
4.52.7

A Survey on Diabetic Retinopathy
Lesion Detection and Segmentation

Anila Sebastian, Omar Elharrouss, Somaya Al-Maadeed and Noor Almaadeed

Special Issue
The Application of Machine Learning in Medical Image Processing

Edited by

Dr. Sami Bourouis, Dr. Hammam Alshazly and Dr. Ali Javed

Review

https://doi.org/10.3390/app13085111

https://www.mdpi.com/journal/applsci
https://www.scopus.com/sourceid/21100829268
https://www.mdpi.com/journal/applsci/stats
https://www.mdpi.com/journal/applsci/special_issues/M1FNS1584F
https://www.mdpi.com
https://doi.org/10.3390/app13085111


Citation: Sebastian, A.; Elharrouss,

O.; Al-Maadeed, S.; Almaadeed, N.

A Survey on Diabetic Retinopathy

Lesion Detection and Segmentation.

Appl. Sci. 2023, 13, 5111. https://

doi.org/10.3390/app13085111

Academic Editors: Grazia Maugeri,

Sami Bourouis, Hammam Alshazly

and Ali Javed

Received: 25 February 2023

Revised: 6 April 2023

Accepted: 11 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

A Survey on Diabetic Retinopathy Lesion Detection
and Segmentation

Anila Sebastian * , Omar Elharrouss, Somaya Al-Maadeed and Noor Almaadeed

Department of Computer Science and Engineering, Qatar University, Doha P.O. Box 2713, Qatar

* Correspondence: as2000657@qu.edu.qa

Abstract: Diabetes is a global problem which impacts people of all ages. Diabetic retinopathy (DR) is a

main ailment of the eyes resulting from diabetes which can result in loss of eyesight if not detected and

treated on time. The current process of detecting DR and its progress involves manual examination by

experts, which is time-consuming. Extracting the retinal vasculature, and segmentation of the optic

disc (OD)/fovea play a significant part in detecting DR. Detecting DR lesions like microaneurysms

(MA), hemorrhages (HM), and exudates (EX), helps to establish the current stage of DR. Recently with

the advancement in artificial intelligence (AI), and deep learning(DL), which is a division of AI, is

widely being used in DR related studies. Our study surveys the latest literature in “DR segmentation

and lesion detection from fundus images using DL”.

Keywords: diabetic retinopathy; deep learning; retinal blood vessel segmentation; lesion detection;

retinal fundus images

1. Introduction

The number of people diagnosed with diabetes has been increasing at an alarming rate
during the past two decades. This accounts for almost half a billion people in the world as
per the IDF Diabetes Atlas [1], which makes it a global health concern. This includes people
of all ages. By 2045, this figure is supposed to reach seven hundred million and by the year
2040, one in three persons with this ailment will have DR, which is an ailment characterized
by the occurrence of damaged blood vessels in the back of the retina. If it is not detected in
a timely manner, it can lead to serious problems, like loss of sight. This makes DR a topic
of the utmost importance. Doctors must physically analyze fundus images to determine
the presence of this disease and to grade it. Fundus images offer graphical records that
detail the current ophthalmic form of an indvidual’s retina. This is a very time-consuming
process, and in many countries the number of available trained professionals may not
be proportionate to the number of patients. This may hinder providing timely treatment
to many patients. Diabetes patients are instructed by doctors to have a routine medical
screening of their fundus. Still many DR cases are left unnoticed until they reach a critical
state. Due to this reason, it is advantageous to have computerized systems that assist in the
diagnosis of DR.

Researchers are developing automated systems for DR diagnosis by identifying the
existence of certain DR lesions in fundus images. Few of the DR lesions include MA, HM,
EX consisting of soft exudates (SE) and hard exudates(HE). DR grades are also established
with the help of lesions present in the fundus. For example, the preliminary stage of DR is
marked by the beginning of the growth of new blood vessels whose walls weaken, and tiny
bulges or MA protrude from them. Later, when DR progresses to proliferative DR, other
lesions like HE and SE may develop. HE are little white/yellowish-white deposits with
crisp boundaries whereas, SE/Cotton-wool spots are light yellow or white areas which
have unclear edges. Additionally, abnormal blood vessels may grow and bleed causing HM.
Hence, some researchers are focusing on the detection and segmentation of DR lesions like
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MA, HM, and EX which will aid in developing better DR diagnoses/grading for automated
systems. For example, Figure 1 shows each of these DR lesions, whereas Figure 2 provides
a visualization of a healthy retina vs an unhealthy retina.

Figure 1. Diabetic Retinopathy Lesions [2].

(a) Healthy retina. (b) Unhealthy retina.

Figure 2. Visualization of a healthy retina and an unhealthy retina [3].

There are many challenges to developing such automated systems. The size of these
lesions vary in a temporal manner and the OD, and fovea may be mistaken for lesions.
Due to this reason, some researchers are focusing on OD/fovea detection which can also
help to improve such systems. Another category of studies that are related to DR include
retinal blood vessel segmentation studies. These are important to detect several medical
disorders like DR and hypertensive retinopathy. Atypical variations in the retinal vessel
will give an idea of the severity of several non-ophthalmic ailments like DR, diabetes
mellitus, hypertension, arteriosclerosis, cardiovascular disease, and stroke [4]. Hence, it is
important for diagnosing these diseases, especially DR.

Several DL methods were used by researchers to accomplish these types of DR studies.
We present a review of the current literature in this field by emphasising how DL has been
applied to DR segmentation and lesion detection from fundus images. Deep learning is a
section of artificial intelligence which uses artificial neural networks with many processing
layers for steadily extracting high-level features from the data.

This article is organized as follows: the studies that were reviewed associated with
segmentation and lesion detection are shown in Section 2. Section 3 illustrates the datasets
used. These are followed by an evaluation and discussion of these methods in Section 4.
After this we have compiled a list of some possible future directions in this area of study in
Section 5. Lastly, a conclusion is provided in Section 6.
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2. Related Works

The DR studies reviewed in this article have been classified into two categories which
include traditional-based approaches and DL-based studies.

Different traditional methods are being used for retinal blood vessel segmentation
as well as for lesion detection from fundus images. Detection and counting of MA were
done by the authors in [5] by using morphological operations, histogram equalization, and
intensity transformation functions. HM segmentation was performed by the authors of [6]
using histogram equalization and morphological operations on the green channel image of
fundus images.

