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Abstract: Eggplant (Solanum melongena L.) has become an increasingly common vegetable grown in

glasshouses. This study emphasized on the physiological traits and productivity of three eggplant

cultivars (Longa, Lydia, and Tracey) in a high-tech glasshouse to determine the genotypic differences

of agronomical, morphological, and physiological responses. The physiological parameters as well

as the productivity of these eggplant cultivars were evaluated. The results showed that Tracey

had significantly higher leaf growth than Longa and Lydia. Longa exhibited significantly higher

values of net CO2 assimilation (A), stomatal conductance (gs), and transpiration rate (Tr) than Tracey,

whereas Tracey showed significantly larger gs, Tr, and intracellular CO2 concentration (Ci) than

Lydia. Tracey showed a significantly higher number of flowers per node compared to the two other

varieties, but the number of fruits did not statistically differ among cultivars. Tracy produced the

highest yield (fruit weight and fruit yield per m2) due to the significantly higher leaf length and leaf

expansion rate despite the lowest level of A among the three cultivars. Interestingly, the higher yield

of Tracey translated into better water use efficiency (WUE) in the agronomic term, but its intrinsic

WUE (A/gs) was the lowest among the three cultivars. However, significant correlations between

photosynthetic parameters and WUE were only found in certain stages of eggplant growth. Therefore,

further research work with an emphasis on the source and sink partitioning of a large number of

eggplant genotypes is required to investigate the varietal performance of greenhouse eggplants.

Then, the information can be translated into protected cropping to set up the growth benchmark for

large-scale sustainable production of eggplants with better yield and less water consumption for the

horticultural industry.

Keywords: protected cropping; genotypic variation; sustainable production; leaf gas exchange; water

use efficiency; Solanum melongena

1. Introduction

Eggplant (Solanum melongena L.), also known as aubergine, guinea squash, or brinjal,
is an economically valuable crop available worldwide, with a total harvest area of approx-
imately 1.8 million hectares per annum dedicated to their cultivation [1]. Eggplant has
become a widely accepted vegetable because of its high dietary value including high levels
of antioxidants [2] and phenolic acids that affect eggplant culinary quality and antioxi-
dant content [3]. Due to its versatile usage, eggplant is the 4th most commonly grown
greenhouse crop and is mostly grown in greenhouses and foil tunnels [4,5].
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Enormous types of eggplants have been produced in Europe, America, Asia, and
Africa with the increasing diversity of their habits and fruit shapes, sizes, and colors. Egg-
plant varietal diversity has been lost/reduced globally [6] along with numerous eggplant
varieties no longer cultivated [7], but several varieties in Asia are promising [8]. Cultivars
around the world harbor alleles that may be potentially significant in improving stress
tolerance, disease resistance, and nutritional quality of eggplants through plant breeding
in conjunction with new genetic and genomic tools [9–12]. Low genetic diversity among
eggplant germplasm has raised concern hence, preserving eggplant germplasm is vital for
future varietal development, resilience to environmental conditions and maintaining global
food security [11,13].

Technological advancements and crop improvement are required for higher yields as
cultivable agricultural arable lands are decreasing, while food demands are growing [14].
Protected cropping of horticultural vegetables in controlled environments is one potential
solution to crop production constraints such as climate change [15]. With the advent of
computerized automation, the modern greenhouse has provided sophisticated ways of
producing horticultural crops through precise environmental control driven by the constant
acquisition and accumulation of information [16]. Dynamic growth and development of
crops can be improved by integrating environmental control with the critical assessment of
physiological traits to manage the production [3,17].

During the day, plants utilize about 49% of total solar energy within the photosynthet-
ically active spectrum, whereas 51% of total solar energy is not biologically relevant and
generates heat inside the glasshouse [18]. Higher greenhouse temperatures often lower
the total yield of vegetable production [19,20]. However, a few modern greenhouses have
incorporated innovative technologies to sustainably use energy [21–26]. In addition, there
may be impacts of altered light environment on plant growth, photosynthesis, biomass
partitioning, and yield [16,27,28]. Plants detect the light intensity, light quality, and duration
of light in their surroundings with a variety of photoreceptors [29–32] at the whole plant,
cellular, biochemical, and molecular levels [16,33–36].

