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Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial 
infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hyperten-
sion is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide 
and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, 
among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology 
and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated 
translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, 
we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension 
pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihy-
pertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, 
how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.

Keywords  Cardiovascular disease · Endothelium · Blood pressure · Antihypertensive response · Aspirin · Clopidogrel · 
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Introduction

The evolution of hypertension is multifactorial [1–4]. Most 
hypertension cases worldwide are due to primary causes, 
i.e. essential hypertension [5]. A smaller subset of hyperten-
sive individuals around the world suffers from secondarily 
induced hypertension [6]. The most common causes of sec-
ondary hypertension include coarctated aorta, renal paren-
chymal diseases, renovascular diseases, endocrine disorders, 
pregnancy-induced hypertension, drug-related hypertension, 
and sleep apnea [6].

The pathophysiological basis of hypertension is mul-
tifactorial [7]. Dysregulation of pressure natriuresis 
via excessive sympathetic nervous system stimulation, 
impaired kidney functionality, and improper hormonal 
activation of salt and water excretion regulators can alter 
vascular tone and thus predispose to a hypertensive state 
[8, 9]. Moreover, the vascular endothelium provides home-
ostasis in the cardiovascular system [10]. This is attained 
by the incessant release of elements that act to modulate 
smooth muscle cell contraction, cellular proliferation, the 
aggregation of platelets, and vascular wall permeability 
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[11]. The dysfunction of this endothelium is due to the 
imbalance of its regulatory elements [10]. This has a 
pertinent effect on the development of various diseases, 
including hypertension. This endothelial dysfunction, 
in its chronic form, leads to considerable vascular wall 
remodeling. Moreover, it impacts blood pressure regula-
tion in the context of hypertension [10]. The functional-
ity of this endothelial system has been widely targeted 
by drug therapies in the context of various disease states 
[12]. With regards to hypertension, this includes inhibi-
tors of the renin-angiotensin aldosterone system (RAAS), 
in addition to other therapies like statins and antioxidants 
[10]. Other complementary approaches like herbal medi-
cine have also been employed in the war against cardio-
vascular disease in general or hypertension in particular 
[13–17]. Importantly, these diverse approaches all support 
the vital role of the endothelial system in hypertension 
development.

The onset and pathogenesis of hypertension involve 
several molecular and cellular parameters. Hence, a better 
understanding of the molecular basis of hypertension is vital 
for generating new treatment modalities. Many players like 
reactive oxygen species (ROS), endothelin, and vascular 
endothelial growth factor (VEGF) are among the key mol-
ecules implicated in this pathology [18]. Likewise, vascular 
smooth muscle cell (VSMC) proliferation and calcification 
are among the critical cellular aspects that precipitate or 
exacerbate hypertension [19]. Other players, however, play 
a protective role in preventing the cardiovascular complica-
tions of hypertension and heart failure. These include the 
cardiac hormone atrial natriuretic peptide (ANP) [18]. It 

is the interplay between these various adverse and protec-
tive mediators that constitutes a framework of hypertension 
pathophysiology (Fig. 1).

It is well-established that hypertension also has a solid 
genetic basis [20]. Generally, hypertension evolves as a com-
bined effect of several factors in the endocrine, renal, and 
cardiovascular systems. This is especially well-documented 
in obese people suffering from metabolic syndrome, a phe-
nomenon of extensive genetic interplay [21]. This under-
pins the importance of genetic input into disease phenotype. 
More recently, an epigenetic link between molecules like 
MicroRNA (miRNA) and the evolution of hypertension, 
both primary and secondary, has been highlighted [22]. In 
this manuscript, we aim to review the experimentally deter-
mined associations between miRNA molecules and hyper-
tension treatment. This is embodied by the physiological 
responses to antihypertensive drugs due to epigenetic mech-
anisms, i.e., the pharmaco-epigenetics of hypertension, with 
a focus on miRNA effects.

Epigenetics and hypertension

DNA methylation

DNA methylation is an example of an epigenetic mark that 
is responsive to environmental cues and is mitotically stable. 
It is associated with a range of biological processes, includ-
ing those involved in the development of hypertension and 
stroke [23–25]. Candidate gene studies in animals and cell 
lines have demonstrated the role of DNA methylation in the 

Fig. 1   The interplay between 
the sympathetic nervous system 
(SNS) and renin-angiotensin 
aldosterone system (RAAS) in 
altering cardiovascular hemody-
namics. SNS and RAAS activa-
tion induce the heart to secrete 
protective mediators (atrial 
natriuretic and brain natriuretic 
peptides) capable of ameliorat-
ing a hypertensive state
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pathogenesis of hypertension, including the HSD11B2 gene 
[26]. In humans, DNA methylation has been linked to hyper-
tension for this gene as well [27].

Histone modification

Histone modification is known to be one player in the regu-
lation of vascular function in hypertension. That is not sur-
prising given that histones play a crucial role in maintaining 
chromatin structure and regulating gene expression. One of 
the five histones found in eukaryotic nuclei, histone 3 (H3), 
has an N-terminal tail that can be modified by methyla-
tion or acetylation of lysine and arginine residues, as well 
as phosphorylation of serine and threonine residues [28]. 
Histone acetyltransferases (HAT) add acetyl groups to his-
tones, while histone deacetylases (HDAC) remove them. The 
effects of these modifications can vary depending on the 
residue or moiety that is modified.

