamics, and 

fluid dynamics (fluid-structure interaction approach) for accurate analysis.  Molecular regulatory 

networks responsible for heart development should be studied in parallel experiments for 

understanding mechanisms of mechanotransduction.  One way for this investigation is to find out 

if the gene expression patterns for heart morphogenesis are controlled either temporally or 

spatially with induced fluid shear and transmural pressure during heart development. Recent 

advances in computational modeling techniques now enable studying these complex problems, 

and are expected to contribute to this field significantly in the near future.  

 

Conclusions and future directions 

 Over the last decades, zebrafish model has evolved as a very powerful model to study 

cardiac development. Advances in forward and reverse genetic interference techniques enabled 
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to induce human cardiovascular defects in those animals. Cardiovascular dynamics has been 

studied in these disease models most commonly via basic 2D brightfield microscopy analyses 

that involves errors in heart function calculations. Light sheet fluorescent microscopes were 

developed specifically to image zebrafish embryos. These microscopes enabled to track 

myocardial wall and RBC movements in real time. Therefore, it is now possible to generate 4D 

movies of a beating zebrafish heart using these microscopes. However, this approach requires 

extensive post-acquisition efforts on image registration. Some groups have developed their own 

algorithms for this purpose but these are not readily applicable to other researchers. 

Commercialization of such software will be beneficial to numerous research groups working 

with zebrafish. Recent advancements in image acquisition optics for light sheet microscopes are 

promising to directly record 4D zebrafish heart movies which will have dramatic contribution to 

the field. Fast image acquisition via LSFM made it possible to apply advanced techniques like 

DPIV and computational modeling to zebrafish studies. However, most of the current studies 

involve hemodynamics analyses in 2D cardiac planes due to imaging and modeling difficulties 

of small size and fast moving boundaries for the zebrafish heart. Development of 3D micro 

DPIV systems with working principle of simultaneous image acquisition from different planes 

will contribute to direct and fast flow visualization of zebrafish hearts in 3D. Even though 

commercial 3D DPIV systems are available, these cannot image micro sized samples as 

zebrafish hearts. Ultrasound biomicroscopy and optical coherence tomography systems were 

utilized successfully for other embryonic animal systems as well as for adult zebrafish. These are 

potentially very useful modalities for embryonic zebrafish imaging. Current commercial systems 

are not appropriate for zebrafish embryos due to very small size. We expect development of new 

probes to image embryonic zebrafish in the near future. As per the CFD modeling, future models 
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should be based on fluid-structure interaction approach to incorporate both wall dynamics and 

blood flow dynamics. Such 3D models will lead to accurate hemodynamics analysis. Other than 

genetic approaches, micro surgical approaches should also be developed for zebrafish 

cardiogenesis. The only such surgical work was the pioneering work by Hove et. al. , where 

micro beads were inserted in  zebrafish hearts to disturb hemodynamics (Hove et al., 2003). 

Better controlled surgical approaches are needed in zebrafish. Because of the small size, ligation 

based surgical approaches on embryonic chick are not applicable. Our group has developed a 

minimally invasive femtosecond laser photoablation technique for embryonic chicken 

cardiogenesis and were successfully induced micro-defects in atrioventricular valve, vitelline 

vessels and arch arteries (Yalcin et al., 2010a; Yalcin, 2014; Lindsey et al., 2015). Integration of 

such techniques to generate zebrafish defect models will open new horizons for the researchers.  
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Figure Legends 

Fig. 1. Heart development in zebrafish. (A-C): Lateral and dorsal views of heart development for 

different stage embryos.  D. Cross sectional view of the heart at 3-5 dpf. Adapted from (Brown et 

al., 2016) 

 

Fig. 2. Assessment of heart function via timelapse video microscopy in zebrafish. A: Brightfield 

image of a 3dpf transparent zebrafish embryo. Boxes designates the ventricle and dorsal aorta 

regions. B: M-mode imaging through short axis of the ventricle.  Dd and Ds are diameters 

whereas MTd and MTs are myocardial thicknesses at diastole and systole. C: Individual RBCs 

can be traced for measuring blood flow velocity in the dorsal aorta region. D: Orientation of the 

ventricle and its schematic view. Arrows identifies a local myocardial wall thickness. Adapted 

from (Shin et al., 2010) 

 

Fig. 3. Principles of Light Sheet Fluorescence Microscopy (LSFM). A: Schematic drawing 

illustrates orthogonal orientation of illumination (blue) and detection (green) beam paths. The 

sample is hold in a transparent gel and can be rotated around the central vertical axis. Light sheet 

illuminates the sample in the focal plane. Sample is moved through the light sheet to form an 

image stack which is then reconstructed for 3D geometry. Adapted from (Weber and Huisken, 

2011). B: Comparison of LSFM with conventional point scanning confocal microscopy. 