The growth of Solanaceous crops in greenhouses is tightly regulated by the interactions
between plant genetic properties and the environmental conditions [3,17]. Greenhouse en-
vironmental conditions affect the growth, development, and productivity of crops [37–39],
including prolonged photoperiod, supplementary light, and continuous light [35,40,41].
It has been shown that supplementary light may reduce the photosynthetic efficiency of
Solanaceous crops by affecting the chloroplast ultrastructure, its function, and photosyn-
thetic pigments, which potentially leads to leaf chlorosis [41–45].

The global production of year-round eggplant in greenhouses may mitigate the
calamitous impact of climate change and maintain productivity with a ballooning popula-
tion [16,38,46–49]. Eggplant genotypes exhibit different responses to greenhouse conditions,
thereby affecting the growth, yield and adaption of genotypes to different climate zones
and environments [11,46]. Cultivar-dependent eggplant responses to simultaneous stresses
include significantly reduced plant growth, photosynthesis rate, leaf gas exchange, and
affected gene expression levels to a greater extent than the sole stress [50]. However, re-
search on eggplants has been less extensive in high-tech commercial standard greenhouses
compared to other Solanaceous crops, most notably tomato.

This greenhouse trial was conducted on three local eggplant cultivars (cv. Longa,
Tracey, and Lydia) in the high-tech glasshouse during the long photoperiod summer,
with routinely practiced standard management practices. The primary objective of this
study was to evaluate the physiological traits and productivity of the three eggplant
genotypes in an environmentally controlled high-tech glasshouse, which may provide
a standardized benchmark for growing greenhouse eggplant in the Eastern Australian
subtropical coastal climate.
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2. Materials and Methods

2.1. Glasshouse Facility Descriptions

The trial was carried out in the advanced glasshouse facility at the National Vegetable
Protected Cropping Centre of Western Sydney University (WSU), Richmond NSW, Aus-
tralia. It is state-of-the-art and designed for research and small-scale commercial production
of horticultural crops, which is centralized and fully automated with Priva software (Con-
next 912) and hardware (Priva, The Netherlands) to monitor and regulate temperature,
humidity, nutrients, CO2, and irrigation. Typical high-tech hardware was employed to
control glasshouse light, temperature, humidity, and CO2 level. We used one research bay
of 360 m2 with the precise and independent regulation of greenhouse microclimate with a
hydroponic nutrient and water delivery system.

2.2. Plant Growth and Management

Solanum melongena (cv. Tracey Longa and Lydia) was tested from August 2018 to
February 2019. For the experiment, 6 weeks old nursery-grown seedlings were purchased
(Rijk Zwaan Australia PTY Ltd., Musk, VIC) and transplanted to the Rockwool slabs.
This bay consisted of 8 gutters (length 32 m, width 25 cm, AIS Greenworks, Castle Hill,
AUSTRALIA) with Rockwool slabs (100 cm × 15 cm × 10 cm, Grodan, The Netherlands).
Spacing was maintained at 160 cm between the gutters and at 40 cm between the plants
within the gutter. Three plants per slab were planted in all the gutters. A total of 96 plants
were grown in each gutter, but the measurements were only performed on the selected
10 plants per cultivar around the middle of the gutters to avoid edge effects.

In this trial, three stems were allowed to grow from each plant. Only one stem was
considered as an individual plant for replication. Replication refers to the total number of
individual plants in the experimental bay per variety per gutter for three varieties. In this
trial, 10 plants per gutter were used as replicates number (n = 10) per variety with a total
of 30 replicates for each variety (n = 30). Plants were grown and maintained at standard
growth conditions under natural light conditions with the Priva automated fertigation
system (nutrients and water). Crop management practices with weekly pruning and
integrated pest management (IPM) measures according to commercial practices of eggplant
production for protected cultivation.

