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Abstract
The development of smart grids, traditional power grids, and the integration of internet
of things devices have resulted in a wealth of data crucial to advancing energy man-
agement and efficiency. Nevertheless, public datasets remain limited due to grid opera-
tors' and companies' reluctance to disclose proprietary information. The authors present
a comprehensive analysis of more than 50 publicly available datasets, organised into three
main categories: micro‐ and macro‐consumption data, detailed in‐home consumption
data (often referred to as non‐intrusive load monitoring datasets or building data) and
grid data. Furthermore, the study underscores future research priorities, such as
advancing synthetic data generation, improving data quality and standardisation, and
enhancing big data management in smart grids. The aim of the authors is to enable re-
searchers in the smart and power grid a comprehensive reference point to pick suitable
and relevant public datasets to evaluate their proposed methods. The provided analysis
highlights the importance of following a systematic and standardised approach in eval-
uating future methods and directs readers to future potential venues of research in the
area of smart grid analytics.
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1 | INTRODUCTION

Smart grids (SGs) are intelligent electric network models that
incorporate the actions of all connected end users, including
internet of things (IoT) devices [1]. This infrastructure enables
seamless communication between users and grid operators,
supporting various applications, such as self‐healing, automa-
tion of the power grid, and integration of distributed energy
resources (DER) [2]. SGs generate a massive, constant stream
of data from various sources, such as customer data, grid data,
and external data [3]. The power system has become signifi-
cantly more complex with the integration of DER, electric
vehicles, and demand response (DR) techniques [4]. Advanced
data analytics algorithms are required to process this data and
derive valuable insights for SG operations and services.

IoT devices play an important role in the data generation
process, as seen in the incorporation of advanced metering

infrastructures (AMI) and the use of smart metres in the SG.
The data generated from IoT devices in the SG is characterised
by its enormous volume, wide varieties, varying sampling rate,
veracity, and value range [5]. These data can be grouped into
three categories: customer data, grid data, and external data.

Customer data refers to any type of information about a
customer, such as energy consumption and other related data.
Examples include non‐intrusive load monitoring (NILM)
datasets and smart metering data. Table 1 summarises the
consumer data categories and their respective features.

Grid data include all information about the electricity grid,
such as specifications for generation plants and DER, the
distribution grid, the transmission grid, electrical substations,
energy storage, and supervisory control and data acquisition
(SCADA) system data, which refer to data coming from a wide
range of sensor types (e.g. wide‐area measurement systems,
intelligent electronic devices, power quality analysers, and pole
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mounted auto‐recloser). SCADA data includes grid assess-
ments, voltage, current, power factor, alarm data such as un-
solicited openings, details pertaining to repaired faults, control
commands, circuit outages, transmission loss, network quality
data measurement flows data, set points, and event logs. The
use of this comprehensive dataset extends to various applica-
tions, such as system control, monitoring, alarm processing,
protection, and event management. Table 2 summarises the
sensors, types of measurement, and purpose of the data.

External data sources include regional meteorological and
weather data. Geographic information systems (GIS) and
temperature data are often used in research. The integration of
IoT devices in the SG enables various applications on both the
grid side, such as DR, and the consumer side, including home
energy management systems (EMSs), ambient assisted living
(AAL), and appliance anomaly detection.

The vast variety and immense number of datasets and data
sources, the diverse number of applications that can be based
on them, and the scarce availability of studies conducted on
publicly available datasets in comparison to studies conducted
on private datasets stifles research in the field. This research
work aims to address this issue by reviewing the characteristics,
issues, and applications of existing public datasets in detail.
Such work will help researchers identify research gaps and
directions.

1.1 | Contributions

The rapid transition of the power sector towards more sus-
tainable and efficient smart grid systems, enhanced by the
integration of IoT technologies, has resulted in a complex and
data‐rich environment. This work is motivated by the pressing
need to guide researchers through this intricate landscape. By
offering a comprehensive review and comparative analysis of
smart grid datasets, we seek to simplify dataset selection for
specific applications. This paper makes several important
contributions to the field of electrical grid research, data
analysis, which are concisely outlined as follows:

� Offers an extensive and systematic review of data sources in
the electrical grid domain, encompassing smart metre

datasets, NILM datasets, and grid datasets. This review
emphasises publicly available data and facilitates the identi-
fication of relevant datasets for specific research questions
or analyses, addressing the challenge of selecting the most
suitable data sources in a rapidly evolving field.

� Analyses the features and characteristics of SG datasets,
elucidating their applications and relevance in various
research contexts, including IoT‐based energy management
solutions. A comparative analysis of the features, strengths,
and weaknesses of various datasets is presented, enabling
researchers to make informed decisions when selecting
appropriate data sources for their studies.

� Examines the preprocessing methodologies, feature engi-
neering techniques, and evaluation procedures employed by
researchers fostering a deeper understanding of best prac-
tices in the field. This also aims to mitigate potential pitfalls
in the utilisation and handling of diverse datasets, promoting
a more robust and rigorous approach to research in IoT‐
driven SG systems.

1.2 | Previous work

In this section, we examine notable literature reviews and
surveys in the domain, providing a concise overview of the
existing knowledge in this field.

The work in ref. [11] investigates the SG architecture for
the study of software reliability engineering. The article cites
and discusses the characteristics of 15 datasets, which can be
used for reliability engineering, and divides them into three
main categories: Loss of loading probability, power distribu-
tion, and hardware. However, the article does not offer a
detailed analysis of these datasets and their characteristics.

The comprehensive study by ref. [12] presents 13 con-
sumer datasets and their characteristics while exploring deep
learning techniques applied to load analysis, forecasting and
management systems. The challenges associated with imple-
menting deep learning techniques are discussed as well as
potential solutions to enhance performance. Furthermore, the
authors identify five open research issues concerning the future
of SGs. In a related review paper, ref. [13] focuses on data
analytics applications of smart metre data, featuring 10 datasets

TABLE 1 The categories and features related to consumer data.

Data categories for consumer data Features

Energy consumption Energy consumption in a particular time interval. Might be collected from appliances/plug
loads/phase loads or the aggregated load at a house level/building level or neighbourhood
level.

Electrical measurements Voltage, current, power, power factor. Might be collected from appliances/plug loads/phase
loads, or the aggregated load at a house level.

Metre data Status, ID, circuit ID and section (metre's location within the grid), manufacturer, installation
date, reprogramming messages, service points, GIS data

Customer account data Contracted power (maximum power contracted), type and status billing information (e.g., late
payments), pricing rates, fraud history, price, peak load, and load factor

Financial data Market and billing data
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with general characteristics (e.g. number of records, frequency
and duration) and corresponding references. Although both
reviews contain useful information, neither delves into exten-
sive detail about these public datasets, which would be bene-
ficial for researchers seeking suitable datasets for their studies.

Iqbal et al. [14] provide a comprehensive review of 42
NILM datasets, detailing their characteristics and statistical
information. However, the authors do not discuss NILM ap-
plications or reference research articles that utilised these
datasets. In contrast, the study in ref. [15] reviews several
NILM datasets and their characteristics, while also mentioning
the types of NILM approaches they permit, such as event‐
based or event‐less methods. Despite these insights, the re-
view does not elaborate on how the datasets were used or the
specific techniques that were applied.

In the work of ref. [16], the models of the tools and the
datasets that can be used to operationalise local energy com-
munities in practice were reviewed. The reviewed use cases are
of interest to stakeholders but do not specify particular ap-
plications of the data. The mentioned datasets consist of
demand‐side data and climate‐related data, with specified
characteristics. However, the specific uses of these datasets
were not referenced.

The review paper [17] discusses publicly available distri-
bution and transmission grid datasets, detailing their charac-
teristics and intended usage. However, the work does not

provide examples of research efforts that demonstrate the
practical application of these datasets. In contrast, the authors
in ref. [18] focus on publicly available test distribution net-
works with features in the United States, characterising them
and identifying their use cases. Although providing valuable
information, its scope is limited to public grid datasets with US
features, leaving a broader perspective unexplored.

A comparison of the review articles and the contribution of
our article is provided in Table 3.

1.3 | Methodology

The methodology followed is to construct three different
comprehensive search strings for each data types. We used six
major search libraries namely IEEE Xplore, ScienceDirect,
Wiley Online Library, SpringerLink, MDPI, and ACM digital
library. The search string used for macro and micro‐level
consumption data is ((“smart metre” OR “energy consump-
tion” OR “system level” OR “substation”) AND (“smart grid”
OR “power grid”) AND (“public dataset” OR “publicly
available”) AND (“dataset”)) and it returned a total of 275
articles. For the second type, which is, detailed in‐home con-
sumption data we used the search string ((“Buildings” OR
“Non‐intrusive load monitoring” OR “NILM”) AND (“public
dataset” OR “publicly available”)) which returned 250 articles.

TABLE 2 The devices, measurements and applications relating to SCADA systems.

Source of data Measurements and features Applications

Wide area monitoring system and
phasor measurement units [6]

Voltage, current, power, phase angle and harmonics Validate models and identify parameters, ensure dynamic
stability, state estimation, and system control and
protection (e.g., controlled‐island protection) [7]

Remote terminal unit Local collection points for collecting sensor reports. Delivering commands to control relays

Digital fault recorder Records and classifies faults (ex. Power swings, frequency
fluctuations, and time of fault)

Faults recording and classification

Fibre bragg grating sensor Wavelength shift Overheating, sag, vibration, and galloping prediction

Hall effect sensor Voltage and magnetic field Speed detection, current sensing, proximity switching, and
positioning

Power quality analyser [8] Voltage and current levels, power factor, frequency,
waveform distortions, harmonics, flicker, phase
imbalance, voltage sags and swells, transient events,
outages, crest factor, energy consumption, load
patterns, interharmonics and inrush current.

