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ABSTRACT The edge of the smart grid has a massive number of power and resource-constrained
interconnected devices. Mainly, smart meters report power consumption data from consumer homes,
industrial buildings, and other connected infrastructures. Multiple approaches were proposed in the literature
to preserve the privacy of consumers by altering the data via additive noise, masking, or other data
obfuscation techniques. A significant body of work in the literature employs differential privacy methods
with constraining predefined parameters to achieve the optimal trade-off between privacy and utility of the
data. However, billing accuracy can be degraded by using such additive noise techniques. We propose a
differentially-private model that perturbs data by adding noise obtained from a virtual chargeable battery,
while maintaining billing accuracy. Our model utilizes fog-computing data aggregation with lightweight
cryptographic primitives to ensure the authenticity and confidentiality of data generated by low-end devices.
We describe our differentially-private model with flexible constraints and a dynamic window algorithm to
maintain the privacy-budget loss in infinitely generated time-series data. Our experimental results show a
possible decrease in data perturbation error by 51.7% and 61.2% for smart meters and fog-computing data
aggregators perturbed data, respectively, compared to the commonly used Gaussian mechanism.

INDEX TERMS Advanced metering infrastructure, differential privacy, electrical grid, the Internet of
Things, information privacy, smart grid, smart meter.

I. INTRODUCTION
Smart grids (SG) are implemented to fulfill the goals of
energy efficiency, optimal energy distribution, seamless inte-
gration with renewable energy resources, and a stable supply
of energy. The deployment of smart grids can be a require-
ment in some nations to meet sustainability, and green econ-
omy goals [1]. A core component that enables SG is the
Advanced Metering Infrastructure (AMI) subsystem, which
allows for both-way connectivity between energy service
providers and their consumers. This two-way connection
facilitates real-time operations of the grid in load-balancing
and optimizing workloads of the power grid. That, in turn,
converts to more efficiency and cost savings thanks to fine-
grained metrics collection by the AMI system. The AMI
subsystem contains a distributed fleet of smart meter (SM)
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devices deployed at houses, local businesses, and industries.
SMs periodically send power consumption metrics to the
utility service providers or intermediate collection points. The
availability of such data can allow the service provider to
offer better dynamic pricing to consumers, optimize power
delivery by predicting consumption patterns, and enhance
power transmission planning. Therefore, data aggregation is
a core task for every SG implementing a modern AMI.

Effective SG data aggregation requires mega-scale deploy-
ments of low-end devices (e.g. smart meters) that are inter-
connected. With a lack of an effective security model in a
smart grid environment, the SG will be exposed to severe
threats, some of which are presented in [2]–[6]. For example,
a dishonest data aggregator could process the aggregated
SM metrics to infer private information. Leaked information
can include the number of residents in a given household
and their availability. Additionally, the adversary can con-
clude the types of devices and appliances used within that
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particular household. The leaked data can be shared or sold
without the consent of consumers, exposing and violating
their privacy. Furthermore, the collected data can be exploited
in many other ways [7]. For example, a user load profile
can reveal various private information such as time of sleep
or time of a specific appliance usage during the day [8] as
indicated by Fig. 1.

FIGURE 1. Household electricity demand profile [9].

II. PROBLEM FORMULATION
While frequent reporting of granular SM metrics to energy
suppliers is beneficial, it can introduce major privacy prob-
lems. For example, adversaries can infer accurate high-
resolution readings on power consumption by eavesdropping
on the communication data link, violating consumer privacy.

On the other hand, keeping the data hidden makes it unus-
able and defies the point of deploying smart meters. There-
fore, it is crucial to find a solution that retains the utility of the
data but preserves the privacy of users. Such solutions need
to protect the SG data on all levels, from consumers to data
collection points and energy providers. The computational
cost of these solutions needs to be considered as the SG is
made of low-end devices with constrained computation and
communication abilities. Bandwidth is another essential key
to consider as many low-end smart meter devices typically
report their consumption data to a centralized point at a
high rate.

Load balancing the power load is a common way of per-
turbing data and adding noise to it as seen in [10] and [2],
[11]–[16]. Charging and discharging a battery to add noisy
data to the power load is a straightforward concept. Negative
noise is added to the power load whenever the battery is
physically fed with power (electrically charged). However,
the opposite is true when a positive noise is later added to
the power load whenever the battery is physically drained of
energy (discharged). A hardware component is responsible
for charging and discharging the physical battery. The physi-
cal chargeable battery approach is costly and limited in the
sense that the capacity of the battery limits the amount of
possible data perturbation. Different methods in the literature

use a low amount of noise with differential privacy (DP)
techniques to maintain the utility of data [11]. However,
differential privacy approaches fall short when it comes to
avoiding data loss, such as inability to conduct accurate con-
sumer billing, losing other critical data resolution, or failure
to reconstruct data [17].

This article introduces a very lightweight, secure, and non-
expensive aggregation method that preserves the privacy of
consumers and the safety of transferred data. We employ
light-cryptographic techniques to encrypt data, authenticate
its sources, and ensure its protection in the presence of an
eavesdropper. Moreover, we utilize noise generation from a
virtual batterymodel as a cost-effective alternative to physical
batteries, which preserves high-resolution time-series SM
data privacy. Our approach protects against potential adver-
sarial data aggregators or untrusted service providers while
maintaining data utility, along with proper consumer billing.
A technique based on fog-computing data aggregation is
discussed, along with a novel dynamic window algorithm
for differential privacy. This work is based on a graduate
thesis work by the first author [18]. The preliminary idea
and concept of virtual battery first appeared in our previous
conference publication [19]. This paper expands on our prior
work by introducing a novel differentially-private dynamic
window algorithm. Additionally, we present new experimen-
tal results with a detailed discussion that evaluates and shows
the improvements over the current traditional approaches in
the literature. Our work ensures the privacy of SM devices
while preserving the billing accuracy through fog-enabled
data aggregation without trusting the intermediate fog nodes
or the service provider.

The remainder of this paper is organized as follows:
Section III establishes background knowledge needed to
introduce our work in following sections. Section IV
describes our proposed model. Section V discusses the main
results of our experimental evaluation. Section VI describes
related work found in the literature. Section VII concludes
this paper with remarks on future work.

III. BACKGROUND
A. FOG AGGREGATION
Typically, a large number of power- and resource-constrained
IoT devices are deployed on the SG. These IoT devices
cannot process the generated data themselves due to their
limited capabilities and therefore need to delegate the pro-
cessing to other resources. Moreover, the data generated by
IoT devices must be transmitted using the home network of
the consumer or a separate wireless network, to the backend
server. A significant geographical distance between the IoT
device and the service provider means more power is required
to transmit data between them. Therefore, there is a need
for a power-efficient method to transmit data. In addition,
the large number of these devices can pose a networking
challenge by introducing a communication bottleneck at the
centralized receiving service provider server. To overcome
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these challenges, we use a fog-computing architecture to
meet the requirements of SG deployments [11]. The fog
nodes compute and aggregate data from many SMs, where
the aggregated result is further sent to the backend server.
In our scenario the SG service providers manage the backend
server. The advantage of applying fog computing is aggre-
gating the data on fog nodes instead of sending all SMs
traffic to the service provider, causing network congestion.
In addition, fog nodes can perform some processing tasks
on data, reducing processing required on backend servers
and protecting data from service providers. This architecture
performs better by offloading some work from servers owned
by service providers, preventing potential computing and
networking bottlenecks. Such limitations can be introduced
at the backend server, which handles requests from a massive
number of IoT devices.