Non‑coding RNAs

Advances in the field of epigenetics have revealed some of 
the missing pieces in understanding the hereditary puzzle, 

which can explain why the same genome can lead to differ-
ent phenotypes without changes to the primary DNA struc-
ture. The elusive factor in comprehending the complex and 
multifactorial nature of hypertension may be the non-coding 
portion of the human genome [29]. Previously, it was widely 
believed that all human genes coded for proteins, but it is 
now known that more than 95% of these genes do not pro-
duce proteins. Instead, they are transcribed into non-coding 
RNA (ncRNAs) molecules, which have vital roles in regulat-
ing protein-coding genes [30].

The purpose of this review is to provide an overview of 
the current understandings for the role of miRNA in the 
intricate regulatory processes involved in the pathophysiol-
ogy of hypertension.

MicroRNA and hypertension

MicroRNAs are molecules transcribed from DNA into “non-
coding” single-stranded RNA molecules [31] (Fig. 2). These 
molecules exhibit short, conserved sequences that function 
as modulators of gene expression [32]. This modulation is 
achieved by binding the 3’UTR of the mRNA target, thereby 

Fig. 2   Transcription of miRNA 
begins in the nucleus. A miRNA 
precursor is initially yielded 
from transcription. It is then 
transported from the nucleus via 
the nuclear envelope using the 
exportin 5 molecule. The result-
ant miRNA precursor molecule 
in the cytoplasm is transformed 
into a double-stranded form 
via the DICER proteins in an 
ATP-dependent fashion. Finally, 
the mature miRNA molecule 
strand can exercise its degrada-
tive, repressive, or even in some 
cases translation activities
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regulating its translation [33]. Gene expression regulation is 
exhibited by mRNA strand de-adenylation, degradation, and 
inhibition of the ribosomal apparatus assembly, among other 
mechanisms that remain to be fully elucidated [34].

A plethora of miRNA molecules have been linked with 
the emergence of traditional primary hypertension [35]. 
They have also been correlated with pulmonary hyperten-
sion and pre-eclampsia [36]. In fact, some miRNA mole-
cules may predict the development of hypertension (e.g., 
miRNA 4516 upregulation and miRNA 145 downregula-
tion) [36]. For instance, diminished levels of miRNA-21 
were strongly correlated with ameliorated arterial stiffness 
in patients with well-controlled essential hypertension [22, 
37]. Hence, miRNA-21 may serve as a potential prognostic 
predictive marker and target for therapy [22, 37]. Moreover, 
other molecular non-coding RNA agents still need further 
studies to be assertively dubbed a protective or harmful 
mediators with regards to a hypertensive phenotype. This 
is the case with molecules like miRNA-92a-3p, which is 
proposed to have a positive correlation with systolic and 
diastolic blood pressure measurements, despite having a 
negative association with occupational noise exposure, a 
contributor to hypertensive events [38].

Genetic pre-disposition towards hypertension is becom-
ing increasingly unraveled as more research on the matter 
prevails. Nearly 2 percent of our entire genome pertains to 
coding regions that deal with blood pressure regulation. The 
field of exploring the role of non-coding RNA molecules 
has thus been extensively revamped. However, several limi-
tations, including verifiable modalities by which efficient 
molecular standardization in these studies, exist and are 
being investigated [39, 40]. Nevertheless, further studies 
delineating the roles of all non-coding RNA molecules may 
serve as an attractive avenue for potential prevention of the 
progression of hypertension [41].

MicroRNAs and essential hypertension

The evolution of hypertension is underpinned by inflam-
matory processes [42]. This includes vascular inflam-
mation, endothelial dysfunction, reactive oxygen species 
(ROS) production secondary to a plethora of dynamic fac-
tors [43–50]. Moreover, as will be discussed in this paper, 
miRNA is linked to upholding and maintaining these inflam-
matory processes [51]. An example of this is miRNA-122 
which perpetuates cardiovascular fibrosis mechanisms by 
downregulating several RAAS molecules such as ACE2, or 
agents from other systems that mediate hypertension when 
altered, such as apelin [52]. Similarly, other miRNAs such 
as miR-155, miR-212, miR-21, miR-19a/b and miR-20b 
mediate inflammatory processes that portend hyperten-
sion [53]. These miRNA molecules are active agents in the 

development of hypertension because of their involvement 
in various fibrotic vascular processes.

The Renin-Angiotensin-Aldosterone System (RAAS) is 
an important neurohormonal modulator of blood pressure 
and volume status [54]. Angiotensin II and aldosterone are 
pertinent mediators [55]. Angiotensin II helps in facilitating 
arterial vasoconstriction, especially in the context of blood 
loss. The autoregulatory RAAS helps maintain sodium bal-
ance over various fluid intake states with minor blood pres-
sure alterations [54]. A less studied pathway is that of ape-
lin and its associated proteins [52]. Indeed, it is intimately 
interlinked with the RAAS pathway so much so that ACE2 
modulates its levels [56]. This apelin acts as an endothelial 
vasodilator and functions through the eNOS pathway, with 
a documented interplay with the MAPK pathway [57]. The 
following section portrays how miRNA molecules are physi-
ologically related to RAAS and hypertension evolution or 
amelioration.