Several traditional methods have been used for EX detection like thresholding, mor-
phology, edge detection, mixture modeling, and region growing. Grayscale morphology
was used along with active contour-based segmentation and region-wise classification by
the authors of [7] for automatic EX detection. The authors used a blend of region growing
and edge detection in [8]. They used the Luv color space to get the color difference image of
objects. A mean squared Wiener filter in two dimensions was used to remove noise which
was trailed by edge detection and an enhancement of the region growing method. Gray
level thresholding was used by the authors in [9] since EX have high local and gray levels.
The local properties of EX were exploited and a blend of global as well as local histogram
thresholding was used by them. Sanchez et al. [10] used an EX detection method built
using mixture models for obtaining image histograms. This helped them get a dynamic
threshold for every image. Some machine learning approaches have also been used in
the literature. Niemeijer et al. [11] used the k-nearest neighbor classifier for detecting red
lesions from fundus images. A ranking SVM-boosted convolutional neural network (CNN)
was utilized for EX detection by the authors of [12]. Damaged or falsely detected OD and
HM were also detected by them.

Retinal blood vessel segmentation using a top-hat morphological transform followed
by hybrid median filtering was performed by the authors in [13]. Quinn and Krishnan [14]
performed a contrast adjustment of the green channel of the image trailed by curvelet
transform and morphological reconstruction for retinal blood vessel segmentation. A math-
ematical morphology-based fuzzy algorithm method was used for OD elimination followed
by retinal blood vessel extraction by the authors of [15].

The DL-based DR studies reviewed in this study have been categorized into two types
which include segmentation-based studies and lesion detection-based studies. Figure 3
captures these two distinct types of DR studies.

Figure 3. Categorisation of Diabetic Retinopathy studies reviewed.
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2.1. Diabetic Retinopathy Lesion Detection

The studies that were devoted to the detection of DR lesions like MA, HM, and EX
fall under this category. Another group of studies detected multiple lesions as well as OD.
A set of proposed methods are discussed in this section as well as a summarization of them
in terms of techniques and datasets used in Table 1 summarizes.

Some studies reviewed, focused on detecting EX. Raja and Balaji [16] used adaptive his-
togram equalization for preprocessing followed by blood vessel segmentation using CNN.
After this, EX segmentation was performed using fuzzy c-means clustering. Finally, DR
classification was achieved using SVM. Adem [17], combined a circular Hough transform
with CNNs to detect EX. The circular Hough transform helps to ignore OD. EX detection
was performed after segmentation of EX. SVM based on the ranking was implemented
along with CNN architecture to accurately segment fundus images by the authors in [12].
They also detected EX after segmentation. HE detection with deep CNN and multi-feature
joint representation was performed by Wang et al. [18] using a new methodology. They
utilized combined features that included deep features as well as handcrafted features. HE
detection using SVM blended with a speedier region-based CNN (RCNN) was performed
by the authors of [19]. Wang et al. [20] performed EX classification. They used a CNN to
investigate if the classification performance improves if more importance was given to the
image characteristic inside an EX. The outcomes showed that the performance improved.
Recurrent neural network (RNN) based semantic features were used for EX segmentation
by the authors of [21] for detecting DR. Huang et al. [22] used a super-pixel segmentation al-
gorithm, followed by multi-feature extraction and patch generation. Finally, CNN was used
for HE detection. RCNN with MobileNet was utilized as a feature extractor by the authors
of [23] for EX detection. Mateen et al. [24] used pre-trained Inception-v3, ResNet-50, and
VGG-19 to perform feature extraction before EX classification using the softmax classifier.
Another study by the authors of [25] used three different models including SqueezeNet,
ResNet50, and GoogLeNet for EX detection. Among these three, ResNet50 was found to
provide the best results. A CNN with residual skip connection was used for EX detection
by the authors in [26]. The architecture used was called RTC-net.

Few studies focused on MA detection. Multi-scale residual network (MSRNet) was
used for segmentation by the authors of [27] to detect tiny MA. It was based on U-Net
architecture. After this, classification was achieved using MS-EfficientNet (multi-scale
efficient network). Qiao et al. [28] used the prognosis of MA for DR grading into three,
which includes early NPDR, moderate NPDR, and severe NPDR. Deep CNN was used
to perform semantic segmentation of fundus images. Gaussian answer Laplacian (LOG)
and maximum matching filter response (MFR) filters were used for lesion identification.
Feature extraction using VGG and Inception V3 backbones, alongside transfer learning
was utilized for MA detection by the authors of [29]. After this, several machine learning
classifiers were used for classifying input images. Qomariah et al. [30] modified the U-Net
model and used it for MA segmentation. Residual units with modified identity mapping
were used in this new model known as MResUNet. Subhasree et al. [31] made use of
three different transfer learning-based CNN models for MA detection. These consisted of
VGG-16, Inception V3, and ResNet50. They also performed the same task by making use of
a random forest approach.

Some studies did a general detection of DR lesions. Conditional generative adver-
sarial network (cGAN) was used for pixel-level lesion segmentation by combining with
holistically-nested edge detection (HEDNet) by the authors in [32], and it was found that
adversarial loss advances the lesion segmentation performance. An approach known
as super-pixel-based segmentation was used by the authors of [33] to compare the per-
formance of three different algorithms under a single unified framework in performing
multi-lesion detection. Out of these, a compacted watershed algorithm was found to be
faster, whereas a linear spectral clustering (LSC) algorithm generated better segmentation
results. After this, a single-layer CNN was used to detect lesions. Dai et al. [34] introduced
a novel system called DeepDR comprising of three sub-networks (based on ResNet and
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Mask-RCNN) to grade DR using a large dataset collected between 2014 and 2017. Lesion
segmentation was performed before DR grading. The Javeria segmentation (JSeg) model, a
novel model with the ResNet-50 model as the backbone, was utilized for segmentation by
the authors in [35]. In their next phase, Resnet-101 was used for feature extraction built
on the equilibrium optimizer (EO). After this, support vector machine (SVM) and neural
network classifiers were used for grading lesions. The YOLOv3 model was used for lesion
localization by the authors in [36]. It was fused with the CNN512 model to grade DR and
localize DR lesions. Wang et al. [37] introduced a new model called adaptive multi-target
weighting network (AMWNet) to segment DR lesions. It consisted of an encoder, decoder
and an adaptive multi-target weighting module. After this reverse data recovery network
(RRN) was used to replicate the cycle perception as part of the hierarchy. DR lesion detec-
tion using a CNN-based one-shot detector was used by the authors in [38]. The YOLOv4
deep neural network (DNN) architecture was used along with the Darknet framework.