FIGURE 2. Hierarchical layering based on fog-computing in the smart grid.

Fog-computing-enabled smart grid architectures usually
employ the fog-computing layer as an intermediate layer to
save cost, improve scalability and reduce the complexity of
the system [20]. Fig. 2 depicts a common fog-computing
architecture. The advantages of such architecture are dis-
cussed in [21] and [11]. This paper adopts intermediate fog
nodes, or data aggregators, in the middle layer of the aggre-
gation architecture. In our architecture, fog nodes are an
untrusted component of the system and are not allowed to
access the private data produced by smart meters. Therefore,
the smart meter data is obfuscated using noise that achieves
differential privacy. The main objective of a data aggregator
is to compute statistical data for an individual smart meter or
a group of smart meters during a given period. By doing this,
granular data is kept hidden from the utility provider. Addi-
tionally, the communication cost is reduced as aggregators
perform the tasks of data collection and computing statistics
rather than sending data directly to service providers. This
paper interchangeably refers to fog nodes as data aggregators
and IoT nodes as smart meters.

B. DIFFERENTIAL PRIVACY
A trial for privacy in SGs was presented in [22] where the
possibilities of data leakage were tested in various scenarios

with or without a trusted party. First, perturbed data is sub-
mitted by the service provider and analyzed for a possible
information leak. Then, if the probability of finding the actual
data is higher than random guessing, privacy is considered
breached. However, when accessing a larger dataset, initial
conditions can vary for the adversary, rendering this approach
to be inaccurate [12]. Many methods for data obfuscation are
present in the literature; however, the current state of the art
mainly uses implementations of differential privacy.

Differential privacy as introduced in [23], is a mechanism
that presents dataset semantics and patterns while preserv-
ing the privacy of any individual data point in that dataset.
In differential privacy, if contributions from a single user to
the dataset were insignificant enough, then the result from
a query to that dataset would not leak a significant amount
of information about that individual user. Consequently, the
overall result of a dataset query should not change when
the data record of any individual user is altered (added,
removed, or modified), thus assuring the privacy of contrib-
utors in the dataset. DP is a powerful concept for providing
privacy guarantees with intriguing properties, namely post-
processing, closure, and composition. In the context of smart
grids, DP can obfuscate aggregated SM readings to ensure
privacy while maintaining the benefits of data analysis.

1) DEFINITION OF DIFFERENTIAL PRIVACY
Assuming a mechanism M : Xn → Y . For any two neigh-
bouring datasets X ,X ′ ∈ Xn that are different in one entry.
We say thatM is ε-differentially private if, for all neighboring
X ,X ′, and all T ⊆ Y , we have: Pr[M (X ) ∈ T ] ≤ eεPr
[M (X ′) ∈ T ], where M is a randomization mechanism and
can be an algorithm that introduces additive noise to the
original data X . In the literature related to differential pri-
vacy, the word mechanism is often used; however, both terms
‘‘mechanism’’ and ‘‘algorithm’’ are used interchangeably.

In the literature, usually, Laplacian or Gaussian noise is
introduced. Several algorithms and differential privacy prop-
erties are discussed in [24]. The previous definition states
that if the effect of making an arbitrary single replacement
in the dataset is small enough, the query result cannot infer
the data of a single individual. Here, the difference between
X and X ′ is the data belonging to one entity in the dataset.
Therefore, we can get one dataset from another by either
adding, removing, or changing the data of this entity.

There are algorithms that, by perturbing data, can turn
query results into differentially private ones. In a smart grid,
we consider a single query equivalent to one aggregate. In dif-
ferential privacy, a parameter ε shows the privacy strength and
is referred to as the privacy budget. The perturbation applied
to the data in differential privacy is inversely proportional to
ε, where a smaller ε produces better privacy but less accuracy
and vise versa. It is a challenge in smart metering to balance ε
value to tweak the amount of added noise that does not violate
privacy yet preserves data utility. A trade-off between privacy
and accuracy is presented in [22].
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2) PROPERTIES OF DIFFERENTIAL PRIVACY
Differential privacy offers several properties that make it
modular and trivial to implement.

1) Post-Processing: A valuable property of differential
privacy is that once the data is privatized with differ-
ential privacy, the privacy will not be breached if the
data is not used again.
Let M : Xn → Y be ε-differentially private and
F : Y → Z be an arbitrary randomized mapping. Then
F o M = F(M (X )) is ε-differentially private.

2) Composition: Suppose M = (M1, . . . ,Mk ) is
a sequence of algorithms, where Mi is (εi, δi)-
differentially private and the algorithmsMi’s are poten-
tially chosen sequentially and adaptively. Then M is

(
k∑
i=1
εi,

k∑
i=1
δi)-differentially private.

It is not always clear what the value of ε should be to
maintain privacy since differential privacy is usually added
to static data by a trusted curator [25]. In time-series and
growing datasets, it is unfeasible to apply differential privacy
with a constant ε as the data is continuously growing. One
crucial property to solve this is the composition of differen-
tial privacy. In a composition of T independent queries, the
privacy parameters ε, δ must be accumulated.
For example, at each time iteration, ti when applying dif-

ferential privacy on the power load at a window of time wj
and each power load X (t) is summarized for a window; for
the first period of 10 minutes t = 0 to t = 10 the w0 value is

w0 =
10∑
t=0

X (t). Therefore the window wj between t = i and

t = i ′ values can be calculated by:

wj =
i ′∑
t=i

X (ti) (1)

For example, applying differential privacy with parameters
ε1, ε2 and ε3 on time windows w1, w2 and w3 respectively;
the composition property states that the overall privacy of
all three windows is: εtotal = ε1 + ε2 + ε3. The previous
equation (1) shows that the values of ε will increase over
time.We found that many solutions in the literature ignore the
deterioration of ε over time, and we will present our solution
for this in later sections.

Sensitivity is another parameter to consider when imple-
menting differential privacy. Sensitivity captures the influ-
ence by which a single data entry can affect the mechanism
and therefore change the perturbation level needed to hide all
data. Thus, the sensitivity of a function bounds the perturba-
tion level we must introduce to preserve privacy.

In smart metering data, which is a time-series data, the
maximum global value is unknown, making it challenging
to measure sensitivity because future unknown readings with
the highest values can break differential privacy.

IV. PROPOSED MODEL
Our proposed virtual battery (VB) system model assumes
that the SM devices are resistant to physical attacks such as
physically tampering with the device to change the values it
produces. Some approaches in the literature aid in protect-
ing against physical as well as software adversaries known
as trusted execution environments or secure enclaves [26].
We propose a fog-computing hierarchical architecture that
ensures accurate billing and provides data perturbation via
additive noise received from the VB. Adopting this VB
approach offers the advantage of using more power loads
without enduring the costs of having a large physical battery.
Our proposed VB system utilizes a distributed data aggrega-
tion architecture based on fog computing, producing pertur-
bation noise on each SM and data aggregator. We consider
data aggregators and utility providers in our model to not be
trusted, hence our use of differential privacy techniques on
SMs and data aggregators.

FIGURE 3. The architectural design based on the virtual battery concept
from an individual SM device.

A. A VIRTUAL VALUE AS A BATTERY
Essentially, our VB is a shared value known to the fog-
computing data collecting node, the power utility provider,
and the smart meter device. Fig. 3 depicts the architecture for
establishing this value.