2.3. Plant Growth and Productivity Measurements

Measurements were consistently performed weekly from the newly emerging node
of selected stems for a total of 30 plants per cultivar from 9 to 29 weeks old. Plant growth
and yield parameters were measured periodically in this trial. Stem diameter, stem length
(mm), and stem growth (mm/1 week) were measured from the newly emerging node of the
stem (n = 10 shoots per variety per gutter). Leaf length (mm) of an expanded leaf followed
by the successive leaf growth (mm/1 week) & (mm/2 weeks), leaf numbers (no. node−1);
flower numbers (no. node−1) and fruit numbers (no. node−1) were also determined
similarly (n = 10 stems per variety per gutter). Flower and fruit developments were
tracked routinely till plants attained full development to the fruiting stage. Fruit size was
determined by intensive purple color with a characteristic metallic shine. Seven weeks after
transplanting, eggplant fruits were harvested from every plant at their commercial maturity
stage (between 350 to 450 g, mean harvest mass) till plants aged 34 weeks. Total fruit weight
(kg)/m2 and total fruit number m−2 followed by the measurement of individual fruit length
(mm), fruit width (mm), and fruit weight (g) were also recorded.

2.4. Leaf Gas Exchange Measurements

The portable gas exchange system LI-6400XT infrared gas analyzer (Li-Cor Inc., Lin-
coln, NE, USA) was used to measure Instantaneous steady-state leaf gas exchange from fully
expanded top canopy leaves according to [35,51]. Net CO2 assimilation (A, µmol m−2 s−1),
stomatal conductance (gs, mol m−2 s−1), intercellular CO2 concentration (Ci, µmol mol−1),
the ratio of leaf intercellular [CO2] to ambient air [CO2] (Ci/Ca, µmol mol−1), leaf tempera-
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ture (Tleaf, 0C), transpiration (Tr, mmol m−2 s−1), and vapor pressure deficit (VPD, KPa)
were determined when plants aged 13–21 weeks old. The conditions in the measuring
chamber were controlled at a flow rate of 500 mol s−1, at growth PARs and saturating
PAR at 1500 µmol m−2 s−1, 400 mmol mol−1 CO2, 25 ◦C leaf temperature and the relative
humidity of 60–70%.

Water use efficiency (WUE) is measured as the amount of fruit produced (kg) per unit
of water (m3) consumed by each variety of eggplant during the crop season. An average of
3.24 m3 water per m−2 floor area was used for each eggplant variety. Intrinsic water use
efficiency (iWUE) was calculated as the ratio of photosynthetic rate to gas exchange.

2.5. Statistical Analysis

All the values were expressed as means ± SE. Statistical significance was examined
using descriptive analysis in SPSS. Statistical significance amongst the cultivars was deter-
mined by Duncan’s multiple range test at p < 0.05 employing IBM SPSS Statistics 25 (IBM,
Armonk, New York, USA). All data were plotted using Sigma Plot 14 (Syntat, Palo Alto,
CA, USA).

3. Results

3.1. Leaf and Stem Growth Parameters

Tracey showed significantly higher leaf growth parameters than Longa and Lydia.
This result showed significantly higher leaf length in Tracey (485.1 mm) compared to Longa
(458.7 mm) and Lydia (433.6 mm) (Figure 1A), which later is also reflected as increased
leaf length growth rate (Figure 1B). Leaf number per node showed differences for Tracey
compared to Longa and Lydia. There is a report of a higher number of eggplant leaves
in the greenhouse, compared to those plants grown outside the greenhouse [52]. Reports
showed high temperatures in the range of 23/29 ◦C (night/day) stimulate sweet paper
plant vigor inside the greenhouse, which encourages plants to grow vertically, leading to
improved total fruit yield in most genotypes [20].