Advantages of LSFM include high acquisition speed, high signal-to-noise ratio, minimal photo 

bleaching and high penetration depth. Adapted from (Huisken and Stainier, 2009) 
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Fig. 4. LSFM imaging of dynamic zebrafish hearts. A: 2D image of the atrioventricular canal for 

a 60 hpf embryo. Myocardial cells are labeled green and RBC in red in the image. A is atrium V 

is ventricle. Adapted from (Lee et al., 2016a). B. Top images are 3D rendering of a synchronized 

movie stack for atrium cut open for a 48 hpf embryo. Myocardial cells are labeled red and RBCs 

in green. Atrium is contracting from left to right images. Bottom images are tracking of RBCs 

for respective time points. Adapted from (Mickoleit et al., 2014; Weber and Huisken, 2015). C. 

Direct recording of a 4D movie for a beating zebrafish heart with improved image acquisition 

using a tunable lens. Adapted from (Fahrbach et al., 2013). 

 

Fig. 5. Velocity and WSS measurements via DPIV for zebrafish embryos. A: Brightfield image 

for the ventricle of a 4 dpf zebrafish embryo. B: Vessel boundaries are determined as the limits 

of cell movements. C: Velocity vectors for cell movements. D: Calculated wall shear rates 

overlaid with velocity vectors. Adapted from (Jamison et al., 2013). 

 

Fig. 6. Simplified mathematical model for 4.5 dpf zebrafish heart. A: Top sketch is the model 

with rigid walls and bottom sketch is the model with elastic atrial and ventricular walls. In the 

deformable model, contraction of the ventricle fills the ventricle. d is the diameter of the channel, 

c is the depth of the chambers, a is  atrium, v is ventricle. B: Velocity streamlines in the rigid 

(top) and flexible (bottom) wall models. Flexible models captures streamline behavior better. C:  

WSS levels in dynes/cm
2
 for the rigid (top) and flexible (bottom) wall models. WSS estimations 

for the flexible model looks more realistic. Adapted from (Miller, 2011). 
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Fig. 7. Moving domain computational models for zebrafish hearts. A: The use of transgenic 

Tg(fli1a:EGFP)y1 embryos allows for clear identification of inner wall for reconstructing the 

CFD model geometry. A is atria, V is ventricle, B is bulbus arteriosus. B: Computationally 

determined velocity levels at AV canal at peak systole for different stage embryos. High 

gradients are localized to valve region indicating high WSS. C: Averaged peak flow WSS and 

pressure gradient at AV canal for different stage embryos. Both values increase significantly 

throughout development. D: Velocity streamline patterns at atrial relaxation, demonstrates 

varying vortex characteristics for different stages. Adapted from (Lee et al., 2013). 

 

Fig. 8. Coupled confocal imaging and computational modeling approach for zebrafish heart 

hemodynamics. A: Segmentation of the heart wall from maximum intensity projection of a 

confocal scan for a 48 hpf embryo. B: Cross-section segments through the heart and their 

intersection points with the wall. ATR is atrium, VNT is ventricle, AVC is atrioventricular canal. 

C: Velocity vectors and WSS levels from the in-silico CFD model at peak systole. Adapted from 

(Boselli and Vermot, 2016) 
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Fig. 1. Heart development in zebrafish. (A-C): Lateral and dorsal views of heart development for different 
stage embryos.  D. Cross sectional view of the heart at 3-5 dpf. Adapted from (Brown et al., 2016)  

 
85x30mm (300 x 300 DPI)  

 

 

Page 35 of 47

John Wiley & Sons, Inc.