Table 1 contains a list of symbols used in this paper.We use
VB(t,m) to denote the value of the VB at a point in time t of a
periodmwherem starts at t0 = 0 and ends with tf . Therefore,
at the start of period mj, the initial value of VB is VB(t0,mj).
VB value should be VB(tf ,m) after the entire period m has
passed. For the first update of the SMat the first periodm0, the
value of VB(t0,m0) is zero; the SM then transmits this value
to the utility provider at the end of m0 for the next period m1.
Below, we describe the steps of perturbing the original data
with additive noise using a VB on an individual SM:
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TABLE 1. VB system symbols.

1) At the beginning of a relatively long period mj, for
example a month, the SM sends VB(t0,mj) value to
the utility provider for acknowledgment. For the first
SM update to utility provider of the first period m0:
VB(t0,m0) = 0.

2) After a short period t1, the SM perturbs its original
data by adding some noise N to it and then forwards
this noisy data to the data aggregation node. Then,
the SM device subtracts the noisy data from the VB
value to preserve the accuracy of billing as shown in
equation (2):

VB(t1,mj) = VB(t0,mj)− N (t1,mj) (2)

3) When reaching the end of time periodmj, the SM sends
VB(ti,mj) to the utility provider:

VB(tf ,mj) =
f∑
i=0

VB(ti,mj)−
f∑
i=0

N (ti,mj) (3)

It is important to note that the utility provider is
unaware of the fine grained values VB(ti,mj) and
N (ti,mj) and only receives the end value VB(tf ,mj)
from the SM.

4) The aggregator receives periodic perturbed readings
(X (ti,mj) + N (ti,mj)) from the SM and calculates
A(tf ,mj) using equation (4). Later, the value A(tf ,mj)
is sent to the utility provider:

A(tf ,mj) =
f∑
i=0

(X (ti,mj)+ N (ti,mj)) (4)

It is worth mentioning that the aggregator calculates
A(tf ,mj) without knowing the values of X (ti,mj) or
N (ti,mj) individually, however it only receives their
sum (X (ti,mj)+N (ti,mj)). By subtracting mj, which is
the VB power consumption of the period mj, the utility
provider can calculate VB(t0,mj)−VB(tf ,mj) to get the
total consumption TC :

TC(tf ,mj) = A(tf ,mj)− (VB(t0,mj)− VB(tf ,mj))

(5)

5) After a reasonably long period, a month for example,
the final VB value is exchanged. The exchange of VB
value guarantees billing accuracy since the added noise
was subtracted from the VB value. The reason behind
monthly updates of VB value exchanges is to prevent
the utility provider from inferring further information,
such as individually added noise, from the fine-grained
VB values. Furthermore, since subtracting individual
noise from theVBvalue happens only at the SMdevice,
the utility provider is unaware of distinct noise values
added to the VB. Section IV-D discusses the aspects of
security in terms of communicating the value of VB in
more detail.

For dynamic billing, it is possible to use multiple virtual
batteries; for example, when billing is different between day-
time and night-time, we can use VBday, VBnight . Noise added
at daytime is added to VBday, and night-time noise is added
to VBnight . Both values are sent from the smart meter to the
utility provider.

Other privacy-preserving approaches that rely on physical
batteries perturbation, such as [10], [13], can take advantage
of our virtual system; the benefits can be in terms of cost and
perturbation level. Cost is less since maintenance and initial
battery costs are no longer needed. Perturbation is enhanced
since the capacity is no longer tied to the actual capability of
the physical battery. Additionally, our VB method is agnostic
to the used resource and can be used with non-electric util-
ities, such as natural gas or water. Moreover, other models
that rely on noise from power storage devices or consumer
devices such as [14] can replace that reliance with noise from
a VB system.Methods that adopt differential privacy [11] can
utilize the Gaussian mechanism noise from the VB to achieve
robust and correct consumer bill estimation. For instance,
when a consumer suddenly demands a huge amount of power,
causing a spike in demand, the amount of perturbation noise
needed to obfuscate that spike is relatively large. Therefore,
if this perturbation noise is not adequately addressed in cal-
culating the bill for consumers, it will lead to inaccurate
billing. Thus, we can effectively guarantee the power-load
demand from the consumer to be limited via thresholding the
power load at a maximum value and adding the subtracted
value to the VB. For example, if Ppeak is exceeded at time
(ti−1,mj) the value of VB(ti,mj) will be the previous virtual
battery value VB(ti−1,mj) minus the absolute value of Ppeak
subtracted from X (ti−1,mj) as shown in equation (6).

VB(ti,mj) = VB(ti−1,mj)− |X (ti−1,mj)− Ppeak | (6)

Furthermore, it is possible to use excessive noise in any data
perturbation method while adding its consumption to the VB
to maintain billing correctness since VB value will be sent
later for billing. Differential privacy can achieve an extra level
of privacy by using the VB noise with a lower value of ε and,
therefore, a better privacy budget loss. This ensures greater
privacy guarantees at some cost of data utility. Our system
adopts a distributed scheme of differential privacy.
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B. DISTRIBUTED DATA COLLECTION SYSTEM
Our fog-computing distributed system is comprised of three
layers, as shown in Fig. 4. The lowest layer is all SM devices,
the data aggregator fog nodes are in the middle layer, and the
service provider backend servers are at the highest. Multiple
methods that can be utilized for the SM-to-aggregator com-
munication are shown in [27].

FIGURE 4. Distributed fog aggregation with virtual batteries.

1) AGGREGATION OF SMART METER DATA
Fog nodes reduce the cost of computation and communica-
tion as they offload work from servers of service providers.
Coarse-grained statistics of each SM are sent to the aggrega-
tors. Furthermore, neighborhood power loads from multiple
SM devices can be aggregated on fog nodes, and then results
are forwarded to the service provider. Apart from the setup
phase, our system assumes uni-directional communications
only from SM devices to aggregators and from aggregators
to the utility provider.

Our proposed architecture has some assumptions in place
where we consider aggregators and the utility provider as
adversaries and therefore are not allowed to read private
information about SG consumers. We assume SM devices
are resistant to physical tampering. SMs locally store their
encryption keys safely and apply differential privacy on
power consumption readings in a defined period we call
a window before transmitting the readings to aggregators.
This window can be a value between an already established
parameters wmin,wmax , which will be discussed in a later
section IV-C3. Our VB model uses fog nodes as aggrega-
tion points we call aggregators. A set of SMs directly com-
municate with multiple data aggregation points that gather
and accumulate data to forward them to a specific utility
provider. Each SM device adds perturbation noise to its orig-
inal data with noise generated from a VB. The perturbed
data is encrypted and forwarded to the nearest aggregator.

The aggregator decrypts, accumulates values, encrypts the
results, and finally delivers these results to the utility
provider; further details regarding the cryptographic tech-
niques used are discussed in Section IV-D. At last, the utility
provider decrypts the aggregated results. Then, at recurring
intervals, SMs forward encrypted VB data to the utility
provider to be compared and accumulated to generate a cor-
rect power bill for consumers.

