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a b s t r a c t

With the increase in sophistication and connectedness of the healthcare networks, their attack surfaces
and vulnerabilities increase significantly. Malicious agents threaten patients’ health and life by stealing
or altering data as it flows among the multiple domains of healthcare networks. The problem is likely
to exacerbate with the increasing use of IoT devices, edge, and core clouds in the next generation
healthcare networks. Presented in this paper is MUSE, a system of deep hierarchical stacked neural
networks for timely and accurate detection of malicious activity that leads to alteration of meta-
information or payload of the dataflow between the IoT gateway, edge and core clouds. Smaller
models at the edge clouds take substantially less time to train as compared to the large models
in the core cloud. To improve the speed of training and accuracy of detection of large core cloud
models, the MUSE system uses a novel method of merging and aggregating layers of trained edge
cloud models to construct a partly pre-trained core cloud model. As a result, the model in the core
cloud takes substantially smaller number of epochs (6 to 8) and, consequently, less time, compared
to those in the edge clouds, training of which take 35 to 40 epochs to converge. With the help of
extensive evaluations, it is shown that with the MUSE system, large, merged models can be trained
in significantly less time than the unmerged models that are created independently in the core cloud.
Through several runs it is seen that the merged models give on an average 26.2% reduction in training
times. From the experimental evaluation we demonstrate that along with fast training speeds the
merged MUSE model gives high training and test accuracies, ranging from 95% to 100%, in detection
of unknown attacks on dataflows. The merged model thus generalizes very well on the test data. This
is a marked improvement when compared with the accuracy given by un-merged model as well as
accuracy reported by other researchers with newer datasets.

© 2022 Published by Elsevier B.V.
1. Introduction

The cost of providing healthcare is steep and spiraling globally.
he US alone spent about $4.1 trillion in 2020, a staggering
9.7% of the GDP [1]. Despite substantial healthcare budgets,
ost countries are saddled with inefficient healthcare systems.
dministrations are frequently blamed for inadequate response
o medical emergencies, delays in diagnosis of acute cases, insuf-
icient monitoring of chronic patients, re-admissions, and above
ll, too many preventable errors. Some readers will be surprised
o know that preventable errors are a leading cause of deaths in
he US [2].

∗ Corresponding author.
E-mail address: lavgupta@wustl.edu (L. Gupta).
ttps://doi.org/10.1016/j.asoc.2022.108439
568-4946/© 2022 Published by Elsevier B.V.
To improve treatment outcomes with timely and accurate
diagnosis and, at the same time, reduce the rising cost burden
of healthcare on governments, modern healthcare is increasingly
relying on technology. Trends show the prevalence of the Internet
of Things (IoT) devices for the collection of patient data and the
use of multi-cloud computing for storage and analytics. Cloud
adoption, including multi-cloud and hybrid cloud, is projected by
International Data Corporation, a market intelligence company,
to be a staggering 90% of mid-size and large size organizations
by 2022 [3]. In healthcare the growth multi-cloud is expected to
be 37% in 2021 as against 19% in 2019 [4]. These developments
have the potential of saving crucial minutes in the diagnosis and
treatment of critical, hospitalized, or ambulance bound patients.
In other words, they could drastically improve the chances of
patients’ survival and return to good health.

https://doi.org/10.1016/j.asoc.2022.108439
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
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Medical IoT is helping implement automatic remote monitor-
ing and recording of patients’ vital signs, allowing closer moni-
toring, which is not possible manually. The global Covid-19 pan-
demic has accelerated the adoption of medical IoT in hospitals [5].
Because of rapid upsurge in the use of IoT devices, analytics and
storage are being increasingly pushed from premises to the edge
and further to large public clouds (also called core clouds in this
paper). These technology trends promise to reduce reliance on
brick-and-mortar healthcare infrastructure and make the next
generation healthcare less expensive and more efficient. Despite
the expected gains from the infusion of new technologies, the
undesirable fallout is the increasing susceptibility of patients
and hospitals to crippling malicious attacks [6]. Over the last
two years, 90% of healthcare organizations have suffered at least
one cyberattack [7]. This adds up to a 71 percent increase in
breaches or incidents in 2020 over 2019 [8]. Among all major sec-
tors of the economy, the largest number of ransomware related
insurance claims during 2015–2019 came from the healthcare
sector [9]. Any attack on critical patient data, flowing through
an intricately designed healthcare system, poses severe threats to
patients being diagnosed, treated, or carried to a medical facility
on an ambulance. Research of Choi and Johnson shows that data
breaches affect a hospital’s 30-day mortality rate adversely [10].
These attacks not only threaten serious repercussions on routine
medical procedures, but also present the risk of critical medi-
cal devices, such as pacemakers, being hacked and endangering
patients’ lives. A recent example is recall of insulin infusion
pumps by the US Foods and Drugs Administration because of the
possibility of attackers changing settings and takeover control of
insulin delivery [11].

The next generation healthcare is expected to make extensive
use of sensing devices, clouds, and virtualization of communica-
tion. This makes the system complex, opens the boundaries of
the constituent domains and increases the attack surface. Secu-
rity and privacy concerns have so far limited the adoption of
cloud infrastructure in healthcare to about 14% [12]. Conventional
intrusion detection systems (IDSs) become largely ineffective in
such an environment [13]. Additionally, there is lack of research
in finding more effective means to tackle increased risk of attack
in the next generation healthcare. This provides the motivation
for this work. Consequently, the objective of this work is to create
a credible defense, against known and unknown or ‘‘zero-day’’
attacks.

In this paper, we propose MUSE (Merged Hierarchical Deep
earning System with Layer Reuse for Security), a system con-
sisting of a hierarchy of distributed deep learning models in the
edge and the core clouds. MUSE secures healthcare providers’
operational systems from attacks arising within or outside their
organizations. MUSE predicts attacks on dataflows by examining
the data being transferred to and from the clouds and detecting
even very subtle changes in the metadata associated with these
flows. The models working in the edge and core clouds are trained
to identify malicious activity by detecting abnormal variations in
the metadata features like source- or destination-byte-count, re-
transmissions because of payload error, mean packet size, content
size of the data and packet transfer rate.

The novelty of this work lies in tackling the increased attack
surface of the next-generation health care systems by using a
hierarchy of cooperating neural network models in the edge
and the core clouds. The challenge in doing this is obvious. The
distributed deep learners grow in size and complexity as we move
from the edge of the IoT domain through the smaller edge clouds
to the larger core clouds. Any effort to increase the training speed
often results in reduction in detection accuracy. We tackle the
dual challenges of fast training of large and complex core cloud
models and high accuracy of detecting known and unknown at-
tacks by using an innovative merged deep neural network (DNN)
 l
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models in the core clouds. The novelty of the method lies in
its hierarchical implementation and use of merged trained edge
models to reduce training time in larger core cloud while still
maintain high accuracy of detection.

Specific contributions of this paper are:

(a) Establishing a reference architecture for critical healthcare
applications, e.g., ambulance bound critical patients.

(b) Based on the attack surface presented to the flow of data in
the multi-domain next-generation healthcare architecture,
evolving a threat model to clearly defne the information
technology and operational technology related threats and
their mitigations.

(c) Proposing a novel method based on hierarchical DNNs to
protect the patient data flowing between the IoT domain
and the edge cloud and between the edge clouds and the
core clouds.

(d) Evolving a merged core cloud DNN for improvement in
training time and accuracy of prediction of abnormal ac-
tivity in the data flows.

(e) Evaluating the proposed method and discussing the results.

The rest of the paper is organized as follows. In Section 2, we
iscuss the related work to show how our work fills an existing
ap. Section 3 presents the conceptual layout and architecture of
he next generation healthcare network, laying down a founda-
ion for discussing the threat model in Section 4. The merged
ierarchical model is discussed in Section 5. In Section 6, we
iscuss the evaluation results. Finally, Section 7 gives a summary
f the conclusions.

. Related work

To get an assessment of the state of the art, we present here
elected published research done mainly during 2018–21. Some
arlier research might have been included for its contemporary
elevance and comparative value.

.1. Works comparing shallow and deep neural networks for net-
ork intrusion detection

During the last three years a number of researchers have
ublished comparison shallow machine learning and deep learn-
ng methods for security applications. Gradual improvement of
etection capabilities with deep learning are in part responsible
or more researchers looking at it as a credible rival to shallow
earning for such applications. Kim and Gofman (2018) use NSL-
DD dataset and obtain peak performance of 98.50% detection
ccuracy for a 17-hidden node shallow network and performance
f deep network at 48.30% detection accuracy [14]. This is typ-
cal of initial research in application of deep learning in cyber
ecurity. Another contemporary research by Xin et al. (2018)
inds that both shallow and deep learning have their own ad-
antages and disadvantages in implementing IDSs and none can
e recommended over the other [15]. Farahnakian and Heikko-
en (2018) show that sparse autoencoders (SAEs) with Support
ector Machine (SVM) for multi-class classification give 84.86%
ccuracy with the NSL-KDD dataset, which is better compared to
stand-alone SVMmodel, which gives an accuracy of 79.42% [16].
Nguyen et al. (2018) use RBMs with NSL-KDD, KDDCup99

nd UNSW datasets and obtain 90.99%, 95.84% and 97.11% ac-
uracy. The corresponding numbers for SVM are 88.32%, 93.38%
nd 96.74%. Generalization is weak, and the method is not ef-
ective in detecting unknown attacks. They conclude that deep
earning methods perform better with large volumes of data
nd use of high-performance machines with GPUs but have a

onger training time than machine learning methods [17]. Nassif
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t al. (2021) conclude that deep learning outperforms shallow
achine learning in many applications, but this may not always
e the case for cybersecurity [18]. They experimentally compare
he performance of Random Forest (RF) (Shallow Learning) and
ully Connected Feedforward Neural Network FNN (FNN) (Deep
earning) and find that RF performed better with an F1-score of
early 0.8, against the 0.6 obtained by the FNN. They, however,
gree that deep learning for cybersecurity is under-researched.

.2. Recent work using deep learning for healthcare systems

Though we have not come across any work that studies appli-
ation of deep learning in security of multi-cloud healthcare sys-
ems, there has been obliquely related research that researchers
ay find useful for healthcare environment. Hayyolalam et al.

2021) present a framework that uses deep reinforcement learn-
ng (DRL) in the edge cloud to offload the tasks from the IoT sen-
ors to the edge cloud [19]. Authors claim that the DRL method
llows the DRL layers or devices in the edge cloud to work in
arallel and help reduce network latency congestion.
Elayan et al. (2021) propose digital twin technology in which

virtual replica of a physical asset is used to diagnose and detect
eart problems using a novel Electrocardiogram (ECG) classi-
ier [20]. Each patient has a DT that is updated by this classifier
sing DTs of similar patients. This allows physicians to be able
o predict the outcome of their treatment. Their method uses
ultiple deep learning methods such as Long short-term memory

LSTM) and Convolutional Neural Network (CNN) with accuracy
ates of 97.09% and 96.67%, respectively.

Zaman et al. (2020) have developed a graph theory concept
hat minimizes the healthcare network drop during rush hours
21]. This concept uses powerful nodes called parent nodes (PNs)
hat can share their services with other nodes by splitting the
asks between these nodes and one of the PNs as needed. Similar
o [21], AL-KHAFAJIY et al. (2021) introduce Cognitive Fog (CF)
odel that uses multiple CF nodes to offload the tasks from the

oT devices and allow parallel processing on the fog cloud [22].
hey use multiple machine learning classifiers, namely Decision
rees (DT), K-Nearest Neighbors (KNN), and Density-based spatial
lustering of applications with noise (DBSCAN), to detect anoma-
ies in the transmitted data. The final decision is based on a
ajority vote of the decisions made by these classifiers. However,
sing these classifiers requires a lot of labeled data, which is not
eadily available in healthcare systems.

.3. Recent application of deep learning methods in diverse areas

Hizal et al. (2021) use a CNN model-based IDS running on
GPU to achieve 99.86% accuracy for 5-class classification us-

ng NSL-KDD dataset [23]. Chen and co-researchers (2020) have
ested the CNN model with CICIDS2017 dataset and get an accu-
acy of 96.55% on raw data [24]. Unlike our work the authors use
single flat cloud structure. Training times of the models in the
loud have been discussed.
Gopalakrishnan et al. [2020] present a deep learning based

raffic prediction with a data offloading mechanism with cyber-
ttack detection (DLTPDO-CD) technique [25]. The proposed
odel involves three major processes: traffic prediction, data
ffloading, and attack detection. For the attack detection part
deep belief network (DBN) optimized by a barnacles mating
ptimizer (BMO) algorithm called BMO-DBN is applied for cyber-
ttacks in mobile edge computing. With BMO-DBN the authors
et an accuracy of 97.65%. For comparison they found with DBN
hey get a lower accuracy of 96.17%.