Stem parameter results indicated no significant difference in internode length among
the genotypes for Longa, Lydia, and Tracey in the greenhouse with 172.2 mm, 160.1 mm,
and 150.3 mm, respectively (Figure 1D). Similarly, there was not any significant difference
in stem diameter among the genotypes with 8.67, 8.07, and 8.7 mm, respectively for Longa,
Lydia, and Tracey (Figure 1E). However, Lydia showed the highest stem growth (135.6 mm)
per week compared to Longa (124.1 mm) with the least amount of growth was evident in
Tracey (80.7 mm) (Figure 1F).

3.2. Leaf Gas Exchange Parameters

Longa exhibited significantly higher values of net photosynthetic rate (A). The average
A over the eggplant growth season were 24.7, 22.5 and 22 µmol CO2 m−2 s−1 for Longa,
Lydia, and Tracey. The corresponding values of stomatal conductance (gs) were 1.13, 0.89
and 1.15 mol H2O m−2 s−1. A negligible difference was found between Longa and Tracey
in terms of gs and transpiration rate (Tr). While Lydia showed 22% and 17% reductions
in gs and Tr, respectively compared to the other two genotypes. Tracey had a higher leaf
intercellular CO2 concentration (Ci) value (293.5 µmol CO2 mol air−1) in comparison to
Longa (311.1 µmol CO2 mol air−1) and Lydia (277.7 µmol CO2 mol air−1) (Figure 2D).
Lower Ci in Lydia can be attributed to a lower gs value in this genotype. Gas exchange
parameters of three eggplant cultivars measured over 6 different weeks are presented in
Supplementary Table S1.
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Figure 1. Leaf and stem growth properties of eggplant in the high-tech greenhouse. Leaf length (A),
Leaf expansion rate (B), New leaf per node (C) Internode length (D) Stem diameter (E), and Stem
growth rate (F). Data are averaged over 21 weeks of measurements with 30 biological replicates for
each cultivar per week. Different lowercase letters indicate statistical significance at p < 0.05.

3.3. Flower Number and Fruit Growth Parameters

The number of flowers per node showed a significant difference between the genotypes
with the highest number reported in Longa (1.49 flowers) followed by Lydia (1.27) and
Tracy (1.13) however, differences in the number of flowers between Lydia and Tracy were
insignificant (Table 1).

Table 1. Flower and fruit number of Eggplant varieties in a high-tech greenhouse. Data are mean ± SE
(n = 30).

Reproductive Growth Longa Lydia Tracey

Weekly new flower per node 1.49 ± 0.12 1.27 ± 0.07 1.13 ± 0.06 *
Average fruit numbers (m−2 week−1) 2.92 ± 0.36 3.2 ± 0.4 3.55 ± 0.35

* indicated significant statistical difference at p < 0.05 using Student t-test, compared to Longa.

The number of fruits per week remains unaffected between the genotypes with 2.92,
3.20, and 3.55 (Fruit m−2 week−1), respectively in Longa, Lydia, and Tracey (Table 1).
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Figure 2. Average of leaf gas exchange parameters of eggplant in the high-tech greenhouse. Net
Photosynthesis rate (A), stomatal conductance (B), Transpiration rate (C), and intercellular CO2

concentration (D). Data are averaged over 6 weeks of measurements with 6 biological replicates for
each cultivar per week. Different lowercase letters indicate statistical significance at p < 0.05.