Record power parameters and power interruptions such as
under/over voltage, sags, swells, and noise

Sagometer Temperature Line sagging

Transformer sensors Voltage, current, temp, partial discharge, load tap changer
values, oil pressure, tripped situations discharge
ground and short circuit current, etc [9]

Preventive maintenance

High voltage line temperature Temperature Preventive maintenance

Intelligent electronic devices Status changes in substation and outgoing feeders Relay protection

Capacitor sensors Voltage, current, volt‐amps reactive, and harmonic
monitoring

Capacitor's bank control and monitoring

Pole mounted auto reclosers Pick up events details Fault diagnosis and prognosis [10]

Magnetoresistive sensor Modulation, frequency, I, P, and energy Electromagnetic interference monitoring in substations
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Finally, for grid datasets we used the following search string
((“grid dataset” OR “test system” OR “benchmark grid” OR
“Representative grid” OR “Generic grid”) AND (“smart grid”
OR “power grid”)) which returned 501 articles. In addition to
the public datasets published, the search strings return research
articles that utilised public datasets to evaluate their proposed
approaches. Since datasets are still relevant regardless of the
time they were released we opted to keep all articles regardless
of the year the articles were published. Lastly, irrelevant articles
are excluded based on the title and abstract of the article. The
new numbers of articles for Macro and Micro‐level datasets,
detailed in‐home consumption datasets, and grid datasets were
192, 149 and 320 articles respectively. The datasets used for
evaluation by the articles that remained in the final set were
then extracted. The dataset characteristics and associated ap-
plications were then extracted from the datasets' meta data and
articles that utilised the datasets for various applications.

The rest of this paper is organised as follows, Sections 2–4
discuss micro and macro consumption data (which includes
both smart metre and system‐level data), detailed in‐home
consumption data and grid data, respectively. Each section dis-
cusses the applications, public datasets, and reviews the literature
on the most popular datasets in each category. Sections 5 and 6
highlight data issues and conclude the paper. A graphical rep-
resentation of the structure of the paper is shown in Figure 1.

2 | MACRO AND MICRO‐LEVEL
CONSUMPTION DATA

Smart metre data is the most commonly utilised in SG analytics,
with a wide range of applications. They typically record data at
intervals of 10–60 min. Smart metre data can significantly

improve grid efficiency and long‐term viability by providing
valuable information on energy consumption, electrical mea-
surements (e.g. voltage, current, power factors) [19, 20], metre‐
related issues, and outage data. Metre data management sys-
tems maintain records about each metre, such as its status,
manufacturer, installation date, malicious behaviour, and
reconfiguration data, as well as circuit installation locations and
service point details. Service points represent the interface be-
tween the utility supply and a site's wiring system. Furthermore,
customer account information, including contracted power,
type, status, irregularities history, and billing data, can be lever-
aged for load forecasting by clustering similar customers [21]. A
comprehensive summary of this information can be found in
Table 1. Pablo et al. concluded in their work on 311K customers
in Uruguay that complementary customer information and geo‐
localisation complement the consumption signal and are rele-
vant features [22]. While smart metre data provides granular
insights and allows for nuanced interventions and measures,
system‐level or macro‐data carries its own significance. Macro

TABLE 3 Comparison of current work with existing survey papers.

Review
article Scope of datasets reviewed Depth of analysis Applications and research gaps highlighted

[11] Focused on datasets for software
reliability in SG

Limited analysis of dataset characteristics No detailed discussion on applications or
methodologies

[12] Consumer datasets with a focus on
deep learning applications

Moderate detail on dataset characteristics Some discussion on challenges and solutions in deep
learning for SGs

[13] Smart metre data analytics applications General characteristics of datasets reviewed Lacks depth in dataset usage and application‐specific
details

[14] 42 NILM datasets Detailed statistical information of datasets Lacks discussion on NILM applications or specific
research articles

[15] NILM datasets with a focus on event‐
based or event‐less methods

Moderate detail on dataset characteristics Limited elaboration on dataset employment and
techniques

[16] Tools and datasets for local energy
communities

Specifies dataset characteristics but not in‐depth Lacks detail on specific data applications

[17] Public distribution and transmission
grid datasets

Detailed characteristics and intended usage The intended applications for each dataset are not
discussed

[18] US‐featured public grid datasets Characterisation of datasets and use cases Limited to US datasets and lacks broader perspective

Our
work

Comprehensive review covering smart
metre, NILM and grid datasets

Extensive analysis of dataset features, characteristics,
and applications in smart and power grids

Detailed discussion of preprocessing methodologies,
feature engineering, evaluation procedures, and
identification of research gaps

F I GURE 1 Road map of the paper.
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data provides a holistic view of consumption patterns in larger
sections of the grid and are critical for high‐level planning,
management, and forecasting [23]. Conversely, micro or smart‐
metre data offers detailed load profiles of individual house-
holds, presenting opportunities for customised energy efficiency
strategies and DR programs.

However, despite differences in scale and granularity, many
applications, such as load forecasting, anomaly detection, and
load management, incorporate an overlap between macro and
micro data. For example, while load forecasting at the micro
level informs individual household energy management stra-
tegies, at a macro level, it aids in power generation planning
and grid stability measures. The methodologies developed for
these applications can often be applied interchangeably be-
tween the two scales, although with adjustments to account for
the inherent differences.

Therefore, given the considerable overlap in applications
and in order to maintain coherence and efficiency in our
presentation, we have elected to group both the smart metre
(micro‐level) and system‐level (macro) datasets under the
umbrella of “Macro and Micro‐Level Consumption Data”.
This arrangement streamlines the discussion, eliminates
redundancy, and underscores the interconnected nature of data
analysis at different scales within the context of the smart grid.

This section discusses the most popular applications and
public datasets and their characteristics.

2.1 | Consumption data applications

Yi Wang et al. categorised the applications of smart metre data
into three main categories; load analysis, load forecasting [24]
and load management [25–27]. Load analysis applications
include bad data detection [28, 29], non‐technical loss detec-
tion [30, 31] and load profiling [32–34]. Other applications
include data compression [35], privacy [36–38] and outage
management [39].

2.1.1 | Bad data detection

Bad data detection, or anomaly detection, is a crucial pre-
processing technique that improves data quality and the ac-
curacy of models and analytics by handling missing values or
correcting/removing outlier data. Smart metre data are time
series data, so existing techniques for time series data can be
applied. However, traditional short‐term load forecasting
(STLF) methods for imputing bad data have limitations [40].
Probabilistic approaches also face challenges in determining
optimal rejection thresholds, especially for large datasets
[41–43].

There is a lack of publicly available datasets with labelled
ground‐truth fine‐grained anomalies for the SG context,
except for EnerNOC [44], which has a limited number of
anomalies. Anomaly detection work is typically divided into
two steps: defining or injecting synthetic anomalies and
implementing an anomaly detection technique. Imputation is

important when dealing with missing values, considering the
rate of missing values and the cause of failure.

In ref. [45], the authors used Prophet by Facebook to
define anomalies and evaluated classification models in the
Ausgrid residential dataset. The best performance was achieved
using the Random Forest classifier. In ref. [46, 47], the authors
used modified generative adversary networks (GANs) and
removing variational autoencoder‐based techniques to impute
missing values and anomaly detection, respectively, on the
GEFCom 2014 dataset [48].

2.1.2 | Non‐technical loss detection

Non‐technical loss detection focuses on identifying discrep-
ancies between energy injected and electricity paid for. It is
closely related to anomaly detection but evaluates users' load
profiles in the same neighbourhood or previous benevolent
profiles to detect anomalies [30]. The only publicly available
known labelled dataset for this purpose is the State Grid
Corporation of China (SGCC) dataset [49]. Another approach
focuses on detecting abnormal behaviours in a private manner,
such as the work in ref. [50].

2.1.3 | Load profiling

Load profiling aims to understand users' or groups' typical pat-
terns of electricity use, which is valuable for DR programs and
prospective load forecasting [32]. Load profiling helps to better
comprehend socio‐demographic factors and target potential
consumers for DR programs. Another research direction ex-
plores the development of privacy‐preserving techniques and
integrity assurance mechanisms for load profiling in SGs, with
the goal of safeguarding sensitive smart metre data and main-
taining the accuracy of outsourced data analytics processes [51].

2.1.4 | Load forecasting

Load forecasting is essential in the electric power industry for
operations, planning, pricing, procurement, and hedging de-
cisions. Load forecasting can be long‐term or short‐term, with
different use cases for each. Preprocessing techniques in load
forecasting include smoothing and imputation, feature extrac-
tion and selection, and clustering [52]. Various techniques are
used, such as artificial neural networks, time series analysis,
bottom‐up approaches, SVM, and regression.

2.1.5 | Load management

Load management can provide better and more personalised
services by collecting sociodemographic information [53]. Key
aspects include customer base load estimation and tariff design.
Customer base load estimation evaluates the effectiveness of
DR programs by estimating load profiles without the program.
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The literature is categorised into similar‐day methods,
regression‐based methods, and morning‐consumption‐
adjustment methods [54]. New approaches using high‐
frequency data, such as clustering‐based methods, improve
performance. Tariff design, on the other hand, is essential in
balancing consumer response and utility provider profits.
Clustering consumers is an important first step, followed by
solving optimisation problems based on each cluster's load
profiles [55]. The real‐time price determination problem aims
to maximise profits for SG retailers [56]. Price bidding in the
SG plays a crucial role in demand side management by allowing
consumers to participate in electricity markets actively. By
submitting price bids for electricity use, consumers can influ-
ence the market price of electricity, encouraging energy savings
and peak load reduction. This interactive process not only
empowers consumers but also helps stabilise the grid by
aligning energy usage with real‐time supply and demand con-
ditions [57].