In the experiments in [26] Xun et al. (2021) utilize CNN and

STM networks to build different driving behavior evaluation
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models in edge network assisted vehicle driving. The accuracy
rate and loss value of training data in CNN are 96.7% and 0.189,
and the value in LSTM are 98.5% and 0.029. On the test dataset, ac-
curacy rates are 90.2% and 95.1% for CNN and LSTM respectively.

Lin’s research (2018) shows that methods relying on attack
patterns and risk assessment have low accuracy and are not
useful in real-time cloud systems. In multi-cloud computing en-
vironment, using a combination of restricted Boltzmann machine
(RBM) and SoftMax, they achieve the highest accuracy of 95.84%
with KDD Cup ’99 and NSL-KDD datasets, which is better than
machine learning algorithms in similar situations [27]. Otoum
et al. (2019) present what they call a behavior-classification ap-
proach for network intrusion detection [28]. They present the
revised Le-Net 5 CNN model designed by LeCun et al. in 1998.
With KDDCup99, the prediction accuracy for major types of at-
tacks achieved is 99.65% with eightfold cross-validation (>10,000
records). For attacks with less than 500 records, the average
accuracy is 95.41%. Roy and Cheung (2018) present a study on
the feasibility of deep learning in a 20 sensor wireless sen-
sor networks [29]. With Bi-directional Long Short-Term Memory
Recurrent Neural Network (BLSTM RNN) model and UNSW15
dataset, the authors achieve 95% or more in attack detection.
Using RBM based clustered detection system, they achieve an
accuracy of 99.91%, with a detection rate of 99.12%. Parampot-
tupadam and Moldovann (2018) have developed a cloud-based
prototype system to investigate the capability of deep learning
based binomial and multinomial models to detect network in-
trusions in real-time. They have compared deep learning models
built with H2O and DeepLearning4J with other machine learning
models like Random Forest, Support Vector Machine, Logistic
Regression and Naive Bayes using NSL-KDD dataset. The H2O
deep learning based binomial and multinomial models generally
outperformed the other models, achieving over 99.5% training
accuracy using cross-validation and over 83% accuracy on the test
dataset.

Shone et al. (2018) propose a deep learning classification
model constructed using stacked Non-Symmetric Deep Autoen-
coders (NDAEs) [30]. They have implemented the model in GPU
enabled TensorFlow and evaluated it using the KDD Cup ’99 and
NSL-KDD datasets. Accuracies of NDAE and DBN with Kddcup99
are 97.85% and 97.9% respectively. With NSL-KDD the accura-
cies are 80.58% and 85.42%. The authors have also showed that
for training an eight-layer model their NDAE takes 2024 sec as
against 54660 s taken by an eight layer DBN 54660, NDAE 2024 s

Vinayakumar et al. (2019) combine Network Intrusion Detec-
tion System (NIDS) and Host Intrusion Detection System (HIDS)
to create a deep learning approach based on deep neural net-
work (DNN) to proactively detect and classify unforeseen and
unpredictable cyberattacks [31]. The experiments were run for
1000 epochs with learning rate varying in the range [0.01–0.5].
For older datasets like KDDCup (1999) most of the DNN network
topologies showed train accuracy in the range of 95% to 99% while
the newer UNSW-NB15 (2015) andWSN-DS (2016) showed lower
train accuracy in the range of 65% to 75%.

The work of Abusitta and co-researchers (2019) is one of the
very few on multi-cloud but involves use of non-hierarchical
cloud structure for IDS [32]. Each of the cloud models have incom-
plete information and work cooperatively. Normally receiving
feedback from various clouds and aggregating them takes time
and make the models unsuitable for real-time applications. The
authors propose a Stacked Deionizing Autoencoder Model (SDAE)
model that makes decision in the absence of complete feedback
from the IDSs. It has been implemented on GPU-enabled Ten-
sorFlow and evaluated using a dataset derived from KDDCup99
dataset. The average accuracy obtained by the proposed model
at different numbers of hidden units (ranging from 70 to 350) is
87.5%.
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He et al. (2021) have worked on CNN based supervised pre-
training module and the AE-based data reconstruction module.
With the USTC2016 datasets they achieve 97.4% and 97.95 for
malicious and benign traffic respectively and with CIC-IDS2017,
89.45% for malicious and 80.25% for benign traffic [33].

In another recent study, Udhendran and Balamurugan (2021)
use autoencoder for farming applications with a year 2020 dataset
from Plant Pathology, to achieve an accuracy of 95% for training
data and 90% or more the validation data (2021). The work
by Elayan and others (2021) deals with detecting diseases and
problems from the ECG DT using MIT-BIH Arrhythmia Database.
With LSTM the authors achieve validation accuracy of 97.09%
and training accuracy of 98.96%. Using CNN validation accuracy
is 96.67% and training accuracy is 98.96% [20].

In [19] Hyolalam et al. (2021) propose a smart healthcare
framework that makes use of edge technology and deep rein-
forcement learning. Processing takes place at the edge but can be
offloaded to public cloud if the volume of the data so demands.
The authors have not performed any experimental evaluation for
detection accuracy or computational complexity but feel that for
real-time health applications some method of training reduction
would be necessary.

From the above-mentioned findings, we can conclude that
there have been sporadic successes in applying deep learning
to network intrusion detection. However, such work remains in
its infancy [34]. We did not come across any work that uses
a merged model for hierarchical distributed networks in multi-
clouds. The work in [35] introduces elements of the initial work
on hierarchical neural networks in the context of critical services.
However, the concept has been developed, tested and described
for the first time in more detail this paper.

3. Conceptual layout and architecture of the next generation
healthcare system

The generic layout of the next generation healthcare service
assists in understanding the flow of data and provides useful
inputs for evolving the system architecture. This architecture is
then used to prepare a threat model and carry out mitigation
planning specific to the cyber–physical system that we are con-
sidering. We depict the overall layout of the next generation
of healthcare services in Fig. 1 and describe its domains below.
The constituent domains act as a source, a sink, a storage or an
analytics resource.

3.1. The healthcare network domains

As shown in Fig. 1, we subdivide the network into the IoT,
the multi-cloud domain and the visualization domains. The data
transmission among the domains can use contemporary wide
area network services or virtual network service (VNS) to which
the carriers and Internet Service Providers (ISPs) are expected to
increasingly migrate. A brief description of these domains is given
below:
(a) The IoT domain: The IoT domain consists of a heterogeneous
mix of wired and wireless, wearable, ingested, or implanted
biosensors, actuators, and other medical devices, for patient data
acquisition and delivery of treatment. Each of the sensing devices
performs simple tasks like monitoring pulse rate, oxygen satu-
ration, or blood pressure. Actuators, on the other hand, perform
the task of delivering treatment like activating oxygen flow or
injecting insulin, based on commands from clinical staff or other
devices. In the case of ambulance bound patients, because of
monitoring by IoT devices, there also are auto-responses in terms
of alerts and suggestions to the paramedic staff inside the ambu-

lance. This domain is generally a source, producing large volumes

4

Fig. 1. The conceptual layout of next-generation healthcare.

of multi-dimensional patient data, but also acts as a sink for the
commands sent to the actuators and other devices.

IoT devices present several operational challenges due to con-
strained battery power, small memory, and low processing capa-
bilities. Consequently, these devices depend on external storage,
processing, and analytics provided by the multi-cloud domain. At
the edge of the IoT domain is the IoT gateway to which most
of the devices connect. The IoT gateway also acts as an interface
between the IoT domain and the cloud domain and does the task
of protocol or data conversion when required. Some of the devices
may connect directly to the service providers wired or wireless
VNS.
(b) The cloud domain: In our work, the cloud domain has been
assumed to consist of the hierarchy of edge and core clouds, as
shown in Fig. 1. The edge clouds will be like those provided by
the mobile service providers through the computing equipment
on mobile towers collocated with the base stations. These edge
clouds are closest to the patient and provide relatively inexpen-
sive and low latency connectivity to the multi-cloud system. The
edge provides intelligence for all the workload that can be better
performed by cloud resources closest to the devices in the IoT
domain. The larger core clouds are public clouds providing ample
storage for historical data and more sophisticated analytics. The
data collected by the edge clouds, may usually be required for
diagnostics in the current acute ailment of patients or active
monitoring of patients in the edge cloud area. When no longer
actively required in this manner, the data can be moved to the
core clouds for permanent storage. The core clouds can help ana-
lyze a vast amount of patient historical data (PHD) and real-time
data (RTD) using sophisticated AI based analytics. However, the
connectivity cost and latency will be much higher than that of the
edge clouds. In this paper, we will use the terms core cloud and
main cloud interchangeably with the name public cloud. When
arranged in a hierarchical manner, a multi-cloud design provides
a combination of low latency, large storage, optimized bandwidth
cost, and high analytical sophistication. While the edge clouds aid
quick diagnosis in emergency and acute cases, computationally
demanding inference algorithms in the larger core clouds help in
determining patterns in historical data that correlate with current
symptoms. This helps in differential diagnosis or discovering yet
to surface ailments [36].
(c) The visualization domain: The visualization domain is predomi-
nantly a sink that consumes the analyzed data in many forms. The
clinical staff using the data can also generate small amounts of
data in the form of commands, instructions, or prescriptions. This
domain consists of mechanisms for presenting multiple streams
of processed data to the concerned clinical staff. The domain
also allows the clinical team to choose from several streams
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Fig. 2. Architecture of the IoT-Cloud healthcare system.

of incoming information to get a good idea of the health of
the patient, catch the exceptions and anomalies, and the early
signs of developing complications [37]. The information can be
presented in graphics, tabular and other forms, to assist doctors
in making a fast and accurate diagnosis. In the case of data from
an ambulance, the doctors may decide to communicate with the
paramedics to provide guidance for immediate patient care. It
is understood that improvement in visualizations can improve
diagnosis and, in turn, outcomes of the treatments.

3.2. The architectural design of next-generation healthcare

The architecture is shown in Fig. 2. The functional aim of the
esign is to provide comprehensive data to medical experts as
ell as applications that process them or control the devices used

or patient care. This requires functionalities like image acqui-
ition, analytics, and communication, remote patient consulting,
ontinuous monitoring, and telemedicine. All this results in the
ovement of a large amount of data from the IoT domain to the
loud domain for analytics and storage.
The proposed architecture is flexible and scalable; it grows

ith the demand on the system and yet retains its amenability
o effective security. To maintain consistency with the layout
lready presented in Fig. 1, the architecture has been divided into
our inter-linked domains: the sensor and actuator domain, the
dge cloud domain, the core cloud domain, and the visualiza-
ion domain. This compartmentalization into domains assists in
odular design of the security policy for the entire healthcare
etwork. A brief discussion of the essential constituent of various
omains follows:
a) IoT gateway: This gateway will be present in ambulances,
ospitals, offices or homes. They link the IoT domain and the Edge
loud domain. Other devices in the domain rely on their connec-
ivity with the IoT gateway for many functions like protocol and
ata conversion, and connectivity to cloud gateways. There can be
ore than one IoT gateways each connected to their own set of
evices. The IoT gateways connect to the service provider’s virtual
r physical wide area network and can register with the edge
louds or directly with the core cloud. Some of the devices that
re mobile-SIM based can directly connect to the communication
etwork and can securely register with the cloud for sending and
eceiving data. The gateways assist in device provisioning, data
iltering, batching and aggregation, buffering of data, protocol
ranslation, event rules processing, and more. There can be more
han one IoT domain with their own gateways connected to the
dge clouds.
b) The edge and core cloud gateways: These gateways are in

he edge and core clouds of the multi-cloud domains. The cloud

5

gateways may provide data compression for faster transfer, mul-
tiple bandwidth options and distribute workload. They provide
connection to the IoT gateways and devices and collect telemetry
information. These gateways may be physical or in the form of
virtual routers (vRouters).
(c) The edge and main processors: These processors work on the
streams of data from the devices or the gateways. The edge
processor has reasonable processing capabilities and may have
specialized hardware like the edge tensor processing unit. It has
capabilities to train and use small neural network models. The
edge store is primarily for temporary storage to keep the patients’
data while the ambulance is passing through the corresponding
cell or while it is needed for patients’ present care. The main (core
cloud) processor can carry out more sophisticated analytics based
on large neural network models using both current data and
large historical datasets. It has the capability of interfacing multi-
ple streams of heterogeneous information with the visualization
domain.
(d) Machine intelligence agent: In addition to the main proces-
sor, the core cloud domain may provide specialized hardware
(e.g., GPUs) and software that can process historical data for in-
telligence on developing diseases or for predicting re-admissions.
(e) Visualization: Visualization domain consists of related tools
used to visualize patient data and facilitate patient diagnosis,
monitoring, and management. It consolidates and synthesizes
large volumes of data from multiple sources to provide critical
insights to the clinical staff. It makes patterns and relationships
evident in large amounts of data, which are not discernable in
raw data or reports [38].
(f) Access control: This provides various forms of authorization,
authentication, and accounting of connections attempted by peo-
ple and devices. It prevents unauthorized agents from accessing
stored or analyzed information from the edge or the core cloud
zone.
(g) Provisioning, UI, and other tools: These tools give the domain
manager a user-friendly interface to inject policies and provision
cloud resources.