Many studies reviewed, detected multiple DR lesions. Pixel-wise segmentation of MA,
EX, and OD were achieved by the authors of [39] using a novel membrane system termed
“dynamic membrane system” and mask R-CNN. MA and EX segmentation was performed
by the authors of [40] by using a revised U-Net architecture which was grounded on the
residual network. U-Net with incremental learning was used by the authors in [41] for EX
and HM segmentation. A new incremental learning standard was introduced to excerpt the
acquaintance gained by the preceding model to advance the present model. Another study
that detected EX and HM was performed by the authors in [42]. They performed a semantic
segmentation with three classes and used a color space transformation along with U-Net.
Ananda et al. [43] used one individual network per one type of lesion related to DR (e.g.,
one network for MA, one network for HE, etc.). They found that this modification yielded
better results for U-Net to classify MA, SE, and HM and detect DR. U-Net segmentation
followed by classification using support vector machine was achieved by the authors of [44]
for grading DR by detecting some DR lesions. Blood vessels, EX, MA, and HM were
segmented for this purpose. A nested U-Net architecture known as U-Net++ was used for
red lesion segmentation (MA and HM segmentation) from fundus images by the authors
in [45]. This was followed by sub-image classification using ResNet-18 to reduce false
positives. Another study that focused on red lesion detection was one by the authors of [46].
For this purpose, they fine-tuned various pre-trained CNN models with an augmented set
of image patches and found ResNet50 to be the best. They modified it with reinforced skip
connections to get a new model called DR-ResNet50.

The authors in [47] used MA, EX, and HM diagnosis to detect DR by using regions with
CNNs (R-CNN). Feature extraction using the VGG19 model trialed by classification using
different machine learning classifiers by the authors of [48]. They identified and classified
DR lesions into MA, SE, HE, and HM. A single-scale CNN (SS-CNN) followed by a multi-
scale CNN (MS-CNN) was used by the authors of [49] to perform pixel-level detection of
MA and HM. Four DR lesions, including MA, HE, SE, and HM, were segmented by the
authors of [50] using a relation transformer network (RTNet). In this, a relation transformer
block was incorporated into attention mechanisms in two levels. Another new model
was used to detect these same four lesions by the authors in [51]. It was called faster
region-based CNN (RCNN) and was a combination of a regional proposal network (RPN)
and fast-RCNN. Another new model known as deeply-supervised multiscale attention
U-Net (Mult-Attn-U-Net) was used by the authors of [52] for detecting MA, EX, and HM. It
was based on the U-Net architecture. Dual-input attentive RefineNet (DARNet) was used
by the authors in [53] to detect four DR lesions including HE, SE, HM, and MA. DARNet
included a global image encoder, local image encoder, and attention refinement decoder.
The same authors used a cascade attentive RefineNet for detecting the same four DR lesions
in another study [54]. CARNet included a global image encoder, a patch image encoder,
and an attention refinement decoder. A YOLOv5 model along with a genetic algorithm was
used by the authors in [55] to detect MA, SE, HE, and HM. Another study by the authors
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of [56] detected MA, EX, and HM with the help of a CNN along with a SVM. Prior to this,
they used a U-Net to segment OD and retinal blood vessels for feature extraction.

Three studies among the reviewed works, focused on the segmentation of the DR lesion
called HM. Skouta et al. [57] made use of a U-Net architecture for detecting the presence
of HM. Aziz et al. [58] utilized a novel CNN model known as HE network (HemNet) for
HM detection. Quality enhancement, seed points extraction, image calibration, and smart
window-based adaptive thresholding were performed prior to training this model. A 3D
CNN deep learning framework with feature fusion was used to perform HM detection by
the authors in [59]. A variation of the traditional CLAHE method was for pre-processing to
achieve better edge detection.

Table 1. Deep Learning based approaches for diabetic retinopathy lesion detection.

Type Method Year Technique Dataset

Exudates

Adem [17] 2018 Adaptive histogram equalization, CNN DIARETDB0, DIARETDB1

Raja and Balaji [16] 2019 CNN and fuzzy c-means clustering, SVM DRIVE, STARE

Wang et al. [20] 2019 CNN Self-collected

Wang et al. [18] 2020 Deep CNN,multi-feature joint representation E-Optha, DIARETDB1

Mateen et al. [24] 2020 Inception-v3, ResNet-50 and VGG-19 DIARETDB1, E-ophtha

Ghosh and Ghosh [12] 2021 rSVM, CNN STARE, DIARETDB0, DIARETDB1

Kurilová et al. [19] 2021 SVM, RCNN, ResNet-50 E-ophtha, DIARETDB1, MESSIDOR

Huang et al. [22] 2021 Patch-based deep CNN DIARETDB1, E-ophtha, IDRiD

Bibi et al. [23] 2021 RCNN DIARETDB1, E-ophtha

Cincan et al. [25] 2021 SqueezeNet, ResNet50 and GoogLeNet -

Sivapriya et al. [21] 2022 RNN MESSIDOR

Manan et al. [26] 2022 RTC-net DIARETDB1, E-ophtha

Microaneurysms

Qiao et al. [28] 2020 Deep CNN IDRiD

Qomariah et al. [30] 2021 MResUNet DIARETDB1, IDRiD

Xia et al. [27] 2021 MSRNet, MS-EfficientNet E-Ophtha, IDRiD, DRIVE, CHASE DB1

Subhasree et al. [31] 2022 VGG-16, Inception V3, and ResNet50 E-Ophtha, DIARETDB1

Gupta et al. [29] 2022 VGG, Inception V3 ROC

Multiple Lesions

Xiao et al. [32] 2019 cGAN, HEDNet IDRiD

Ananda et al. [43] 2019 U-Net, SegNet IDRiD, MESSIDOR

Praveena and Lavanya [33] 2019 Super-pixel based segmentation DIARETDB1, DRiDB, HRF