2.2 | Smart metre and system‐level datasets

In this section, we present a comprehensive review of all public
smart metre and/or region datasets identified in the literature
to the best of our knowledge at the time of writing this article,
examining their characteristics, features, associated applica-
tions, and privacy considerations. The information is sum-
marised in Tables 4 and 5. Table 4 summarises the datasets
commonly used in the literature for certain applications.

2.2.1 | Low Carbon London

Low Carbon London (LCL) dataset [58] is an open dataset that
involved 5567 consumers. Dynamic time‐of‐use tariffs was

applied on 1122 of the consumers as part of an experiment
carried out over the year 2013. The data set consists of the
following:

1) Energy consumption (in kWh) sampled from smart‐metres
at 30 min frequency for each consumer. Data were
collected for a total of 12 months during the experiment
(i.e. when the dynamic time‐of‐use tariffs was in effect), in
addition to 6 months before and 2 months after the
experiment period.

2) Appliance survey that includes information such as number
of appliances, physical parameters of the household (e.g.
insulation, number of rooms etc.) and basic details of the
occupants (e.g. number of occupants, age categories etc.).
Data include 990 records from the group that opted for the
dynamic time‐of‐use tariffs, and 1870 from the group that
did not.

3) Attitudes survey to assess the change in consumption
behaviour of the group that opted for the experiment, such
as the factors that made them more likely to change their
behaviour. Seven hundred fourteen records were received.

The privacy of consumers was preserved by doing the
following:

1) Identifying information such as names, locations, and ad-
dresses was omitted.

2) ID keys were generated randomly.
3) The surveys were manually checked for any inadvertent

inclusion of personal details.

With the help of historical data prior to the implementation
of DR programs, some baseline load estimation algorithms are
developed on this dataset [54]. The high frequency data also led
to works in long and STLF as well [71, 72].

TABLE 4 Applications and corresponding public datasets.

Application Datasets

Load forecasting Low Carbon London (LCL) [58], PecanStreet [59], UMass smart* [60], ausgrid distribution
network [61], customer behaviour trials (CBT) [62], AEMO [63], ERCOT [64], building
data genome project [65], energy market authority of Singapore [66], EnerNOC [44],
GEFCom2012 [67]

Demand side management, price bidding, and power market
design

Ausgrid distribution network [61], customer behaviour trials (CBT) [62], ISO new england
[68], energy market authority of Singapore [66], ERCOT [64]

Solar panel generation and net demand forecasting Ausgrid distribution network [61]

Equipment failure modelling and voltage regulation Ausgrid distribution network [61], UMass smart* [60]

Descriptive analysis and building characteristics Building data genome project [65], energy market authority of Singapore [66]

Energy storage research EnerNOC [44], PecanStreet [59], AEMO [63]

Anomaly detection and concept drift aware algorithms UCI ElectricityLoadDiagrams20112014 [69], customer behaviour trials (CBT) [62]

Web‐of‐things studies and appliances management PecanStreet [59]

NILM, NIOM, and data compression research PecanStreet [59], UMass smart* [60]

SGCC dataset [70] Energy theft detection [70]

Renewable energy effects and solar panel simulation AEMO [63]
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2.2.2 | PecanStreet

The PecanStreet dataset [59] is supported by the Pecan Street
experiment in Austin, TX. Pecan Street's research network is the
world's only real‐world electricity‐gas‐water testbed. It covers
over 1000 homes without renewable energy sources, 250 homes
with solar panels, and 65 owners of electric vehicles. The energy
generated and used in each home ismonitored in real time, down
to the circuit level. Energy is used, generated, and stored in high
resolution at a frequency of a reading per second to per minute
(both at the whole‐home level and the individually monitored
appliance circuits level). The experiment aims to understand the
effects of modern technologies such as EMSs andDR programs
such as time‐of‐use pricing.

The studies done using this dataset are numerous and span
across various applications; however, this dataset is best suited
for: Web‐of‐Things studies (due to the diversity and sparsity of
the collected data) [73], NILM [74], appliance scheduling and
management (since individual appliances were monitored) [75],
design controllers for solar panel energy storage devices [76], as
well as customer baseline load estimation [77]; due to availability
of solar panel loads andDRprograms that affect consumption as
in the LCL dataset. For privacy preservation, PecanStreet au-
thors mentioned that they implement “commercially reasonable
security measures” for privacy and data protection. However, no
details were mentioned on their privacy policy websites.

2.2.3 | UMass smart*

The UMass Smart* [60] dataset is a collection consisting of the
following 9 subsets:

� DeepRoof dataset: Satellite images of building roofs and the
planar segmentation of each.

� Apartment dataset: Aggregated energy consumption of 114
single family apartments for the period of 2014–2016,
together with their associated weather data. Readings were
sampled once per minute.

� Home dataset (2017 release): The aggregated and individual
circuit consumption of 7 households collected at a per
minute interval over multiple years.

� NIOM (Non‐intrusive‐occupancy‐monitoring) dataset:
aggregated consumption at minute level for a 3 week period
for two households of two occupants each, with the ground
truth occupancy status.

� Home dataset (2013 release): This dataset focuses on depth
instead of breadth. That is, only three houses were moni-
tored. However, the data included information about con-
sumption (per circuits and aggregate, individual metres,
dimmable and non‐dimmable switches), two electrical phase
data (voltage and frequency), environmental data (indoor
and outdoor), oven and door status, energy generation data
(solar panels, wind, and battery voltage), and motion de-
tector data. The dataset also includes micro‐grid dataset of
443 homes over a single‐day period.

� Solar‐TK: contains solar energy generation data from 81
homes in the US.

� Solar panel: includes 50 rooftop solar panels energy gener-
ation data at a 1‐min interval.

� SunDance: includes 1 year's data of 100 solar sites in North
America in 2015. Net metre, solar generation, and weather
data were collected at a frequency of 1 sample per hour.

� Physical‐Black‐Box Model: This dataset includes weather
and normalised solar generation data to build the physical
black‐box model. The files also include code to model
shading effects.

Applications of this dataset include a privacy‐preserving
architecture developed in ref. [78] while still meeting the util-
ities' needs to achieve a net metering goal. The solution uses
the concept of Zero‐Knowledge proofs and provides crypto-
graphic guarantees for the integrity, authenticity, and accuracy
of payments, while permitting changeable pricing without
disclosing the power measurements acquired throughout a
billing period. NILM and NIOM algorithms development can
be done on this dataset, because of the availability of circuit
and appliance level consumption data, as well as the ground
truth for detecting occupancy status [79]. Solar panel data can
also be used as auxiliary data for distribution grid management
algorithms such as voltage regulation as in ref. [80]. The high
frequency polling of data per minute also prompted some
researchers to study data compression algorithms such as the
work done in ref. [81].

2.2.4 | Ausgrid distribution network: residential
and substations

The Ausgrid distribution network records and publishes four
types of datasets [61]:

� Electricity consumption: Ausgrid has grouped the yearly
residential and non‐residential electricity consumption data
by local government areas (LGA), total of 32 areas, in its
distribution system. High‐voltage customers and supply
services such as public lighting and bus shelters are not
included in these data.

� Solar panels and electricity consumption: A sample of 300
solar customers from Ausgrid's electricity network area was
randomly selected, all of whom were billed on the domestic
tariff and possessed a gross metered solar system
throughout the duration from 1 July 2010 to 30 June 2013.
To compile the data, metre reading processes were
employed to obtain a comprehensive dataset of actual
electricity consumption and production at half‐hour in-
tervals for the selected customers during the specified
period. Customers who fell at the extremes of household
consumption and solar generation performance during the
first year of the study were excluded. Solar homes with
rooftop solar systems connected to the grid through a gross
metering configuration account for 2657 of the monthly
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electricity data points. The Ausgrid Distribution Network
also provides monthly electrical data. Data are provided for
the period from 1 January 2007 to 31 December 2014 and,
as a result, it includes periods of household electricity
consumption prior to the installation of the solar system.
Furthermore, a data set of 4064 non‐solar homes is pro-
vided for the same time period to compare electricity con-
sumption patterns between the two datasets.

� Ausgrid substation data: Since 2005, Ausgrid has provided
public access to the load profiles of approximately 180 zone
substations through their website, with regular updates that
ensure the data set remains current. Each entry in the
dataset contains the year, zone substation name, date, and
corresponding data unit, followed by a full day's worth of
measurements at 15‐min intervals.

� Past outages: Power supply interruptions that affect 50 or
more customers and last for more than 5 min are recorded
in the database and published quarterly. The dataset contains
information on the start time, average duration of the
outage in minutes, number of consumers affected, and its
potential cause. The data are organised by LGA as is done
for the electricity consumption subset.

Energy management solutions such as storage and DER
scheduling and customer baseline load estimation can be
implemented in the solar panels and electric consumption (res-
idential) dataset. Electricity consumption, solar panel genera-
tion, and net demand forecasting can also be implemented in this
dataset. For the Ausgrid substation and past outages datasets,
aggregated load forecasting, and demand side management (e.g.
planning of charging infrastructure [82] and electrical distribu-
tion system planning), and modelling equipment failure (e.g.
power transform failures and retirement statistics [83]) are the
most common applications. Customers in these datasets have
been deidentified and do not represent a statistically significant
sample of residential customers in the Ausgrid network area, nor
have they been subjected to detailed occupancy checks.