3.3. Security architecture for the next generation healthcare

The overall security architecture that has been taken into
consideration is shown in Fig. 3. The next-generation health-
care systems will have security built-in by design rather than
being overlaid. This reduces manual provisioning and allows
security to be consistent across all domains and leads to more
robust end-to-end security [39]. It also ensures high availabil-
ity, patient safety, conformance to regulations and improved
domiciliary and ambulance-bound patient care. The methods
that we have evolved are consistent with the described security
architecture.

In this work, we have focused on the development of a hier-
archical deep-learning-based anomaly detection system that will
indicate if the dataflow between the IoT gateway and the edge
cloud or between the edge cloud and the core cloud has been
compromised. The relevant aspects are discussed below:
(a) User authentication: Patients, paramedics in the ambulances,
hospital medical and support staff all have to be authenticated
securely and robustly to protect the patients and related data.
For patients in the ambulance, brain wave biometrics can be
explored. Cryptographic authentication and authorization tech-
niques combined with biometrics can provide a high level of
system access security.
(b) Data at rest in the cloud: Confidentiality of data stored at
various points in the network can be protected through inno-
vative encryption and encryption key management. The use of
innovative hashing algorithms can safeguard the integrity of data.



L. Gupta, T. Salman, A. Ghubaish et al. Applied Soft Computing 118 (2022) 108439

P
c
b

Fig. 3. The security architecture of the next-generation healthcare.
ublic key cryptography can be used to provide both integrity and
onfidentiality. In time-sensitive systems, the latency introduced
y these techniques needs to be monitored.
(c) Data in motion: This is the part that is of interest in this

paper. Data from the physiological sensors are collected by the
IoT gateway and transmitted over the Internet or wireless access
network to the edge cloud. Low latency tasks are performed
here, and for a more in-depth analysis, the data is transferred
to the core cloud. The processed information is sent to the doc-
tor’s screens to visualize the exceptions and make an accurate
diagnosis.

The architecture explained above helps to realize our aim of
protecting data in motion from any attack that threatens to affect
the meta-information or payload of the dataflow. As explained in
Section 1, changes in the payload affect features that are part of
the meta-information. The main concern here is to use an innova-
tive deep learning technique to find anomalies in the inter-domain
streams of data for any indication of malicious intent.

4. Threat model for the healthcare network

The threat model essentially provides an understanding of the
attackers, attacks, and mitigation and is crucial in deciding the
security strategy. In IoT-Multicloud systems the designers must
rely on the convergence of information technology (IT) and oper-
ational technology (OT) to run and maintain infrastructures. The
architecture and the threat model that we propose draw from
the Microsoft STRIDE architecture for clouds, covering threat cat-
egories Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service and Elevation of privilege, has been widely
applied to cyber–physical system and is applicable to our situ-
ation with suitable changes [40]. This model recognizes the trust
boundaries and the vulnerabilities that come with transgressing
domains in the IoT-Multicloud systems. In critical operational
technology it is not only the data leak that is to be worried about
but also how theft and manipulation of data may impact safety
of the stakeholders. In situations, as presented by Covid-19, when
the system is overstretched, vulnerabilities could have serious
ramifications [41]. The compartmentalization or zoning feature of
our architecture has helped us formulate an appropriate threat
model. The gateways demarcate the domains. Thus, we have
the IoT gateway, the edge-cloud gateway, the core cloud gate-
way, the visualization gateway with their associated services. A
trust boundary separates each domain from the other connected

domains. It is vital that the data flow authorization techniques

6

Fig. 4. DFD for healthcare dataflows and trust boundaries.

combined with biometrics can provide a high level of system
access security. The data crossing the trust boundaries should be
protected against various kinds of attacks [42].

A data flow diagram (DFD) is an important tool to represent
processes (entities like gateways can be abstracted as processes),
data stores (like the permanent store in the core clouds that
stores patients’ historical data), data flows (between the IoT, edge
and core clouds being of concern) and entities that interact with
the system. Fig. 4 shows a diagrammatic representation of these
elements in a DFD. Each of the elements in DFD are subject to all
or some aspects of STRIDE.

4.1. Attack surfaces

The attack surfaces at various gateways are described below:
(a) The IoT gateway attack surface: The IoT gateways are in places
like ambulances, hospitals, offices, and homes. We can see from
the data flow in Fig. 4 that these gateways are at the perimeter
of sensors and actuators domain. An IoT gateway may combine
the functionalities of a router, a processor, a protocol and data
converter, a device controller, a data flow manager, and a sessions
manager. There are two attack surfaces one facing the IoT devices
and the other facing the edge cloud zone. These gateways are
often targeted for intrusions. These intrusions can have severe
effects as there is no redundancy built into these gateways.
(b) The edge-cloud gateway attack surface: The edge cloud gate-
ways are instantiated on physical- or virtual-servers. They accept

flows from one or more IoT gateways (in some cases directly from
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he devices) and regulate access to the facilities of control, analy-
is, and storage in the edge clouds. A mobile edge cloud gateway
s usually near the cellular tower and, therefore, physically less
ccessible. The gateway has two attack surface areas, one facing
owards the IoT gateways and the other towards the core cloud
ateway.
c) The core-cloud gateway attack surface: The core cloud gate-
ay controls access from the hospital/ambulance zones coming
irectly or through an edge cloud gateway. It also connects the
isualization domain and other external entities of the health-
are system like insurance agencies, pharmacies, suppliers, and
illing services. Both the edge and the core clouds usually have
nterconnection with the Internet making the cloud domain more
ulnerable.

.2. Attackers and attacks

a) Attackers: These are internal or external malicious agents who
ttempt to mutilate or alter the flow of data in any way. The
hreat could be from organized crime, nation-states, hacktivists,
usiness associates, skiddies, and malicious insiders. In this threat
odel, we assume that adversaries have unlimited resources and

ime, while the targeted organization has limited resources, and
hus, needs efficient methods to counter attacks [43].
b) Attacks: Attacks that target confidentiality, integrity, and avail-
bility (CIA) are major security issues for cloud based IoT. Adver-
aries could maliciously exploit several vulnerabilities in many
orms. They can carry out a variety of attacks like DOS to prevent
atients’ access to devices, changing device settings, or stealing
atient records for frauds like undergoing surgery or obtaining
rescription medications. More severe attacks include captur-
ng patient devices, ransomware, and advanced persistent threat
APT). The attackers, also referred to as cybercriminals, evade
etection by using multiple tactics, tools, and targets in their
ttacks. Their techniques can change temporally and spatially.
It is essential to recognize the kind of attacks that we are

rotecting the system against. In our system, we are concerned
ith any intrusion that alters the dataflow in terms of the meta-

nformation or payload. This will happen if the dataflow is dis-
upted in any way. In our DFD of Fig. 4, the processes, dataflows
nd datastore are subject to the following threats:
i) Spoofing: This is a man in the middle attack where the intruder
ools the source to believe that it is a legitimate destination.
poofing attacks can help attackers to cross the trust boundaries
nd cause data theft or deletion. If the masquerader intercepts,
artially or fully modifies the dataflow, then this is of concern
o our system. A phishing attack is a glaring example of spoofing
hat can target healthcare systems.
ii) Tampering: Tampering is a serious infringement to the health-
are system in which an attacker alters the dataflow and thereby
hanges the values of the patients’ biomarkers or the meta-
nformation of the dataflow (e.g., packet flow rate). Examples of
uch attacks for the IoT domain include packet injection or packet
rafting to change patient metadata. An attacker may tamper
ith the settings or software of a device, potentially causing it
o malfunction.
iii) Denial of Service (DoS): IoT devices are generally constrained
n many ways and cannot deploy sophisticated security mecha-
isms. These devices can be flooded with unsolicited traffic and
endered inaccessible for genuine traffic. If devices are listening
or inbound connections, then an attacker may open many con-
ections and not service them. A malicious actor can also spoof a
umber of these and use them to launch distributed DoS attack
gainst targets in the edge or cloud clouds. In healthcare this may
ean that patient devices like a ventilator or control devices for
ervice like oxygen supply can be rendered inoperable.
7

(iv) Information Disclosure: Constrained devices will have simple
ecurity like a single PIN or password. Sometimes they just trust
he network and allow access devices on the same network.
ctive reconnaissance may enable the attacker to obtain informa-
ion about the target and then cause remote attacks. SQL injection
ttack can cause an information disclosure attack as it can collect
nformation about the data in the system.
v) Elevation of Privilege: A user with limited privilege assumes the
dentity of a privileged user and gets administrative rights. With
igher privileges, the attacker can cause an exploit attack. It can
ccess gateways and change information flows.
vi) Repudiation: An attacker can log data to wrong files or change
ata in the name of others.
vii) Ransomware: Ransomware attacks on hospitals are increas-
ing and remain a growing concern. Not only they are a financial
drain on financially constrained medical facilities but also cause
disruptions in provision of optimum healthcare to patients.
(viii) Advanced Persistent Threat (APT): This is an insidious at-
tack in which hackers gain undetected access where they can
spend time gaining valuable inside data and understanding of the
systems before launching a targeted attack.

In IT-OT hybrid systems like healthcare, consequences of at-
tacks can manifest in many forms [44]. Some of these are de-
scribed below:
(i) Loss of control and safety impact: Loss of control in the IoT
domain or any of the clouds could potentially bring the medical
activities to a halt and pose a threat to health and safety of people
in the affected areas.
(ii) Financial impact: There is a recovery cost for restoring the
system to the pre-attack state and payment of ransom in some
cases. Then there is indirect cost of malfunctioning devices, loss
of control of life sustaining systems and declining revenues. There
may also be litigation charges, insurance fee and payment of
damages to patients.
(iii) Disruption to operations: A major cybersecurity breach in OT
can severely affect the ability to supply goods and services. This
could impact the organization’s ability to deliver on its mission
and result in the loss of credibility and customers.
(iv) Loss of trust: A breach could result in lost reputability and
trust from the public, patients, and investors.
(v) Data exposure: The loss of data in operational technology set-
tings can expose personally identifiable data of patients, patient
medical and financial records and medical researchers’ intellec-
tual property.
(c) Mitigation: In the described architecture security is built by
design. As far as the dataflows are concerned, we need to take
care of both seen and unseen attacks. OT networks within the IoT
domain and the cloud network are separated by trust boundaries
which needs to be protected. As far as access to cloud resources
are concerned, a ‘zero trust’ policy would usually be employed.
Patients and medical professionals are all authenticated when
they access these resources. For patients, who are comatose,
body’s electrical activity may be used for identification. Partner
organizations like suppliers, insurance companies, pharmacists,
labs may remotely access the IT-OT healthcare system. This fur-
ther blurs the IT-OT segmentation and expand the attack surface
providing new entry points for attackers [45].

This will be discussed in detail in the next section.

5. Merged hierarchical security for data in motion — Theoret-
ical background, methods and procedures

In this section, we discuss our work on a distributed and
hierarchical deep learning solution to protect the data flows from
any adversarial attack that mutilates or alters the data stream,
including its meta-information, in any way [46,47]. Given the
multi-cloud hierarchy, we focus on the data in motion into the
edge clouds and from edge to the core clouds.
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.1. Design aspects of the security system

We have taken note of the recommendations of International
tandards Organization’s ISO 27005 in our design. These recom-
endations describe the process in the following steps — es-

ablishing context, identifying and analyzing risk and evaluating
nd treating them [48]. As far as their functionality is concerned,
ecurity systems are expected to monitor and report intrusions
ontinuously. It is also important to have low false negatives so
s not to miss out on serious attacks and low false positives to
void procedural expenses on false alarms [49].
In our work we use proven techniques of threat analysis and

ulnerability assessment based on IT-OT philosophies and use
eep learning to create a hierarchical multi-cloud system that
ould meet our aims set forth in Section 1. Keeping in view
hat a centralized IDS in a particular gateway would have a
imited zone of protection, we have decided on a distributed
olution that works in the IoT gateway, edge clouds, core clouds.
he proposed system incorporates novel techniques to speed-
p training and retraining of complex cloud models working on
igh-dimensional and high-volume data. This makes the system
uitable for real-time and near-real time applications.