Xue et al. [39] 2019 CNN IDRiD, E-Optha, MESSIDOR

Gupta et al. [48] 2019 VGG-19 IDRiD

Nazir et al. [51] 2020 RCNN DIARETDB1, MESSIDOR

Sambyal et al. [40] 2020 Modified U-Net architecture IDRiD, E-Optha

He et al. [41] 2020 U-Net, Incremental learning -

Dai et al. [34] 2021 ResNet, Mask-RCNN Self-collected

Alyoubi et al. [36] 2021 YOLOv3, CNN512 DDR

Wang et al. [37] 2021 AMWNet IDRiD

Abdelmaksoud et al. [44] 2021 U-Net, SVM DRIVE, STARE, CHASEDB1, E-ophtha

Li et al. [49] 2021 SS-CNN, MS-CNN DIARETDB1

Basu and Mitra [52] 2021 Mult-Attn-U-Net IDRiD

Santos et al. [38] 2021 YOLOv4 with darknet DDR

Amin et al. [35] 2022 JSeg model IDRiD

Kundu et al. [45] 2022 U-Net++, ResNet-18 MESSIDOR, DIARETDB1

Latchoumi et al. [47] 2022 R-CNN -
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Table 1. Cont.

Type Method Year Technique Dataset

Multiple Lesions

Huang et al. [50] 2022 RTNet IDRiD, DDR

Guo and Peng [53] 2022 DARNet IDRiD, DDR, E-ophtha

Guo and Peng [54] 2022 CARNet IDRiD, DDR, E-ophtha

Ashraf et al. [46] 2022 DR-ResNet50 DIARETDB1, E-ophtha, IDRiD

Santos et al. [55] 2022 YOLOv5 DDR

Selçuk et al. [42] 2022 U-Net MESSIDOR, DIARETDB1

Jena et al. [56] 2023 U-Net, CNN APTOS, MESSIDOR

Hemorrhage

Maqsood et al. [59] 2021 3D CNN with feature fusion
DIARETDB0, DIARETDB1,
MESSIDOR, HRF, DRIVE, STARE

Skouta et al. [57] 2022 U-Net IDRiD, DIARETDB1

Aziz et al. [58] 2023 HemNet DIARETDB0, DIARETDB1

2.2. Diabetic Retinopathy Retinal Blood Vessel/Optic Disc Segmentation

This category includes those studies which performed retinal blood vessel segmenta-
tion as well as those which performed OD/region of interest (ROI) segmentation. Most
studies fall under the first type, which helps to study the vascular tree and can thus help
assess the current medical condition of the patient’s eyes. Other studies focused on optic
disc (OD)/fovea segmentation and ROI segmentation. These studies can aid the feature
extraction process required for developing automatic DR diagnosis systems by helping to
remove unnecessary features before doing them [60].

One of the most preferred DL methods for segmentation is to use CNNs [61–65]. The pres-
ence of neovascularization was used to spot proliferative DR by the authors in [66]. Different
layers of CNNs were modeled together with VGG-16 net architecture for this. They per-
formed blood vessel segmentation to remove the extra features before doing the classification.
Chala et al. [67] used a multi-encoder decoder architecture with two encoder units, as well as
a decoder unit for retinal blood vessel segmentation. Aujih et al. [68] studied how the U-Net
model performs for the same purpose. Dropout and batch normalization with various set-
tings were utilized for this. Batch normalization was found to make U-Net learn faster but
degraded the performance after epoch thirty. They also studied how the presence/absence
of retinal blood vessel segmentation affected the DR classification performance using Incep-
tion v1. Burewar et al. [69] made use of U-Net for retinal segmentation with region merging.
After this, CNN with ReLU activation function and max-pooling was utilized to perform
DR grading. Yadav [70] applied a dual-tree discrete Ridgelet transform (DT-DRT) to fundus
images for feature extraction from ROIs and used a U-Net-based method for retinal blood
vessel segmentation after this. The U-Net++ architecture was used to extract the retinal
vasculature by the authors in [71]. They used the extracted features to predict DR in the
next stage of their experiment. A context-involved U-Net was used to perform retinal blood
vessel segmentation in the study by the authors in [72]. They made use of patch-based loss
weight mapping to improve the segmentation of thin blood vessels. Another study by the
authors in [73] used an encoder enhanced atrous U-Net to extract the retinal vasculature
from fundus images. They introduced two additional layers to the encoder at every stage
to enhance the extraction of edge information. Jebaseeli et al. [74] utilized contrast limited
adaptive histogram equalization (CLAHE) to perform pre-processing. After this, feature
generation and classification were performed. The former step was accomplished using
the tandem pulse coupled neural network model and the latter was achieved using DL
based support vector machine (DLBSVM). DLBSVM also extracted the blood vessel tree
from the fundus images. Similar work was done by the authors of [75]. Another study by
the authors of [76] made use of a pool-less residual segmentation network (PLRS-Net) for
retinal blood vessel segmentation, which could segment smaller vessels better. They used
two pool-less approaches called PLRS-Net and PLS-Net (pool-less segmentation network)
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which did not require any pre/post-processing. A multilevel deep neural network with a
three-plane preprocessing method was used by the authors of [77] for retinal blood vessel
segmentation. The first four convolutional layers of VGG-16 were fine-tuned for blood
vessel feature extraction. Jin et al. [78] performed retinal blood vessel segmentation using a
new model known as deformable U-Net (DUNet). This model combined the benefits of
the U-Net architecture with those of a deformable convolutional network. Another new
network followed, a network called NFN+ was used by the authors of [79] to segment
retinal blood vessels. A distinct cascaded design, along with inter-network connections
made this model unique. Distinctive segmentation of thick as well as thin retinal blood
vessels was performed by the authors of [80] by using a three-stage DL model. These stages
consisted of the segmentation of thick vessels, the segmentation of thin vessels, and the
fusion of vessels. Another model known as multi-scale CNN with attention mechanisms
(MSCNN-AM) was used by the authors in [81] to segment retinal blood vessels using
various dimensions. Atrous separable convolutions which had differing dilation rates were
used to seize global and multi-scale vessel data more effectively. Li et al. [82] used an
enhanced U-Net architecture in order to segment retinal blood vessels. They made use of
data from the West China Hospital of Sichuan University to perform their experiments.
Three DL models consisting of SegNet, U-Net, and CNN were used by the authors of [83]
for the same task. The SegNet model was found to be better than the other two models in
segmenting both thin and thick blood vessels. A back propagation neural network was
utilized by the researchers in [84] to extract the retinal vasculature from fundus images.
They could obtain a reduction in operation time in addition to improved accuracy. A pre-
processing AlexNet block followed by an encoder-decoder U-Net model was utilized by
the authors in [85] to extract the retinal vasculature. Their study aimed to support the
diagnosis of several ophthalmological diseases including DR. Another similar study that
performed extraction of the retinal vasculature was performed by the authors in [86] and
used a multi-scale residual CNN known as MSR-Net, along with a generative adversarial
network (GAN). The generator of the GAN was a segmentation network, whereas the
discriminator was a classification network. Another GAN called Pix2Pix GAN was used
by the authors in [87] for retinal blood vessel segmentation to help studies that detect
different ophthalmological diseases. A novel model known as D-MNet with multi-scale
attention and a residual mechanism, was used by the authors in [88] for retinal blood
vessel segmentation. It was used along with an enhanced version of pulse-coupled neural
network to achieve this task.