MiRNA‑181a

An excessively active sympathetic nervous system gener-
ally predisposes to a hypertensive state [34]. This is due to 
the upregulation of the RAAS system [58] (Fig. 3). Renal 
hyperactivation by the sympathetic nervous system is known 
to predispose to excessive renin secretion. This process is 
potentially mediated by miRNA [58]. For instance, relatively 
lower miRNA-181a, which is a negative regulator of Ren1 
mRNA, leads to a hypertensive state in BPH/2 J mice [58]. 
Bilateral Renal denervation was shown to amplify miRNA-
181a levels and its transcription factor Tcf7l2 such that 
hypertension in BPH/2 J mice was reversed [34]. Hence, 
renal sympathetic nerves contribute to the downregulation 
of miR-181a, a derivative to RAAS overactivity [59]. These 
findings support the inverse relationship between miRNA-
181a and hypertension development in the context of an 
activated sympathetic nervous system.

MiRNA‑132 and miRNA‑212

In cases of in-vivo angiotensin II-induced hypertension, 
miRNA molecules such as miRNAs 132 and 212 were 
found to be elevated in the heart, kidney, aortic wall 
tissues of rats [60]. The activation of the Gαq-coupled 
endothelin receptor was found to elevate the levels of 
these two miRNA molecules. Contextually, a decrease 
in these two molecules was noted after administration 
of Angiotensin II type 1 receptor (AT1-R) blockers, as 
opposed to treatment with beta-blockers [60]. Subse-
quently, one can deduce a correlation between these two 
miRNA molecules and a hypertensive status in response 
to angiotensin receptor blockers. Moreover, miRNA-132 
has additional implications in the realm of cardiovascular 
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morbidity [60]. MiRNA-132 might also be involved in 
the metabolic and CVD implications of frank obesity 
[61]. Studies with large sample sizes are needed to cor-
relate miRNA-132 levels in subcutaneous tissue and 
hypertension in these individuals [61]. These findings 
all underscore a need for further research to elucidate 
underpinned relations between these miRNAs and hyper-
tensive sequelae.

MiRNA‑483‑3p

Angiotensin II-induced activation of AT1-R in VSMCs 
elicits a miRNA expression signature. For instance, 
AT-II regulates miRNA 483-3p amongst other molecules 
[62]. Multiple proponents of the RAAS are targeted by 
miRNA-483-p, including angiotensinogen and angioten-
sin-converting enzyme 1 (ACE-1), in VSMCs [62]. Bind-
ing sites of this miRNA include RAAS genes AGTR2, 
ACE-1 and 2, and AGT. Thereby, RAAS homeostasis 
coordination is achieved. Moreover, miR-483 expression 
is decreased in the sera of patients with idiopathic pulmo-
nary hypertension, peculiarly in more severe cases [63]. 
Overexpression of miRNA-483 in pulmonary arterial 
endothelial cells inhibits the genes related to pulmonary 
arterial hypertension [63]. Additional findings indicate 
that miR-483-3p has a pertinent protective impact on 
endothelial cell functionality during hypertension onset 
[64]. MiRNA-483 may be a future therapeutic target with 
regards to CVD sequelae within the context of hyperten-
sion [64].

MiRNA‑155

In the context of vascular remodeling diseases, miRNA-155 
has been shown to be a promising target in ameliorating 
RAAS-mediated VSMC proliferation [65]. This is due to 
AT1-R being identified as an important miRNA-155 target in 
the context of mouse VSMCs [65]. This finding reveals the 
role of miRNA-155 in mediating anti-proliferative effects.

MicroRNAs and pre‑eclampsia

Pre-eclampsia is a disorder of pregnancy that consists of 
hypertension and proteinuria which occur after the 20th 
week of the gestational period [66]. It causes significant bur-
den in terms of maternal and neonatal morbidity and mortal-
ity [67, 68]. Dysregulation of miRNA molecules have been 
posited to play a role in the development of pre-eclampsia 
(Fig. 4) [69]. Some of the miRNA molecules involved in 
the pathogenesis of pre-eclampsia shall be discussed below.

MiRNA‑210

MiRNA-210 is one of the most studied miRNA molecules. 
Its role in the pathophysiology of pre-eclampsia has been 
explored [70]. MiRNA-210 was seen to be elevated in 
women with pre-eclampsia [71]. It has been isolated in the 
placenta and blood of patients with pre-eclampsia [71]. Its 
effect on trophoblast function (Fig. 4), mitochondrial func-
tion, and iron metabolism has been explored [69]. Gener-
ally, miRNA-210 expression is increased in hypoxic states. 
In the context of pre-eclampsia, miRNA-210 plays a role 

Fig. 3   SNS innervation of the 
kidney induces decrease in 
miR-181a levels which activate 
the RAAS and raise blood 
pressure levels virtue of RAAS 
molecules such as Angiotensin 
II. This in turn can deteriorate 
kidney function, further exacer-
bating a hypertensive state
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in the incessant inflammation seen. [69]. This is achieved 
by compromising mitochondrial function, thus stabilizing 
hypoxia-inducible factor -alpha (HIF-alpha) due to develop-
ment of reactive oxygen species (ROSs). The expression of 
miRNA-210 is upregulated due to TLR-3 activation, which 
also stabilizes HIF-alpha, amongst a cascade of other molec-
ular effects [69]. These findings point to miRNA-210 being 
deeply involved in pre-eclampsia development.