2.2.5 | Customer behaviour trials

Customer behaviour trials (CBT) dataset [62] consists of 5375
households electricity consumption data recorded every half an
hour for the span of 18 months. The data was collected by the
Commission for Energy Regulation of Ireland. The objective
of the CBT dataset is to evaluate smart‐metre technology time‐
of‐use tariffs and different demand side strategies. Therefore,
the data was divided into two phases: the benchmark period
(6 months) and the test period (12 months). In the trial, four
different groups were assigned different time of use tariffs. A
survey (of 143 questions) on household characteristics is also
included. The survey aims to depict the socio‐demographic
characteristics of the household; employment status, house-
hold size, age, and the social class. Given that consumers were
incentivised to change their behaviours through demand‐side
strategies, the authors believe that the dataset is a good
benchmark to develop. Concept drift aware algorithms. As

reported in the study, 82% reported making some changes in
their consumption patterns and 74% reported drastic changes
in their households. The trial reported noticeable drastic
changes in 38% of the consumers.

2.2.6 | The state grid corporation of China

SGCC [70] released the daily electricity consumption of 42,372
consumers in the period from 1 January 2014 to 31 October
2016 for a total of 1035 days (with a consumption reading per
day). The dataset is also labelled for malicious activities for a
total of 3615 thieves. The other 38,757 consumers are labelled
as honest consumers. Labelling electricity theft acts as the
ground truth to evaluate models.

2.2.7 | Independent system operator New Englad

Every month since 2003, the independent system operator
(ISO) New England publishes [68] system‐level hourly load
data, as well as corresponding temperature data, regional
location prices, market clearing prices and interchanges with
other power systems for 9 different zones. The market data
allows for studies in power market design [84], price bidding
[85], as well as price forecasting.

2.2.8 | Australian energy market operator

The Australian Energy Market Operator (AEMO) [63] serves
as the main entity responsible for overseeing the management
and operation of electricity and gas networks, as well as price
determination, in five states in Australia. This organisation
maintains a comprehensive dataset that includes aggregated
demand data and electricity price data for these states, with
temporal granularity provided at a half‐hourly rate. However, it
should be noted that beginning in November 2021, the reso-
lution of these data experienced a significant enhancement,
with the frequency of data points increasing to every 5 min.
Data have been updated and available since 1998. The research
done on the datasets focused mostly on STLF. However, some
descriptive analysis work was also done. For example, in ref.
[86], the effects of wind and solar panel generation on
wholesale electricity prices were studied. The authors in ref.
[87] used the dataset to design the optimal battery capacity of
solar panels. The authors also simulated the hourly generated
solar panel power and made it public [88].

2.2.9 | Electric reliability council of Texas

The Electric Reliability Council of Texas (ERCOT) [64] is an
ISO responsible for overseeing the state's electrical trans-
mission and distribution network, serving over 25 million
customers. Since its inception in 2001, ERCOT has managed
the deregulated wholesale electricity market and has provided
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various datasets to the public, including real‐time and day‐
ahead market data, transmission and generation data, and
renewable energy data. These datasets encompass energy pri-
ces, demand, and generation capacity for the entire ERCOT
region, divided into four load zones. Access to ERCOT
datasets requires a submission request through their website.
These datasets have been utilised for various purposes, such as
STLF and price forecasting (e.g. ref. [89]).

2.2.10 | Global energy forecasting competition
2012 (GEFCom2012)

The Global Energy Forecasting Competition 2012 (GEF-
Com2012) [67] is a hierarchical load forecasting contest for a
utility located in the United States with 20 zones (from 1 July
2003 to 30 June 2008). The dataset includes temperature data
from 11 weather stations and the holidays of that time period.
The authors in ref. [67] reviewed the winning solutions.

2.2.11 | The building data genome project

The Building Data Genome Project [65] consists of 507 whole
(non‐residential) building electrical metres data from February
2014 to April 2016, most of which come from buildings on
university campuses. The dataset also includes different
distinctive meta‐data such as gross floor size, primary use type,
and meteorological information. The dataset was developed
primary to test various algorithms and feature extraction
techniques. Such use cases include load forecasting, load
shape/profile clustering, and synthetic load data creation [90]
and inference of buildings' characteristics [91].

2.2.12 | Energy market authority of Singapore

The Energy Market Authority of Singapore publishes numerous
statistics pertaining to the grid operation [66], notably the system
demand data polled at 30‐min intervals since the beginning of
2004 and historical market prices. The datasets were used for
reliability analysis [92, 93], descriptive analysis (for example,
analysis of customers responding to socioeconomic de-
terminants [94]) and demand‐side bidding [95].

2.2.13 | EnerNOC

EnerNOC [44] collected 5‐min energy consumption data for
2012, for 100 commercial/industrial sites. EnerNOC is the
only dataset that we are aware of that has labelled anomaly
data, which can be used as the ground truth for developing
anomaly detection algorithms. However, further examination
revealed that the number of anomalies in the dataset is arguably
negligible (no more than 11 instances out of more than
100,000 readings). For privacy, the real measurement values
and identifying information such as geolocations and floor area

have been anonymised. However, the values were shifted on a
linear scale to ensure consistency of the comparison over time
and across sites. The data set has been used in the design of
energy storage systems [96, 97] and load forecasting [98].

2.2.14 | UCI ElectricityLoadDiagrams20112014

The ElectricityLoadDiagrams20112014 is a real‐world dataset
from Portugal [69]. The dataset has a resolution of 4 readings
per hour from 2011 to 2014 for 370 customers. The dataset
includes residential and commercial buildings and consumers.

2.3 | Discussion

While datasets from the UK, US, Australia, Ireland, and Portugal
provide valuable insights into energy consumption, the majority
originate from developed nations in the Northern Hemisphere.
This overrepresentation may limit the applicability of research
outcomes to the diverse energy landscapes of developing
countries, particularly those in the Southern Hemisphere, where
different economic, infrastructural, and climatic conditions
prevail. The geographic concentration of these datasets suggests
potential limitations in the generalisability of research findings.
The distinct energy consumption patterns, regulatory frame-
works, and customer behaviours specific to the United States
may not be directly transferrable to other global contexts. This
limitation underscores the need for a more diverse compilation
of datasets that encapsulate the variegated nature of energy
systems across different regions and cultures to truly harness the
universal applicability of smart grid analytics. The issue is
particularly relevant in developing countries, where infra-
structural, economic, and policy differences shape distinct en-
ergy dynamics. Emerging markets often prioritise expanding
energy access, diverging from patterns found in more developed
nations. Consequently, a more inclusive dataset collection is
imperative for globally relevant smart grid analytics.

Additionally, the analysis of dataset utilisation across
different applications as demonstrated in Figure 2 reveals a
pronounced emphasis on load forecasting, particularly within
system‐level datasets that benefit from frequent updates. This
trend aligns with the critical role that load forecasting plays in
the operational planning and reliability of the electrical grid.
Load forecasting's predominance in the literature is indicative
of its foundational importance in grid management and the
value placed on accurate and timely predictions.

Furthermore, the synthesis of the dataset characteristics
and their respective applications into a coherent framework
presents an opportunity for a targeted approach to dataset
utilisation. Table 6, which delineates the most popular datasets
for each application, serves as a practical guide for researchers
and practitioners in the field. By identifying the datasets most
suited to specific applications, this summary aids in the effi-
cient allocation of analytical efforts and resources.

In conclusion, the analysis of smart metre and system‐level
datasets highlights the centrality of certain applications in
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smart grid analytics and the geographic concentration of
dataset origins. The field stands to benefit from an expansion
of data sources that better represent the global diversity of
energy systems and from leveraging the specialised utility of
each dataset. This dual approach can enhance both the breadth
and depth of insights in smart grid analytics, fostering ad-
vancements that are both innovative and inclusive.

3 | DETAILED IN‐HOME
CONSUMPTION DATA

NILM systems provide an efficient way to monitor multiple
appliances without the need for submonitoring, hence the
name NILM. This section focuses on datasets that enable such
systems which are commonly referred to as buildings' datasets
[99] or NILM datasets [15]. NILM datasets contain data from

electrical measurements taken at a very high sampling rate at
the plug load, individual circuits in the house, and/or the main
line. Data may also include environmental measurements (e.g.
temperature), auxiliary data, and information about events such
as occupancy status (i.e. how many occupants are inside at any
given time) and switches. The availability of labelled power
events allows for event‐based approaches in energy disaggre-
gation, in contrast to event‐less approaches when power events
are not labelled. The datasets might also include information
on the weather both inside and outside the building. This high
frequency is different from smart metre datasets, which typi-
cally take measurements every 10–30 min, with most of the
commercial smart metre's sampling at less than 1 Hz. Gao
et al. [100] suggested a 4 KHz threshold for a feasible and
reliable classification of appliances in energy disaggregation.

Higher sampling frequencies of the electrical measure-
ments enable features such as transient information, voltage‐

F I GURE 2 The count of articles that utilised the public datasets for particular applications.

TABLE 6 The most common public dataset for each application.

Application Most common datasets

Load forecasting ISO New England, ElectricityLoadDiagrams20112014 and Australian energy market operator

Load profiling The building data genome project, pecan street and LCL

Energy theft State grid corporation of China (SGCC), ausgrid and customer behaviour trials (CBT)

Anomaly detection Pecan street, ISO New England and ausgrid

Load management ISO New England, Australian energy market Operator and electric reliability council of Texas
(ERCOT)

DER solutions Pecan street, ausgrid and Australian energy market operator

EV Pecan street, Australian energy market operator and LCL
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current trajectories, electrical noise, and (power, reactive po-
wer, and distortion power) trajectories. Although low sampling
frequencies can be used to achieve some NILM applications,
transient analysis cannot be performed, limiting overall per-
formance and the range of applications that can be used.
Voltage, current, and power variables are the features that are
most important in low‐sampling‐frequency NILM datasets,
with reactive power being the distinctive feature that is most
frequently used in research.