The individual fruit weight of eggplant was significantly different in the glasshouse
trial with the weight of 289.1 g/fruit, 345 g/fruit, and 393.8 g/fruit, respectively for Longa,

Lydia, and Tracey (Figure 3A). However, this may not correlate to the fruit length and
width. Tracey and Lydia exhibited larger fruit width than Longa but not in terms of fruit
length (Figures 3 and 4). Longa showed a significantly higher fruit length 224.6 mm, whereas
Lydia and Tracey had fruit lengths of 164 mm and 181.2 mm, respectively (Figures 3C and 4).
This is mainly due to the genetic control of Longa of its bigger fruit length. Fruit width
significantly varied between the cultivars with the highest significance in Lydia (72.6 mm)
and Tracey (75.5 mm) compared to Longa (60.1 mm), which showed the very lowest growth
in fruit diameter (Figures 3B and 4A1–C3).
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Figure 3. Fruit parameters of eggplant in the high-tech greenhouse. Individual fruit weight (A), fruit width
(B) and fruit length (C). Data are averaged over 9 weeks of measurements with 30 biological replicates for
each cultivar per week. Different lowercase letters indicate statistical significance at p < 0.05.

Figure 4. Eggplant grown in the high-tech greenhouse: Longa (A1–A3); Lydia (B1–B3); Tracey
(C1–C3).
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3.4. Yield

We found that Tracey shows the highest yield compared to Longa and Lydia throughout
the entire lifecycle. For the whole season, the yield of 29.5, 22.9, and 19.7 (kg/m2 season−1)
was recorded in Tracey, Longa, and Lydia (Figure 5), which can be estimated as yearly fruit
production of 59.0, 45.8, and 39.4 kg/m2, respectively. The total fruit yield for these cultivars
was different because of the fruit number and the individual fruit weight (Table 1 and Figure 3).

Figure 5. Eggplant fruit yield in the high−tech greenhouse. (A) Average fruit yield in kg per square
meter over the whole growth season. (B) Average weekly fruit yield in kg per square meter. The
whole growing season lasted for 6 months. Data are mean ± SE (n = 10). Different lowercase letters
indicate statistical significance at p < 0.05.

3.5. Water Use Efficiency Only Correlates with Photosynthetic Parameters in Certain Weeks

Water use efficiency (WUE) is a crucial parameter for crops with high water demands,
especially in regions where water is scarce. In this study, we calculated WUE based on two
approaches. First, WUE was calculated based on the amount of fruit yield produced by
each variety of eggplant for a unit of water used during growing season. Intrinsic water
use efficiency (WUEi) was defined as the ratio of net photosynthesis rate over stomatal
conductance.

WUE based on total fruit yield per water consumption was higher in Tracy as com-
pared to other two cultivars (Figure 6A). As the equal amount of water has been used for
each eggplant variety during the growing season, Tracy may be capable of assimilating
more carbon for using each unit of water. Moreover, eggplant varieties showed significant
differences in WUEi where he highest value of 41.97 was manifested in Lydia (Figure 6B)
followed by longa (31.89) and Tracey (23.57) (Figure 6B).

Figure 6. Water use efficiency (WUE) (A) and intrinsic WUE (iWUE) (B) in the high−tech greenhouse.
Data are averaged over 6 weeks of measurements with 6 biological replicates for each cultivar per
week. Different lowercase letters indicate statistical significance at p < 0.05.
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We then conducted a correlation analysis between gas exchange parameters and WUE
(Supplementary Figure S2). We found that average gas exchange parameters A, gs, Tr,
or Ci over the whole growth season do not correlate significantly with WUE. This was
also the case for A, gs, Tr, or Ci measurements in majority of the individual gas exchange
measurements over the growth period. However, there were some significant correlations
between WUE and A (Week 21), gs (Week 13), Tr (Week 19), or Ci (Week 14), respectively
(Supplementary Figure S2).

4. Discussion

4.1. Protected Cropping of Eggplants Cultivars Is Sustainable in High-Tech Greenhouse

Crop production in a greenhouse with optimal environmentally controlled conditions
is growing throughout the world. The overall total greenhouse area has been estimated to
be 405 thousand hectares around the world with different degrees of technology depending
on the socio-economic environment and local weather conditions. Producing crops in a
greenhouse plays a significant role as a technique for raising crops sustainably, improving
water use and nutrient efficiency and controlling the safety and quality of the products.
Greenhouse farming would be essential for food security in the region, where water scarcity
and harsh environments are prevalent [53]. In conventional air-open conditions, a huge
supply of inputs and resources such as fertilizers and, pesticides are required while crop
productivity is always accompanied by substantial losses [54] compared to greenhouse
crop production. Open field agriculture is the main user of fresh water worldwide [55],
while aquaponic and hydroponic systems in greenhouse and indoor farming are possible
solutions to reduce consumption of water [56].