MiRNA‑155

Endothelial nitric oxide synthase (eNOS), a major element 
in endothelial cell permeability, is regulated by miRNA-
155 [72]. This has an implication in endothelial cell func-
tion and integrity in the context of pre-eclampsia [72]. In 
addition, vasodilation homeostasis in human umbilical vein 
endothelium was seen to be regulated by miRNA-155 [69]. 
The inhibition of this miRNA-155 molecule was observed to 
aid in the improvement of endothelial dysfunctional activity 
[69]. Hence, the role of miRNA-155 potentially involves the 
development of pre-eclampsia. Further studies are required 
to mark the pattern of miRNA-155 regulation in the context 
of pre-eclampsia.

MiRNA‑124

The increased expression of miRNA-124-3p inhibits the 
pro-apoptotic effect of Ang-II, in addition to its role in 
ROS production in Human umbilical vein endothelial cells 
(HUVECs) [73]. This is accomplished by targeting EGR1 
[73]. This finding reveals a pertinent role of miRNA-144-3p 
in mediating hypertensive outcomes.

MicroRNAs and pulmonary arterial hypertension

Pulmonary arterial hypertension is a variant of hypertension 
that has significant burdens. It has unfavorable prognostic 
morbidity and mortality indicators [74]. Its pathogenesis 
arises via several mechanisms [75]. On a molecular basis, 
this entails the proliferation of pulmonary endothelial cells 
and smooth muscle cells, in addition to the latter’s migra-
tion and activation [76]. Many miRNA molecules have been 
implicated in the pathophysiology of this disease [77]. In 
fact, pulmonary arterial hypertension shares similar inap-
propriately activated pathways with cancers [78]. These 
activated pathways lead to the excessive proliferation and 
survival pulmonary arterial smooth muscle cells (PASMCs) 
within the pulmonary arterial wall and resultant lumen 
restriction [78]. The roles of miRNA-204 and miRNA-206 
in PASMCs proliferation has been implicated [78]. Others 
such as miRNA-145, miRNA-21 and the miR17/92 cluster 
have been linked with the altered BMPR2 pathway [78]. 
Some of these miRNA molecules, and others, shall be dis-
cussed below (Fig. 5).

MiRNA‑21

MiRNA-21 is thought to play a potential role in hypoxia-
induced PASMC proliferation [22]. Indeed, upregulation of 
this molecule has been found to be facilitated by BMPR2 
expression, whereby the miRNA-21 molecules also inhibit 
BMPR2 expression in a negative feedback loop. As such, it 
serves as a protective marker especially that its loss leads 
to Rho-Kinase activity upregulation, furthering pulmo-
nary hypertension progression. [76]. This is another exam-
ple whereby a miRNA molecule may alter the balance of 
hypertension development, here in the context of pulmonary 

Fig. 4   Depiction of one aspect 
of pre-eclampsia: trophoblast 
migration dysfunction. This 
dysfunction is elicited by micro-
RNAs such as miRNA-210. 
Shallow trophoblast invasion is 
seen, resulting in unconverted 
narrow spiral arteries. This 
leads to fetal hypoxia virtue of 
endothelial injury. Sequelae of 
this hypoxia includes mater-
nal hypertension, edema, and 
proteinuria
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hypertension. However, more research is needed to better 
elucidate the role of miRNA-21 in the context of resistant 
hypertension [79].

MiRNA‑124

MiRNA-124 is downregulated in hypoxic conditions, and 
when overexpressed it can inhibit PASMC proliferation 
[76]. This may be capitalized on in future potential treat-
ment modalities, particularly because miRNA-124 inhibits 
the NFAT activity as well as the subsequent transcription of 
interleukin-2, a key culprit in hypertension [76]. Further-
more, reduced levels of miRNA-124 has been reported in 
fibroblasts of patients suffering from pulmonary arterial 
hypertension [76]. This has an implication for its role in the 
migration and hyperproliferation of the respective fibroblasts 
[80], and thus in the pathogenesis of pulmonary hyperten-
sion. It appears that one of the underlying mechanisms of 
action employed by miRNA 124 is suppressing MCP-1 and 
PTBP-1, which in turn regulate a series of signaling path-
ways, some of which involve fibroblast proliferation [76]. 
Thus, this miRNA molecule may serve as a protective factor 
in the context of pulmonary hypertension [81].

MiRNA‑210

As discussed previously, miRNA-210 is upregulated in the 
context of hypoxia in several cells including PASMCs [76], 

and apparently this increase is facilitated by the HIF-1 path-
way. This upregulation leads to the suppression of E2F3, 
thus increasing the resistance to apoptosis. Eventually, this 
promotes PASMC hyperplasia, [76], clearly making it a cul-
prit in exacerbating pulmonary hypertension.