If the aggregate metering of electricity consumption is not
available and only the measurements of individual appliances is
available, the data lack a ground truth for evaluating and testing
energy dis‐aggregation models. Therefore, the dataset is used
only for training, while the evaluation is performed on other
datasets. The naive method of aggregating all the appliances
does not serve as a ground truth since most of the appliances
in the house are not monitored. If the appliances events are
labelled, then such datasets might be used for event
classification.

This section discusses the most popular applications and
public datasets in NILM datasets.

3.1 | Detailed in‐home consumption data
applications

NILM datasets are primarily used for developing algorithms to
disaggregate total consumption into individual appliances. The
output of energy disaggregation systems can be used for
purposes such as reducing energy consumption, preventing
appliance failures, forecasting SG consumption peaks, and
monitoring daily living activities [101].

3.1.1 | Energy disaggregation

The energy disaggregation process typically involves three
stages: Event detection, feature extraction, and load identifi-
cation [102]. Event detection captures appliance state transi-
tions, while feature extraction uses steady‐state, transient, and
non‐traditional event detection approaches to extract relevant
features [103].

3.1.2 | Energy management system

EMS combines hardware and software to monitor and control
energy consumption and generation within a home, helping
consumers save on utility bills while maintaining comfort levels
[104, 105]. DR solutions incentivise customers to actively
control their energy demand based on market prices [106, 107].

3.1.3 | Condition‐based maintenance

Condition‐based maintenance monitors equipment conditions
and performs maintenance tasks based on equipment status,

allowing early detection of minor failures and more efficient
maintenance strategies.

3.1.4 | Ambient assisted living

AAL focuses on products and services that improve the lives
of elderly adults and promote their physical independence.
NILM systems can facilitate AAL without the need for
obtrusive monitoring [108].

3.1.5 | Appliance anomaly detection

Detecting anomalous appliances using NILM techniques is
more cost‐effective and practical than using individualised
metres per appliance [109, 110]. However, further development
is needed to improve the effectiveness of NILM‐based
anomaly detection [111, 112].

3.2 | Detailed in‐home consumption public
datasets

The NILM datasets have been extensively reviewed in the
literature, for example, the authors in ref. [113] provided a
comprehensive review of 29 existing open datasets, in terms of
settings (residential or otherwise), measurement level (whole
premises, individual appliances, and/or individual circuits),
electrical and auxiliary measurements, time period, event labels
availability and file format. The authors in ref. [16] reviewed 22
open datasets providing the country, the number of house-
holds/sites in the dataset and the sampling rate. In the work of
ref. [15], 26 datasets were reviewed that provide the same in-
formation as the work of ref. [113], in addition to the country
of origin. A critical review of all NILM datasets was published
in ref. [14] in 2021, in which 42 datasets were comprehensively
reviewed. The datasets were divided into high‐frequency, low‐
frequency, and synthetic datasets. Providing the same charac-
teristics mentioned in refs. [15, 16, 113] in addition to the name
and number of appliances measured.

Table 7 reviews (24) NILM datasets with respect to their
measurement levels and frequency, measured quantities and
sampling rate, and the applications for the datasets.

4 | GRID DATA

Electrical grid data prove invaluable for examining typical grid
operating conditions and analysing grid behaviour during
failures and disturbances. Furthermore, it facilitates the
investigation of microgrids in islanding conditions, where the
microgrid is disconnected from the main grid, as well as the
integration of renewable energy sources. The electrical grid
encompasses power generation, transmission, and distribution
components, and grid data in the literature enables the
emulation of electrical measurements and sensors using various
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TABLE 7 Measurement levels and frequency, measured quantities and the sampling rate, and the applications for 24 NILM datasets.

Dataset Measurement levels
Measured
quantities Labelled events Applications

REDD [114] AGG (15 KHz), IC
(0.5 Hz), IA (1 Hz)

P, V, I, S STLF, load disaggregation

UK‐
DALE
[115]

AGG (1 Hz), IC, IA
(per 6 s)

P, V, I, S Energy dissaggregation, behaviour analytics

BLUED [116] AGG, IC, IA (all at
12 KHz)

P, V, I, Q State transitions Event detection

AMPds [117] AGG, IC, IA (all at 1
sample per minute)

P, V, I, Q, f,
phi, Pt

STLF, load disaggregation

ECO [118] AGG, IA (both at 1 Hz) P, V, I, Q Occupancy status Occupancy detection, energy dissaggregation

Tracebase
[119]

IA (per 10 s) P Steady and transient state analysis of appliances,
energy dissaggregation.

HES [120] IA (per 2 min) P Behaviour and descriptive analytics

iAWE [121] AGG, IC, IA (all at 1 Hz) P, V, I, Q Only 1 day, time‐stamped data Supervised energy dissaggregation techniques

GREEND
[122]

IA (1 Hz) P Energy dissaggregation, EMS

PLAID‐I [123] IA (30 KHz) V, I Load identification at plug level

REFIT [124] AGG, IA (both per 8 s) P Energy dissaggregation, behaviour and descriptive
analytics

COMBED
[125]

AGG, IC (both at per 30 s) P, I Energy dissaggregation for commercial building

DRED [126] AGG (per 1 min.),
IA (1 Hz)

P Occupancy (room level per 1 min.) Location aware energy dissaggregation

WHITED
[127]

IA (44.1 KHz) V, I High frequency energy dissaggregation

HFED [128] IA (10 and 5 MHz) Electro‐
magnetic
interference

Energy dissaggregation generalisation
beyond lab settings

Developing energy dissaggregation models that are
able to generalise beyond lab settings

SUSTDataED
[129]

AGG (12.8 KHz), IA
(50 Hz)

V, I State transitions and occupancy
measurements

energy dissaggregation and occupancy detection

ACS‐fx [130] IA (per 10 s) P, V, I, phi Low frequency load identification

COOLL [131] IC (12 KHz) V, I 20 variations of dictinct energy
consumption profiles of 12
appliances.

Energy dissaggregation

Dataport [132] AGG, IC (both at 1 Hz and
per min.)

P, I Energy dissaggregation

BLOND [133] AGG (50 and 250 KHz),
IA (6.4 and 50 KHz)

P, Q High frequency energy dissaggregation

RAE [134] AGG, IC (both at 1 Hz) P, V, I, Q Energy dissaggregation

BERDS [135] AGG, IA (per 20 s) P, Q, S Energy dissaggregation

EEUD [136] AGG (per 1 min.) P Simulating and analysing electricity consumption
for residential building

I‐
BLEND
[137]

AGG (per 1 min.) P, V, I, pf, f Occupancy status per 10 min Occupancy detection, energy dissaggregation

Abbreviations: I, current; P, power; pf, the power factor; phi, the phase angle; Pt, total power; Q, reactive power; S, apparent power; V, voltage.
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tools. It is worth noting that researchers often employ inter-
changeable terms when referring to grid datasets, such as
network, case, system, and grid. There are several terms for
grid datasets that are not always used consistently in the
literature, due to a lack of standardisation [17]:

� Test systems: A simple grid built for the purpose of
demonstrating a single problem or performing basic vali-
dation or testing. Synthetic [138, 139] or real grids [140, 141]
are named test systems. IEEE case 9 [142] and ICPSs [143–
146] are examples of test systems.

� Benchmark grids: Grids where the aim is to compare and
evaluate different algorithms. For example, the CIGRE
systems [147] and the authors of ref. [148] presented
benchmark systems. However, it is worth noting that the
IEEE test cases are typically used as a benchmark (e.g. for
power flow analysis), which highlights the issue of the
interchangeable use of grid terms.

� Representative grids: Are grids that represent real grids and/
or a set of grids that share similar characteristic (e.g. rural
grids). Such grids bridge the gap between technical findings
and real‐world grids [149].

� Generic grids: The work in ref. [150, 151] used the term
generic to refer to a grid where different parameters can be
tweaked to generate various grids. However, the term was
synonymous with representative grid in the work of
ref. [152].

� Synthetic grids: Grids that are neither models of real grids
nor derived from a real‐world grid.

This section discusses the most popular applications and
public datasets for grid data.

4.1 | Applications

Grid datasets are used for various applications such as plan-
ning, stability analysis, reliability analysis, state estimation, and
power flow analysis [153]. The SG paradigm has expanded
research opportunities in the effective integration of DER and
storage devices within the power grid, focusing on assessing
the impact of incorporating these elements and evaluating their
potential to reduce generation costs, smooth power generation
curves, and maintain sustainable service reliability for
users [154].

4.1.1 | Planning

Power system planning faces challenges such as generation
expansion planning (GEP) and transmission expansion plan-
ning (TEP), which involve determining the ideal combination
of technology, location, and building time for new generation
units and power lines [155]. Both GEP and TEP are formu-
lated as optimisation problems with constraints such as the
electricity market, congestion, uncertainties, and other con-
siderations [156–163].

4.1.2 | State estimation

State estimation determines the state of the power grid from
imperfect measurements, used for online applications like se-
curity analysis, anomaly detection, and fault diagnosis, or off-
line purposes like planning [164]. With the advent of the SG,
state estimation is increasingly important for distribution
grids [165].

4.1.3 | Power flow analysis

Power flow analysis examines the flow of power in a networked
system, analysing steady‐state operations of power systems and
optimising power flow for efficiency [166].

4.1.4 | Reliability and stability analysis

Reliability analysis studies the life cycle of components and the
system level, while stability studies examine the steady state and
transient stability of power grids [167].

