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Metabolomic profiling reveals
key metabolites associated
with hypertension progression
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Guliz Anlar1, Shona Pedersen1, Mohamed A. Elrayess1,2

and Asad Zeidan1*
1Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar,
2Biomedical Research Center, Qatar University, Doha, Qatar
Introduction: Pre-hypertension is a prevalent condition among the adult
population worldwide. It is characterized by asymptomatic elevations in blood
pressure beyond normal levels but not yet reaching the threshold for
hypertension. If left uncontrolled, pre-hypertension can progress to
hypertension, thereby increasing the risk of serious complications such as
heart disease, stroke, kidney damage, and others.
Objective: The precise mechanisms driving the progression of hypertension
remain unknown. Thus, identifying the metabolic changes associated with this
condition can provide valuable insights into potential markers or pathways
implicated in the development of hypertension.
Methods: In this study, we utilized untargeted metabolomics profiling, which
examines over 1,000 metabolites to identify novel metabolites contributing to
the progression from pre-hypertension to hypertension. Data were collected
from 323 participants through Qatar Biobank.
Results: By comparing metabolic profiles between pre-hypertensive,
hypertensive and normotensive individuals, six metabolites including
stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-
hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate
(DMTPA), and linolenate were found to be associated with increased risk of
hypertension, in both discovery and validation cohorts. Moreover, these
metabolites showed a significant diagnostic performancewith area under curve >0.7.
Conclusion: These findings suggest possible biomarkers that can predict the risk of
progression from pre-hypertension to hypertension. This will aid in early detection,
diagnosis, and management of this disease as well as its associated complications.

KEYWORDS

hypertension, pre-hypertension, metabolic profiling, biomarkers, disease progression

1 Introduction

Hypertension, a significant global health burden and a leading cause of premature

death worldwide, affects approximately 1 billion people worldwide (1, 2). It is a critical

risk factor for coronary heart disease and stroke, particularly in Gulf Cooperation

Council (GCC) (3). In Qatar, hypertension prevalence is around 33% (4).

Pre-hypertension, an intermediate stage between normal and high blood pressure (5),

affects 25 to 50% of adults globally (6). Recognized as a hypertension precursor (6), pre-

hypertension can convert to hypertension at a rate of 30% over a four-year period (7) and

contribute to cardiovascular disease progression (8). Cardiovascular risk factors, including

genetics, smoking, obesity, and physical activity are linked to pre-hypertension (9, 10).
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Early detection of pre-hypertension can prevent hypertension and

cardiovascular disease risk (11). Non-pharmacological

interventions for the management of pre-hypertension include

dietary, exercise, smoking cessation, reducing salt intake and

alcohol consumption, weight, and stress reduction (6, 11, 12). If

these measures fail, medication may be required (12).

Hypertension management involves both non-pharmacological

and pharmacological interventions including, antihypertensive

drugs such as diuretics, angiotensin-converting enzyme

inhibitors, angiotensin receptor blockers, beta-blockers, and

calcium channel blockers (12, 13). However, despite the recent

advances in the awareness, treatment, and management of

hypertension, only 42% of hypertensive adults are diagnosed and

treated, and only 21% have it under control (1).

Blood pressure changes are typically used to diagnose

hypertension (14). However, many pathological changes precede

blood pressure elevation (15). Therefore, identifying new

biomarkers and understanding underlying mechanisms involved in

hypertension progression is crucial. Metabolomics, a rapidly

expanding field, involves the comprehensive analysis of all low-

molecular-weight metabolites within biological samples at a given

time (16). Metabolites play crucial roles in biological processes such

as energy production, signaling, and cellular pathway regulation

(16). Changes in these metabolites are being studied as potential

biomarkers for cardiovascular disease and other pathological

conditions (17). Metabolomics profiling can provide information

about the metabolic changes in pathological conditions, potentially

offering new insights into disease pathogenesis and therapeutic

options (18). Clinically, metabolomics can aid in early disease

detection and diagnosis (19). It also plays a significant role in

precision medicine (20). By identifying unique metabolic signatures

in individuals, it allows for personalized treatment strategies and

guides for the selection of more effective treatments (20).