.2. The choice of the deep learning system

In our target IoT-Cloud-VNS architecture, the system that we
ropose has to deal with numerous markers and interaction
atterns across a large number of sensors and servers constantly
uring operation. The data produced by such a system is multi-
imensional, voluminous, and contains underlying patterns that
o not become evident with traditional statistical analysis. Re-
earchers have applied machine learning to security in healthcare
ystems in many forms [49]. Classifiers like SVM, Decision Trees
DTs), Naïve Bayes, K-Nearest Neighbors (KNN), and Random
orest (RF) have been used. It turns out that classical machine
earning is not particularly well suited for the application under
onsideration because of its inherent complexities. We are deal-
ng with unknown attacks for which training data will not be
vailable. Machine learning models trained only on normal data
o not generalize well. These methods also usually have relatively
igh false-positive rates for detection [34], which, in healthcare
ystems, may cause the risk of overmedication or unnecessary
rocedures.
Deep learning, on the other hand, has been found to be ca-

able of handling large volumes of labeled and unlabeled data.
t makes use of many layers of non-linear processing to select
seful features from a high dimensional dataset and even fuse
hese features to end up with a rich set of automatically selected
eatures. It can handle missing values and can use metadata ef-
ectively. These properties give this class of methods high power
o analyze and classify data in which features are related to the
utcome in a complex way.
We have seen in Section 2 that deep learning models can

erform better than shallow machine learning models [17]. Some
ecent successes have renewed interest in deep learning [36,50,
1]. As these improvements seem to be consistent across a large
ariety of domains discussed above, we have viewed this as a
otivation to use deep learning in the healthcare domain. We

ackle the major issue that is faced in using deep learning, that is,
he high volume and dimensionality of the training data. We have
volved deep learning techniques that improve training speeds
hile giving high accuracy.
8

Fig. 5. Representation of a simple autoencoder.

.3. Deep neural networks — stacked autoencoders

We give a brief description of DNNs with an emphasis on SSAE.
or a more detailed treatment, readers are referred to [52,53]. A
eural network has an input layer, one or more hidden layers,
nd an output layer. Each layer is connected to the next layer,
ully or partly. When the number of hidden layers is more than
ne, the resulting network is referred to as a DNN. As the data
asses through the layers, the weights of the previous layers
re processed using a weight matrix to obtain the weights of
he next layer. Each hidden neuron has an activation function
e.g., Sigmoid or Rectified linear unit (RELU)) that determines
he activation level of the neuron. The DNN is a feed-forward
etwork (FFN) since the output of one layer is used as input to
he next. A loss function, e.g., mean square error (MSE) or cross-
ntropy, gives the error between the prediction and the actual
alue. A technique called back-propagation can be used to reduce
hese errors. The errors are fed back from the output through the
idden layers to the input layer to fine-tune the weights.
We have used a particular type of DNN called autoencoder

AE) shown in Fig. 5. The middle layers, between the input and the
utput layers, are hidden layers as they are not visible from input
r output and are internal to the neural network. The innermost
idden layer has the least number of nodes and is also called the
ode. The code captures in a condensed form all the intelligence
erived from the inputs. Our example neural network in Fig. 5
as 7 input units (bias unit not shown), 5 hidden units, and 7
utput units. The output of each layer is directly connected to
he input units of the next layer. Each input xi,xi ∈ Rn, goes into
neuron (the computational unit) of the input layer. Output of a
euron is 1 when it is activated and 0 when it is not activated.
ctivation can be based on a activation function like sigmoid or
ELU. The AE is trained to compress into a lower-dimensional
ode and then reconstruct the output from this representation.
he AE tries to learn a function hW,b(x) = f(Wixi + b)≈x where

W are the weights and b the biases.
A sparse autoencoder (SAE) has a sparsity parameter that

restricts the code size required for reconstruction. Sparsity en-
forcement results in only some of the neurons of a hidden layer
to be active. In our work, we use stacked SAE (SSAE), which
consist of multiple layers of SAEs. This configuration gives rise to
deep neural networks that can learn and model non-linear and
complex relationships. A representation of the SSAE is shown in
Fig. 6.

The pre-training of such an encoder can be done either in a
layer-wise manner or end-to-end. In the layer-wise training, we
consider each set of two adjacent layers as an AE. We start with
the weights w between the input and the first layer and get w(1)

such that the loss function L(x, z (1)) is minimized where L(x, z (1))
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1
2 || x-z

(1)
||

2 is the MSE. The output at the first hidden layer is
z (1) = f (w.xT ), where the superscript T denotes transposition.

For the second hidden layer, the z(1) vector becomes the input
and z(2) vector the output. This layer is trained such that the
MSE between z(1) and z(2) is minimized, i.e., the loss function
L(z (1), z (2)) =

1
2 || z (1) − z (2)||2 is minimized. The output vector

z(2) = f(w(1).z(1)T). Where the superscript T denotes transposition.
This continues until we reach the last hidden layer, which is
connected to the output layer.

We continue to produce the output vector like what we have
done so far. Thus, for n hidden layers

y′
= f (w(n).z (n)T+b(n)) (1)

When some training samples are available in the form of (x, y),
i.e., (feature vectors, output vector), we can use these samples to
fine-tune the pre-trained SSAE. We initialize the weights connect-
ing the nth trained layer to the output layer and get predictions
y′ and adjust all the weights such that 1

2 ∥y − y′
∥
2 is minimized.

Here, y is the ground truth from training samples (x, y). This last
tep is the refinement of all the weights. The overall cost function
o be minimized will have a regularization term added to the loss
unction, which calculates the MSE. Thus, the cost function will
ake the form:

(W ,b) = (1/n)
∑

i

(MSE) + λ.ΩW + β.Ω sparsity (2)

The first term is the MSE averaged over all the training exam-
ples. The second term adds a regularization term on the weights
to prevent the regularizer from becoming too small. The coeffi-
cient λ determines the influence of this term. The third term is the
sparsity regularizer (with coefficient β), which imposes sparsity
onstraint on the output from the hidden layer. A commonly used
egularization is K–L (Kullback–Leibler) divergence (DKL), which
adds a large value if the activation level of a neuron is not at the
desired level.

The weights and biases associated with each SSAE are learn-
able parameters. Some hyperparameters, like the number of lay-
ers, the number of neurons and the parameters of the loss func-
tion, must be suitably set to obtain good result. Table 1 shows
some of these hyperparameters and their typical values in this
work.

It is essential to set these hyperparameters carefully such that
the innermost compressed layer learns the most useful features
and their combinations. For more technical details of the AEs, the
readers are referred to [54].

Training is carried out according to the flowchart given in
Fig. 7. To make the training process effective, we choose to train
one layer of the DNN at a time using unsupervised data. By
initializing a network with small random weights (say, uniformly
9

Table 1
Hyperparameters of SSAE.
Parameter Description Typical

value(s)

Number of layers Decides the depth of the neural network 4, 12

Number of
neurons in the
all layers

Decrease from input to the code and
then symmetrically increase till the
output layer

60, 180

Code size Innermost layer with most compressed
representation of inputs

30

Loss function In this work we generally use mean
square error

λ Regularization factor 0.00000001

β Sparsity regularizer 0.2

β1, β2 Adam optimization decay rates 0.8, 0.9

Fig. 7. Layer-wise training of the SSAE.

between −0.1 and 0.1), the network is unlikely to fall into a triv-
ial, symmetric local optimum. The reconstruction error indicates
whether the data flow is normal or abnormal. Only flows with
normal instances are used to train the SSAE. After training, the
SSAE will reconstruct information about the normal data flow
with low root MSE (RMSE) while failing to do so for anomalous
data, which the SSAE has not earlier encountered.

The dataset is divided into a training dataset and one or more
test datasets. A training example is selected from the training
dataset, and then the values of output are checked for their qual-
ity of reconstruction. If the chosen indicator of error, e.g., RMSE,
is consistently below a threshold, then the training concludes.

The trained model is then tested with the test dataset. It is a
common practice among the developers of neural network mod-
els to ‘‘cross-validate’’ the network on the test dataset periodically
during training and to save the network weight configuration
meeting one of two criteria: (1) the network with the lowest error
on the training dataset or (2) the network with the lowest error
on the test dataset. The latter technique is often used to prevent
the network from overtraining because networks are prone to
overfitting.

The overall duration of training is often expressed in terms of
the number of epochs required to reach an error minimum [55].
We will discuss the setting of hyperparameters in the evaluation
section.
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Fig. 8. The hierarchical autoencoder based MUSE model.

.4. MUSE: The hierarchical merged model with layer reuse

The aim of MUSE is to provide security for data in motion from
oT domain to the edge clouds and from the edge clouds to the
ore cloud. If we consider the security architecture, discussed in
ection 3.3, MUSE focuses specifically on the perimeters of the
dge and core clouds. Based on our threat model, we look for
dversarial intrusions that change data flows, like those caused
y exploits, active reconnaissance, SQL injection, denial of service,
ampering, device resetting, and device takeover. The main con-
ern here is to use deep learning to see whether the inter-domain
treams of data have been compromised, rather than classifying
he type of attack. This is based on the meta information extracted
rom the dataflows [56]. MUSE works in the unsupervised mode
nd uses the reconstruction error of a data point to differentiate
etween normal and abnormal data. As explained in the last
ection, the loss is represented as the residual sum of squares, and
he error of reconstruction is represented as the RMSE. The main
bjective then becomes the reduction of the loss function, or the
MSE by training the model adequately in the forward direction
nd fine-tuning using techniques back-propagation.
A diagrammatic representation of the distributed hierarchical

tructure of the SSAE based MUSE intrusion system is given in
ig. 8. In this work, we have restricted our discussion to the data
lowing into the edge clouds and the core cloud. The model is
ackward extensible to IoT gateways and also to private clouds if
hey exist in the cloud hierarchy.

The use of the concept of merged models in MUSE reduces the
raining time. A merged model at the core cloud is an aggregation
f the edge models done in such a way that the training of layers
t the edge can be reused at the core cloud. Fig. 9 illustrates
ow the edge models are merged to create a core cloud model.
he dataflows from the IoT domain passes through the meta-data
xtractor, which extracts network-flow related features like the
acket or byte count, inter-packet times, source, and destination
ddresses. The aggregator is a construct implemented in software
hat assembles the deep learning model in the core cloud by
ombining trained layers from the edge clouds. The aggregator
rovides the flexibility of taking all the trained layers of the edge
louds or selected layers to optimize the outcomes. A combi-
ation of features from data and meta-data are passed through
he SSAE at the edge clouds in the service area in which the
 t

10
Fig. 9. The merged model.

oT equipment falls. In conformance with the architecture of the
etwork discussed earlier, the SSAEs are arranged hierarchically
ith Level 1 or small, 1–2 layer AEs at the IoT gateway, Level
or medium, 3–5 layer AEs at edge clouds and Level 3 or large
Es with more than ten layers in the core clouds. These numbers
ave evolved from simulations using actual IoT network data and
ealth system data generated on the testbed created in the lab at
ashington University in St. Louis (Fig. 13) [43].
It is worthwhile to mention that the use of the merged model

hat allows for reuse of the trained layers is different from trans-
er learning. The latter primarily uses some well-known trained
odel for a new problem where the model is of the same type
nd size. The MUSE model has the flexibility of using parts of the
dge cloud SAE and construct an SSAE at the core cloud that will
enerally be of a different size.

.5. Design and implementation

The operational basis of the MUSE system is to consume
arkers from the IoT domain, which generates data from sensors
nd other devices 24 × 7. This domain consists of patients being
onitored in ambulances while on way to hospitals, patients
nder monitoring at homes or offices, patients both in critical
nd routine care. The system consumes the high dimensional
nd high volume data to detect any indication of attack on the
ntegrity of data flowing from IoT domain into the cloud domain
nd among the clouds. An efficient system can weed out attacks
ast and with high accuracy so as to let the medical staff provide
he best care without unduly worrying about false alarms. As
he dataflows pass through the edge cloud gateways, the ex-
racted meta-information is passed though the SAE executing
n edge processors. In the case of the normal traffic flow, the
eta-information is reconstructed with RMSE below the preset

hreshold. In cases where the traffic consisting of patient data
as been intruded upon, the meta-information about the traf-
ic flow is affected. In this case, the meta-information can no
onger be reconstructed with low RMSE, and the system indicates
ntrusion.