Developmental Dynamics
D

ev
el

op
m

en
ta

l D
yn

am
ic

s



  

 

 

Fig. 2. Assessment of heart function via timelapse video microscopy in zebrafish. A: Brightfield image of a 
3dpf transparent zebrafish embryo. Boxes designates the ventricle and dorsal aorta regions. B: M-mode 

imaging through short axis of the ventricle.  Dd and Ds are diameters whereas MTd and MTs are myocardial 

thicknesses at diastole and systole. C: Individual RBCs can be traced for measuring blood flow velocity in the 
dorsal aorta region. D: Orientation of the ventricle and its schematic view. Arrows identifies a local 

myocardial wall thickness. Adapted from (Shin et al., 2010)  
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Fig. 3. Principles of Light Sheet Fluorescence Microscopy (LSFM). A: Schematic drawing illustrates 
orthogonal orientation of illumination (blue) and detection (green) beam paths. The sample is hold in a 

transparent gel and can be rotated around the central vertical axis. Light sheet illuminates the sample in the 
focal plane. Sample is moved through the light sheet to form an image stack which is then reconstructed for 
3D geometry. Adapted from (Weber and Huisken, 2011). B: Comparison of LSFM with conventional point 

scanning confocal microscopy. Advantages of LSFM include high acquisition speed, high signal-to-noise ratio, 
minimal photo bleaching and high penetration depth. Adapted from (Huisken and Stainier, 2009)  
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Fig. 4. LSFM imaging of dynamic zebrafish hearts. A: 2D image of the atrioventricular canal for a 60 hpf 
embryo. Myocardial cells are labeled green and RBC in red in the image. A is atrium V is ventricle. Adapted 
from (Lee et al., 2016a). B. Top images are 3D rendering of a synchronized movie stack for atrium cut open 
for a 48 hpf embryo. Myocardial cells are labeled red and RBCs in green. Atrium is contracting from left to 
right images. Bottom images are tracking of RBCs for respective time points. Adapted from (Mickoleit et al., 

2014; Weber and Huisken, 2015). C. Direct recording of a 4D movie for a beating zebrafish heart with 
improved image acquisition using a tunable lens. Adapted from (Fahrbach et al., 2013).  
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Fig. 5. Velocity and WSS measurements via DPIV for zebrafish embryos. A: Brightfield image for the 
ventricle of a 4 dpf zebrafish embryo. B: Vessel boundaries are determined as the limits of cell movements. 

C: Velocity vectors for cell movements. D: Calculated wall shear rates overlaid with velocity vectors. 
Adapted from (Jamison et al., 2013).  
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Fig. 6. Simplified mathematical model for 4.5 dpf zebrafish heart. A: Top sketch is the model with rigid walls 
and bottom sketch is the model with elastic atrial and ventricular walls. In the deformable model, 
contraction of the ventricle fills the ventricle. d is the diameter of the channel, c is the depth of the 

chambers, a is  atrium, v is ventricle. B: Velocity streamlines in the rigid (top) and flexible (bottom) wall 
models. Flexible models captures streamline behavior better. C:  WSS levels in dynes/cm2 for the rigid (top) 
and flexible (bottom) wall models. WSS estimations for the flexible model looks more realistic. Adapted from 

(Miller, 2011).  
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Fig. 7. Moving domain computational models for zebrafish hearts. A: The use of transgenic Tg(fli1a:EGFP)y1 
embryos allows for clear identification of inner wall for reconstructing the CFD model geometry. A is atria, V 
is ventricle, B is bulbus arteriosus. B: Computationally determined velocity levels at AV canal at peak systole 

for different stage embryos. High gradients are localized to valve region indicating high WSS. C: Averaged 
peak flow WSS and pressure gradient at AV canal for different stage embryos. Both values increase 

significantly throughout development. D: Velocity streamline patterns at atrial relaxation, demonstrates 
varying vortex characteristics for different stages. Adapted from (Lee et al., 2013).  
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Fig. 8. Coupled confocal imaging and computational modeling approach for zebrafish heart hemodynamics. 
A: Segmentation of the heart wall from maximum intensity projection of a confocal scan for a 48 hpf 

embryo. B: Cross-section segments through the heart and their intersection points with the wall. ATR is 

atrium, VNT is ventricle, AVC is atrioventricular canal. C: Velocity vectors and WSS levels from the in-silico 
CFD model at peak systole. Adapted from (Boselli and Vermot, 2016)  
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