As an example, for a SM that updates its power load every
minute, we add noise N (ti,mj) to each reading at (ti,mj)
where (ti,mj) − (ti−1,mj) = 1 minute. At a monthly period
mj, from t0 to tf , the VB(ti,mj) value would include all added
noise from N (t0,mj) to N (tf ,mj). Therefore, the perturbed

load can be computed with: L(tf ,mj) =
f∑
i=0

(X (ti,mj) +

N (ti,mj)). VB(tf ,mj) is sent from the SM to utility provider
at the end ofmj to be accounted for in billing. The actual load
can be computed using: ActualLoad(tf ,mj) = L(tf ,mj) −
VB(t−f ,mj) where actual load is equal to the noise subtracted
from the perturbed load. To stop the utility provider from
inferring other information by observing perturbed data and
power consumption, we send VB values after a long period.
Each SM device SMn contains a VBn value with an initial
value VBn(t0,mj). Initially, at the start of the first period m0,
the value VBn(t0,m0) is equal to zero. For the next periodm1,
VB(t0,m1) is already sent from the SM to the utility provider.
It is worth mentioning that VB(t0,m1) for the period m1 is
equal to VB(tf ,m0) at the end of period m0: VB(tf ,m0) =
VB(t0,m1).
Fig. 4 shows the aggregation architecture and Table 1

explains the used symbols. The following steps describe the
complete aggregation process of a period m where Enc and
Dec are encryption and decryption methods discussed in
Section IV-D:

1) Virtual batteries VBn for each smart meter device SMn
with values VBn(t0,mj) are encrypted using meth-
ods discussed in Section IV-D and sent to the utility
provider by the SMs. At the first update by SMs,
or when SMs are first powered-on, VBn(t0,m0) is equal
to zero.

2) The SM device SMn containing a VB value of VBn
sends the initial valueVBn(t0,mj) to the utility provider.
SMn then performs data perturbation on its original
raw data at time period (t1,mj) : Xn(t1,mj) with noise
Nn(t1,mj). The added noise is taken from VBn(t0,mj)
by setting the new value VBn(t1,mj) from (2). SMn
then sends Ln(t1,mj) to the aggregator, which is
calculated by

Ln(t1,mj) = Enc[Xn(t1,mj)+ Nn(t1,mj)]. (7)

Depending on the granularity of the data, the value of
periodmj is determined. During the periodmj, possibly
a month, VBn(tf ,mj) is calculated by adding all gener-
ated noise over this mj period to the VB. VBn(tf ,mj)
value is then encrypted before transmission to the
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service provider to bill the corresponding SMn device

VBn(tf ,mj) = Enc[VBn(t0,mj)−
f∑
i=0

Nn(ti,mj)].

(8)

3) During a window of timew, an aggregator An receives a
number of perturbed and encrypted values of consump-
tion Lsm1 (ti,mj) from (7) and calculates

∑
i∈w

Lsm1 (ti,mj)

during w from SM1. Each value of Lsm1 (ti,mj) at time
ti is decrypted and the aggregation is done on the new
coarse grained w. Aggregator adds its own noise to this
load for a parallel differential privacy Na(ti ′ ,mj). With
the aggregated value starting at (ti,mj) and finishing at
the end of w with (ti ′ ,mj) we calculate and encrypt the
consumption of sm1 by:

An(ti ′ ,mj)

= Enc[(
i ′∑
k=i

Dec(Lsm1(tk ,mj)))+ Na(ti ′ ,mj)]. (9)

For example the first time window of 30 minutes in
m0 has values of (ti,m0) = 0 to (ti ′ ,m0) = 30 we
have:

An(ti ′ ,m0)

= Enc[(
30∑
k=0

Dec(Lsm1(tk ,m0)))+ Na(30,m0)]

4) For time (t1,mj), each aggregator sends an n number of
aggregated values that the utility provider then receives.
The perturbed values of power load for all SMs are
then decrypted and finally summarized by the utility
provider for the period (t1,mj)

U (t1,mj) =
n∑
i=1

Dec[Ai(t1,mj)]. (10)

5) The utility provider calculates An(tf ,mj) which is the
power load plus noise for an individual SM n. The
utility provider subtracts the consumed value of the VB
from An(tf ,mj) to compute the total consumption TC
for the period (tf ,mj):

TCn(tf ,mj) = Dec[An(tf ,mj)]

− (Dec[VBn(t0,mj)]

−Dec[VBn(tf ,mj)]) (11)

2) REGIONAL AGGREGATION
Regional aggregation is when the service provider requires
an instant power consumption report of a neighborhood or a
region. Regional aggregation is not related to billing, and it is
mainly used for planning power distribution and optimizing
power generation. However, applying differential privacy by
aggregating SM readings to more coarse-grained data causes

a delay in transmitting the final result as either the SM or the
aggregator is waiting for the following values to be accounted
for. Therefore, this section discusses the aggregation of SM
devices connected to an aggregator summarizing regional
data. Our proposed system utilizes an algorithm that uses a
dynamic window size which is discussed in section IV-C3.
For example, in our model, if the SM power reading is low,
resulting in a small error value, the window size w, which
is adaptively set by the algorithm, might be selected to be
repeatedly large. Therefore, if an aggregator utilizes our algo-
rithm to summarize the power load of a region, then the large
w value may cause an undesirable delay in updating power
readings to the service provider. Hence, regional aggregation
readings are sent separately in case a large window size
causes a large delay in updating regional power consumption.
The regional aggregation is conducted over high-resolution
data generated by SMdevices. Here, the level of granularity is
limited only by the max window size wmax of the SM device,
which in our system is relatively small compared to wmax of
the aggregators. Therefore, the delay for regional aggregation
will be small since its value is limited by the SMs wmax value.
The aggregated summaries do not contain SM identifiable
information. Moreover, neither cost nor VB values are sent,
preventing the inferral of private data. Aggregators send only
the total load consumption of the neighborhood for their
connected SM devices to the utility provider. [11] describes a
similar approach.

1) For a window specified for regional aggregationwreg =
wsm,max where wsm,max is the wmax parameter set for
SMs, an aggregator A receives a number of perturbed
and encrypted values of consumption for n number
of smart meters Lsmn from equation 7 and receives
(

∑
i∈wreg

Lsmx (ti)) during wreg from each SM in the region;

where x is the number of connected regional SMs.
Each value of Lsmx is decrypted, and the aggregators
perturbs the sum of all SMs readings during wreg. With
the aggregated value starting at ti and finishing at the
end of wreg with ti ′ we calculate regional consumption
of A by:

A(ti ′ ) = Enc[(
x∑

n=1

i ′∑
k=i

Dec(LSMn (tk )))+ Na(ti ′ )]

(12)

2) The perturbed regional aggregated value of N aggre-
gators are sent to the utility provider individually. Each
aggregated value can be analysed for power distribution
and prediction for the area connected to the specific
aggregator. The utility provider decrypts and summa-
rizes values from all regions power consumption:

U (t) =
N∑
i=1

Dec[Ai(t)] (13)
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C. DIFFERENTIAL PRIVACY
1) GAUSSIAN MECHANISM
Gaussian mechanism decomposition implements noise col-
lected from all participants. Each participant produces little
amounts of noise, and the privacy of the consumer is ensured
if the summarized noise from all participants has a σ stan-
dard deviation. Theorem A.1. IV-C1.a from [24] gives us the
following definition:

Let f : N|x| → Rd be a function of d-dimensions, and
its `2 sensitivity is defined as 42f = maxadjacentx,y ||f (x) −
f (y)||2. The Gaussian mechanism that has the δ parameter
adds noise scaled to N (0, σ 2) to every d components of the
output.

a: THEOREM A.1
Let ε ∈ (0, 1) be arbitrary. For c2 > 2ln(1.25/δ) the
Gaussian mechanism with parameter σ ≥ c42f /ε is
(ε, δ)-differentially private.
Following the parameters of distributed differential

privacy, we have:

x̂(t) =
n∑
i=1

(x̂i(t)) =
n∑
i=1

(xi(t)+ ri(t)) (14)

where the number of user is n, xi is the data generated at
time t for user i, the additive noise is r , and σ satisfies the
Theorem A.1. IV-C1.a.