The edge cloud models are trained on examples collected
rom their respective coverage area. The core cloud model is
onstituted from the trained layers of edge clouds. The model is
urther trained using the data from its own area not overlapping
dge cloud areas. Fig. 10 shows the system workflows for initial

raining as well as during normal operation.
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Algorithm 1 gives an idea of creation, configuration and train-
ng of edge clouds [51]. The parameters used are indicative and
arious setting were tried for good outcome. The code has been
mplemented in Keras and TensorFlow with three edge-cloud
odels as shown in Fig. 11.
The aggregator in the simple mode merges all the layers of

he edge models and produces a composite model (Figs. 9 and
2). Algorithm 2 gives a simple implementation of this operation.
he merged model has layers taken from the edge clouds. The
ggregator can take all or merge layers selectively to improve the
utcome.
11
Fig. 11. Three edge cloud autoencoders.

Fig. 12. A merged model with all edge layers reused.

Fig. 13 shows merging of layers from different edge clouds to
form the core cloud. We shall compare the training times of core
cloud neural network models created by reusing trained layers
from edge cloud neural networks with those that do not use
trained layers.

5.6. Computational complexity of merged model

In assessing complexity of neural network models, it helps
to make some simplifying assumptions. We assume the same
number of neurons in each layer and the number of layers equal
to number of neurons.

In forward propagation training step, we have matrix multi-
plications and computation of activation function. The number
of matrix multiplications nmul = nlayers. n3 in other words nmul
has the asymptotic run time of O(n4). The activation function is
evaluated elementwise which gives a complexity of O(n).O(n) =

(n2). The total forward propagation runtime becomes O(n4
+

2) which is of the order of O(n4).
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Fig. 13. A merged model with selective layer reuse.

Each epoch also involves back propagation through the n
layers. For calculation of error, we have O(time error) = (n4) and
or calculating weights we have O(time weights) = O(time error) +
3. Now taking n gradient descent calculations we have overall
omplexity as O(n5) [57,58]. This is polynomial complexity that
ill lead to long training convergence times. It turns out that back
ropagation is much slower than forward propagation. This raises
he question whether the complexity of the model can be reduced
o limit the training time at the cost of only a non-substantial
erformance loss. The answer is ‘yes’.
The way our method reduces the computational complexity

s by reducing the number of trainable parameters. The baseline
odel with 8 fresh layers i.e., not exposed to any training exam-
le consists of 31521 trainable parameters. Our merged model
ith 12 layers consists of 24737 trainable parameters reduced
y used of trained layers from the edge cloud models. We run
hese for 200 epochs which with 8000 training examples and a
atch size of 128 comes to about 12500 steps. This reduction
f parameters though merged model reduces the training time
rastically. We see these results in Section 6.4.

. Evaluation and results

In this section, we first discuss the test datasets, two of them
ublicly available and the other that has been generated by the
uthors. Then, we use these datasets to evaluate the effectiveness
f the proposed model and draw conclusions.

.1. UNSW-BOT-IoT and UNSW15 dataset

The BOT-IoT dataset has been made available by the UNSW
anberra Cyber Center and updated in November 2018. It was
reated using a realistic network environment with simulated
xistence of IoT devices in the virtual network. Commonly used
lder sets like KDDCup1990 and NSL-KDD lack IoT generated
raffic and do not take care of new types of attacks. In the selected
ataset, the testbed consists of three parts: network platforms,
imulation of IoT services and extraction of features and foren-
ic analysis. Normal background traffic is constantly generated
nd attacks were interspersed. The environment incorporates a
ombination of normal and botnet traffic. The dataset includes
ive botnet attack types — DDoS, DoS, Service Scan, Keylogging,
nd Data exfiltration attacks. A total of 48 features have been
ncluded. UNSW15 from the same organization has a total of 48
asic features. It has nine attack types — DDoS, DOS, Service Scan,
eylogging and Data Exfiltration A part of the dataset (varying
rom 6,000 to 10,000 records out of millions of available exam-
les) has been used in various runs with 80:20 ratio of training
nd test examples. Table 2 gives some sample features of the

oT_IoT dataset. The full dataset can be seen in [59,60].

12
Table 2
The feature set of the BOT-IoT dataset.
Feature Description Feature Description

saddr Source IP address spkts Source-to destination packet count

daddr Destination IP
address

pkts Destination-to-source packet count

pkts Total transaction
packet count

srate Source-to-destination packets per
second

bytes Total transaction
byte count

N_IN_Con
n_P_SrcIP

Number of inbound connections
per source IP address.

dur Total duration of
the record

min Minimum duration of aggregated
records

Proto protocols present
in network

max Maximum duration of aggregated
records

Rate Total packets per
second in
transaction

attack Class label: 0 for Normal 1 for
Attack traffic

Flags
number

Numerical
representation of
feature flags

State
number

Numerical representation of feature
state

Fig. 14. Healthcare testbed for dataset generation.

6.2. Data generated on the testbed

The BOT-IoT dataset consists of meta-information extracted
from the flows from many IoT devices. While this will be indis-
tinguishable from that generated in the healthcare systems, we
created a healthcare-specific dataset in the testbed at Washington
University in St. Louis. The testbed set-up shown in Fig. 14 has
been adapted from [43].
(a) The IoT Domain: Consists of a set of health IoT sensors and an
Arduino Mega based microcontroller as the gateway for health
IoT sensors. Because of the absence of any Wi-Fi or Ethernet port
on this microcontroller, an external Ethernet shield was attached.
The following sensors have been used: galvanic skin response,
which measures skin tightening due to stress, pulse oximeter for
measuring the oxygen level in the blood, and body temperature
sensor.
(b) The Network Domain: An Ethernet switch to which the mi-
crocontroller and three servers were connected, all configured as
one private network with each device assigned a private IP. One
of the servers was used to mirror and record traffic coming to
the network from the IoT domain. The computer through which
attacks were generated served as an insider attacker.
(c) The Visualization Domain: A server with Ubuntu Linux op-
erating system was used to visualize the patient’s data gener-
ated through the sensors described above. The sensor values and
the meta-information could be visualized and saved in files for
processing.
(d) Attacker: A server with the Kali Linux operating system was
used to cause malicious activities like sniffing and tampering the
dataflows.
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Table 3
Features in the IoT testbed dataset.
Feature Description Feature Description Feature Description

SrcAddr Source Address DIntPkt Destination inter packet arrival time
(ms)

Load Bits per second

DstAddr Destination Address SIntDist Source inter packet arrival time
distribution

Loss Packets transmitted or dropped

Sport Source Port # DIntDist Destination inter packet arrival time
distribution

sMinPktSz Min packet size for source traffic

Dport Destination Port # SIntPktAct Source active inter packet arrival
time

dMinPktSz Max packet size for source traffic

SrcBytes Source-to-destination byte count DIntPktAct Destination active inter packet arrival
time

pLoss Percent packet transmitted or
dropped

DstBytes Destination-to-source byte count SrcJitter Source jitter (ms) pSrcLoss Percent source packet transmitted
or dropped

SAppBytes Source to destination application
bytes

DstJitter Destination jitter (ms) pDstLoss Percent destination packet
transmitted or dropped

DAppBytes Destination to source application
bytes

sMaxPktSz Max packet size for source traffic Dur Duration of a flow

SrcLoad Source bits/s dMaxPktSz Max packet size for dest. traffic Trans Aggregation record count
DstLoad Destination bits/s DstGap Destination bytes missing TotPkts Total transaction packet count
SrcGap Source bytes missing SIntPkt Source interpacket arrival time (ms) TotBytes Total transaction byte count
The normal and attack datasets have the features given in
able 3.

.3. Implementation platforms and software tools used

The edge and core models have been tested on a variety of
ardware using several software tools and datasets. The code
mplementing the models has been developed in Python on the
naconda/Spider platform. Some parts of the codes were ported
o MATLAB and tested using the built in deep learning library to
erify the results. The hierarchical merged model with three edge
louds and the core cloud were run on a Mac with 8 core CPU as
ell as a Windows machine with GPU Nvidia GTX 1080. During
he review process the models were also trained and tested on
oogle Colab cloud platform using TensorFlow version 2.x and
eras. The Colab platform offers a variety of CPUs and GPUs
ncluding Nvidia K80s, T4s, P4s and P100s. The testbed described
n Section 6.2 was used to generate normal and attack data.
ormal data emanating from sensors in the IoT domain were
ecorded over a number of sessions with different volunteers. The
ata is anonymized with no means to trace back to the individuals
nvolved. Attacks were simulated using a Kali driven system. In
he present evaluation, the meta-information is extracted using
rgus Network Management System [40] and ranked using the
eka machine-learning tool [41]. In the future work, automatic

xtraction will be integrated with the system.

.4. Results

The results discussed in this section are for the training of
eural networks at the edge cloud and a comparison of training
f the core cloud neural network with and without layer reuse
nd efficacy of the system in filtering out attacks.
a) Training and Testing of SSAE at the Edge Clouds

The configuration discussed in Section 5 and represented in
igs. 5 and 6 was used as the basis for training and testing. The
enerated dataset was randomized, and mutually exclusive parts
ere selected to train the AEs in the three edge clouds. All the
xamples in the training datasets constituted normal traffic. Some
arts of each of the segregated datasets were kept apart to be
sed as test datasets. The models did not see these datasets in
he training phase. Some examples, with known attacks, were
eparated from the training and test datasets for evaluation of

etection performance.
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The training and testing results are shown in Fig. 15a to c. It
can be seen from the figures that the training accuracies are ex-
cellent, and the model generalizes well. The blue lines represent
training losses, while the green lines represent test losses. Each
epoch represents a combination of one forward and one back-
propagation iteration of the complete dataset through the SAE.
As the number of epochs increases, the model gets trained, and
the losses come down. The losses of the models on the test data
settle down to their low value close to the training losses in 40–60
epochs of training.
(b) Training and testing of SAE at the core cloud.

The training and testing results are shown in Fig. 16(a) for the
merged model in the core cloud. Fig. 16(b) shows results for the
merged model with cross-training. In the latter, the cloud data
are swapped among themselves.

It is seen from Fig. 16a and b, that in both cases, the model
takes a substantially smaller number of iterations and, conse-
quently, less time, compared to edge cloud training. It is also
seen that the cross-trained edge models result in somewhat lower
training time for the core cloud model (the result stabilizes in
less than four epochs against five epochs). To compare the edge
cloud and the core cloud training times, we present Figs. 17 and
18. Fig. 17 shows the training and validation losses and the gap
between the two, at the edge cloud, with an increasing number
of epochs. It is seen that the performance stabilizes between 35
and 40 epochs for the edge clouds for the selected dataset. Fig. 18
shows the training speed of the merged model in the core cloud.
It is seen that because of the use of already trained layers and
from the edge clouds and the reduction of trainable parameters
at the core cloud, the model in the core cloud stabilizes between
6 and 8 epochs. This is a significant improvement in the speed of
training of the model in the core cloud because of the reuse of
layers trained in the edge clouds.

In most runs with different data, it is seen from the test
results that the model generalizes well. The test losses were
initially higher than the training losses but after a few iterations
they settle down close to train losses. Test accuracies are high
and close to those obtained during testing both for edge and
core clouds. Occasionally overfitting happens which manifests as
better test performance compared to train performance. This has
been effectively controlled by using appropriate regularization
and by not over-training the cloud beyond convergence after 5
or 6 epochs.