Some studies performed OD segmentation. This was achieved by using an encoder-
decoder with the VGG-16 backbone by the authors of [89]. Convolutional long short
term memory was merged into the encoder to improve accuracy. Kumar et al. [90] used
a mathematical morphology operation before extracting the retinal blood vessels from
fundus images. OD segmentation was done with the help of watershed transform. Finally,
classification was done using radial basis function neural network (RBFNN). Yeh et al. [91]
used a preprocessing technique for OD segmentation called local differential filter (LDF).
Good prediction results were obtained when LDF was used for U-Net model training data
to differentiate between OD and background regions. Retinal blood vessel segmentation, as
well as extraction of the optic disc as well as fovea centers, were performed by the authors
in [92] using an end-to-end encoder-decoder network known as DRNet. Shankar et al. [93]
introduced a deep CNN model named Synergic DL model for retinopathy grading. They
also performed histogram-based OD segmentation prior to this.

Another set of studies in this category focused on ROI segmentation. An algorithm
named “adaptive-learning-rate-based” enhanced GMM was used for ROI segmentation
in fundus images by Mansour [94]. After this, they used connected component analysis
(CCA) to process the input to AlexNet architecture. This was followed by feature selection
and grading using a polynomial kernel-based SVM classifier. Active DL was used in a
seven-layer CNN architecture (ADL-CNN) by Qureshi et al. [95] to automatically grade
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the images into the five stages of DR after retinal blood vessel segmentation as well as ROI
localization. Table 2 summarizes the studies that were presented in this section.

Table 2. Deep-learning based approaches for diabetic retinopathy segmentation.

Study Year Method Dataset

Aujih et al. [68] 2018 U-Net, InceptionV1 MESSIDOR

Burewar et al. [69] 2018 U-Net segmentation DRIVE

Yan et al. [80] 2018 CNN STARE, DRIVE, CHASE-DB1

Jebaseeli et al. [74] 2019 TPCNN, DLBSVM STARE, DRIVE, HRF, REVIEW, DRIONS

Li et al. [82] 2019 U-Net -

Jebaseeli et al. [75] 2019 TPCNN, DLBSVM STARE, DRIVE, HRF, REVIEW, DRIONS

Samuel and Veeramalai [77] 2019 DNN STARE, DRIVE, HRF

Jin et al. [78] 2019 DUNet STARE, DRIVE, HRF, CHASE-DB1

Yeh et al. [91] 2020 U-Net architecture Self-collected

Kumar et al. [90] 2020 RBFNN DIARET DB0,DIARET DB1

Shankar et al. [93] 2020 Deep CNN model-SDL MESSIDOR

Wu et al. [79] 2020 NFN+ STARE, DRIVE, CHASE-DB1

Fu et al. [81] 2020 MSCNN-AM STARE, DRIVE, CHASE-DB1

Hasan et al. [92] 2020 DRNet IDRiD, HRF, DRIVE

Liu [84] 2021 Back propagation neural network MESSIDOR, DRIVE

Qureshi et al. [95] 2021 ADL-CNN EyePACS

Saranya et al. [66] 2021 VGG-16 net architecture DRIVE, STARE

Chala et al. [67] 2021 Multi-encoder decoder architecture STARE,DRIVE

Popescu et al. [87] 2021 Pix2Pix GAN CHASE DB1, DRIVE,STARE

Sathananthavathi and Indumathi [73] 2021 Encoder enhanced atrous U-Net CHASE DB1, DRIVE, STARE, HRF

Deng and Ye [88] 2022 D-MNet, pulse-coupled neural network CHASE DB1, DRIVE, STARE, HRF

Yadav [70] 2022 U-Net architecture CHASE DB1, DRIVE,STARE

Gargari et al. [71] 2022 U-Net++ architecture DRIVE, MESSIDOR

Zhang et al. [72] 2022 Context-involved U-Net DRIVE, CHASE-DB1, STARE, HRF

Arsalan et al. [76] 2022 PLRS-Net, PLS-Net DRIVE, CHASE-DB1, STARE

Maiti et al. [89] 2022 Encoder-decoder with VGG-16 DRIVE, DIARETDB0, CHASE-DB1, STARE

Elaouaber et al. [83] 2022 SegNet, U-Net, CNN DRIVE, CHASE-DB1, HRF

Prajna and Nath [85] 2022 AlexNet, U-Net DRIVE, ARIA, MESSIDOR

Kar et al. [86] 2022 MSR-Net, GAN DRIVE, ARIA, CHASE-DB1, STARE, HRF

3. Datasets Used for Diabetic Retinopathy Segmentation/Lesion Detection

The datasets being employed have a significant role in the accomplishment of the
DL studies reviewed here. Some factors like the quality of these datasets, as well as the
precision of their annotations, impact the results of such studies. Therefore, it will be useful
to have a list of a few generally utilized fundus image datasets for DR segmentation/lesion
detection. We have presented such a list in Table 3.