2) DIFFERENTIAL PRIVACY IN DISTRIBUTED SYSTEMS
In a distributed setting, distributed differential privacy
uses noise aggregated from several contributors. While
approaches to preserve privacy based on differential privacy
mechanisms are well discussed in the related field [23], our
approach offers a dynamic window algorithm, and a data
denoising capability via seamless deduction of the sum of
added noise from the VB value. This enables correct billing
for consumers while preserving privacy, improving over tra-
ditional methods. Looking closely to Theorem A.1 IV-C1.a,
r is the additive noise which gets deducted from VB value
for each SM to preserve the value of overall added noise for a
precise billing.Moreover, the utility provider can grant clients
the option for absolute privacywith no benefit of data analysis
by using high level of perturbation that does not affect billing.
A completely different SM software can present data analysis
and suggestions to the user since the SM device can get the
value of the VB(t) without relying on other parties, such as the
aggregation points or utility provider for providing statistics.
Although we show a single VB per smart meter device in
our experiments, our proposed VB system supports many
methods of data perturbation.

a: SENSITIVITY
From Theorem A.1. IV-C1.a in section IV-C1 we have the
sensitivity S of our algorithmM is:

S(M ) = 42f = maxadjacentx,y ||f (x)− f (y)||2 (15)

TABLE 2. Symbols for the differential privacy model.

Various articles in the literature propose frameworks that
implement a point-wise sensitivity. However, we argue that
this does not guarantee differential privacy, as the sensitivity
calculation should account for the entire dataset. In a smart
grid, not knowing all power readings in the entire dataset,
as future SM readings are continuously updated from SMs,
predicting the sensitivity is a non-trivial task. A sensible way
is needed to determine the sensitivity in a privatemanner [12].
We employ an algorithm that uses several parameters to
ensure bounds on future sensitivity. The algorithm uses a
dynamic window bounded between wmin and wmax which
guarantees a differential privacy and limits the maximum
power value at Ppeak . Furthermore, the algorithm ensures that
the error value of the perturbation does not exceed errmax .
We explain the previously mentioned parameters and algo-
rithm in section IV-C3 and Table 2. The sensitivity can be
calculated for the dynamicwindoww bounded bywmin,wmax .
Within the smart grid that applies differential privacy on a
dynamic and bound w we know that the maximum power
consumption for w is the maximum power Ppeak applied
on all readings inside wmax . On the other hand, the lowest
power reading summarized for w will be the lowest power
reading possible, which is zero, perturbed by the least dif-
ferentially private noise N applied in wmin. By applying the
previous statements, as we have bounded the futuremaximum
consumption by selecting a dynamic window size, we can
measure sensitivity by:

S(M ) = 42f = Ppeak/wmax (16)

b: STANDARD DEVIATION
In a one dimensional dataset, by applying
Theorem A.1. IV-C1.a we can calculate the standard devi-
ation σ of the Gaussian mechanism where ε ∈ (0, 1) and
δ ∈ (0, 1):

σ 2
= 2ln(1.25/δ).(4f )2/ε2 = 2ln(1.25/δ).S(M )2/ε2 (17)

c: PRIVACY BUDGET
From the differential privacy composition theorem, we know
that for multiple algorithms applies on the same data the
privacy budget parameters ε and δ for each algorithm are
added up. For example, applying (ε, δ)-differential privacy
on each window (w1,w2, . . .wk ) in a space k number of win-
dows. We apply the following differentially-private param-
eters (ε1, ε2 . . . εk , δ1, δ2, . . . , δk ). Therefore the overall pri-

vacy budget are: ε =
k∑
i=1
εi and δ =

k∑
i=1
δi meaning for the
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first window we lose from the privacy budget ε1 = ε/k and
δ1 = δ/k . Therefore, it is important to increase the window
size when possible in order to consume less privacy budget.

3) DYNAMIC WINDOW DIFFERENTIAL PRIVACY
In the SG, the data stream is considered infinite. Therefore,
the privacy budget deteriorates over time, andmany bounding
algorithms exist in the literature to address this [28], [29].
To our knowledge, there is no algorithm in the literature that
considers our chosen parameters. In this section we define the
parameters used as shown in Table 2.

1) wmin: is the minimum window size defined by the
Utility Provider, which is the number of power readings
in the time-series of the fine-grained smart meter or
aggregator readings. wmin should not be selected to be
too small, as that would unnecessarily drain the pri-
vacy budget, and it should be larger for the aggregator.
In our model, the perturbation algorithm will increase
the number of the included power readings beginning at
wmin until one of the two parameters is reached errmax
or wmax .

2) wmax is the maximum number of power reading points
allowed by the utility provider. This value is required
and set by the utility provider to limit the windows
of periodic updates for data statistics. For example,
at night, where there could be zero power consumption,
our algorithm may increase w and not be bounded by
the error for an extended amount of time. It is important
to consider that the larger the value ofwmax , the less pri-
vacy budget loss; therefore, this value should consider
privacy vs. utility provider updates requirements.

3) Ppeak is the peak power load, which is calculated by
applying noise on increasing similar power values up
to maximum allowed power in wmax until errmax value
is reached. The Ppeak value is used to achieve better
performance in the algorithm since if adding the total
consumption over w exceeds Ppeak value, we know that
w will break errmax without the need to generate noise.
Here, it may also be possible for a single reading to
exceedPpeak we threshold all such readings and add the
trimmed values to the virtual battery value. Trimming
single outliers that exceed Ppeak guarantees the value
of sensitivity.

4) errmax is the maximum error allowed for perturbation
by the utility provider. The value of err for each w is
calculated by the mean absolute error:

MAE =

n∑
i=1
|X ′i − Xi|

n
w event ε-differential privacy was introduced in [30] and
applied in [28] for ε-differential privacy to protect event
sequence occurring in a window of w time. We expand on
w-event differential privacy for time-series data in the smart
grid with minimum privacy budget loss.We assume a security
policy is in place to set these parameters initially in the

SMs enclosed enclave with permissions given to the service
provider to only increase these values to ensure differential
privacy. This will depend on the number of updates per unit
of time and the required granularity of SM updates. For
example, the initial wmax and errmax should not be too low,
as this does not conform to the differential privacy rules.
On the other hand, the initial value of errmax should not be too
large as this will render the collected data unuseful for data
analysis and a large wmax could delay data updates coming
from the SM. After the initial setup, the values for wmin,
wmax and errmax can be increased by the service provider, and
this change does not affect differential privacy guarantees as
larger error and window size means more perturbation and
less consumed privacy budget.

Dynamic Window Differential Privacy Algorithm
w-event differential privacy presents a solution for the infinite
data stream; here, privacy is applied at sliding windows of
size w in the smart grid. However, the fixed window size
means unnecessarily sacrificing the privacy budget because
of dynamic changes in the time-series power readings of the
SMs. For example, the power load may change dramatically
when using heavy appliances such as heaters; on the other
hand, night power consumption is usually low. Consequently,
we use a dynamically changing window size accompanied by
specified bounds with differential privacy guarantees.