4.2 | Transmission and distribution grids

The transmission grid is responsible for delivering the load
over long distances from a generating site to electrical sub-
stations, while the distribution grid is responsible for delivering
energy to consumers. The authors of ref. [168, 169] classify the
data collected from the grid into:

� Standard equipment (e.g. transformers, switch gears, circuit
breakers, storage batteries, transmission cables, and ccables)

� Technical parameters (e.g. transformers and capacitor rat-
ings, voltage levels, and number of buses)

� Cost and maintenance data
� GIS data of the power lines, service points, and buildings
� Substations data and locations
� Parcel use category (e.g. residential)

There are several works that reviewed available grid data-
sets. The work in ref. [17] has reviewed steady‐state distribu-
tion grid datasets highlighting the intended use case. The
authors in ref. [153] reviewed the IEEE and CIGRE bench-
mark test systems, highlighting the applications done on each.
A review of distribution test systems in the United States is
presented in ref. [18]. The authors analysed IEEE test systems,
Pacific Northwest National Laboratory test systems, Electric
Power Research Institute representative systems, and the Pa-
cific Gas and Electric Company (PG&E) grids. The IEEE PES
Working Group on Cascading Failure [170] provides a
comprehensive review of test systems providing the intended
use case and technical details on the test grids. This section
provides a comprehensive concise summary of the most
popular grid datasets along side the intended use cases and
popular applications for these datasets.
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The Test Feeder Working Group originally released five
test feeders: IEEE 4, 13, 34, 37, and 123 bus test feeders. Test
feeders are synonymous with test systems with the exception
that test feeders have only one power source while test systems
incorporate multiple power sources. They were intended to
benchmark power flow algorithms, however, various analysis
and research was conducted on the five test feeders originally
released [171]. The test feeders are not representative of large
and complex distribution grids and were small to medium
radial feeders. In 2010, a sixth test feeder, called the IEEE
Comprehensive Test Feeder, was added to model various
components of the grid and transformers in particular [172].
The feeders are comprised of overhead lines and underground
cables, voltage regulators, shunt capacitors, and various degrees
of load unbalance [171]. Table 8 summarises the intended use
cases of the original feeders and other prominent applications
in the datasets.

Since then, several benchmark test systems have been made
public to serve as a standardised dataset to test various
methods and algorithms [186]. All IEEE 9, 14, 30, 39, 57, 118,
300, and Reliability Test Systems (RTS)‐24 and RTS‐73 test
systems allow for power flow, state estimation, and planning
studies. However, only IEEE RTS‐24/73 allows for reliability
analysis and IEEE 39 for stability analysis and development of

control schemes. Modifying the test systems to allow for
different analyses is possible [153].

In 2010 a 8500‐bus test feeder was published to represent
a full‐size distribution system [187], still allowing for the same
intended use cases in Table 8. The test system was also used in
time series load modelling [188] and DER integration in the
SG [189].

Three test feeders and systems were published to tackle
specific scenarios and to subvert common assumptions.
Table 9 summarises the test feeders and systems with the
intended use case and common applications.

Texas A&M university hosts several datasets on their
website [198] for electric grid test cases that cover a variety of
systems and scenarios, and are crucial in different power sys-
tem analyses. These datasets do not contain Critical Energy
Infrastructure Information (CEII), making them widely
accessible for research purposes.

Among the datasets are the latest synthetic electric grid
cases of 2023, which include a smaller self‐contained island test
case for the Hawaiian island of Oahu with a synthetic 138/
69 kV transmission network. For larger‐scale scenarios, there
are datasets such as the Texas Synthetic Grid, which covers the
ERCOT portion of Texas with a 6717‐bus transmission
network, and the Combined East‐West US Grid, representing a

TABLE 8 The original IEEE test systems and their respective intended use case and common applications.

IEEE original test systems Intended use case and common applications

4‐bus Transformer modelling testing. State estimation [173] and step‐voltage regulators [174].

13‐bus Testing power flow convergance in unbalanced systems. Optimal capacitor placement [175],
control of renewable energy batteries in microgrid [176], and islanding detection in
microgrids [177].

34‐bus A test system that requires voltage regulators to comply with ANSI voltage standards. Optimal
distributed generator placement [178] and optimal placement of storage systems [179].

37‐bus Capability of software to solve for the less common three‐wire delta systems. Power flow analysis
with DER [180], distributed generators for providing reactive power [181], and micro‐grid
small signal analysis [182]

123‐bus Minimising voltage drops with voltage regulators and shunt capacitor. Power flow analysis in
unbalanced systems, operational planning for self‐healing action [183], stochastic reactive
power management in microgrids with renewable energy [184]

CTF Capability of software to solve for a variety of components in one system. Distributed generation
applications [185]

TABLE 9 Test feeders and systems, highlighted characteristic, and the intended use case and common applications.

Test feeders and
systems Highlighted characteristic Intended use case and applications

Neutral‐earth‐voltage test
feeder

The neutral conductor is not reduced by Kron reduction [190]
because the neutral voltage is above zero.

Study neutral voltages in case of connection failures. Harmonic
analysis [191] and load modelling [192]

Low voltage network test
system

A low voltage highly meshed system that represents typical urban
areas. The system is also referred to as 342‐bus LVNTS.

Tests software capability to handle highly meshed systems.
Economic dispatch with DER integration [193] and planning
of communications systems [194].

European low voltage test
feeder [195]

Represents a typical feeder in Europe and the first feeder to
operate at 50 Hz.

Tests software capability to solve for various test feeders. State
estimation with DER integration [196] and optimal sizing
and placement of renewable energy batteries [197].
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synchronously intertied model of the US portion of the eastern
and western interconnects.

Datasets also exist for the ARPA‐E Performance‐based
Energy Resource Feedback, Optimisation, and Risk Manage-
ment (PERFORM) program. This program aims to optimise
grid management as the penetration of variable renewable re-
sources continues to increase. For this program, specific cases
such as the 6717‐bus Texas Case and 24,000‐bus Midwest Case
were created.

Additional datasets from 2021 to 2023 include synthetic
transmission and distribution test cases, such as the Full Texas
Synthetic Transmission and Distribution Test Case, and the
150‐bus Synthetic Transmission and Distribution Test Case
based on Travis County, Texas. These datasets also include
restoration data and scenarios, as well as an associated natural
gas pipeline network.

Other notable datasets come from the ARPA‐E GridData
program, which offers synthetic electric grid models. These
models are designed to be statistically and functionally similar
to actual electric grids, ensuring the confidentiality of CEII.
Examples include a 200‐bus synthetic grid on the footprint of
Central Illinois, a 500‐bus synthetic grid on the footprint of
South Carolina, and a 2000‐bus synthetic grid on the footprint
of Texas, among others.

Datasets for competitions like the GO Competition
Challenge 1, and literature‐based power flow test cases such as
IEEE bus systems and the Kundur Two‐Area System, are also
included. Moreover, for stability analysis and control, the
dataset provides small signal stability test cases, such as the
Three Machines Infinite Bus Benchmark System, the Brazilian
Seven Bus System, and the New England 68‐Bus Test System.

All of these cases include feasible AC power flow solutions,
and some have additional parameters or models for analyses
such as transient stability, geomagnetic disturbance analysis,
energy economic study, and more. They have been developed
to improve the situational awareness of current system oper-
ating conditions and to support various studies and research in
power systems.

4.3 | Power generation

Electricity generation can be divided into two categories:
centralised and distributed generation. Centralised generation
refers to the generation of electricity through large‐scale pro-
duction plants and the distribution of that electricity to con-
sumers, whereas distributed generation refers to the generation
of electricity on a much smaller scale, typically by individuals
using renewable energy sources.

In both centralised and distributed generation, the data
collected is identical. It includes load demand, historical power
measurements, capacity, generating unit, cost, performance,
ramp‐rate limit, operating zones, and carbon dioxide emissions
data. These data are used in the management of both the
power generation side and the microgrid side. Power genera-
tors are modelled on both transmission and distribution grids
(in the case of DER).

5 | DISCUSSION

After evaluating a comprehensive number of the most popular
public datasets and the work done on them, several aspects of
the discussion were identified. This section covers these as-
pects, as well as research gaps and future research directions.
For example, for data availability and synthetic data, we iden-
tified that the generation of synthetic data oriented to privacy
preserving data could solve the problem of data availability,
allowing realistic data analysis on otherwise private data [199].
In terms of privacy preservation, we have identified two main
categories of techniques, which are either ’consumer‐oriented’
[200] or ’utility‐oriented’ [201]. Analysing the impact of ’con-
sumer‐oriented’ privacy techniques on the utility of the datasets
is an interesting future work. Moreover, to the best of our
knowledge, there is no work that aims at identifying consumers
that practice such privacy preserving techniques. Regarding
data quality, since the number of popular public datasets is
fairly low, an interesting research direction is to develop at this
early stage a toolkit to unify consumer datasets in terms of
format, data exploration, preprocessing techniques, and feature
engineering techniques similar to the toolkit developed for
NILM datasets [202].

Moreover after analysing the public datasets and the liter-
ature, we noticed two relevant and prominent issues:

1. Energy theft detection (and more broadly anomaly detec-
tion) and EV detection and load forecasting predominantly
rely on synthetic or private datasets. The preference for
non‐public datasets is largely due to privacy concerns and
the proprietary nature of the data. In energy theft detection,
the data involves sensitive user information and operational
details from utility companies, which are legally protected
and competitively sensitive. Similarly, for EV forecasting,
private companies hold detailed charging data that is
commercially valuable and often kept confidential.