Additionally, metabolomics helps in the discovery of biomarkers

for various diseases, facilitating not only diagnosis but also

monitoring disease progression and response to therapy (21).

Recent advancements in metabolomics have significantly enhanced

our understanding of hypertension (18). Metabolite profiling in

hypertension has gained growing attention after the discovery of a

correlation between serum metabolites and blood pressure in

hypertensive individuals (17). Subsequently, numerous studies have

focused on studying the metabolic signature of hypertension and

identifying novel metabolites associated with this disease.

In this study, we aimed to characterize the metabolomic profile

in pre-hypertensive and hypertensive patients and healthy

individuals using untargeted metabolomics. We also examined

the metabolites and the related metabolic pathways that can

distinguish pre-hypertension from hypertension pathophysiology.
2 Materials and methods

2.1 Study participants

A total of 323 participants were enrolled in this study

categorized based on their blood pressure. In the discovery
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cohort, 46 healthy controls, 98 patients with pre-hypertension,

and 35 patients with hypertension were included, while the

validation cohort included 72 healthy and 72 pre-hypertensive

participants. Clinical and metabolomics data were provided by

Qatar Biobank (QBB) which is a population-based cohort study

launched in 2012 and aiming to recruit 60,000 local participants.

26,279 participants have been enrolled as of 2020. QBB collects

personal data and biological samples for each participant every

five years (22).

The inclusion criteria encompassed, both Qatari males and

females, age between 46 and 68 years old for the discovery

cohort, and between 20 and 34 for the validation cohort. The

study groups comprised hypertensive participants (blood

pressure≥ 140 mmHg), pre-hypertensive (Blood pressure 120–

139 mmHg), and a control group of normotensive participants

(blood pressure < 120 mmHg). Patients with diabetes or obesity

were excluded. An informed consent was obtained from each

participant prior to the involvement in the study. The study

received an approval from the QBB institutional review board

(E -2021-QF-QBB-RES-ACC-00021-0160).
2.2 Sample collection

Approximately 60 ml of blood was collected from each

participant following an overnight fasting. Biochemical and

hematological assessment of the blood samples was conducted at

Hamad Medical Center in Doha. Blood samples containing

EDTA were centrifuged to separate various components,

including plasma, buffy coat, and erythrocytes. Aliquots were

prepared for each sample and stored either in liquid nitrogen for

long-term storage or at −80°C for subsequent analysis (22).
2.3 Physical and clinical analysis

For each participant, anthropometric measurements such as

the height, weight, waist, and hip were obtained using Seca

stadiometer and Seca Bio Impedance Analysis (Seca GmbH &

Co. KG, Hamburg, Germany). Body Mass Index was calculated

as weight in kg divided by height in meters squared. Blood

pressure was assessed utilizing the Omron 705 automated

instrument. An average of two to three blood pressure

measurements, taken when the initial two measurements differ

by 5 mmHg, was considered. Clinical parameters, including

complete blood count, lipid profile, HBA1C%, liver function

tests and C-reactive protein were analyzed as previously

described (22, 23).
2.4 Untargeted metabolomics analysis

Untargeted metabolomics was employed using Metabolon’s

platform at Anti-Doping Lab in Qatar to analyze the samples for

each individual, following a previously described methodology

(24). In brief, waters ACQUITY ultra-performance liquid
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1284114
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Al Ashmar et al. 10.3389/fcvm.2024.1284114
chromatography (UPLC), a Thermo Scientific Q-Exactive high