In w-event differential privacy, the perturbation of data in
a single w leads to a consumption of a fixed privacy budget
taken from the overall privacy budget. Increasing the window
size will lead to a lower privacy budget loss but leads to a high
perturbation and more significant error value. We present
a dynamic window differential privacy algorithm that uses
a dynamic window size w and limits the window size by
Ppeak , errmax and wmax . Our algorithm ensures that the error
resulting from the perturbation err does not exceed a certain
amount as the algorithm selects w in a way that bounds the
resulting perturbed data with a maximum values of Ppeak and
errmax . At the same time, we bound w by wmax for consistent
reporting to the aggregator and utility provider. As mentioned
previously, at the initial run of the SM, our perturbation algo-
rithm collects and increases the number of the included power
readings w beginning at wmin, and perturbs the included data
until err = errmax or w = wmax . After that, the perturbed
result is sent, and the algorithm is applied again on the next
set of power readings, starting atwmin of the following period.
Algorithm 1 describes the implementation of our algorithm.

Both SMs and aggregators use the same algorithm; how-
ever, the parameters’ values will be different for aggregators.
wmin and wmax values will be larger for the aggregator, as we
expect the aggregators to collect more coarse-grained data.
Smart meters perturb their data only to protect it from the
aggregator, since we consider aggregators to be a possible
adversary. It is reasonable to assign larger values of ε the
privacy budget for the smart meters, since it is less likely
for the aggregator to be an adversary. Additionally, the data
will be perturbed again by the aggregator before forwarding it
to the utility provider. Another benefit of increasing window
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Algorithm 1 Dynamic Window Differential Privacy
Algorithm
Input: wmin,wmax , errmax
current window w = wmin
Calculate Ppeak
while err ≤ errmax do

while w ≤ wmax do
while P(t) ≤ Ppeak do

Calculate P(ti) =
i∑

i=0
X (ti);

end
w++;

end
Calculate error: err = P(ti)/L(ti);

Apply perturbation on w: L(ti) = P(ti)+
i∑

i=0
N (ti);

end
Calculate new privacy budget parameters: ε = ε − εi,
δ = δ − δi;
Output perturbed value for wi−1 : L(ti−1);

size is to lower network communication costs, since both SMs
and aggregators summarize the windows’ power load into a
single value before sending it.

D. CRYPTOGRAPHIC METHODS
1) DIFFIE-HELLMAN KEY EXCHANGE
Adopting light cryptographic constructions is essential in
IoT devices, such as SMs running in the smart grid. Our
cryptographic approach requires two symmetric keys stored
on the SM to secure connections to the utility provider
and aggregator for sending the values of VB and load
consumption, respectively. Symmetric keys are exchanged
between SMs, aggregators, and the utility provider. We uti-
lize Diffie–Hellman key exchange [31] to perform any key
exchanges between parties. In addition, we adopt AES [32]
as an encryption scheme, although any symmetric algorithm
can be used in our system. Typically, authentication is accom-
plished through an asymmetric-key cryptographic scheme
in the related literature. However, we use our own sim-
ple and light Diffie–Hellman key exchange with challenge-
response authentication method between any two parties,
as depicted in Fig. 5. We adopt Diffie–Hellman key exchange
with challenge-response authentication instead of public-key
cryptography because of the inherent heavy computations of
public-key cryptography and the dependency on trusted third
party authority for key distribution.

The secret is obtained by concatenating the Diffie-Hellman
derived key with a fixed ID provided by the utility provider.
The fixed ID is set in the secure enclave of the SM devices
before their distribution. The utility provider shares a secret
string with data aggregators instead, which is used simi-
larly to the fixed ID of SM devices. This key exchange is

FIGURE 5. Initial two-way challenge-response authentication.

performed only to authenticate the secret key to be used
for encryption later on and never used to authenticate data.
The two-way challenge-response authentication establishes
protection against man-in-the-middle attacks; whereby an
attacker can impersonate both sides of the communication
channel, compromising confidentiality and integrity. The util-
ity provider, aggregators, and SM devices store their secrets
locally. This approach keeps our protocol light-weight,
compute-efficient, and avoids third-party trust compared to
other methods, such as public-key cryptography. As SMs in
our model are running as a closed enclave, we assume that the
stored keys are secured. However, if required by a security
policy, or any other reason, we can repeat the key exchange
process to generate new keys as desired.

2) KEYED-HASH MESSAGE AUTHENTICATION CODE (HMAC)
HMAC is a variation of the Message Authentication
Code (MAC) that uses secret keys, hash functions and pro-
vides data integrity and authenticity. HMAC is an improved
version of MAC since MAC suffers from length-extension
attack where an attacker can append data to the message
without knowing the key. The implementation method and
definitions are presented in [33] and [34]. A shared secret
is used in HMAC implementation that does not require an
involvement from a third party in key distribution. Following
up on the previous section, we assume that the key is already
exchanged between parties:

1) The key is used to acquire two separate keys referred to
as the inner and outer keys.

2) Two hash rounds are applied; in the first round, a hash is
produced from the inner key with the already encrypted
message.

3) In the second round, the resulting hash is hashed again
with the outer key producing the final HMAC code.

Usually, HMAC applies iterative hashing functions such as
SHA-256 or SHA-512 over multiple fixed-sized blocks; for
example, SHA-256 works on blocks of 512-bit. Since we
cannot guarantee our communication block size, we truncate
our data blocks to the proper size. The encrypted message is

43168 VOLUME 10, 2022



F. Kserawi et al.: Privacy-Preserving Fog Aggregation of Smart Grid Data

then sent alongside the HMAC code to the other party. The
other party will then hash the message again, and the com-
puted hashes should match the received hash, authenticating
the message. The definition of HMAC from [33] and [35]:

HMAC(K ,m) = H ((K ′ ⊕ opad) ‖ H ((K ′ ⊕ ipad) ‖ m))

When K is larger than block size then K ′ = H (K ) otherwise
K ′ = K . K ′ is a block-sized key obtained from the secret key
K either by padding with zeroes up to the block size or by
hashing down to ≤ block size and later padding with zeros.
Table 3 contains an explanation of the used symbols.

TABLE 3. Symbols for the HMAC model.

V. EXPERIMENTS AND RESULTS DISCUSSION
This section evaluates the performance accuracy of our model
and compares it with the traditional Gaussian mechanism.
We apply our model to two actual smart home datasets.
Our dynamic window model is applied to the individual
household electric power consumption dataset [36] which
we call dataset A. Furthermore, we also apply our model
on the UMass Smart* Dataset [37] which we refer to as
dataset B. Dataset A contains electric power consumption
measurements in a household with a one-minute sampling
rate for almost four years starting at 2006. Dataset B contains
an actual home power consumption for a year measured every
minute during 2016. We apply our perturbation with the
dynamic window differential privacy algorithm on SMs and
then on aggregator nodes. For every window w, we aggregate
the values from SMs and apply noise, losing an amount of
privacy budget εw. Next, the aggregator receives the perturbed
data and applies another perturbation; the noise added to
achieve data perturbation is also added to the virtual battery
of each smart meter. Error is calculated over the most recent
time-series data values for each time window w. The values
for wmin, wmax , errmax and Ppeak are initially set for the smart
meter and aggregator with different values. Naturally, the
values of parameters wmin, wmax are selected to be larger for
the smart meter than those used for the aggregator. Choosing
a larger window size for SMs hides their data from the aggre-
gator and consumes less privacy budget for the SM window
because the SM processes more fine-grained data. On the
other hand, errmax ,Ppeak values are chosen to be larger for the
aggregator as aggregators process larger values for smaller
window sizes. The accuracy is visualized and presented by the
Mean Relative Error (MRE) for a time period T in percentage

as defined below:

MRE =
100
T

T∑
i=0

(

T∑
i=0

L(ti)−
T∑
i=0

X (ti)

T∑
i=0

X (ti)

) (18)

Fig. 6 and 7 show the aggregation of time-series for a single
smart meter for dataset A and B, respectively. The original
data is shown in dotted line, the stripped line shows traditional
Gaussian mechanism, and the solid line is used to represent
our model. The perturbation is applied by consuming values
of ε per window size w with fixed w used in traditional
Gaussian mechanism and dynamic w in our model. We can
see from the results that we were able to control the error
value and achieve a specific error value while consuming
less privacy budget since we are using a dynamic w. The
higher accuracy in our model is evident in the presented
larger range of the traditional Gaussianmechanism signal and
the number of outliers. We can notice in Fig. 6 and 7 that
the values are trimmed at the highest values by Ppeak and
at the lowest values by minimum noise in our model. These
values are trimmed and sent to the virtual battery and do
not affect differential privacy because of the post-processing
property of differential privacy. Similarly, Fig. 8 and 9 shows
the aggregation of time-series for an aggregator for both
datasets A and B, respectively. In our experiment for both
datasets A and B, the values of differential privacy parameters
per w are set as ε = 1 and δ = 1/n2 where n is the number
of readings in the dataset.