Eggplant is normally cultivated in warm season in air-open farmland conditions with
temperature below 10 ◦C and beyond 30 ◦C, which affect its productivity [57]. Eggplants
are perennial and can produce fruits for couple of seasons under tropical and subtropical
conditions, however in temperate climates eggplants are categorized as annual plants
as they are not able to withstand cold winter weather [58]. In greenhouse conditions,
growing calendars of eggplants could be extended. Hence, a year-round supply of eggplant
production is feasible and increasingly profitable. The radiation requirement of eggplants
is suggested to be about 6 h per day and the ambient humidity of 70–90% is desirable for
eggplant [59].

Due to closed irrigation loop and reusing drained water, 20–30% reduction in irri-
gation water and fertilizers occurred in greenhouse farming compared to an irrigation
system in farmlands [60]. In our recent study on two eggplant trials, Smart Glass (SG)
reduced cooling energy use by 4.4% and fertigation demand by 29% in cooler months, and
reduced cooling energy use by 4.4% and fertigation demand by 18% in warmer months.
SG may be beneficial for reducing nutrient/water use alongside minor energy savings
in commercial glasshouses for eggplants [61]. Here, we explored the agronomical traits,
yield, photosynthesis, and water use efficiency of three commercial eggplant varieties in a
high-tech greenhouse. We recommend the Tracy cultivar for high-tech greenhouses located
in regions with climate conditions similar to Richmond, NSW, Australia, due to higher
potential for yield production and greater water use efficiency. However, owing to the low
intrinsic water use efficiency of this variety, further research work is required to maximize
its photosynthetic capacity for greenhouse conditions.

4.2. Genotypic Difference of Growth and Gas Exchange of Eggplants

There is evidence of increased stem diameter in tomato and eggplant as temperature
increases the interactive effect of temperature and light intensity on stem diameter [62,63].
The decrease of stem diameter under shade treatments [64,65] and the response of stem
diameter to light intensity [66] could be attributed to genetic traits. It was shown that there
is an increased plant height accompanied by the increased internode length of the plant
and the number of nodes inside the greenhouse compared to the same genotypes in the
field [52,67]. Moreover, the number of flowers in eggplants is increased significantly in
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the greenhouse under shade, which is attributed to the decrease in fruit set, ultimately
encouraging the development of new flowers [64]. It was also demonstrated that the fruit
length and fruit width of eggplants significantly decrease when plants are grown inside the
greenhouse compared to those outside the glasshouse with a positive correlation between
fruit length/width and the average fruit weight [64], which is in agreement with [20,48,68].

The genotypic difference was also identified in the leaf gas exchange parameters of
eggplants in this study. Longa exhibited much better photosynthetic performances with
higher values of A, gs, and Tr than Tracey, whereas Tracey showed better gas exchange
parameters than Lydia. Moreover, there were no significant differences in VPD for the
eggplant cultivars grown in the glasshouse (Supplementary Figure S1). The ideal VPD
for Solanaceous crops, like tomatoes grown in the greenhouse, is around 1.5 kPa. Our
VPD result indicates that all the eggplant cultivars are grown in the glasshouse under
the optimum conditions in terms of humidity and temperature. Earlier studies have
reported that low VPD may interrupt stomatal function with no response to closing stimuli
including darkness, ABA, and elevated Ca2+ levels [69,70]. Increasing VPD can maintain
normal stomatal responses when plants are grown in the altered light conditions [35,71],
whereas tomato plants in blue light showed significantly lower VPD in the CE compared to
those plants grown in green and red-light [36]. An earlier study on eggplant has shown
that elevated CO2 in the greenhouse can massively promote Ci and A, whereas stomatal
conductance decreased by 26% [72]. It was shown that the decline of photosynthesis rate
because of the stomatal closure with the dramatic decrease in A, gs, Tr, and Ci when plants
were subject to combined stress than single stress alone including either severe drought in
eggplant or to combined stress [50,73]. The reduction of A and Ci in eggplants have been
reported when plants are subject to either severe drought or combined stress [50]. In the
future, several eggplant genotypes should be tested in glasshouses over multiple seasons
to identify the best-performing one that is suitable for specific regions.