Some of the generally utilized, publicly accessible datasets in such studies include
DRIVE, STARE, IDRiD, E-ophtha, MESSIDOR, DIARET DB1, and DIARET DB0. Images
gathered during a DR assessment program in the Netherlands were employed to create the
dataset known as Digital Retinal Images for Vessel Extraction (DRIVE). It consists of twenty
images each for training and testing sets [96]. The STARE dataset was collected as part of a
project known as STARE (Structured Analysis of the Retina). It provides forty hand-labeled
images for blood vessel segmentation [97]. The Indian DR Image Dataset (IDRiD) provides
groundtruth for DR and Diabetic Macular Edema (DME). It contains annotations for DR
grading, DR lesions, and optic disc [98]. The E-Optha dataset comprises of two sub-datasets
called E-Optha-MA and E-Optha-EX [99]. Just as their names indicate these datasets have
been annotated for EX and MA correspondingly. Another dataset known as DIARETDB1
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has been annotated by four medical experts for DR lesions like MA and EX [100]. The
MESSIDOR dataset was part of the MESSIDOR project and has been publicly available
since 2008 [101]. The DDR dataset was collected from 9598 patients and 757 images with
DR have been annotated for DR lesions [102].

Table 3. Datasets used for Diabetic Retinopathy Segmentation/Lesion Detection.

Dataset No. of Images Image Size

DIARETDB0 130 1500 × 1152

DIARETDB1 89 1500 × 1152

STARE 400 700 ×605

DRIVE 40 768 × 584

IDRiD 516 4288 × 2848

E-Ophtha 463 Different sizes

MESSIDOR 1200 Different sizes

HRF 45 3504 × 2336

REVIEW 16 1360 × 1024

DRIONS 110 600× 400

CHASE DB1 28 999 × 960

DDR 13,673 Different sizes

ARIA 143 768 × 576

Out of these datasets, DRIVE and STARE datasets are the highly applied datasets for
retinal blood vessel segmentation. However, since manual annotation of the retinal blood
vessels is time consuming and tedious, these datasets have very few images. Datasets
like IDRiD, E-Optha MA, DIARET DB0, and DIARET DB1 have been annotated for MA
detection. E-Optha EX, IDRiD, DIARET DB0, and DIARET DB1 have been annotated for
EX detection. Whereas the annotation for OD is available for MESSIDOR and DIARET
DB1 datasets. It was noted that only very few datasets are annotated for retinal blood
vessel segmentation and for lesion detection. This may be because marking retinal blood
vessels manually will require a lot of time, as well as effort, and annotating lesions demands
intra-annotator agreement and high annotation precision. Due to this reason, the majority
of the studies utilized more than one dataset for training as well as validation.

4. Discussion

Several DL architectures were used to effectively perform DR segmentation and lesion
detection tasks in the studies reviewed in the previous section. Some examples of these
architectures/models are ResNet, Inception, EfficientNet, U-Net, and Encoder-Decoder.
Apart from these, most studies used different pre-processing techniques for gaining better
performance and for image enhancement. This can include different steps like intensity
conversion, image variation attenuation, contrast enhancement, and denoising [103]. Since
there will be a huge disparity in the retinal color of different patients, attenuation of fundus
images may have to be done. Additionally, to make the features in an image distinctly
visible, intensity conversion can be used. Another pre-processing step is the denoising of
fundus images. This is necessary, since throughout the image acquisition procedure plenty
of noise may have been introduced in these images. Lastly, since there will be highest
contrast at the image centre for fundus images, which steadily reduces when moving
away from the centre, contrast enhancement may have to be performed. Additional pre-
processing steps consist of image resizing, grayscale conversion, gaussian filtering, applying
CLAHE [74], and doing several image augmentations using techniques like rotation, flip,
and zoom. Some morphological operations like erosion, dilation, top-hat transformation,
and bottom-hat transformation were accomplished on the green channel images of the
fundus images as pre-processing in [90]. Hasan et al. [92] resized and standardized the
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images as part of pre-processing. They also performed image augmentation and generated
2D heatmaps as pre-processing.

The studies under review can be compared using several metrics like accuracy, sen-
sitivity, and specificity. These are some of the most commonly used metrics in computer
vision. This part presents the results attained per dataset by utilizing the cited methods
for segmentation or lesion detection. This has been done by reporting the results with
the help of tables and figures to identify the best-performing deep-learning architectures
for these tasks. Tables 4–6 present an evaluation of the results achieved by a few studies
which were assessed in this study. A visual comparison of some studies that performed
retinal blood vessel segmentation, MA detection, and HE detection have been provided
in Figures 4 and 5. Finally, Figure 6 provides a comparison of the results attained by re-
searchers for deep-learning-based HE and MA detection on the IDRiD dataset, which is
one of the biggest and most highly used datasets preferred by researchers for DR segmenta-
tion/lesion detection.

Figure 4. Retinal blood vessel segmentation results on the DRIVE dataset using [75,76] methods,

respectively. Left: Original Image. Middle: Ground-truth, Right: Segmentation Result.

Microaneurysm detection Microaneurysm detection

Hard Exudates detection Hard Exudates detection

Figure 5. comparison of deep-learning-based diabetic retinopathy microaneurysm detection and

hard exudates detection results performed by [35,43] respectively on the IDRiD dataset.
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Table 4. Performance comparison of deep-learning based diabetic retinopathy segmentation.The

bold and underlined fonts correspondingly show the first and second place.