resolution/accurate mass spectrometer coupled with a heated

electrospray ionization (HESI-II) source, and an Orbitrap mass

analyzer with a 35,000-mass resolution were utilized for

metabolite detection. Methanol was used for protein precipitation

and serum sample extraction. The resulting extracts were

partitioned into separate fractions: two for analysis by distinct

reverse phases (RP)/UPLC-MS/MS methods using positive ion

mode electrospray ionization (ESI), one for analysis by RP/

UPLC-MS/MS with negative ion mode ESI, one for analysis by

hydrophilic interaction chromatography (HILIC)/UPLC-MS/MS

with negative ion mode ESI, and one aliquot reserved as a

backup. Peaks identification was conducted using Metabolon’s

platform, matching them to existing library entries of over 3,300

pure standard chemicals to determine compound identities (25).

Subsequently, compounds were classified based on their origins.

A total of 1,159 metabolites were identified.
2.5 Statistical analysis

Clinical measurement data were classified into control, pre-

hypertension, and hypertension groups according to their blood

pressure. Data were presented as mean (SD), median (IQR) and

number (percentage) for parametric, non-parametric and

nominal variables respectively. Differences between the groups

were tested by ANOVA/Kruskal–Wallis for parametric/non-

parametric variables and Chi-square test for nominal variables.

Post-HOC tests (Pairwise T-test/Dunnett’s) were applied

accordingly. A p-value significance level of 0.05 was used.

The metabolomics data were log-transformed. Multivariate

analysis including unsupervised PCA (principal component

analysis) and supervised OPLS-DA (orthogonal partial least

square-discriminant analysis) were run using the software

SIMCA® (version 16.0.1). Metabolites with >50% missingness

and 222 unidentified metabolites were excluded from the models.

R version 4.2.1 was used to perform linear models to identify

significant metabolites differentiating the study group [control (0)

—pre-hypertension (1)—hypertension (2), denoting disease

progression]. The model also included the following confounders:

age, gender, and BMI. Multiple testing correction method [False

Discovery Rate (FDR)] was used to adjust the nominal p-values.

FDR < 0.05 was considered statistically significant. ROC analysis

for validation of the metabolites was performed using R package

pROC. Spearman’s correlation between clinical measurements

and significant metabolites was carried out using R packages

Hmisc and corrplot.
3 Results

3.1 General characteristics of the
participants

In the discovery cohort, 178 participants were included: 46

control participants (blood pressure <120 mmHg), 98
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participants with pre-hypertension (Blood pressure 120–

139 mmHg) and 35 participants with hypertension (blood

pressure≥ 140 mmHg). As shown in Table 1, systolic and

diastolic blood pressure measurements were significantly different

between the three groups. The participants in control group were

younger compared to pre-hypertensive and hypertensive groups

and they were mostly females, however, no significant difference

was observed between pre-hypertensive and hypertensive groups

in terms of age and sex. Haemoglobin levels and red blood cells

count were observed to be significantly lower in the control

group compared to both the pre-hypertensive and hypertensive

groups. This difference is mainly attributed to the predominance

of females in the control group, as females typically exhibit lower

haemoglobin and red blood cell levels. ALP, HDL cholesterol and

triglyceride level also showed a significant difference between the

control and disease groups; however, their values fell within

normal levels. Chi square analysis further indicated no significant

difference between pre-hypertensive and hypertensive

participants taking blood pressuring lowering medications

(Supplementary Table S1).
3.2 Metabolic profiling of healthy, pre-
hypertensive and hypertensive participants
(multivariant analysis)

The orthogonal partial least square discriminant analysis

(OPLS-DA) was employed to evaluate the metabolites in our

study. This analysis showed a clear separation between healthy,

pre-hypertensive and hypertensive participants based on their

metabolomic signature. The cumulative model predictability,

R2Y (cum), was found to be 79.7%, while the cumulative

model validation, Q2 (cum), was 22.3% indicating a strong

ability to explain the observed patterns and an acceptable

predictive accuracy. A scatter plot (Figure 1A) illustrates a

two-dimensional space representation of the three study

groups based on their metabolomic profiles. In addition to the

scatter plot, we have provided supplementary data containing

a list of the most influential metabolites for discriminating

between the groups based on the variable influence on

projection (VIP) scores (Supplementary Figure S1 and

Table S2). Loading plot revealing the metabolites closely

associated with the progression of hypertension is also

presented in Figure 1B. Furthermore, to explore whether the

metabolic profile vary between male and female participants,

multivariate analysis was conducted for each gender separately.