2. Newly emerging challenges, such as the detection of
unauthorised crypto mining, suffer from a lack of public
datasets. The surge in cryptocurrency mining poses chal-
lenges to smart grid management. Unauthorised mining
operations and rapid technological advancements in this
field hinder the collection of accurate and up‐to‐date
datasets. One study estimates the energy consumption to
be between 120 and 240 billion kilowatt‐hours yearly [203].
This level of consumption suggests a significant impact on
grid resources, yet the lack of detailed data impedes
comprehensive analysis and grid optimisation efforts.
Notably, during Texas's energy conservation periods, such
as the 2022 summer heatwave, mining activities demon-
strated demand flexibility [204]. This behaviour indicates a
potential adaptive load management strategy, but a detailed
dataset is critical for evaluating the feasibility and reliability
of such an approach.

These trends highlight a gap in available resources for re-
searchers, emphasising the need for a collaborative effort to
establish data‐sharing protocols that can balance privacy,
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commercial value, and research needs to support advance-
ments in smart grid technologies.

5.1 | Data availability and synthetic data

One of the major issues facing SG data analytics is the lack of
public datasets available, which can be attributed to the
reluctance of energy providers to publish their data. Privacy,
security, and political issues all contribute to this issue [205].
Aside from the privacy concerns posed by energy disaggre-
gation discussed in previous sections, geographical location of
consumers can be compromised by solar panels generation
data as in ref. [206]. The lack of data availability and a standard
benchmark is more prevalent in the findings of a 2019 sys-
tematic mapping study of 358 articles in SG data analytics
[207]. Their findings revealed that 70% of the articles were
conducted on private datasets, 26% used publicly available
datasets, 15% synthetically generated the data, and the
remaining 4% used a combination of public and private
datasets. Without a standardised large set of public datasets, the
issue of reproducibility is expected to persist. As a result, there
has been an interest in developing sophisticated techniques to
synthesise SG data, and, in particular, energy consumption
data, either at an aggregate level or appliance level (i.e. the case
of NILM data). There is a lack of focus on synthesising other
categories of data such as market data. These types of data are
abundant and made public by grid operators because they are
necessary information for ISO and consumers. Grid data, on
the other hand, is mostly synthetic since they are considered
critical information for grid operators. Synthetic data genera-
tion, especially using data‐driven approaches, also gives rise to
opportunities for grid operators to allow realistic data analytics
without sacrificing their customer's privacy. GANs were first
introduced to generate synthetic data in the work of ref. [208]
in 2018 and since then several other works have utilised GANs
to generate time series data [90, 209–211]. The results of these
efforts suggest that GANs are a promising research direction.
However, simply using GANs is not enough to conceal privacy,
as they are susceptible to membership inference attacks [199].

5.2 | Privacy and security

With higher sampling rate readings, the analysis of smart metre
data on energy consumption patterns can be used to determine
household occupancy and other more detailed sensitive in-
formation about the household. The serious nature of the
privacy issues that smart metres raise has been shown to be a
barrier to the widespread implementation of smart metres in
some countries [212–214].

The work in ref. [215] reviewed the existing literature on
smart metres privacy and categorised the techniques into two
broad techniques:

� Data manipulation: In this category, the high‐resolution data
is manipulated from the consumer's end before being

communicated. Data aggregation, quantisation, and differ-
ential privacy techniques [37, 216–218] all fall into this
category. For example, the effect of data granularity on
privacy was studied in ref. [219]. However, more sophisti-
cated privacy‐aware techniques are required to ensure the
aggregation of private data [220]. Secure multi‐party
computation coupled with homomorphic encryption [221],
and secret sharing [222] are considered powerful candidates
to achieve privacy aware data aggregation.

� Demand shaping and scheduling: In this category, smart‐
metre values are not modified or obfuscated. Instead, bat-
teries, appliance scheduling, and renewable sources hide
energy usage within the house and hinder privacy‐intrusive
attacks, such as NILM. In these cases, smart metres mea-
sure perturbed usage after using the battery and renewable
sources. As such, locally installed batteries and renewable
sources could provide total household demand and privacy
is absolutely ensured. Table 10 illustrates the four main
categories and exemplary articles.

Security is another critical issue in the SG. Recent pub-
lished work in ref. [233] provides a comprehensive review of
AMI security vulnerabilities in SG in the three layers: hardware,
data and communication layers. The identified countermea-
sures fall into three main categories:

� Data encryption: Encryption is critical to preserving confi-
dentiality and privacy at the data layer. The techniques here
focus on encrypting the data before communicating them to
the utility with minimal computational and communication
overhead [234, 235].

� Authentication mechanisms: Authentication is critical to
verify the sources of messages in the SG and to prevent
impersonation attacks [236, 237].

� Intrusion detection systems (IDS): IDSs are a critical second
line of defence for detecting security breaches in critical
infrastructure. Recent works in IDS for AMI include
[238–240].

For data encryption and authentication mechanisms, the
work is typically evaluated using simulations on any energy
consumption dataset to measure the computational and
communication overheads. On the other hand, IDS are eval-
uated on popular datasets that are not specific to the SG. An
unpopular solution is to develop testbeds and simulations such
as in ref. [240]. Developing an IDS dataset in the context of the
SG or evaluating the effectiveness of IDS trained on typical
IDS datasets in the context of the SG is a necessary research
direction.

On the basis of the above, we argue that more focus should
be put forward on understanding the impact of demand
shaping and load scheduling approaches to preserve privacy on
the electrical utility. From a management perspective. These
techniques might, for example, induce uncertainties similar to
NTL leading to poor utilisation of resources and poor tariff
design [241]. From a data analytics perspective, such tech-
niques could potentially disrupt the efficacy of load forecasting
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or energy theft detection models. Another research direction is
to consider techniques that identify consumers that practice
such privacy‐preserving practices, to limit their possible
problematic impact on energy management and data analytics.

5.3 | Data quality

In the SG context, missing values, outliers, and noisy data (i.e.
logical errors or inconsistent data) are the three most common
data quality issues [242]. Several solutions to each of these
problems were suggested by existing work.

Regarding missing values, most datasets do not report
missing data, forcing data analysts to manually detect and
manage them. For time‐series forecasting applications, data
replacement (also called imputation) is typically required to
preserve the integrity and pattern of the data. In general, the
approaches to replace missing data are categorised as
interpolation‐based and prediction‐model‐based algorithms.
The former being used for a few missing data points, while the
latter for longer periods. However, since accurate time series
data are necessary to train forecasting models, researchers
mostly opt to omit a certain portion or timeframe in the data
(e.g. the whole day or similar omission criteria). Although this
is a common and straightforward way to deal with missing
data, it omits a portion of the available data, which may lead to
bias in common statistical analysis (e.g. linear regression) [243].
The work in ref. [244] outlines an industry‐recognised rec-
ommended practice for imputing faulty or missing smart metre
data. Periods less than 2 h are often imputed by using linear
interpolation to the adjacent data. For times longer than
2 hours, the standard technique is to develop daily load profiles
based on previously verified historical data of ’like weekdays'
and ’like days'. Holidays or other exceptional cases are often
addressed individually. It is important to note that dealing with
missing values is not always necessary. For example, in ref.
[244] when creating a representative load pattern of a cluster of
consumers, the average of the available data points in a given
point stamp is taken.

In outliers detection (anomalous data detection), most
work utilise the two‐standard‐deviations rule as a preprocess-
ing step for their respective application. According to ref.
[245], there are two types of outliers that should be taken into
account when dealing with time series data: isolated anomalies
or events where the error is local to a certain set of data points

and innovative anomalies where the errors are propagated
throughout the time series in the system.

Real power systems also suffer significantly from noise
[246], especially after the introduction of powerline commu-
nication technologies (PLCs) that support higher data rate
transmission (also called high data rate narrowband 3–500 kHz
PLC systems). These new technologies are desirable because
they can be built on the existing power systems, however they
are designed for one‐way communication and not the two‐way
communication necessary for SG applications [247]. The noise
present in these systems affect very high‐frequency electrical
measurement devices such as PMU devices. The noise of
voltage and current measurements of the phases (e.g. in NILM
datasets) at 60 or 120 Hz is negligible and can be ignored.

Data quality issues can extend to several other dimensions,
namely contextual, representational, and accessibility. Contex-
tual quality are several characteristics of the data that must be
present in certain applications but not others. Such qualities are
record time (the time it took for the data to be available after it
happened in actual time), sampling rate, and quantity of the
data. The representational qualities simply refer to how well a
dataset follows the format and structure of similar datasets, as
well as interpretability of notations. This issue was found to be
a significant hurdle for data analytics [248]. The last dimension
is accessibility, in particular availability, which is one of the
most prevalent issues in the SG context, as some datasets are
more readily available to researchers than others. For example,
some datasets require extra procedures such as login creden-
tials and/or licencing.

In light of these issues, we argue that more effort should be
put to develop toolkits to standardise the datasets as a future
research direction. In terms of formatting, for example, the
Ausgrid dataset [61] for electricity consumption combines
three consumption categories in the same Excel data sheet,
while the LCL contains only one. A toolkit with a unified API
would make the repeatability of studies much more feasible.
Another issue that could be addressed by the toolkits is data
preprocessing, since most work on energy consumption utilises
similar preprocessing techniques. Feature engineering is
another possible extension of such toolkits. For example, a
toolkit can facilitate the extraction of time‐related features (e.g.
peak hours) or apply simple clustering techniques to help with
data exploration; clustering daily consumption profiles helps
identify common, uncommon, and anomalous consumption
habits [249].

TABLE 10 Demand shaping and load scheduling categories.

Categories Explanation Ref.

Demand shaping: Batteries A battery (physical or virtual) used for energy consumption can be charged and discharged to
obfuscate the fine grain consumption data of the house, thus preserving privacy.