Table 4 shows a comparison between the MRE difference
between our model and the traditional Gaussian mechanism
for both datasets. Table 4 shows that the error rate in our
model is much lower than the traditional Gaussian mecha-
nism while maintaining the differential privacy guarantees.
The error is low since the dynamic algorithm selected the
perturbation window size w optimally as bounded by errmax ,
and we trimmed the values of power load above Ppeak and
lower than zero by adding the trimmed power load to the
VB. The dynamic window size consumes less privacy budget
as the added noise is applied to a larger window size when
possible. We argue that this is better for data analysis and
that the only drawback is using more coarse-grained data.
It is important to note here that we could lower errmax to
achieve better accuracy. Depending on the application and
the required level of accepted error in the data, it is possible
to increase the amount of errmax as desired to achieve better
privacy. An initial value of errmax , which must be set in
a way that guarantees differential privacy, is set on the SM
running as a secure enclave. A permission is given to the
utility provider to only increase errmax value, which will not
break differential privacy but reduces the accuracy of the data.

Fig. 10, 11, 12, and 13 shows smart meter perturbation
error MRE over various values of differential privacy budget
ε for datasets A and B. Our experiments outcomes support
the theoretical principles of differential privacy; lower values
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FIGURE 6. Smart meter aggregation for our model vs. traditional
Gaussian model (dataset A).

FIGURE 7. Smart meter aggregation for our model vs. traditional
Gaussian model (dataset B).

TABLE 4. MRE comparison between our model and traditional Gaussian
mechanism.

of privacy budget ε results in more noise and larger error
values. Fig. 10 suggests that the error value does not exceed
3.5% for ε = 3 while MRE is 79% in Gaussian mechanism
with the same ε value shown in 11. Furthermore, the MRE
value reaches up to 0.075% for ε = 3 in Fig. 12 and for
traditional Gaussian mechanism MRE is 0.8% for the same
ε = 3 as shown in Fig. 13. Fig. 14 represents the effect
of increasing the window size w on the MRE applied over
a monthly period. We can see that increasing the window
size reduces the value of MRE. However, there are some
inconsistencies in the graph; for example, at w = 210, this is
due to the randomness introduced when applying noise from
aGaussian distribution.We can see that after a certain amount
of window size:w = 190 increasing the window size does not
decrease the MRE value by much; this is because the MRE
is limited by the value of errmax . errmax value is used on the
window sizew taken from the overall consumption; therefore,
the overall MRE will reduce to a certain level. However, even
after reaching this value of w, the increase of w still benefits

FIGURE 8. Aggregator aggregation for our model vs. traditional Gaussian
model (dataset A).

FIGURE 9. Aggregator aggregation for our model vs traditional Gaussian
model (dataset B).

our model in reducing the consumed privacy budget ε. In the
used datasets, we have readings of the power load for every
minute. A fixedwindow sizewill be, for example, 10minutes.
The applied ε on a fixed window for the monthly period will
be the addition of all ε applied on each window by using the
total composition property of differential privacy. Therefore,
it is trivial that using a larger window size will consume
less privacy budget overall. As discussed previously, larger
ε yields less privacy; therefore, it is beneficial to reduce the
privacy budget loss. Our model used differential privacy with
additive noise from the Gaussian distribution on a dynamic
window size w. In our model, the window size w is set to
wmin and increased until we reach Ppeak , errmax , or wmax ,
whichever is reached first. Fig. 15 represents the loss in the
privacy budget εwhen applied to amonthly period. In Fig. 15,
the value of w = wmax − wmin. It is important to note that
the actual value of w will vary between wmin and wmax as
mentioned before. Nonetheless, increasing wmax , and subse-
quently w, will consume less privacy budget ε overall.

VI. RELATED WORK
Many approaches were introduced in the literature to
preserve privacy and securely aggregate smart grid data.
These approaches can be categorized as cryptographic
approaches [13], [38]–[41], approaches that rely on adding
noise [2], [10], [12], [14]–[16], [42], or hybrid approaches [2],
[11], [43], [44]. Homomorphic encryption methods are cryp-
tographic approaches that enable data aggregators to compute
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FIGURE 10. Variable ε values effect on MRE for our model (dataset A).

FIGURE 11. Variable ε values effect on MRE for traditional Gaussian
mechanism (dataset A).

FIGURE 12. Variable ε values effect on MRE for our model (dataset B).

arithmetic functions directly over the ciphertext. Public-key
cryptography is typically used to for authentication in these
systems. A careful consideration must be made before adopt-
ing any cryptographic approach because of the high compu-
tational costs these methods incur.

A. PRESERVING PRIVACY USING CRYPTOGRAPHY
Lossless data aggregation via task scheduling to aggre-
gate encrypted perturbed data using a Decisional Diffie-
Hellman scheme is introduced in [17]. While this approach
is scalable and compute-efficient, both the utility provider
and aggregators are trusted. A fog-computing with stream
cipher cryptography based on layered architecture along
with asymmetric-key scheme is given in [11]. However, as

FIGURE 13. Variable ε values effect on MRE for traditional Gaussian
mechanism (dataset B).

FIGURE 14. Variable window size effect on MRE in our model.

FIGURE 15. Variable window size effect on consumed privacy budget ε in
our model.

their work uses homomorphic primitives and asymmetric-
key cryptography, it requires high computational power and
third-party trust dependency. The approach in [45] adopts
lightweight Elliptic Curve Cryptography (ECC) to achieve
authenticity between parties. Although it presents promising
performance, a trusted party is needed for keys and secret
management, which introduces maintenance cost and a single
point of failure. The work in [46] describes a system based on
distributed ledger and fog-computing technology to achieve
privacy and security of the SG. They describe a group signa-
tures and covert-channel authorization technique to validate
users. Being a blockchain-based solution, they implemented
a smart contracts system to realize a security strategy that
runs on these smart contracts across the blockchain network.
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Their system provides authenticity and anonymity facilitated
by the blockchain.

B. PRESERVING PRIVACY USING A
CHARGEABLE BATTERY
By using rechargeable power storage devices, the actual load
data can be masked and perturbed on demand. Although the
effect on billing may not be significant for more extended
billing periods, changing consumer power load with a con-
siderable noise can compromise data utility. Moreover, these
approaches need extra monetary costs for deploying battery
devices and work exclusively with electric power as a utility
disregarding other utilities such as water and natural gas.
Consumer power load signature is masked in [10] via routing
the power load utilizing a chargeable battery with an algo-
rithm for mixing power routes. While this approach allowed
for adjustable privacy moderation via an algorithm, relying
on physical batteries endures extra costs and limits the maxi-
mum amount of possible data perturbation depending on the
capacity of the physical battery. The work in [13] improved
on the model introduced in [10] with 26% better information
hiding achieved by presenting an optimized algorithm and
applying perturbation policies. However, the approach allows
for some loss in consumer data analytics. Differential privacy
with limited-capacity batteries for cost minimization is used
in [16]. Although their results showed improvements over
traditional differential privacy mechanisms, maintenance and
setup costs were the main limitation.