Dataset Method Accuracy Sensitivity Specificity

STARE

Jebaseeli et al. [74] 0.997 0.806 0.997

Chala et al. [67] 0.965 0.81 0.984

Yadav [70] 0.986 0.812 -

Saranya et al. [66] 0.95 0.938 0.99

Arsalan et al. [76] 0.972 0.864 0.98

Jebaseeli et al. [75] 0.991 0.707 0.996

Samuel and Veeramalai [77] 0.965 0.898 0.97

Jin et al. [78] 0.964 - -

Wu et al. [79] 0.967 0.986 0.796

Yan et al. [80] 0.964 0.774 0.986

Fu et al. [81] 0.966 0.841 0.981

Kar et al. [86] 0.949 0.844 0.964

Popescu et al. [87] 0.915 0.818 0.942

Zhang et al. [72] 0.967 0.8 0.986

Sathananthavathi and Indumathi [73] 0.945 0.802 0.956

Deng and Ye [88] 0.973 0.827 0.985

DRIVE

Jebaseeli et al. [74] 0.99 0.803 0.998

Chala et al. [67] 0.972 0.821 0.988

Yadav [70] 0.977 0.821 -

Hasan et al. [92] 0.999 0.962 -

Burewar et al. [69] 0.933 - -

Arsalan et al. [76] 0.968 0.827 0.982

Jebaseeli et al. [75] 0.99 0.701 0.995

Samuel and Veeramalai [77] 0.961 0.828 0.974

Jin et al. [78] 0.957 - -

Wu et al. [79] 0.958 0.799 0.981

Yan et al. [80] 0.954 0.763 0.982

Fu et al. [81] 0.956 0.834 0.973

Elaouaber et al. [83] 0.977 0.967 0.996

Liu [84] 0.958 0.814 0.906

Gargari et al. [71] 0.989 0.941 0.988

Prajna and Nath [85] 0.906 0.918 0.905

Kar et al. [86] 0.974 0.894 0.988

Popescu et al. [87] 0.921 0.834 0.961

Zhang et al. [72] 0.957 0.785 0.982

Sathananthavathi and Indumathi [73] 0.958 0.792 0.971

Deng and Ye [88] 0.968 0.836 0.981

4.1. Diabetic Retinopathy Segmentation

DR segmentation-based studies include those studies that segment retinal blood
vessels, OD, or ROI from fundus images. Tables 4 and 5 provides a comparison of the
reviewed DR retinal blood vessel segmentation studies grouped according to the datasets
used by them. The segmented results obtained will be helpful for extended research in the
area of DR. According to these tables, it is obvious that most of the studies obtained good
accuracies but the specificity and sensitivity values are unavailable for some studies. It is
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clear that on the STARE dataset, the authors of [74] attained the highest accuracy value of
99.7% which is better by 0.6% than the second highest accuracy value of 99.1%, obtained by
the authors in [75] and 1.1% better than the accuracy values obtained by other methods.
They could also achieve the highest specificity value compared to other methods. Whereas,
when sensitivity is taken into account, the highest value was obtained by the authors in [66].

Table 5. Performance comparison of deep-learning based diabetic retinopathy segmentation. The

bold and underlined fonts correspondingly show the first and second place.

Dataset Method Accuracy Sensitivity Specificity

REVIEW
Jebaseeli et al. [74] 0.999 0.809 0.988

Jebaseeli et al. [75] 0.995 0.693 0.989

HRF

Jebaseeli et al. [74] 0.99 0.808 0.997

Jebaseeli et al. [75] 0.99 0.826 0.994

Samuel and Veeramalai [77] 0.853 0.866 0.852

Jin et al. [78] 0.965 - -

Elaouaber et al. [83] 0.979 0.979 0.995

Kar et al. [86] 0.977 0.889 0.985

Zhang et al. [72] 0.96 0.857 0.969

Sathananthavathi and Indumathi [73] 0.924 0.659 0.98

Deng and Ye [88] 0.967 0.754 0.985

DRIONS
Jebaseeli et al. [74] 0.999 0.805 0.998

Jebaseeli et al. [75] 0.993 0.795 0.997

CHASE DB1

Yadav [70] 0.96 0.802 -

Arsalan et al. [76] 0.973 0.83 0.984

Jin et al. [78] 0.961 - -

Wu et al. [79] 0.969 0.8 0.988

Yan et al. [80] 0.961 0.764 0.981

Fu et al. [81] 0.964 0.813 0.982

Elaouaber et al. [83] 0.955 0.837 0.982

Kar et al. [86] 0.987 0.934 0.984

Popescu et al. [87] 0.934 0.917 0.969

Zhang et al. [72] 0.967 0.813 0.984

Sathananthavathi and Indumathi [73] 0.934 0.646 0.965

Deng and Ye [88] 0.971 0.854 0.979

IDRiD
Wang et al. [37] 0.983 0.485 0.999

Hasan et al. [92] 0.997 0.899 -

MESSIDOR

Aujih et al. [68] 0.84 - -

Liu [84] 0.962 0.852 0.911

Prajna and Nath [85] 0.834 0.797 0.844

ARIA
Kar et al. [86] 0.963 0.718 0.984

Prajna and Nath [85] 0.925 0.566 0.961

When we look at the values obtained for the DRIVE dataset in the table, the same
study that achieved the highest accuracy value for the STARE dataset also obtained the
best value for specificity as well as the second-best value for accuracy. Whereas, the highest
values for accuracy and sensitivity, 99.9% and 96.7% were obtained by the authors in [83,92],
respectively. Figure 4 provides a further comparison of retinal blood vessel segmentation
results using the DRIVE dataset by the researchers in [75,76]. We can observe that the
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former study clearly segments the retinal blood vessels without any trace of OD and fovea,
whereas in the second study parts of the OD and fovea are present in the obtained result.

One of the major challenges which researchers find while performing retinal blood
vessel segmentation, is the segmention of tiny blood vessels. Hence, more studies are
required that can effectively detect these similar to the study of [76]. It would also be
beneficial to classify the detected blood vessels into arteries/veins as well as to determine
the width of these blood vessels, which will provide valuable information that can be used
to determine the present condition of the patient’s eyes. When it comes to OD segmentation,
the major challenge is that other DR lesions may be wrongly segmented as OD due to their
similar shape, size, and color.

4.2. Lesion Detection

DR lesion detection-based studies include studies that detected DR lesions like MA,
EX, and HM. This section attempts to compare these studies using three metrics which
include accuracy, sensitivity, and specificity. The values for these are stated in many studies.
Table 6 provides a comparison of DR lesion-detection-based studies. The studies have been
grouped according to the type of lesions they detected as well as according to the datasets
used by them. In the case of EX, the maximum number of studies used the DIARET DB1,
and the highest value for accuracy was obtained by the authors in [24] which is 0.2% higher
than the second-best accuracy value obtained by the authors in [44]. The highest sensitivity
value was obtained by the authors in [17], whereas the authors in [26] obtained the highest
specificity value. From the table, it can also be seen that the E-Optha dataset has been
used by many studies for HE and MA detection. In the first case, the highest accuracy and
specificity values of 98.4% and 98.8%, respectively, were achieved by the authors in [39].
They also achieved the best accuracy and specificity values of 99.2% and 99.8%, respectively,
for MA detection also. Whereas, the highest values of sensitivity for HE and MA detection
on the E-Optha dataset were achieved by the authors in [22,53,54]. In the case of HM, the
maximum accuracy of 99.4% on the MESSIDOR dataset was obtained by the authors in [59].
Whereas, the maximum accuracy value of 97.2% on the DIARET DB1 dataset was obtained
by the authors in [58].