MiRNA‑150

MiRNA-150 levels have been seen to be diminished in 
patients with pulmonary hypertension. Moreover, they have 
been correlated with a rather poor survival [82]. This was 
also observed in the plasma and pulmonary cells of rats 
treated with hypoxia [82]. MiRNA-150 upregulation relieves 
this and suppresses hypoxia-driven collagen fibrous forma-
tion, and the expression of markers such as α-SMA, TGF-β1, 
and collagen I in pulmonary arterial smooth muscle cells 
and lung tissues [82]. In addition, miRNA-150 upregula-
tion represses the excessive proliferation of these PASMCs 
driven by hypoxia via the AKT/mTOR signaling pathway. 
Moreover, this upregulation inhibits proliferation and resist-
ance to apoptosis in relevant endothelial cells [82]. These 
findings indicate that miRNA-150 is a promising potential 
pulmonary hypertension ameliorator. Moreover, this mol-
ecule acts as an independent prognostic survival indicator 
[83]. In addition to its previously mentioned proliferation 
attenuating effects, miRNA-150 alters phospholipid signal-
ing, with PTPMT1 mostly affected [83]. PTPMT1 reduces 
inflammatory activity, apoptosis and improves mitochondrial 

Fig. 5   Vascular homeostasis is 
dictated by the phenotype and 
integrity of various vascular 
wall elements. This includes 
SMC, EC, and myofibroblasts. 
Dysfunction and hyper-prolifer-
ation of these elements disrupts 
the mentioned homeostasis, 
leading to the manifestation 
of Pulmonary hypertension. 
Various miRNA molecules have 
been implicated in this disrup-
tion. These include miRNA in 
endothelial cells (miR-17-5p, 
20a, 27, 424, 503), miRNA in 
SMC (miR-17-5-p, 20a, 27, 
124, 138, 145, 190, 204, 206, 
210), and miRNA in fibroblasts 
(miR-124, 150)
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function in pulmonary endothelial cells and progenitors in 
the context of pulmonary hypertension [83]. These effects 
are mediated by diminished expression of pro-fibrotic, pro-
apoptotic, and pro-inflammatory genes. These genes include 
c-MYB, NOTCH3, transforming growth factor β (TGF-β), 
and Col1a1. Mi-RNA1-150 thus serves as a major effector 
in pulmonary hypertension [83].

MiRNA‑140‑5p

In the context of pulmonary hypertension, reduced levels of 
miRNA-140-5p molecules were observed [84]. The thera-
peutic implications of replacing this miRNA were shown. 
MiRNA-140-5p targets the E3 ubiquitin ligase Smurf1. The 
regulation of the latter is a key in the context of pulmonary 
hypertension [84]. Smurf1 itself targets the BMPR2 mol-
ecule, the inactivation of which is the main key implicated in 
causing of pulmonary hypertension. The restoration BMPR2 
signaling, by exogenous delivery of this miRNA molecule, 
and thus targeting Smurf1, is a promising therapeutic goal 
of this condition [85].

MicroRNAs and responses 
to antihypertensive drugs

Various antihypertensives have been used over the past 
several decades to ameliorate hypertensive outcomes [86]. 
These include ACE-inhibitors, angiotensin receptor blockers 
(ARBs), aldosterone antagonists, in addition to alpha and 
beta-blockers, and calcium channel blockers [87]. Recently, 
miRNA molecules have thus been found to affect the phar-
maco-epigenetic basis of antihypertensives [88]. This has 
vast implications on the response and treatment-resistance 
in individuals on antihypertensives [88]. This is pertinent 
given that half of the patients on anti-hypertensives do not 
have controlled hypertension [89]. The following section 
shall address the pharmaco-epigenetic relationship between 
miRNA molecules and the currently available antihyperten-
sive treatment modalities (Table 1).

Overview of candesartan in hypertension

Candesartan is an ARB and one of the most effective treat-
ments of hypertension [37]. As the name implied, one main 
mechanism by which it mediates its action is via inhibiting 
the action of angiotensin II, a main effector of the RAAS. 
This ameliorates the burden of excessive RAAS activation 
[90]. It is particularly effective in individuals who have unfa-
vorable side effect outcome (e.g., excessive dry cough) when 
exposed to ACE-inhibitor [91]. The absence of this widely 
noted side effect with ARBs is due to the lack of inhibi-
tion of substance P and bradykinin degradation [91]. Find-
ings related to epigenetic involvement within candesartan 
response shall be discussed below.

Pharmaco‑epigenetics of candesartan

Candesartan has been confirmed to ameliorate hypertensive 
sequelae via several mechanisms [92]. One of the mecha-
nisms is by preventing angiotensin II–induced vascular 
smooth muscle cell proliferation [37]. This effect is mediated 
by alterations of several miRNAs [37]. Notably, miRNA-
301b is shown to be a main target of candesartan [37]. It 
prevents the decrease of miRNA-301b and thus mediates 
an anti-proliferative action. Furthermore, studies show that 
inhibition of this miRNA specifically seems to minimize the 
physiologic effects of candesartan [37]. Thus, the inhibition 
of SMC proliferation is lifted [37]. MiRNA-301b prohibits 
SMC proliferation via targeting the 3’UTR of STAT3, pre-
venting its expression and thus role in the cell cycle G1/S 
transition [37]. These mechanisms delineate the role of can-
desartan and its respective miRNA counterpart in ameliorat-
ing vascular wall alterations in hypertension.

Pharmaco‑epigenetics of beta‑blockers

Beta-blockers alleviate hypertension by reducing renin 
release [93]. This is facilitated by antagonizing beta-1 
receptors on juxtaglomerular renal cells [94]. In addition, 
beta-blockers reduce heart rate by antagonizing beta-1 
receptors on cardiac cells [95]. Patients that exhibit RAAS-
mediated increase in blood pressure benefit the most from 

Table 1   Most widely utilized 
drugs in hypertensive diseases, 
the mechanisms and examples 
of which are outlined

Classes Examples Mechanism of action

ARBs Valsartan; losartan Block ATII receptors
ACE inhibitors Enalapril; lisinopril Inhibit ACE
Beta-blocker Labetalol; metoprolol Block beta receptors
Alpha blocker Terazosin; doxazosin Block alpha receptors
Calcium channel blockers Nicardipine; amlodipine Block calcium channels
Diuretics Thiazides: hydrochlorothiazide, Loop 

diuretics: Furosemide
Promote renal-based diuresis
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beta-blocker treatment. This response to beta-blocker treat-
ment has been shown to be manipulated by plasma miRNA 
[96]. This reveals a pertinent need to investigate the relation-
ship between miRNA molecules and beta-blocker treatment.