C. PRESERVING PRIVACY BY ADDITIVE NOISE
Adding noise can effectively mask power load readings, how-
ever, it is not billing friendly as it forces the billing data to be
sent separately. Sending billing values may work for long-
term billing, but it fails when billing is needed for different
times of the day, as in dynamic pricing. Moreover, adding
too much noise can be counterproductive, as it will make
the data inaccurate, affecting its utility. It is crucial to keep
perturbation levels low to not render the original data useless.
A framework to guarantee the utility of data and simulta-
neously preserve privacy via methods based on derivations
fromMarkov modeling is shown in [14]. This work improves
rechargeable battery-based methods while maintaining data
utility and analytics. However, such a framework uses noise
from batteries or constantly powered devices, which causes it
to share similar problems that other battery-based approaches
encounter and possibly leak constantly powered devices data.

1) DIFFERENTIAL PRIVACY
With its introduction in [23], and [24], differential privacy is
a technique where collected data is obfuscated in a privacy-
preserving manner while maintaining the actual original data
properties and semantics for analytical purposes. Differential
privacy employs algorithms that perturb datasets in a way that
prevents an adversary from obtaining specific information
related to a particular user in the dataset. It uses ε as a privacy
parameter that specifies the level of privacy. Additive noise

can be generated viamultiple algorithms. Typically, theGaus-
sian mechanism and Laplace distribution are adopted to gen-
erate noise for time-series data. A common application of
differential privacy is where service providers are trusted by
the SG consumers to apply differential privacy mechanisms
to the original data prior to sharing it for data analysis. If those
aggregators and service providers are not trusted, a distributed
differential privacy approach [47] can be adopted. Distributed
differential privacy utilizes shares of random noise values
obtained from many participants in the distributed system.

An investigation was conducted in [15] to explore the
trade-off between privacy and data-utility in a relatively large
dataset. This investigation was based on computing the prob-
ability of having a successful attack on the perturbed data
from [48]. The dataset was inspected after injecting it with
both white and colored noises. Their ε-privacy model adopts
a Gaussian noise perturbation mechanism and evaluates pri-
vacy levels. This ε-privacy value is adjusted concerning the
injected noise over the dataset. Their approach sufficiently
addresses their considered adversarial model. Authors in [12]
implemented differential privacy over actual data, using dif-
ferential privacy on large datasets of SM readings. Point-wise
privacy is used with a privacy budget of ε = 1 spent for each
aggregation period with a total budget calculated from the
composition property of differential privacy. Additionally, the
perturbed data is smoothed to increase utility while keeping it
differentially private exploiting the post-processing property
of differential privacy. For the usability of data statistics,
it was found that a large amount of data from thousands
of SMs is required to achieve a useful utility after applying
differential privacy. Such implementation does not consider
the deterioration of privacy budget ε. Improving on the work
in [12], an advanced algorithm for protecting peak power val-
ues for renewable energy sources is introduced in [29]. Power
load is perturbed using a differentially-private real-time load
monitoring (DPLM) algorithm with Laplacian noise. Point-
wise privacy from [12] is used to apply ε-differential privacy
for small periods. Furthermore, the DPLM algorithm limits
peak power values by trimming them from the current reading
and adding excessive energy for the next iteration period.
A promising error rate of 1.5%was achieved for specific peak
values. However, similar to the previous model, the point-
wise differential privacy does not account for the deteriora-
tion of the privacy budget due to the composition properties.

2) DIFFERENTIAL PRIVACY WITH FOG AGGREGATION
In [11], a privacy-preserving fog aggregation method is intro-
duced using differential privacy in a distributed deployment
in the smart grid. Data aggregators in this distributed system
receive metrics from SM devices and then forward their
aggregates to the utility provider, where a distributed Gaus-
sian differential privacy deployment is used. The Gaussian
noise is generated in relation to (ε, δ)-differential privacy [24]
at the SMs, and encryption is used based on one-time-pad and
asymmetric-key schemes for data perturbation and authenti-
cation, respectively. Although their approach preserves both
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privacy and utility of the data while being efficient in terms
of power and bandwidth costs, a trusted third-party authority
is required to distribute keys.

The work in [28] presented a solution that aggregates data
of IoT deployments. It utilizes an adaptivew-event DP by per-
forming DP on dynamic w over time-series data in an edge-
computing aggregation system. They employed a stream data
aggregation that maintains privacy with an adaptive time
window size w which is based on a quality of privacy metric
that they proposed. Moreover, machine learning models were
utilized to get better accuracy of data aggregation, cluster IoT
devices and inject perturbation noise. Although the grouping
provides improved privacy, it does not benefit billing use-
cases unless billing data is sent independently.

VII. CONCLUSION
This paper presented a model that guarantees consumer
information privacy in smart power grids based on a non-
physical (virtual) battery. The proposed differential privacy
model offers privacy and retains data utility. Deducting the
additive noise from a VB guarantees accurate consumer
billing, regardless of how aggressively the data was per-
turbed. Because our model employs a VB, it is applicable in
areas other than the electrical power grid, such as natural gas
and water utilities. The proposed system avoids reliance on a
trusted third party for key distributions to achieve authentica-
tion and utilizes light cryptographic schemes for confidential-
ity. Data aggregation based on edge-computing architecture
is utilized, where intermediate compute nodes aggregate SM
generated readings for a less granular data aggregation. Our
data obfuscation technique is based on employing differential
privacy with the Gaussian mechanism over infinite time-
series data. We describe setup parameters which can control
privacy levels and keep the amount of error under control
using a dynamic window algorithm. Our presented algorithm
uses a dynamic window size of the SM power consump-
tion readings to maintain the privacy budget. Our system
offers enhancements over traditional methods by allowing an
adjustable error, offering lower values compared to the tra-
ditional Gaussian mechanism, consuming less privacy bud-
get, and enabling accurate consumer billing. Ultimately, our
findings are that by utilizing some extra parameters, we can
control the level of error. Furthermore, we observed that by
setting the size of SM readings window of time to be high,
we obtained a lower MRE value and a lower privacy budget
consumption. However, having a static time window size is
affecting the error rate, and therefore, we used a maximum
limit value with our dynamic window differential privacy
algorithm to ensure accurate and private updates to the service
provider. Several components of our proposed system can be
integrated with other perturbation mechanisms.

For future work, as smart meters are IoT devices that
are limited in power usage and computing ability, a first
area of improvement in this proposal is to investigate
more lightweight cryptographic protocols that consume less
energy and computing power. Secondly, in our proposal, we

presented a dynamic window differential privacy algorithm
with a window w that dynamically change between wmin and
wmax as inputs for our algorithm. While the service provider
can increase these values for less frequent data updates
and more privacy, a possible future study is to research an
algorithm that sets these parameters dynamically to further
optimize our algorithm. Finally, estimating privacy budget
loss over a long period is very important since it is one
of the most challenging tasks to achieve in a differentially-
private model. A possible direction for solving this is the
use of temporally discounted differential privacy for evolving
datasets presented in [49].
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