It would be apt to discuss the hyper-parameter settings briefly
for the models. We use Adam optimizer, which provides stochas-
tic gradient-based optimization. It computes adaptive learning
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Fig. 15. Training and test performance of edge clouds.

ates for different parameters from estimates of first and second
oments. The exponential decay rates (ß1 and ß2) for the mo-

ments go as hyperparameters. We choose learning rate = 0.001,
ß1 = 0.8 and ß2 = 0.9 and 0.999 according to the guidelines
in [47]. The datasets were divided into test and train datasets in
the ratio 80:20. The loss function used was the mean square error.
The activation functions used were ‘tanh’ or ’RELU,’ chosen for
the best performance. The batch size for training was taken as
100. Several experiments were conducted to decide on the most
appropriate number of hidden layers and the number of neurons
per layer for each edge cloud and the core cloud.
(c) Training time analysis

In Section 5 we saw a naïve analysis of computational com-
plexity of neural network model. We saw that the overall com-
plexity with forward and backward is of the order of O(n5).
This denotes high complexity which goes up very fast with the
number of layers, number of neurons and the training examples.
For the kind of SAEs that we discussed, the theoretical training
time with greedy layer wise training becomes impractically high
for real time systems. From the related works we can see that
researchers have suggested innovative ways to improve the ac-
curacy of prediction but very few have written about the training
time of their models. One of the few papers that discuss training

times of their models is [61]. The author performed baseline

14
Fig. 16. Training and testing results.

Fig. 17. Edge cloud model training.

Fig. 18. Core cloud model training.
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Table 4
Comparison of unmerged and merged models.

8 layer unmerged model 12 layer merged model

Layers 180,90,60,30,30,60,90,180 60 × 3a , 60 × 3a , 30 × 3a , 90 × 2
Time for
100 epochs

1 h 24 min and 30 s 1 h and 2 min

aTrained layers from edge clouds.

Fig. 19. Radar chart comparing training times of merged and unmerged models.

xperiment with 20 epochs of pre-training of RBM followed by 10
pochs of fine-tuning by backpropagation. The depth of the model
s 5 layers with the biggest dimension as 1000 and activation
unction is sigmoid. The training and test datasets have 60,000
nd 10,000 examples respectively. Layer wise training for 20
pochs takes 3 h, 14 min and 43 s while backward propagation
akes 2 h, 16 min and 59 s a total of 5 h 31 min and 42 s. With
heir synchronized pre-training the total time taken is 4 h 4 min
nd 53 s.
In our case the edge cloud models are trained in a greedy layer

ise manner take about 125 s for 4000 training examples and
000 test examples on M400M Quadro GPU on an Intel Xeon
5 CPU. The depth of these models is kept at 4. These models
ake 35–40 epochs to trains. The unmerged core model has depth
f 8 and takes number of epochs of the same order to train
ithout the merged model technique that we have proposed.
y utilizing the trained layers from the edge cloud, we reduce
he number of epochs to 5–6. The epochs are longer because
f the native complexity of the model but the model still takes
ess time than with unmerged model. The baseline 8-layer model
ith layer configuration (180,90,60,30,30,60,90,180) and 31521
rainable parameters takes on an average 176 s for 7000 training
xamples and 1500 test examples run for 100 epochs. The merged
odel much larger with 12 layers, partly constructed by using

rained layers from the edge clouds. The trainable parameters
ere reduced to 27,275, After several runs, we see that the
erged 12-layer model takes less time than even a much smaller
-layer unmerged model. Table 4 summarizes these results.
A comparison of training in both cases is given in Fig. 19. The

adar chart in Fig. 19 clearly brings out the reduction in training
ime of merged model as compared to the unmerged model.
hrough several run it is seen that the merged models give on
n average 26.2% reduction in training times.
d) Performance of the MUSE system in filtering out the attack cases

To assess the intrusion detection performance of the MUSE
ystem, we used the attack both from the UNSW datasets as
ell as our testbed. We used attack cases that potentially alter
he metadata information of the dataflows. Specifically, fuzzers
hat break applications by injecting random data, backdoor that
15
Table 5
Confusion matrices for attack detection.
Sl.
No.

Attack as
Attack (TP)

Attack as
Normal (FN)

Normal as
Attack (FP)

Normal as
Normal (TN)

Total
vectors

Accuracy
(%)

1. 200 0 19 355 574 96.69
2. 188 0 0 511 699 100.00
4. 96 0 3 232 331 99.09
5. 92 16 0 184 292 94.52
6. 100 0 0 280 380 100.00
7. 80 17 0 243 340 95.00
8. 110 1 1 287 399 99.50
9. 27 1 1 100 129 98.45

10. 126 12 0 398 537 97.76

Table 6
Attack detection performance.

Actual

Positive Negative Total

Predicted
Positive 56 2 58
Negative 1 218 219
Total 57 220 277

TPR, Recall 0.9859
FPR 0.0064
Accuracy 0.9920
Precision 0.9655
F1-Score 0.9755

may grant remote access and cause abnormal traffic to flow, DOS
attacks that affect access to network resources, reconnaissance
traffic to network devices and end-devices. The test data thus
consists of carefully chosen attack and normal records. We run
these through the trained models and enumerate results. It is
seen that the anomalous data produce very high RMSE, and it
is easy to fix a threshold value that decides whether the data
has been affected by malicious activity. The confusion matrix
for 10 out of several runs is given in Table 5. These random
runs give a low average false positives rate of 0.5% and unseen
attack detection accuracy generally in the range 95% to 100%. This
is a marked improvement when compared with the previously
unseen attack detection accuracy of 92%–93% achieved with the
unmerged model.

The records taken in the test dataset for the attacks mentioned
above were rotated from the large UNSW datasets. Multiple runs
were made with the threshold that gives the best performance.
In our case a threshold of MSE of 10 was this demarcation point.
Table 6 gives various figures for the average of many runs with
this threshold. The high accuracy could refer to high true positives
or true negatives i.e., attacks detected as attacks and normal
traffic detected as normal. Since in our case of normal traffic being
labeled at attack triggers investigation, which may be expensive,
precision provides a good performance measure. Precision being
high at 96.5% assures that the model is good at detecting actual
attack incidences as attacks. Since the cost of false negatives is
also high in our case we can have comfort in high recall (or true
positive rate) which is 98.6%. The false positive rate (FPR) is 0.64%.
An F1 score of 97.5% indicates both low false positives and false
negatives are low and recall and precision are well balanced.

7. Comparison with other works

Comparative results have been given in Table 7. Rows 1 to 3
are from works reported in the years 2020 and 2021. The authors
have proposed modified versions of the standard deep learning
models like CNN, LSTM and DBN. In [24] the authors applied
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Table 7
Comparison with other works.

Reference Model, Dataset Accuracy Timing analysis Remarks

1 [24] CNN, CICIDS2017 96.55% – Cloud computing environment
2 [25] BMO-DBN 97.65 – Pure DBN gives 96.17%
3 [26] CNN, LSTM, generated

dataset
Training: CNN 96.7 LSTM 98.5
Test 90.2, 95.1

– Edge cloud environment for automatic vehicles

4 [49] SVM NSL-KDD NSL-KDD8 88.32% UNSW 93.3% – Baseline, shallow model
5 [49] RBM with KDDcup 1999,

UNSW15, NSL-KDD
KDDCup99: 90.99%, UNSW-NB15,
95.84%, NSL-KDD 97.11%

–

6 [27] Modified LeNet-5 NSL-KDD 87.30%
KFFCup99 81.94%

NSL-KDD/KDD Cup Detection rate=93.86/99.82
False Positive Rate=21.38/98.65

7 [28] RBC-IDS KDDCup99 90%-99.91% Training 31.5 s, Test 1.62 s WSN cluster with 20 sensors, up to 3 hidden layers
8 [28] ASCH-IDS KDDCup99 Upto 99.83% Training 17.1 s Test 0.86 s
9 [29] BLSTM-RNN UNSW15 95%
10 [62] H2O deep learning. NSL-KDD, Train 99.5%, Test 83%
11 [30] NDAE SAE KDD C 97.9%, NSL-KDD 97.85%
12 [31] STL-IDS, NSL-KDD NSL-KDD 84.96% Binary classification
13 [48] DNN UNSW 65%–75% (Train)
14 [48] DNN 5-layer UNSW-NB15

binary classification
76.3%

15 This work MUSE UNSW-15 Test 95–99.5% 27% speedup over unmerged Multi-cloud, AI for attack detection

First stage trained with UNSW-NB15 with both normal and attack examples.
CNN to cloud computing and trained with CICIDS2017 dataset
to achieve 96.55% accuracy. In [25] the authors present a data
offloading mechanism with cyber-attack detection (DLTPDO-CD)
involving barnacles mating optimizer (BMO-DBN0 to get accuracy
of 97.65%. In [26] authors propose an improved LSTM model to
achieve 98.5% training and 95.1% test accuracy. Rows 4 and 5
show shallow (baseline) and deep learning results from the work
in [49]. Authors get improvement over the baseline SVM and best
accuracy for NSL-KDD of 97.11%. In row 6 we summarize the
results achieved by authors in [27]. The authors have worked with
modified LeNet-5 model to achieve an overall accuracy of 97.53%
with KDDCup99 dataset. Row 7 and 8 contains results of the
work in [28] in which the authors propose Restricted Boltzmann
Machine-based clustered IDS(RBC-IDS) in WSN environment us-
ing KDDCup99. In row 9 the authors in [29] use BLSTM RNN
and achieve 95% accuracy with UNSW15 dataset and higher with
older datasets. In the work at row 10 the authors use H2O deep
learning based binomial and multinomial models with NSL-KDD
to achieve 99.5% on training and 83% on test dataset [62]. In the
work at row 11 the authors use NDAE SAE with KDDCup99 and
NSL-KDD get accuracy of 97.9% and 97.85% [30]. In [31] (row
12) authors propose AE based STL-IDS and test it with NSL KDD
dataset to obtain 84.96% accuracy. In rows 13 and 14, the authors
use deep neural network (DNN) to achieve 65%–75% training
accuracy with the UNSW-NB15 datasets and binary classification
accuracy of 76.3% [48]. This is markedly lower than 95%–99%
accuracy achieved with the KDDCup’99 datasets.

The last row indicates the accuracy obtained by MUSE trained
ith UNSW-NB15 datasets. These figures obtained over many ex-
eriments show comparable or better results than the compared
orks.

. Conclusions

From the discussion in this paper we see that some researchers
ave reported use of deep learning in the form of artificial neural
etwork models for detection of attacks in different environ-
ents [30]. Very few of these works are in the cloud environment

nd hardly any in multi-cloud environment. To the best of our
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knowledge, no investigation is available for the IoT-multi-cloud
infrastructure, especially with hierarchical and merged AEs with
layer reuse. The MUSE system proposed in this paper fills this
gap. The proposed hierarchical model works very well with the
hierarchical structure of the healthcare network. The distributed
nature of the intrusion detection system has models of increas-
ing complexity from IoT to the core clouds. This makes the
implementations commensurate with the processing capabilities
available at different levels. One common problem with sophis-
ticated deep learning models is their time complexity. We have
explored reducing the training time at the core clouds through in-
novative reuse of trained layer from the edge clouds. The method
works by reducing the number of parameters to be trained in the
core cloud. We are able to achieve fast training rates for sizeable
neural network models at the core clouds by aggregating the
trained layers of the edge cloud neural network models. Exceed-
ing our expectations, not only the timings improve drastically,
the accuracies are much better than those that are achieved by
training new SAE at the core clouds and also compared to many
of the cited works. It is seen that the training time of a 12-layer
merged model that reuses trained layers from the edge cloud
models takes 10.1% to 29.2% less time than a smaller 8-layer
unmerged model that does not reuse the training carried out at
the edge clouds. Accuracies of 92%–93% were obtained with the
unmerged models, while the merged models achieved accuracies
of more than 95% and more often in the range of 98%-99.6%. In
real life, merged models trained on a combination of historical
patient data stored in the core clouds along with more recent
data patient data from the IoT gateways and the edge clouds, are
expected to give results comparable to those that we have been
obtained under simulated settings.