The OPLSDA for male participants demonstrated a distinct

metabolic pattern for controls, prehypertensive, and

hypertensive groups, achieving a high R2Y of 99% and a

substantial predictive ability with Q2 of 48% (Supplementary

Figure S2). Similarly, a clear group separation based on the

metabolic profile was observed among female participants with

86% for R2Y and 22.6% for Q2 (Supplementary Figure S3).

These results confirm that the observed group separation is

primarily attributed to the disease condition rather than

inherent sex differences.
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TABLE 1 Clinical measurements of the discovery cohort categorized by blood pressure.

Variable Control (N = 46) Pre-hypertension (N = 98) Hypertension (N = 35) p-value

Ethnicity Qatari (100%) Qatari (100%) Qatari (100%)
Sex

Male 13 (28.26%) 53 (54.08%) 18 (51.43%) 0.013

Female 33 (71.74%) 45 (45.92%) 17 (48.57%)

Age 48 (46.25–52) 50 (48–56) 55 (48.5–64) 0.002

BMI 26.28 (25.06–27.98) 27.46 (25.46–28.75) 27.11 (24.65–28.1) 0.060

Haemoglobin (g/dl) 12.95 (1.29) 13.83 (1.66) 14.03 (1.73) 0.003

Red blood cell ×106/ul 4.6 (4.3–4.975) 5 (4.6–5.3) 4.9 (4.62–5.17) 0.001

White blood cell ×103/ul 5.85 (4.72–6.9) 6.4 (5.4–7.125) 5.95 (4.9–6.7) 0.072

Glucose (mmol/l) 5.1 (4.6–5.6) 5.1 (4.8–5.4) 5.2 (4.8–5.79) 0.477

ALT (U/l) 20 (15–26.5) 21 (15–33) 19 (16–25.75) 0.494

AST (U/l) 19 (16.25–22) 19 (16–23) 18.5 (16–23.75) 0.899

ALP (U/l) 61 (53.25–69) 69 (59–80) 66.5 (58.25–78) 0.030

Cholesterol Total (mmol/l) 5.03 (0.67) 5.29 (1.08) 5.53 (1.13) 0.087

HDL Cholesterol (mmol/l) 1.665 (1.275–1.94) 1.31 (1.14–1.52) 1.45 (1.17–1.8) 0.001

LDL Cholesterol (mmol/l) 2.94 (0.69) 3.23 (0.97) 3.33 (1.00) 0.114

Triglyceride (mmol/l) 0.96 (0.71–1.11) 1.35 (1.1–1.8) 1.3 (1.015–1.71) 4.55E-06

HBA-1C% 5.5 (5.2–5.7) 5.5 (5.3–5.8) 5.7 (5.375–5.82) 0.269

C Reactive Protein (mg/l) 5 (5–5) 5 (5–5) 5 (5–5) 0.857

Average systolic BP 108.5 (104.25–115) 128 (123–133) 146 (143–154) 4.03E-32

Average diastolic BP 69 (64–75) 83 (77.25–86) 91 (83–99) 9.67E-18

History of other comorbidities

Diabetes Mellitus 0 0 0 0.99

Obesity 0 0 0 0.99

Hypercholesterolemia 15 (32.6%) 52 (53%) 23 (65.7%) 0.009

Medications

Blood pressure medications 0 13 (13.3%) 8 (22.8%) 0.005

Data are presented as mean (SD), median (IQR) and number (percentage) for parametric, non-parametric and nominal variables respectively. Differences between the

groups were tested by ANOVA/Kruskal Wallis for parametric/non-parametric variables and Chi-square test for nominal variables. Post-HOC tests (Pairwise T-test/

Dunnett’s) were applied accordingly. A p-value significance level of 0.05 was used.