MiRNA 19a was shown to be a possible biomarker of 
beta-blocker effectiveness in the setting of patient’s selec-
tive response to antihypertensive [94]. This is mediated by 
several points of regulation in the beta-adrenergic signaling 
pathway: ADRB1 (the beta-blocker receptor protein target), 
beta-adrenergic kinase, adenylyl cyclase, and others [94]. In 
fact, beta-blocker treatment may induce miRNA 19a expres-
sion which subsequently downregulates ADRB1 expression 
[94]. Moreover, molecules such as miRNA-101 and miRNA 
let-7e have been posited to modulate antihypertensive beta-
blocker response [94]. More research is needed to eluci-
date the exact mechanistic response of these miRNAs to 
beta-blockers.

MicroRNA: dictating interpersonal beta‑blocker 
effectiveness

Different beta-blocker classes elicit various responses [97]. 
Atenolol and Nebivolol have similar effects on blood pres-
sure and heart rate. However, they differ in their effects on 
left ventricular integrity in rodent-models of hypertension. 
This is through differing effects on miRNA molecules [98]. 
Nebivolol was shown to better ameliorate left ventricu-
lar systolic function decline. In addition, it decreases the 
burden of ventricular fibrosis and remodeling [98]. This is 
achieved by preventing the decrease in levels of miRNA-
27a and miRNA-29a (which target Sp1) in rodent receiving 
high-salt diet, in addition to miRNA-133a (which targets 
Cdc42) [98]. These findings portray the various effects of 
miRNA molecules in affecting therapeutic drug response 
in addition to differential drug effects even within the same 
class of beta-blockers.

MicroRNA in the context of dyslipidemia 
and hypertension

Dyslipidemia involves an unfavorable lipid profile [99]. 
This entails high plasma low-density lipoprotein cholesterol 
(LDL-C), triglycerides (TGs), total cholesterol (TC), and 
reduced high density lipoprotein cholesterol (HDL-C) [100]. 
Atherosclerosis is a long-term sequela of dyslipidemia [101, 
102]. This phenomenon eventually disrupts blood flow in 
affected blood vessels [103]. This disruption induces a pro-
inflammatory state [104]. Peculiarly, it represses protective 
factors such as eNOS [103]. This process has been shown 
to be regulated by miRNA involvement [103]. The devel-
opment of atheromatous plaques leads to potentially lethal 
consequences such as myocardial infarction (MI) [105]. 
This appears to be influenced by miRNA molecules, such 

as miRNA-10a, -126, -145a/b, -185, -210, and -326 [103]. 
These molecules have been seen to be elevated inside these 
arterial plaques in comparison to arteries with no plaque 
[106]. Meanwhile, certain miRNA molecules appear to 
be protective [103]. These findings support the hypothesis 
that epigenetic mechanisms involving miRNA regulate not 
only hypertensive mechanisms in bringing about unfavora-
ble cardiovascular outcomes, but also dyslipidemia-related 
sequelae.

Statin overview in context of microRNA

Statins are 3-hydroxy-3methylglutaryl-coenzyme A (HMG-
CoA) reductase inhibitors [107]. They are a reliable choice 
in ameliorating unfavorable lipid profiles [108]. They hin-
der the progression of the lipid synthesis pathway. This is 
facilitated by preventing the formation of the mevalonate 
(MVA) intermediate via inhibiting the HMG-CoA reductase 
rate-limiting enzymatic step [107]. This decreases de novo 
cholesterol synthesis and increases the feedback expression 
of low-density lipoprotein receptors (LDL-R) in tissues like 
the liver. Thus, statins decrease the amount of circulating 
cholesterol in the blood [109].

It has been demonstrated that statins’ pleiotropic and 
adverse effects are mediated by miRNA molecules [110]. 
The pleiotropic effects include anti-inflammatory, antioxi-
dant, anti-thrombotic, and anti-proliferative consequences 
on the blood vessel wall. This is pertinent to hypertension 
as it reduces the vascular remodeling profile [103]. The 
involvement of miRNA processes, however, in these latter 
pleiotropic effects of statins remains to be further explored 
in future research.