Healthcare systems are different from many others as human
life and well-being is involved. Decisions given by the deep learn-
ing system should stand to scrutiny and explanation. Medical
experts should be able to question the system about the reasons
for giving a certain diagnosis or prognosis. Patients should be
able to ask why the doctor has prescribed a particular line of
treatment. This will generate confidence and make these sys-
tems acceptable. We plan to carry forward our research in this

direction.
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omenclature

Acronyms
/Symbols

Expansion

b The bias term
J The Cost function
L The Loss function
T Transposition operation
w Weights
xi The ith input
y Output
β Coefficient for Ωsparsity
λ Coefficient for ΩW
ΩW Weight regularizer
Ωsparsity Sparsity regularizer
AE Autoencoder
APT Advanced Persistent Threat
CIA Confidentiality, Integrity and Availability
CICIDS2017 Intrusion Detection Evaluation Dataset
CNN Convolutional Neural Network
DBN Deep Belief Network
DDoS Distributed Denial of Service
DFD Dataflow Diagram
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DT Decision Trees
ECG Electrocardiogram
FFN Feedforward Neural Network
FPR False Positive Rate
GDP Gross Domestic Product
GPU Graphic Processing Unit
HIDS Host-based Intrusion Detection System
IoT Internet of Things
ISP Internet Service Provider
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
MSE Mean Square error
MUSE Merged Hierarchical Deep Learning System with

Layer Reuse for Security
NIDS Network-based Intrusion Detection System
OT Operational Technology
RBM Restricted Boltzmann Machine
RELU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network
SIM Subscriber Identification Module
SSAE Sparse Stacked Autoencoder
SVM Support Vector Machine
UI User Interface
UNSW University of New South Wales
VNS Virtual Network Service
WSN Wireless Sensor Network

CRediT authorship contribution statement

Lav Gupta: Conceptualization, Methodology, Investigation,
oftware, Formal analysis, Original draft, Revisions. Tara
alman: Resources, Review and editing. Ali Ghubaish: Review
nd editing, Validation, Resources. Devrim Unal: Visualization,
riting, Review, Funding acquisition. Abdulla Khalid Al-
li: Visualization, Writing, Review, Project administration,
unding acquisition. Raj Jain: Visualization, Conceptualiza-
ion, Supervision, Review, Project administration, Funding
cquisition.
17
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

unding

This publication was made possible by NPRP grant 10−0125−

70250 from the Qatar National Research Fund (a member of
atar Foundation) and NSF grant CNS-1718929 from the National
cience Foundation. The findings achieved herein are solely the
esponsibility of the author[s].

eferences

[1] Centers for Medicare and Medicaid Services, National Health Expenditure
Data- NHE Fact Sheet, CMS.gov, 2021, last updated 15th Dec 2021. Last
accessed 1st 2021.

[2] T.L. Rodziewicz, B. Houseman, J.E. Hipskind, Medical Error Reducton and
Preventon, StatPearls, Treasure Island (FL), StatPearls Publishing, Jan 2022.

[3] IDC expects 2021 to be the year of multi-cloud as global COVID-19 pan-
demic reaffirms critical need for business agility, 2021, https://www.idc.
com/getdoc.jsp?containerId=prMETA46165020 last updated March 2020,
last accessed 1st July 2021.

[4] Healthcare and cloud adoption in 2021, OpsCompass, 2021, https:
//opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-
multicloud-03122021.pdf, last accessed 1st 2021.

[5] H. Aziz, A. Guled, Cloud computing and healthcare services, J. Biosensors
Bioelectron. 7 (3) (2016) Medical IoT Technology in US Hospitals Helps to
Reduce Costs and Improve Care, S & P Global Market Intelligence, Brian
O’ Rourke, 2020 https://www.spglobal.com/marketintelligence/en/news-
insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-
costs-and-improve-care, last accessed 14th July, 2021.

[6] Price Waterhouse Cooper, The global state of information security survey
2018, 2018, Available: www.pwc.com/gsiss, last accessed 14th 2021.

[7] P. Potter, The current state of security and risk in healthcare, 2020, Avail-
able at https://imaginenext.ingrammicro.com/b2b-tech-talk/the-current-
state-of-security-and-risk-in-healthcare, last accessed 29th July, 2021.

[8] Data Breach Investigations Report, DBIR 2021 verizon, 2021, Available
at https://www.verizon.com/business/resources/reports/dbir/, last accessed
29th 2021.

[9] Cyber Claims Study, Net diligence, Whitepaper, 2020, Available at:
https://netdiligence.com/wp-content/uploads/2021/03/NetD_2020_Claims_
Study_1.2.pdf, last accessed 1st 2021.

[10] S.J. Choi, M.E. Johnson, Do hospital data breaches reduce patient care
quality, 2019, arXiv:1904.02058 [econ.GN].

[11] Medical Device Recall, FDA, 2020, Available at: https://www.accessdata.fda.
gov/scripts/cdrh/cfdocs/cfRES/res.cfm, last accessed 5th 2021.

[12] D. McDonalds, MythBusters: Healthcare Cloud Management, Doug
McDonalds, 2021, Extreme Networks.

[13] K.A. Makdi, F. Sheldon, A.A. Hussein, Trusted security model for IDS using
deep learning, in: 3rd International Conference on Signal Processing and
Information Security (ICSPIS), 2020.

[14] D.E. Kim, M. Gofman, Comparison of shallow and deep neural networks
for network intrusion detection, in: IEEE 8th Annual Computing and
Communication Workshop and Conference (CCWC), Las Vegas, NV, 2018,
pp. 204–208.

[15] Y. Xin, et al., Machine learning and deep learning methods for
cybersecurity, IEEE Access 6 (2018) 35365–35381.

[16] F. Farahnakian, J. Heikkonen, A deep auto-encoder based approach for
intrusion detection system, in: 20th International Conference on Advanced
Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea
(South), 2018, p. 1.

[17] K.K. Nguyen, D.T. Hoang, D. Niyato, P. Wang, D. Nguyen, E. Dutkiewicz, Cy-
berattack detection in mobile cloud computing: a deep learning approach,
in: 2018 IEEE Wireless Communications and Networking Conference
(WCNC), Barcelona, 2018, pp. 1–6.

[18] Ali Bou Nassif, Manar Abu Talib, Qassim Nassir, Halah Albadani, Fatima Dak
Albab, Machine learning for cloud security: A systematic review, IEEE
Access (2021).

[19] V. Hayyolalam, M. Aloqaily, O. Ozkasap, M. Guizani, Edge intelligence
for empowering IoT-based healthcare systems, 2021, arXiv:2103.12144
[cs.LG].

[20] H. Elayan, M. Aloqaily, M. Guizani, Digital twin for intelligent
context-aware IoT healthcare systems, IEEE Internet Things J. 202.

http://refhub.elsevier.com/S1568-4946(22)00017-5/sb1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb2
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb2
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb2
https://www.idc.com/getdoc.jsp?containerId=prMETA46165020
https://www.idc.com/getdoc.jsp?containerId=prMETA46165020
https://www.idc.com/getdoc.jsp?containerId=prMETA46165020
https://opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-multicloud-03122021.pdf
https://opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-multicloud-03122021.pdf
https://opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-multicloud-03122021.pdf
https://opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-multicloud-03122021.pdf
https://opscompass.com/wp-content/uploads/2021-oc-whitepaper-healthcare-multicloud-03122021.pdf
https://www.spglobal.com/marketintelligence/en/news-insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-costs-and-improve-care
https://www.spglobal.com/marketintelligence/en/news-insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-costs-and-improve-care
https://www.spglobal.com/marketintelligence/en/news-insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-costs-and-improve-care
https://www.spglobal.com/marketintelligence/en/news-insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-costs-and-improve-care
https://www.spglobal.com/marketintelligence/en/news-insights/blog/medical-iot-technology-in-us-hospitals-helps-to-reduce-costs-and-improve-care
http://www.pwc.com/gsiss
https://imaginenext.ingrammicro.com/b2b-tech-talk/the-current-state-of-security-and-risk-in-healthcare
https://imaginenext.ingrammicro.com/b2b-tech-talk/the-current-state-of-security-and-risk-in-healthcare
https://imaginenext.ingrammicro.com/b2b-tech-talk/the-current-state-of-security-and-risk-in-healthcare
https://www.verizon.com/business/resources/reports/dbir/
https://netdiligence.com/wp-content/uploads/2021/03/NetD_2020_Claims_Study_1.2.pdf
https://netdiligence.com/wp-content/uploads/2021/03/NetD_2020_Claims_Study_1.2.pdf
https://netdiligence.com/wp-content/uploads/2021/03/NetD_2020_Claims_Study_1.2.pdf
http://arxiv.org/abs/1904.02058
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb12
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb12
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb12
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb13
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb13
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb13
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb13
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb13
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb14
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb15
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb15
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb15
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb16
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb17
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb18
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb18
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb18
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb18
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb18
http://arxiv.org/abs/2103.12144
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb20
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb20
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb20


L. Gupta, T. Salman, A. Ghubaish et al. Applied Soft Computing 118 (2022) 108439
[21] F. Zaman, M. Aloqaily, F. Sallabi, K. Shuaib, J.B. Othman, Application of
graph theory in IoT for optimization of connected healthcare system, in:
GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, pp.
1–6.

[22] M. Al-Khafajiy, S. Otoum, T. Baker, M. Asim, Z. Maamar, M. Aloqaily, M.
Taylor, M. Randles, Intelligent control and security of fog resources in
healthcare systems via a cognitive fog model, ACM Trans. Internet Technol.
(2021).

[23] S. Hizal, Ü. Çavuşoğlu, D. Akgün, A new deep learning based intru-
sion detection system for cloud security, in: 3rd International Congress
on Human-Computer Interaction, Optimization and Robotic Applications,
2021.

[24] L. Chen, X. Kuang, A. Xu, Siliang Suo, Y. Yang, A novel a novel net-
work intrusion detection system based on CNN, in: Eighth International
Conference on Advanced Cloud and Big Data (CBD), 2020.

[25] T. Gopalakrishnan, et al., Deep learning enabled data offloading with cyber
attack detection model in mobile edge computing systems, IEEE Access
(2020).

[26] Y. Xun, J. Qin, J. Liu, Deep learning enhanced driving behavior evaluation
based on vehicle-edge-cloud architecture, IEEE Trans. Veh. Technol. (2021).

[27] W. Lin, H. Lin, P. Wang, B. Wu, J. Tsai, Using convolutional neural
networks to network intrusion detection for cyber threats, in: 2018 IEEE
International Conference on Applied System Invention (ICASI), Chiba, 2018,
pp. 1107–1110.

[28] S. Otoum, B. Kantarci, H.T. Mouftah, On the feasibility of deep learning in
sensor network intrusion detection, IEEE Netw. Lett. (2019).

[29] B. Roy, H. Cheung, A deep learning approach for intrusion detection in
internet of things using bi-directional long short-term memory recurrent
neural network, in: 28th International Telecommunication Networks and
Applications Conference (ITNAC), Sydney, Australia, 2018, pp. 1–6.

[30] N. Shone, T.N. Ngoc, V.D. Phai, Q. Shi, A deep learning approach to network
intrusion detection, IEEE Trans. Emerg. Top. Comput. Intell. 2 (1) (2018)
41–50.

[31] R. Vinayakumar, et al., Deep learning approach for intelligent intrusion
detection system, IEEE Access (2019) 41525–41550.

[32] Adel Abusitta, Martine Bellaiche, Michel Dagenais, Talal Halabi, A
deep learning approach for proactive multi-cloud cooperative intrusion
detection system, Future Gener. Comput. Syst. 98 (2019) 308–318.

[33] Mingshu He, Xiaojuan Wang, Junhua Zhou, Yuanyuan Xi, Lei Jin, Xinlei
Wang, Deep-feature-based autoencoder network for few-shot malicious
traffic detection, Secur. Commun. Netw. (2021).

[34] UFLDL tutorial autoencoders, 2021, Available at : http://ufldl.stanford.edu/
tutorial/unsupervised/Autoencoders/, last accessed on 16th 2021.

[35] L. Gupta, Hierarchical deep learning for cybersecurity of critical service
systems, accepted for presentation in IEEE world conference on smart
trends in systems, Secur. Sustain. (2018).

[36] W. Widanagamaachchi, Y. Livnat, P. Bremer, S. Duvall, V. Pasucci, Inter-
active visualization and exploration of patient progression in a hospital
setting, in: AMIA Annual Symposium, 2017, pp. 1773–1782.

[37] M. Meyer, The rise of healthcare data visualization, data revolution, A J.
AHIMA Blog (2017) [online] Available: https://journal.ahima.org/the-rise-
of-healthcare-data-visualization/, last accessed 8th 2021.

[38] Healthcare Reference Architecture, Extreme Networks, Whitepaper,
2018, Available at, https://kapost-files-prod.s3.amazonaws.com/kapost/
55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/
revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-
Healthcare-Reference-Architecture-2018-WP_v3.pdf, last accessed 8th
2021.

[39] J. Cusimano, Assessing the security of ICS using threat modeling, 2018,
[online] Available: https://scadahacker.com/howto/howto-threatmodeling.
html, last accessed 10th 2019.

[40] R. Shahan, B. Lamos, Internet of things (IoT) security architecture,
2018, [online] Available at: https://docs.microsoft.com/en-us/azure/iot-
fundamentals/iot-security-architecture, last accessed on 29th 2021.

[41] N. Shevchenko, Threat modeling: 12 available methods, 2021,
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
CMU, 2018 Last accessed 8th 2021.