BMI, body mass index; ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphates; LDL, low density lipoprotein; HDL, high density lipoprotein.

The bold values are indicated p-value <0.05.
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3.3 Identification of the metabolites
associated with hypertension progression
(univariate analysis)

To identify the metabolites associated with increased risk of

hypertension, a univariate analysis was conducted. Figure 2

displays the metabolites that were significantly correlated with

an elevated risk of hypertension. These metabolites consist of

four lipids {stearidonate [18:4n3], hexadecadienoate [16:2n6],

13-HODE + 9-HODE, and linolenate [alpha or gamma; (18:3n3

or 6)]}, one nucleotide (N6-carbamoylthreonyladenosine), and

one amino acid metabolite (2,3-dihydroxy-5-methylthio-4-

pentenoate (DMTPA) (Table 2). Moreover, these metabolites,

associated with a higher risk of hypertension, exhibited

nominal significance in the univariant analysis of males and

females separately (Supplementary Tables S3, S4). These

finding confirm the robustness and consistency of the

association of the identified metabolites with hypertension risk

across different sex groups.
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3.4 Validation of the significant metabolites

In order to validate our findings, additional 72 healthy and

72 pre-hypertensive participants were used (table including

their clinical profile is provided in Supplementary Table S5).

By conducting a Receiver Operating Characteristic (ROC)

analysis for the metabolites stearidonate (18:4n3),

hexadecadienoate (16:2n6), N6-carbamoylthreonyladenosine,

13-HODE + 9-HODE, 2,3-dihydroxy-5-methylthio-4-pentenoate

(DMTPA), and linolenate [alpha or gamma; (18:3n3 or 6)], we

were able to determine their diagnostic performance. The

cumulative ROC of all six metabolites provided AUC of 0.736

(Figure 3A) [95% CI: 0.654–0.818, p-value: 5.32 69 × 10-7].

However, the ROC of metabolites 13-HODE + 9-HODE and

2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) provided

AUC of 0.712 (Figure 3B) [95% CI: 0.627–0.796, p-value:

5.69 × 10-6], indicating a significant level of accuracy in

predicting pre-hypertension risk, as evidenced by the

significant p-value.
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FIGURE 1

Scores and loadings plot from OPLS-DA (orthogonal projections to
latent structures discriminant analysis) of control, pre-hypertension
and hypertension discovery groups. (A) A score plot from OPLS-
DA showing the predictive component (x-axis) vs. orthogonal
component (y-axis). (B) Loadings plot revealing the discriminant
metabolites associated with progression to hypertension.
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To strengthen our findings, further analysis was performed by

combining the cohorts with diverse age ranges (below and above 40

years old). A random selection of 70% of the combined population

was used as a discovery cohort, while the remaining 30% served as

validation cohort. The obtained results confirmed our previously

reported findings indicating a significant association between

linolenate (18:3n3 or 6), stearidonate (18:4n3), hexadecadienoate

(16:2n6), and 13-HODE + 9-HODE with an increased risk of

hypertension progression in the new discovery cohort. Notably,

stearidonate (18:4n3) and hexadecadienoate (16:2n6) also

demonstrated significance in the validation cohort. The results of

this analysis are included in Supplementary Table S6.
3.5 Correlation between the significant
metabolites and clinical measurements in
hypertensive patients

The results of the linear regression analysis’ (Table 2) were used

to undertake a correlation study between the clinical characteristics
Frontiers in Cardiovascular Medicine 05
of pre-hypertensive and hypertensive patients and the significantly

altered metabolites as shown in Figure 4.
4 Discussion

Epidemiological studies have reported that pre-hypertension is

common worldwide (6), and it is likely to progress to hypertension

and increase the risk of cardiovascular diseases (8). Metabolomic

profiling has been widely used for the identification of novel

pathways and biomarkers for hypertension (18), however, there is

limited research on the metabolomic pathways underlying the

progression of pre-hypertension to hypertension.