Figure 5 provides a comparison of MA detection results on the IDRiD dataset by the
researchers in [35,43] and a comparison of HE detection results on the IDRiD dataset by the
researchers in [35,43]. As seen in the figure, the authors in [43] could effectively detect HE
using U-Net and MA using a modified U-Net. Whereas, the authors in [35] could obtain
similar results using the JSeg model.

Figure 6 provide a further comparison of the results obtained by researchers for deep-
learning-based HE and MA detection on the IDRiD dataset. It can be clearly seen that the
authors in Sambyal et al. have obtained the best value of 99.9% for all three metrics for both
HE and MA detection on the IDRiD dataset. This is followed by the study by the authors
in Xue et al., which achieved very close values for accuracy and specificity. In the case of
HE detection, all the studies could achieve accuracy values greater than 98% except for the
study by the authors in Gupta et al. [48].

Just like DR segmentation, there are several challenges to performing DR lesion
detection. If we take the case of MA detection, the main challenge is their very small size.
But MA detection is very important to determine the onset of DR. EX detection is also
challenging since they may not have well-defined boundaries. Additionally, as mentioned
before, the OD and fovea may be mistakenly detected as lesions due to their similar shape,
size, and color. Finally, the size of DR lesions, like EX, vary according to the severity of DR
which makes it even more challenging.
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Table 6. Performance comparison of deep-learning based diabetic retinopathy lesion-detection. The

bold and underlined fonts correspondingly show the first and second place.

Type Dataset Method Accuracy Sensitivity Specificity

E
x

u
d

a
te

s

IDRiD
Sambyal et al. [40] 0.997 0.806 0.997

Abdelmaksoud et al. [44] 1 1 1

MESSIDOR
Selçuk et al. [42] 0.958 0.987 0.915

Sivapriya et al. [21] 0.97 0.95 0.99

E-Optha

Bibi et al. [23] - 0.96 0.99

Manan et al. [26] 0.99 0.92 -

Mateen et al. [24] 0.984 - -

DIARET DB1

Abdelmaksoud et al. [44] 0.987 0.97 0.962

Manan et al. [26] 0.98 0.95 -

Cincan et al. [25] 0.979 0.96 0.96

Adem [17] - 0.992 0.979

Bibi et al. [23] - 0.98 0.94

Manan et al. [26] 0.98 0.95 0.99

Selçuk et al. [42] 0.949 0.979 0.905

Mateen et al. [24] 0.989 - -

H
a

rd
E

x
u

d
a

te
s

DDR
Guo and Peng [53] 0.974 0.966 0.978

Guo and Peng [54] 0.974 0.966 0.978

E-Optha

Xue et al. [39] 0.984 0.846 0.988

Wang et al. [18] - 0.899 -

Guo and Peng [53] 0.975 0.965 0.985

Guo and Peng [54] 0.975 0.965 0.985

Huang et al. [22] 0.976 0.983 0.912

MESSIDOR Sivapriya et al. [21] 0.973 0.95 0.99

M
ic

ro
a

n
e

u
ry

sm

E-Optha

Xue et al. [39] 0.992 0.672 0.998

Guo and Peng [53] 0.949 0.935 0.958

Guo and Peng [54] 0.949 0.935 0.958

Subhasree et al. [31] 0.96 0.9 0.85

Xia et al. [27] - 0.740 -

DDR
Guo and Peng [53] 0.954 0.936 0.965

Guo and Peng [54] 0.954 0.936 0.965

DIARET DB1

Abdelmaksoud et al. [44] 0.98 0.96 0.98

Qomariah et al. [30] 0.997 0.859 0.998

Li et al. [49] - 0.88 -

Subhasree et al. [31] 0.91 0.94 0.88

H
e

m
o

rr
h

a
g

e

DIARET DB0
Maqsood et al. [59] 0.955 - -

Aziz et al. [58] 0.971 0.91 0.98

DIARET DB1

Maqsood et al. [59] 0.964 - -

Selçuk et al. [42] 0.943 0.972 0.896

Aziz et al. [58] 0.972 0.942 0.975

MESSIDOR
Maqsood et al. [59] 0.994 - -

Selçuk et al. [42] 0.96 0.987 0.917
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Figure 6. Performance comparison of deep-learning based diabetic retinopathy with hard exudate and

microaneurysm detection studies which employed the IDRiD dataset [22,28,31,33,38,40,41,50,53,54].

5. Future Directions

Diabetic retinopathy is a topic in which a large amount of research is happening lately.
In this section, we would like to present some possible directions for future work related to
DR segmentation and DR lesion detection.

• The number of studies which performed optic disc/fovea segmentation are relatively
few in the reviewed literature. Hence, more research studies are needed in this area.

• Similarly, in the case of DR lesion detection, more studies need to be performed for
HM/SE detection.

• Due to the serious complications that can result from proliferative DR, it is desirable
to detect DR at an early stage. Hence, it will be beneficial to have more studies which
focus on non-proliferative DR lesions.

• Security is of prime importance for any proposed method for DR segmentation/lesion
detection. Hence, studies like the recent one by the authors in [104] are required. They
have used adversarial training and feature fusion for DR detection.

• DR patients are at the risk of developing other conditions like glaucoma. Hence, more
studies related to such conditions similar to the latest study by the authors in [105] are
needed. They performed glaucoma detection by using a novel deep CNN.

6. Conclusions

The latest literature in the field of “diabetic retinopathy segmentation and lesion
detection from fundus images using deep learning” was surveyed. The studies in this
field can be grouped as blood vessel segmentation based studies, lesion detection based
studies, and OD segmentation-based studies. Lesion detection-based studies can further be
classified into MA detection, EX (soft and hard) detection, and HM detection.

We found that almost all recent DL networks/architectures have been utilized effec-
tively for DR segmentation and lesion detection in the studies that were reviewed. It was
also observed that there is a spike in the number of these kinds of studies recently. We also
created a table of the generally utilized retinal fundus image datasets for DR retinal blood
vessel segmentation and lesion detection. Finally, we performed a comparison based on
the performance of studies from each type of DR study reviewed here. As future work, we
may do a systematic literature review in this field.
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Abbreviations

DR Diabetic retinopathy

DL Deep learning

AI Artificial intelligence

CNN Convolutional neural network

OD Optic disc

MA Microaneurysms

HM Hemorrhages

EX Exudates

SE Soft exudates

HE Hard exudates
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