Pharmaco‑epigenetics of statins

The response to statin therapy seems to be influenced by 
selective miRNA markers [110]. These markers regulate 
drug transporter and nuclear CYP450 receptors [111]. This 
is achieved by modulating CYP3A enzyme functionality and 
expression. Culprits of this regulation include miRNA-27b 
which affects CYP3A4 gene expression [103]. In fact, inter-
individual discrepancies in statin (e.g., atorvastatin) metabo-
lism is due to varying expression levels of miRNA-27b and 
miRNA-206 [103]. Moreover, miRNA-142 was affirmed 
to be a major variable in determining whether expression 
of CYP3A4 and CYP3A5 occurred. This is due to miR-
NA-142’s transcriptional silencing. MiRNA-133a has also 
been shown to play a role in mediating statin effects such as 
lovastatin in the context of endothelial cell function [103]. 
These findings reveal the pertinence of miRNA molecules 
in mediating statin effects and dictating its metabolism and 
therapeutic response.
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Aspirin and hypertension

Aspirin, the non-selective cyclooxygenase (COX) inhibi-
tor, has been widely used for its effects as an antiplatelet 
drug at low doses (< 300 mg) [112]. It prevents plate-
let aggregation via preferential irreversible blockade of 
COX-1 inside platelets [113]. This prompts the need for 
the generation of new platelets to produce thromboxane 
A2 [114]. However, its usage as a potential management 
option in hypertensive patients has been discussed in the 
literature in recent years [115]. The relevant studies have 
been limited though, with discrepancies in factors like 
concomitant drug utilization and dosage of aspirin [114]. 
Aspirin’s benefits as a possible adjunct therapeutic agent 
in the context of hypertension also differ in outcomes 
with respect to males and females [114]. Future research 
is needed to elucidate aspirin’s feasibility as an option in 
modulating arterial vascular tone, amongst other blood 
pressure effectors [10].

Pharmaco‑epigenetics of aspirin

The physiologic response to aspirin is regulated by cer-
tain miRNA molecules [116]. miRNA serve as markers for 
aspirin resistance, a condition that plagues one fourth of 
CVD patients [88]. MiRNA-135a-5p and miRNA-204-5p 
are implicated in this resistance. There are inter-individ-
ual differences in relative expression dictating varying 
response to treatment. These 2 miRNA molecules have 
been claimed to affect the expression of genes such as 
THBS1, CORO1C, CDC42, MAPRE2 [88]. Moreover, 
when indomethacin, a mimicker of aspirin in terms of 
effects, was used to monitor platelet reactivity, miRNA-
19b-1-5p expression was decreased [116]. This serves as 
an instance of insensitive drug response. This qualifies 
miRNA to be a potential biomarker of aspirin resistance 
[88].

In addition, aspirin appears to prevent the abnormal 
proliferation and calcification of VSMCs [117], a marker 
of atherosclerotic disease. Contextually, this anti-prolif-
erative and anti-inflammatory effect of aspirin in VSMCs 
is mediated, at least partly, by miRNA-145 [118]. When 
atherosclerotic plaques from patients treated with aspirin 
were compared with those from untreated patients, it was 
found that there is a significantly higher level of miR-145 
and lower CD40 levels in plaques from the treated patients 
[118]. Moreover, aspirin’s role as an antiplatelet therapeu-
tic agent also seems to be linked to miRNA regulation. 
For instance, aspirin robustly decreases the expression of 
miRNA-126 and miRNA-223 [119, 120]. These findings 
reveal the interlinkage between miRNA and responsive-
ness to aspirin.

Aspirin in pre‑eclampsia: focus on microRNA

Endothelial cell dysfunction is an infamous contributor to 
the pathogenesis of the inflammatory gestational disease, 
pre-eclampsia. This is due to reduced eNOS/NO vasodila-
tory activity when the endothelium is compromised [121]. 
Aspirin has been shown to have a preventive effect with 
regards to pre-eclampsia [122]. Indeed, evidence shows that 
aspirin could abrogate TNF-α induced endothelial dysfunc-
tion by suppressing miR-155 [121]. This is another example 
whereby a hypertensive state is influenced by aspirin via 
modulating miRNA effects.

Overview of clopidogrel in hypertension

Clopidogrel is an antiplatelet drug that serves to inhibit the 
activation and aggregation of platelets [90]. This is facili-
tated via the irreversible binding of active metabolites to the 
platelet P2Y12 variant of ADP receptors [90]. As is the case 
with aspirin, clopidogrel may have some utility in subsets 
of hypertensive patients [123]. Indeed, clopidogrel elicits 
a preventive effect on angiotensin II-induced inflammation 
and fibrosis of the heart [90].

Acute rises of blood pressure have been known to platelet 
activation, a phenomenon that clopidogrel inhibits [90]. It 
is also now recognized that hypertension is associated with 
inflammatory processes in vessel wall dynamics [124]. This 
is in part mediated by incessant platelet activation, particu-
larly in patients with microalbuminuria and vascular lesions 
[125]. In addition, another major platelet inflammatory 
mechanism known as the platelet-leukocyte conjugation is 
a culprit in this process [126]. The nature of platelet involve-
ment in vessel wall dynamics reveals a potential future use 
of clopidogrel in hypertension. However, future research 
is needed to elucidate the major potential beneficiaries of 
clopidogrel in modulating inflammation in hypertension and 
preventing adverse critical outcomes like MI.