[200, 223–225]

Demand shaping: Renewable energy These techniques obfuscate energy consumption with batteries; however, renewable energy
generation must also be modelled.

[223, 226–228]

Demand shaping: Heating and cooling Since cooling and heating have high consumption, scheduling them in a specific way would be
able to obfuscate the consumption of smaller appliances and provide more privacy

[229–231]

Load scheduling Scheduling appliances to make non‐intrusive load monitoring more difficult [232]
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5.4 | Big data in the smart grid

The key steps to handle and use big data are data acquisition,
storage, analysis, and operational integration. The work in ref.
[250] reviewed data management for SGs and its technical
requirements, the tools, and the necessary steps to integrate big
data solutions in the SG context. The authors highlighted three
main issues: standards and interoperability; lack of infrastruc-
ture to be able to fully utilise the big data; and privacy, integrity,
authentication, and security. Furthermore, the authors of ref.
[251] discussed several challenges in the area of big data ana-
lytics, including data indexing and time synchronisation. The
two broad categories of applications in big data are smart
metre big data and PMU big data. Smart metre big data ap-
plications are related to energy management such as load
forecasting, profiling, DR, baseline estimation. The CBT
dataset is a common public dataset used for this area of
research due to its large volume (167 million data rows) [252].
PMU big data are used for state estimation, transmission grid
visualisation, and SG reliability and stability. Simulations are
commonly used to generate PMU data [253].

5.5 | Detailed in‐home consumption
datasets

Currently available detailed in‐home consumption datasets, or
as commonly referred to as buildings datasets or NILM
datasets, fall into two categories: laboratory measurements and
data from the actual environment. Available laboratory mea-
surements include data from individual devices, although these
data are of very little use for overall benchmark tests because
real‐world datasets contain measurements where multiple de-
vices are active concurrently. However, assigning reference data
in real‐world scenarios presents difficulties:

1) The synchronisation of references and measured data; that
is, a label should correspond to a pattern shift in the data
that corresponds to the labelled pattern. A further
requirement is that all data streams must be in sync with
one another.

2) The absence or excess of events, and the number of “on”
and “off” cycles for each device.

3) The probability distribution of the devices, as well as the
lengthy measurement cycles containing a correspondingly
large volume of data that contain a small number of events.

While NILM datasets face trade‐offs between covering a
large number of houses or focusing on a more extensive set of
appliances andmeasurements, an equally important aspect that is
often overlooked in the literature is the preprocessing of data.
Ensuring data quality and dealing with missing values is a crucial
step in the development of effective energy disaggregation
models, as it can significantly improve their performance. Un-
fortunately, the lack of transparency regarding preprocessing
procedures in many studies makes it difficult to replicate results
and assess the true impact of any potential bias or domain‐

specific knowledge that may have been introduced during this
stage. By addressing both the trade‐offs inherent in dataset
design and the need for clear documentation of preprocessing
techniques, researchers can work towards developing more
robust and generalisable energy disaggregation models.

5.6 | Challenges in preprocessing and
evaluation

In this subsection, we discuss the challenges and limitations
faced in current approaches to data pre‐processing, post‐
processing, model evaluation, and generalisability in the
context of electrical grid data analysis.

Most literature does not mention data preprocessing steps
such as data cleaning and dealing with missing values despite
being a crucial step known to boost performance. These steps
are presumably taken, but not mentioned. Not explicitly stating
the preprocessing procedure harms replicability of the work as
there are several preprocessing procedures that can be fol-
lowed. The authors could have introduced bias and/or domain
knowledge in the data, which may have enhanced the perfor-
mance of their models.

We have also observed a lack of post‐processing tech-
niques, which we believe is a potential future work to explore
due to its promise to enhance performance (especially reducing
false positives [254]) and mitigate common typical biases
especially in energy disaggregation. For example, the authors in
ref. [255] discovered that disaggregation techniques typically
overestimate or underestimate disaggregated loads and pro-
posed a technique that ensures that the disaggregated loads
sum up to approximately the true aggregate consumption.
Similarly, the authors of ref. [256] discovered bias when dealing
with appliances that operate on multi‐states (e.g. dishwashers
and washing machines). Models typically produce several
sporadic activations for such appliances.

Another preprocessing issue observed in the literature is
the arbitrary exclusion of some data and without justification,
which threatens the validity of the models. For example, some
houses in the REDD datasets include very few events. These
houses were mostly excluded due to the effect they have on
training. The issue is not specific to the REDD dataset, as each
model has its own setbacks that can be revealed if tested on
more houses. To this end, we recommend using techniques
such as leave‐one‐house‐out cross‐validation for a more
complete evaluation in future work. Different authors also
select the appliances and a number of appliances that they will
train and test on without justification.

There is no clear justification and/or consensus for the
selection of the training and testing split. Some train their
model for 5 days and test only on one, while others follow a
different evaluation strategy. This makes it difficult to compare
and evaluate models, not to mention that models will be more
likely to overfit the test data and perform better but have lower
generalisability. Some models also train and test on the same
house, while others train on a house and test on another, which
means the former has lower generalisability.

20 - ALTAMIMI ET AL.

 25152947, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12161 by Q

atar U
niversity, W

iley O
nline L

ibrary on [17/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The authors also define steady states and transient states
differently. For example, a steady‐state power signal must not
fluctuate more than a certain threshold and must last for a
period of time. In probabilistic models, such assumptions
extend to the appliances (average, maximum, minimum, and
duration of power consumed). While necessary, this poses a
trade‐off as follows: a more strict (i.e. high threshold) defini-
tion will eliminate noise; however, this may lead to not being
able to detect small appliances consumption (they will still be
considered in the steady state). To better illustrate this point,
imagine a kettle that consumes 10 W, if the steady‐state
threshold was, for example, 20 W then the kettle's consump-
tion will be considered noise and will not be detected. A more
lenient definition (or a lower threshold) will allow for small
appliances to be detected, however, poorer performance be-
comes inevitable. In probabilistic models, a more “diverse”
assumption on the appliances (e.g., picking appliances that
have a high difference in their average consumption) will allow
for better distinction between the appliances and better per-
formance overall. However, this will require handpicking of
appliances and is thus not practical.

We believe that more attention must be paid to developing
models with genralisability and transferability in mind [257].
This can be evaluated by training and testing on different
datasets or on different houses. Comparing the same model
with different datasets poses several challenges. First is the
different percentage of missing data in the datasets; some loads
that are not sub‐metered and their consumption data become
missing. The second is the scarcity of fully labelled NILM
datasets. The last challenge is the different characteristics of the
datasets, such as the type and sampling rate of the measure-
ments, and the different formats.

The learned models are affected by the sampling rate of
their associated dataset. Data preprocessing techniques that
can capture most of the features at lower sampling rates while
still maintaining high performance are a promising future
research direction.

Another notable issue is associated with the use of metrics
that favour classifying high‐power consumption devices. Such
metrics do not capture information about how well the model
performs in low‐power devices. It is argued, however, that such
information is valuable since low‐power appliances are typi-
cally what the user has the greatest control over.

6 | FUTURE WORK

This section provides future research directions highlighting
key areas that require further exploration and development in
the field of SG data analytics.

� Synthetic Data Generation: Future research can focus on
developing privacy‐preserving synthetic data generation
techniques for SG, particularly for market and grid data.
Another potential avenue is investigating advanced synthetic
data generation methods such as the use of GANs while

addressing privacy concerns like membership inference
attacks.

� Advancing Privacy Preservation and Security: Future
research can focus on exploring the impact of privacy
preservation techniques, particularly demand shaping and
load scheduling, on SG data utility and energy management.
Another avenue is to develop methods to identify con-
sumers using privacy‐preserving techniques because these
consumers may affect utilities data analytics.

� Improving Data Quality and Standardisation: Re-
searchers in the future may address SG data quality issues by
creating comprehensive toolkits for data standardisation and
preprocessing, including feature engineering and clustering.
A key focus may be on unifying dataset formats and
structures for better data exploration and better analytics
accuracy.

� Big Data Management and Analytics in SG: Investigate
the integration of big data solutions in SG, addressing
challenges in data management, standards, interoperability,
and infrastructure development. Emphasise improving data
acquisition, storage, analysis, and operational integration.

� Detailed In‐Home Consumption Datasets and Pre-
processing Techniques: Future research may aim at
improving in‐home consumption datasets by refining pre-
processing methods for handling data synchronisation,
event detection, and large data volumes. Standardising pre-
processing steps is crucial for enhancing study replicability
and minimising biases. This effort includes better strategies
for data cleaning and handling missing values. There's also a
need for more inclusive datasets covering diverse appliances
and conditions to foster robust, generalisable energy disag-
gregation models.

By addressing these areas, future research can significantly
contribute to the advancement of SG data analytics, ensuring
more efficient, secure, and reliable data management systems.

7 | CONCLUSION

Power grids generate huge volumes of data and specifically in
the SG context, where various types of data originate from
several sources and typically at higher sampling rates. In
addition to enabling safe operation of the grid itself, such data
enable a wide variety of applications. Despite their high utility,
the availability of public real‐world smart grid datasets is very
limited. In this work we reviewed over 50 public datasets in the
smart grid context, categorising them into three main cate-
gories; Consumers' data, NILM data, and Grid data. Each
category can enable for a distinct set of applications. After
considering the characteristics of the individual datasets, 14 of
their most popular applications were discussed, as well as
numerous other less popular applications. Several findings are
discussed and highlighted throughout this contribution. In the
end, we present a discussion of some prevalent issues that
motivate potential future research and development directions.
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Ultimately, this review provides a comprehensive survey of
public datasets in smart and power grid research, with the aim
of improving reproducibility and serving as a key reference for
researchers developing applications in this domain.
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