In this study, we have identified and validated numerous

metabolites that exhibit significant association with an increased

risk of hypertension in Qatari population. These metabolites play

a crucial role in various metabolic pathways, providing insights

into the underlying mechanisms contributing to the development

and progression of this disease.

Our study revealed alterations in lipid metabolism, as evident

from the changes in the levels of specific polyunsaturated fatty

acids: stearidonate (18:4n-3), hexadecadienoate (16:2n6), and

linolenate [alpha or gamma; (18:3n3 or 6)], between healthy, pre-

hypertensive and hypertensive participants. Dysregulation of lipid

metabolism has been previously linked to blood pressure elevation

and cardiovascular risks, highlighting its importance in the

context of hypertension (26–28). However, the direct relation

between hypertension and stearidonate, hexadecadienoate, or

linolenate, has not been established. First, in this study, we

observed an elevation in stearidonate, which is an omega-3 fatty

acid derived from α-linolenic acid (18:3 n -3) metabolic pathway

(29, 30). This pathway has been shown to be implicated in many

biological processes in the human body (30). Stearidonate has

been found to be altered in many metabolomics studies. For

example, metabolomics profiling of patients with excessive fluid

retention, inflammation and acute graft vs. host rejection revealed

an alteration in stearidonate (18:4n-3) (31). Exposure to dioxin,

which is known to increase the risk of cardiovascular diseases and

hypertension, also lead to increased stearidonate in mice liver

(32). In addition, elevation in stearidonate (18:4n3) was noted in

the metabolomic analysis of patients with argininosuccinate lyase

deficiency (33). Plasma stearidonate levels were also elevated in

untreated patients with primary dilated cardiomyopathy (34).

Furthermore, stearidonate was significantly associated with

increased urinary albumin excretion which indicates nephropathy

and reflects endothelial dysfunction and kidney damage in the

metabolomic analysis of patients with albuminuria (35). In

contrast, several studies highlighted the potential benefits of

stearidonate in relation to cardiovascular diseases (36, 37). It has

been reported that stearidonate can exert an anti-thrombotic (30),

anti-inflammatory (38, 39), as well as athero-protective effect (38).

Second, our study revealed an alteration in hexadecadienoate

(16:2n6) between healthy, pre-hypertensive and hypertensive

participants. Hexadecadienoate is a long chain polyunsaturated

fatty acid involved in lipid metabolism (40). Consistent with our

results, a positive association between hexadecadienoate and
frontiersin.org
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FIGURE 2

Boxplots of metabolites associated with hypertension progression in the discovery cohort. Linear regression performed using the R statistical package.
Y-axis indicates levels of metabolites (ln). FDR significance level of 0.05 was used.
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TABLE 2 Metabolites significantly linked to a higher risk of hypertension in the discovery cohort.

Metabolites Sub-
pathway

Super-pathway Estimate Std Error p-
value

FDR

Stearidonate (18:4n3) Lipid Long chain polyunsaturated fatty acid (n3 and n6) 0.375 0.081 6.55E-06 0.003

Hexadecadienoate (16:2n6) Lipid Long chain polyunsaturated fatty acid (n3 and n6) 0.331 0.072 8.14E-06 0.003

N6-carbamoylthreonyladenosine Nucleotide Purine metabolism, adenine containing 0.092 0.025 3.04E-04 0.05

13-HODE + 9-HODE Lipid Fatty acid, monohydroxy 0.191 0.052 3.21E-04 0.05

2,3-dihydroxy-5-methylthio-4-pentenoate
(DMTPA)

Amino Acid Methionine, cysteine, SAM and taurine metabolism 0.080 0.022 3.66E-04 0.05

linolenate [alpha or gamma; (18:3n3 or 6)] Lipid Long chain polyunsaturated fatty acid (n3 and n6) 0.255 0.071 4.22E-04 0.05