Pharmaco‑epigenetics of clopidogrel

Clopidogrel, as an antiplatelet, is a non-active prodrug. It 
is primarily absorbed in the intestine via ABCB1 transport-
ers. It is then activated to a metabolite by CYP450 enzymes 
CYP2A4, CYP3A5, CYP2B6, CYP2C19, CYP2C9, and 
CYP1A2 [90, 127]. Irreversible ADP-receptor binding by 
way of this active metabolite thus prevents the activation of 
platelets [128]. However, conventional dosing of clopidogrel 
has shown, in a considerable percentage of recipients, to 
elicit a subpar antiplatelet response [90]. Pharmacogenomic 
bases of interpersonal differences in responses to clopidogrel 
by way of single nucleotide polymorphisms (SNPs) in cer-
tain CYP enzymes were not shown to account for the whole 
picture [90, 127]. On the other hand, miRNA molecule 
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polymorphisms were shown to play a central part in these 
interpersonal differences in responses [90]. P2RY12 and 
CYP2B6 are targets of miRNA-605 [90]. Polymorphisms 
that give rise to miRNA-605 A/G instead of the G allelic 
variant prevent the maturation of the miRNA molecules. 
This prevents the aversion of unfavorable coronary syn-
drome outcomes in patients on clopidogrel [90]. In fact, this 
polymorphism may serve as a future biomarker in the con-
text of predicting future events in patients on clopidogrel for 
the long-term [90]. These findings demonstrate the pertinent 
effect of miRNA molecules in altering clopidogrel response.

Other therapeutic strategies

With the advent of advanced molecular technologies, 
miRNA involvement as pathogenesis mediators in many dis-
eases has become more apparent. However, as delineated in 
this paper, some also serve as protective factors in hyperten-
sion. Thus, therapeutic modalities may make use of miRNA 
manipulation to maintain a balance at the cellular level with 
regards to gene regulation. In this section, potential miRNA 
therapies shall be discussed.

Chemically manipulated oligonucleotide molecules 
termed ‘antagomirs’ have been observed to target miRNA 
molecules and silence them effectively. The mode of deliv-
ery of these molecules remains an important obstacle to 
overcome in the future [129]. Nevertheless, this can herald 
several therapeutic outcomes. For example, utilizing intrave-
nously given antagomirs conjugated to cholesterol is a pos-
sible mechanism [129]. Antagomirs against miRNA-21 were 
shown to block cardiac, renal, and pulmonary fibrosis [129]. 

Moreover, it was shown that targeting both miRNA-425 and 
miRNA-155 with anti-miRNAs is effective in modulating 
ANP levels, hence ameliorating hypertension [130]. Exam-
ples of targeting miRNA in alleviating pulmonary hyperten-
sion have been delineated [131]. This includes inhibiting 
miRNA-17 via an antagomir, which leads to the upregula-
tion of the BMPR-2 pathway, thus ameliorating hypertension 
[132]. Moreover, findings have shown that restoring certain 
miRNA molecules in hepatic stellate cells may potentially 
alleviate intrahepatic portal hypertension [133]. Other mol-
ecules such as miRNA sponges, and locked-nucleic-acid 
oligonucleotides have also been studied in the context of 
diseases not isolated to the cardiovascular domain [129]. As 
a better understanding is attained with regards to miRNA 
chemical safety, stability, and delivery as a therapeutic 
modality, better outcomes can be reached [131].

Other considerations

MiRNA molecules are involved in the pathogenesis of many 
diseases, including cancer. They are interlinked with cancer 
biological processes such as angiogenesis, apoptosis, pro-
liferation, and invasion/metastasis [134]. In fact, they have 
been implicated with resistance that some cancer therapeutic 
regimens have [135, 136]. Cancer cells exhibit certain phe-
notypic profiles, through miRNA signatures; this can help 
overcome diagnostic and therapeutic dilemmas [137]. As a 
matter of fact, miRNA-based therapies have been studied in 
the context of breast cancer cases [138] (Fig. 6). These phe-
notypic markers are also exhibited in the context of spinal 
muscular atrophy through miRNA signatures as well [139]. 

Fig. 6   MiRNA molecules may 
aid in shifting the balance of 
cells towards an oncogenic 
phenotype. Others have a tumor 
suppressive function. Thera-
pies focused on manipulating 
these individualized miRNA 
molecules’ respective function 
are on the rise. This includes 
antagomirs that can silence 
certain oncogenic miRNA. 
Moreover, synthetic miRNA can 
be utilized to replace miRNA 
with loss of tumor suppres-
sor function. These can help 
prevent the propagation of 
signaling pathways that favor 
tumorigenesis
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This can also exhibit a form of biomarker tracking, which 
can help surmount therapeutic challenges. These encompass 
a few of the examples whereby a form of epigenetic signal-
ing can make all the difference. Future genomic and epige-
netic studies are required in each respective medical field to 
better help elucidate gaps in diagnostics and therapeutics.

Conclusion

Pharmaco-epigenetics is a promising field in the context of 
personalized health optimization. It is one of the major effec-
tors in predisposing to hypertension. Here, we delineated 
various means by which epigenetics plays its part, with a pri-
mary focus on how miRNA molecules could exacerbate, or 
ameliorate, hypertension. Moreover, antihypertensive drug 
response and resistance was seen to be drastically affected 
by miRNA. Further research is required to better elucidate 
the miRNA involvement in dictating antihypertensive out-
comes. Moreover, additional studies in the field of epige-
netics are needed to develop personalized antihypertensive 
pharmacologic treatment. Given the well-established thera-
pies that already being utilized for hypertension, recognizing 
the pharmaco-epigenetic implications of miRNA molecules 
affecting the response to medications is vital for providing 
maximal treatment efficacy. Finally, given the loose associa-
tions between certain discussed treatment modalities (aspi-
rin, clopidogrel, and statins) and hypertension, miRNA mol-
ecules may serve as a bridging gap in ultimately realizing 
the epigenetic understudied links of cardiovascular disease 
pathophysiology.
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