With the growing concerns about the recent genetic variability of many crops in-
cluding eggplants, the utilization and conservation of germplasm are promising for the
enhancement of vegetable diversity in varietal development in future. However, the ad-
vent of next-generation sequencing (NGS) technologies and the continuous decrease in
sequencing costs may increase our understanding of the molecular genetics of eggplant
genotypes [10,12,13,74].

4.3. Yield of Eggplants Is a Combination of Genetic and Environmental Factors That May Not Be
Directly Linked to Net Photosynthetic Rate

The yield response of eggplant varieties also showed that higher total production can
be achieved from Tracy compared to two other cultivars. Uncoupling the total eggplant
production and the rate of photosynthesis could primarily attribute differences in leaf size
among the genotypes. Photosynthesizing leaves are the major source of fruit production.
Larger leaves in Tracy (Figure 2) may suggest more sugars, amino acids, and organic
acids are available for the formation of larger fruits and more fruits per plant. A study
of 31 eggplant genotypes showed a highly positive correlation between leaf length and
width and the average fruit weight [75]. Surprisingly, in many plant species, including
soybean, sorghum, wheat and rice little correlation has been found between the rate of
photosynthesis and total yield [76].

It was shown that the by 5% decrease in relative water content in plants leads to a
reduced photosynthetic efficiency by 40–60%, resulting in a lower yield [77]. Eggplant
requires a considerable amount of water for their growth and development, which makes
them very sensitive to water deficit [78]. Leaf water deficit from the reduction of relative
water content in the plant due to increasing heat, therefore, leads to the reduction of
eggplant yield in the greenhouse [79]. Water use efficiency (WUE) defined as the ratio
of fruit yield to the unit of water used showed higher values in Tracy and Lydia. In
other words, more carbon has been assimilated in Tracy and Lydia for using the same
amount of water in the greenhouse. Hence, Tracy and Lydia could be preferable options
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for fruit production in the greenhouses. Intrinsic water use efficiency (WUEi), defined
as the ratio of photosynthesis rate to stomatal conductance may reflect more accurate
plant responses to environmental factors, especially in the open field where plants are
exposed to changing environments. In this situation, fast response of stomata is required
for assimilating CO2 efficiently and preventing water loss. Higher WUEi is associated
with higher adaptability to changing environments [80]. In our study, WUEi showed a
lower value in Tracy, the most productive variety in the greenhouse, suggesting that this
variety is ideal for high-tech greenhouses, but may not have the same potential for fruit
production in field conditions. Further research work is required to fully investigate and
evaluate the optimum performance of this eggplant variety in field conditions. Significant
differences between eggplant production under open-air conventional conditions and
greenhouse conditions clearly suggest that the greenhouse could be an alternative option
in the temperate region of Australia for sustainable production of eggplants.

In summary, due to unprecedented changes in the weather and climate patterns
accompanied by the massive decline in cultivable land, it is of the utmost importance
to address the issues of climate-resilient vegetable production in protected cropping to
feed the growing population. The optimization scheme for the crops can be made in
the computer-controlled modern greenhouses to maneuver scientific and quantitative
management for sustainable horticultural production.
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use efficiency and photosynthetic parameters in different weeks of gas exchange measurements.
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