FIGURE 3

ROC analysis of metabolites associated with disease progression in the discovery cohort. (A) ROC analysis of six metabolites (stearidonate (18:4n3),
hexadecadienoate (16:2n6), N6-carbamoylthreonyladenosine, 13-HODE + 9-HODE, 2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA), and
linolenate [alpha or gamma; (18:3n3 or 6)]) (B) ROC analysis of 13-HODE + 9-HODE and 2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA) only.
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systolic and diastolic blood pressure has reported in Chinese adults

(41). Moreover, a study investigating the metabolomic profile in

patients with chronic thromboembolic pulmonary hypertension

showed higher hexadecadienoate levels in those patients

compared to controls (31). Hexadecadienoate (16:2n6) was also

listed among the metabolites differentiating insulin-sensitive from

insulin-resistant lean/overweight subjects (42). In addition,

analysis of the metabolic signature of leukocyte telomere length in

elite soccer players, demonstrated that hexadecadienoate was

associated with leukocyte telomere length in those individuals

proposing a role of this metabolite in age-related diseases

including cardiovascular diseases (43). Third, the polyunsaturated

fatty acid linolenate (18:3n3 or 6) was shown to be associated

with increased hypertension risk in the current study. Linolenate

refers to either alpha-linolenic acid or gamma-linolenic acid (44).

Alpha-linolenic acid is an essential omega-3 fatty acid highly

present in edible and flaxseed oils (29), while gamma-linolenic

acid is an omega-6 fatty acid, abundant in green leafy vegetables

and nuts (45). Similar to our findings, a study comparing levels

of metabolic predictors of coronary heart disease indicated that

linolenate (18:3n3 or 6) was significantly different between lean
Frontiers in Cardiovascular Medicine 07
and overweight females and was associated with elevated c-

peptide and diastolic blood pressure (46). Zhe Wang et al. also

reported that linoleante is associated with increased risk of

coronary heart disease (47). Moreover, linolenate was found

among the metabolites that differed significantly in dogs with

dilated cardiomyopathy eating a non-traditional diet or a

traditional diet (48). In addition, this metabolite was shown to be

associated with urine albumin excretion rate (35). Together, these

studies suggest a role for linoleante in hypertension and

cardiovascular disease progression. On the other hand, clinical

studies have also reported that alpha- linolenic acid can exert

anti-obesity, anti-diabetic, anti-inflammatory, anti-cancer and

anti-oxidize effects. It also has neuro and cardioprotective

properties (49). Furthermore, food rich with alpha- linolenic acid

was able to regulate blood pressure in hypertensive patients (49).

Gamma- linolenic acid is also known for its potential benefits as

an anti-inflammatory nutrient (45). Therefore, whether these

polyunsaturated fatty acids are beneficial or deleterious to human

health is still controversial and further research is needed to

identify the role of these metabolite in the development of

hypertension, as well as other pathological condition.
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FIGURE 4

Correlation matrix between clinical characteristics and metabolites in (A) pre-hypertensive patients and (B) hypertensive discovery patients showing
positive (blue) and negative (red) correlations. Significant correlations are displayed by ***/**/* denoting <0.001/<0.01/<0.05.
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Moreover, our study uncovers the importance of purine

metabolism disturbances, with N6-carbamoylthreonyladenosine, a

nucleotide metabolite, significantly associated with increased risk

of hypertension. Consistent with our finding, it has been

reported that N6-carbamoylthreonyladenosine was significantly

associated with systolic blood pressure (41). It has been identified

as a biomarker for chronic kidney disease progression in children

(50, 51) and highly correlated with glomerular filtration rate (52).

Hypertension can often lead to end organ damage including

renal dysfunction and chronic kidney disease (53). In addition,

chronic kidney disease patients often face a higher risk of

cardiovascular complications, including hypertension (54, 55).