[42] K.A. McDonald, A. Wirth, The intersection of patient safety and medical de-
vice cybersecurity, HIMSS, 2018, Available at : https://365.himss.org/sites/
himss365/files/365/handouts/550237082/handout-CYB4.pdf, (last accessed
on 6th 2021).

[43] A. Ghubaish, Healthcare Testbed for Dataset Generation, Rotation Technical
Report, Washington University in St. Louis, 2018.

[44] C. Izuakor, Managing cyber threats to operational technology, 2020, Avail-
able at https://blog.veriato.com/managing-cyber-threats-to-operational-
technology, last accessed 15th 2021.
18
[45] Operational technology (OT) cybersecurity: 4 best practices, april,
2021, Available at https://www.beyondtrust.com/blog/entry/operational-
technology-ot-cybersecurity-4-best-practices last accessed 15th 2021.

[46] M. Hassanalieragh, et al., Health monitoring and management using
internet-of-things (IoT) sensing with cloud-based processing: Opportuni-
ties and challenges, in: 2015 IEEE International Conference on Services
Computing, 2015, pp. 285–292.

[47] T. Bajtoš, A. Gajdoš, L. Kleinová, K. Lučivjanská, P. Sokol, Network intrusion
detection with threat agent profiling, Secur. Commun. Netw. (2018).

[48] Information Technology – Security Techniques-Information Security Risk
Management Standard, ISO/IEC, 2018.

[49] M. Zamani, M. Movahedi, Machine learning techniques for intrusion detec-
tion, 2019, Available at https://arxiv.org/pdf/1312.2177.pdf, last accessed
15th 2021.

[50] Sarker I.H., Deep cybersecurity: A comprehensive overview from neural
network and deep learning perspective, SN Comput. Sci. (2021).

[51] M.A. Ferrag, L. Shu, H. Djallel, K.K.R. Choo, Deep, learning-based intru-
sion detection for distributed denial of service, attack in agriculture 4.0,
Electronics (2021).

[52] X. Chen, A. Kuang, Siliang Suo Xu, Y. Yang, A novel a novel network intru-
sion detection system based on CNN, in: Eighth International Conference
on Advanced Cloud and Big Data (CBD), 2020.

[53] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, Science 313 (2006) 504–507, http://dx.doi.org/10.1126/
science.1127647.

[54] T. Epelbaum, Deep learning: Technical introduction deep CoRR, 2017.

[55] M. Hassanalieragh, et al., Health monitoring and management using
internet-of-things (IoT) sensing with cloud-based processing: Opportuni-
ties and challenges, in: 2015 IEEE International Conference on Services
Computing, New York, NY, 2015, pp. 285–292.

[56] Argus documentation, 2021, [online] Available: http://nsmwiki.org/Argus,
(last accessed on 10th 2021).

[57] Computational complexity of neural networks, 2021, Available at https:
//kasperfred.com/series/introduction-to-neural-networks/computational-
complexity-of-neural-networks, last accessed 11th 2021.

[58] V. Froese, C. Hertrich, R. Niedermeier, The computational complexity of
ReLU network training parameterized, data dimensionality, 2021, arXiv:
2105.08675v2 [cs.LG].

[59] N. Koroniotis, N. Moustafa, E. Sitnikova, B. Turnbull, Towards the devel-
opment of realistic botnet dataset in the internet of things for network
forensic analytics: Bot-iot dataset, Future Gener. Comput. Syst. (2019).

[60] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set), in: IEEE
Military Communications and Information Systems Conference (MilCIS),
2015.

[61] Faster learning of deep stacked autoencoders on multi-core systems using
synchronized layer-wise pre-training, Anirban Santara, Debapriya Maji, DP
Tejas, Pabitra Mitra and Arobinda Gupta, 2016, p. 9, arXiv:1603.02836v1
[cs.LG].

[62] S. Parampottupadam, A.N. Moldovann, Cloud-based real-time network
intrusion detection using deep learning, in: International Conference on
Cyber Security and Protection of Digital Services (Cyber Security), Oxford,
UK, 2018, pp. 1–8.

Lav Gupta is a senior member of IEEE. He received
a BS degree from the Indian Institute of Technology,
Roorkee, India in 1978, and an MS degree from the
Indian Institute of Technology, Kanpur, India in 1980
and a Ph.D. degree in Computer Science & Engineering
from Washington University in St Louis, Missouri, USA
in 2019. He is currently an Assistant Professor at the
University of Missouri in St. Louis.

He has worked for about fifteen years in telecom-
munications planning, deployment, and regulation. He
has also worked as a senior faculty of Computer Science

and Access Network Planning in India and the UAE for a total of about fifteen
years. He is the author of one book, 19 papers, and has been a speaker at
many international seminars. His current research areas are virtual network
services, multi-cloud systems, fault and performance management in cloud-
based Network Function Virtualization, and application of AI in the management

of virtual network services over clouds.

http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb21
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb22
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb23
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb24
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb24
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb24
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb24
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb24
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb25
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb25
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb25
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb25
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb25
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb26
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb26
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb26
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb27
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb28
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb28
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb28
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb29
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb30
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb30
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb30
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb30
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb30
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb31
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb31
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb31
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb32
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb32
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb32
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb32
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb32
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb33
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb33
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb33
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb33
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb33
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb35
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb35
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb35
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb35
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb35
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb36
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb36
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb36
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb36
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb36
https://journal.ahima.org/the-rise-of-healthcare-data-visualization/
https://journal.ahima.org/the-rise-of-healthcare-data-visualization/
https://journal.ahima.org/the-rise-of-healthcare-data-visualization/
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://kapost-files-prod.s3.amazonaws.com/kapost/55ba7c9e07003d9aab000394/studio/content/5ac229fd1d425a00650000ab/revisions/1537452345-ae58e56e-49d2-4838-acb6-3ed800f0ffe1/15558-Healthcare-Reference-Architecture-2018-WP_v3.pdf
https://scadahacker.com/howto/howto-threatmodeling.html
https://scadahacker.com/howto/howto-threatmodeling.html
https://scadahacker.com/howto/howto-threatmodeling.html
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
https://insights.sei.cmu.edu/blog/threat-modeling-12-available-methods/
https://365.himss.org/sites/himss365/files/365/handouts/550237082/handout-CYB4.pdf
https://365.himss.org/sites/himss365/files/365/handouts/550237082/handout-CYB4.pdf
https://365.himss.org/sites/himss365/files/365/handouts/550237082/handout-CYB4.pdf
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb43
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb43
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb43
https://blog.veriato.com/managing-cyber-threats-to-operational-technology
https://blog.veriato.com/managing-cyber-threats-to-operational-technology
https://blog.veriato.com/managing-cyber-threats-to-operational-technology
https://www.beyondtrust.com/blog/entry/operational-technology-ot-cybersecurity-4-best-practices
https://www.beyondtrust.com/blog/entry/operational-technology-ot-cybersecurity-4-best-practices
https://www.beyondtrust.com/blog/entry/operational-technology-ot-cybersecurity-4-best-practices
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb46
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb47
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb47
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb47
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb48
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb48
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb48
https://arxiv.org/pdf/1312.2177.pdf
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb50
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb50
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb50
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb51
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb51
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb51
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb51
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb51
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb52
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb52
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb52
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb52
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb52
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb54
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb55
http://nsmwiki.org/Argus
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks
http://arxiv.org/abs/2105.08675v2
http://arxiv.org/abs/2105.08675v2
http://arxiv.org/abs/2105.08675v2
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb59
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb59
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb59
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb59
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb59
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb60
http://arxiv.org/abs/1603.02836v1
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62
http://refhub.elsevier.com/S1568-4946(22)00017-5/sb62


L. Gupta, T. Salman, A. Ghubaish et al. Applied Soft Computing 118 (2022) 108439

U
s
o
i

c
a

s
i
o
c

Tara Salman is member of IEEE. She received her BS
and MS degrees from Qatar University Doha, Qatar in
2012 and 2015, respectively. Her BS was in computer
engineering while her MS was in computer networking.
She is currently an Assistant Professor of Computer
Science, Texas Tech University

From 2012–2015, she worked as a research as-
sistant with Qatar University on an NPRP (National
Priorities Research Program) funded project targeting
physical layer security. Since 2015, she has been work-
ing as a Graduate Research Assistant at Washington

niversity in St. Louis. Her research interests span network security, distributed
ystems, the Internet of things, and financial technology. She is an author
f 1 book chapter, six research articles, and has been a presenter at many
nternational conferences.

Tara Salman is a recipient of the Cisco Certified Network Associate (CCNA)
ertification in 2012 and has completed all four levels of CCNA at Cisco
cademy-Qatar university branch.

Ali Ghubaish (Graduate Student Member, IEEE) re-
ceived the B.S. degree (Hons.) in computer engineering
(minor in networking) from Prince Sattam Bin Abdu-
laziz University, AlKharj, Saudi Arabia, in 2013, and the
M.S. degree in computer engineering from Washington
University in St. Louis, MO, USA, in 2017, where he
is currently pursuing the Ph.D. degree in computer
engineering.

From 2013 to 2014, he worked as a Teaching
Assistant at Prince Sattam Bin Abdulaziz University.
Since 2018, he has been working as a Graduate Re-

earch Assistant at Washington University in St. Louis. His research interests
nclude network and system security, the Internet of Things, the Internet
f Medical Things, healthcare systems, and unmanned aerial vehicles (UAVs)
ommunications.
19
Devrim Unal is a Research Assistant Professor of
Cyber Security at the KINDI Center for Computing
Research, College of Engineering, Qatar University. He
obtained his M.Sc. degree in Telematics from Sheffield
University, UK and Ph.D. degree in Computer En-
gineering from Bogazici University, Turkey in 1998
and 2011, respectively. Dr. Unal’s research interests
include cyber–physical systems and IoT security, wire-
less security, artificial intelligence and next generation
networks. He is a member of IEEE

Abdulla Khalid Al-Ali obtained his Master’s degree
in Software Design Engineering and Ph.D. degree in
Computer Engineering from Northeastern University in
Boston, MA, USA in 2008 and 2014, respectively. He
is an active researcher in Cognitive Radios for smart
cities and vehicular ad-hoc networks (VANETs). He
has published several peer-reviewed papers in journals
and conferences. He has been awarded the Platinum
medal in the Educational Excellence Day Prize for Ph.D.
holders in 2015. Dr. Abdulla is currently the Head of
the Technology Innovation and Engineering Education

(TIEE) at the College of Engineering in Qatar University.

Raj Jain is currently the Barbara J. and Jerome R. Cox,
Jr., Professor of Computer Science and Engineering at
Washington University in St. Louis. Dr. Jain is a Life
Fellow of IEEE, a Fellow of ACM, a Fellow of AAAS, a
recipient of 2018 James B. Eads Award from St. Louis
Academy of Science, 2017 ACM SIGCOMM Life-Time
Achievement Award, 2015 A.A. Michelson Award from
Computer Measurement Group and ranks among the
most cited authors in Computer Science. Previously, he
was one of the Co-founders of Nayna Networks, Inc — a
next-generation telecommunications systems company

in San Jose, CA. He was a Senior Consulting Engineer at Digital Equipment
Corporation in Littleton, Mass, and then a professor of Computer and Information
Sciences at Ohio State University in Columbus, Ohio. He is the author of ‘‘Art of
Computer Systems Performance Analysis,’’ which won the 1991 ‘‘Best-Advanced
How-to Book, Systems’’ award from Computer Press Association.


	Cybersecurity of multi-cloud healthcare systems: A hierarchical deep learning approach
	Introduction
	Related work
	Works comparing shallow and deep neural networks for network intrusion detection 
	Recent work using deep learning for healthcare systems 
	Recent application of deep learning methods in diverse areas 

	Conceptual layout and architecture of the next generation healthcare system
	The healthcare network domains 
	The architectural design of next-generation healthcare 
	Security architecture for the next generation healthcare 

	Threat model for the healthcare network
	Attack surfaces 
	Attackers and attacks 

	Merged hierarchical security for data in motion —  Theoretical background, methods and procedures
	Design aspects of the security system 
	The choice of the deep learning system 
	Deep neural networks —  stacked autoencoders 
	MUSE: The hierarchical merged model with layer reuse 
	Design and implementation
	Computational complexity of merged model

	Evaluation and results
	UNSW-BOT-IoT and UNSW15 dataset 
	Data generated on the testbed 
	Implementation platforms and software tools used 
	Results 

	Comparison with other works
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	
	References