N6-carbamoylthreonyladenosine was shown to be associated with

inflammatory marker IL-6 in older adults (56). Hypertension has

been linked to inflammation and hypertensive patients have

higher levels of IL-6 (57, 58). Thus, investigating the effect of

N6-carbamoylthreonyladenosine on blood pressure regulation is

important for early detection and prevention of hypertension,

particularly in patients with chronic kidney disease.

Additionally, this study identified 13-HODE and 9-HODE as

biomarkers for the progression of hypertension. 13-HODE and 9-

HODE, known as oxylipins, are oxidized metabolites of linoleic
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acid which is the most common polyunsaturated fatty acid found

in human diets (59). Several studies have demonstrated the

contribution of oxylipins, in general, to cardiovascular diseases

including hypertension (60), however, limited studies are available

on the influence of 13-HODE and 9-HODE, specifically, on

hypertension. A study have reported a significant increase in serum

13-HODE in patients with essential hypertension and it was

positively correlated with mean blood pressure (61). Another study

suggested that 13-HODE and 9-HODE are associated with

pulmonary arterial hypertension (32). 9 and 13-HODE were

considered among the most important derivatives after an early

incident of ischemic stroke (62). Furthermore, 13-HODE and 9-

HODE can affect vascular cells including smooth muscle cells (62).

Alteration in vascular smooth muscle cell signaling and function

can affect vascular reactivity and tone, which are critical

determinants of vascular resistance and blood pressure (63). Several

studies also show that HODE can induce pro-inflammatory effect

including the production of inflammatory cytokines IL-1β and IL-8

(64, 65),and the activation of NF-κB (66). In addition, 13-HODE

and 9-HODE have been considered as biomarkers for oxidative

stress and are linked to various pathological conditions such as

atherosclerosis, diabetes, chronic inflammation, obesity, and cancer
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(59, 67). As oxidative stress plays an important role in the progression

of hypertension, the strong relationship between 13-HODE and 9-

HODE and oxidative stress (68) further emphasizes the potential

role of those metabolites in the progression of this disease.

Finally, our results showed alteration in 2,3-dihydroxy-5-

methylthio-4-pentenoate (DMTPA) between the study groups.

DMTPA is an amino acid metabolite derived from S-adenosyl

methionine (69). This metabolite is considered as uremic toxin

and increased in patients with acute kidney injury (69). A study

have revealed an association between DMTPA and systolic blood

pressure (41). It has also been shown to be significantly

correlated with BMI (70). High BMI can increase the risk of

hypertension (71). Although the direct role of DMTPA in

hypertension remains unclear, its connection to renal function

suggests a possible link. Further research is needed to better

understand the role of DMTPA in the context of hypertension.

To our knowledge, this is the first study identifying the

metabolites associated with hypertension progression in Qatar.

Despite the fact that our study provides significant insights, we

acknowledge that certain limitations may have affected the

outcomes. First, the data provided by Qatar Biobank did not

specify whether the patients included in the study had primary or

secondary hypertension. These two types might have distinct

metabolic signatures in hypertensive patients. Second, the absence

of hypertensive participants for validation due to limited data

availability. However, validation in pre-hypertensive participants

can still indicate that these metabolites might increase the risk of

hypertension progression in these individuals. Thirdly, the study

lacks information on the menopausal stage of female participants,

especially given the age range of the discovery cohort (40–65

years), indicative of pre-menopausal or menopausal stages.

Menopause, being associated with hypertension, might pose a

potential confounding factor in this study.

In conclusion, in this study we have identified a set of

metabolites associated with the progression of hypertension. Our

study is exploratory in nature, aiming to shed light on the

metabolic changes associated with hypertension. It serves as a

foundation for further research necessary for the potential

integration of metabolomics into clinical practice. Furthermore,

our findings contribute to the development of novel diagnostic

and predictive tools that could transform the way we approach

and manage hypertension in the future.
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