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This article focuses on the impacts of heat transport phenomenon in a ferrofluid in presence of a magnetic
dipole. The flow is caused by stretching of the surface. The analysis is disclosed with porous medium and
thermal stratification. The characteristics of thermomechanical coupling are computed analytically and
numerically. It is depicted that the porous medium has the significant effect in controlling the rate of heat
transfer in the boundary layer. Drag coefficient at the surface reduces when larger ratio parameter is con-
sidered. Comparison of present study with previous published work is given. The results are found in
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Introduction

Stephen [1] invented the ferrofluid in 1965. These fluids are
magnetic fluids with low viscosity, which are prepared through
the colloidal suspension of magnetic particles. The presence of
magnetic field makes ferrofluid strongly magnetized. Ferrofluids
can be used to image magnetic domain structures on the surface
of ferromagnetic materials using a technique developed by Francis
Bitter [2]. Ferromagnetic fluids have obvious significance in mod-
ern technology and industry. These fluids provided basis for some
chemical and electromechanical devices, for instance, transform-
ers, rotating X-ray tubes, electric engines, electromagnets, genera-
tors, and hoarding (e.g. hard plates and recording procedures),
while in biological sciences, we can use in magnet therapy for pain
management, gout, cure arthritis, spondicitis, migraines and head-
aches, and magnetic resonance imaging etc. Anderson and Valnes
[3] initiated ferromagnetic fluid flow induced by stretching sheet
and explored the effects of magneto-thermomechanical on bound-
ary layer flow. The characteristics of thermal and magnetic field
gradients were studied by Neuringer et al. [4] in a saturated fer-
rofluid flow. Tzirtzilakis et al. [5] analyzed sundry materialized
parameters numerically to study the impact of a localized mag-
netic field over a forced and free convective magnetic fluid flow.
Sharma et al. [6] identified the characteristics of dust particles on
a ferromagnetic fluid in a porous medium with thermal convection.
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Heat transfer analysis in a ferrofuid flow over a stretching surface
in presence of magnetic dipole are exposed by Majeed et al. [7].
The influence of dust particles with thermal convection in a ferro-
magnetic fluid is observed by Sharma et al. [8]. Furthermore, fer-
rofluid has a notable fascinating characteristic that is
magnetization is a function of temperature, so ferrofluids are more
competent in diverse practical applications due to this thermo-
magnetic coupling, see [9,10]. Albrecht et al. [11] originated
domains for the ferromagnetism and ferromagnetic effects in a liq-
uid metal.

Viscous fluid with the characteristics of thermal stratification
has got extensive significance among the scientists. Thermal strat-
ification along viscous liquids are applicable in many industrial and
engineering processes. It starts in fluid flows due to changes in
their temperature difference, or different densities of liquids. Srini-
vasacharya and Upendar [12]exposed the impact of double stratifi-
cation on magnetohydrodynamic free convection in a micropolar
fluid. In addition, magnetohydrodynamic fluid flow with high
porosity medium and thermal stratification over an inclined plate
are scrutinized by Foisal and Alam [13]. Superposed porosity with
thermal stratification and shear flows in pure fluid domains is
solved through numerical technique by Antoniadis and Papalexan-
dris [14]. Ganesh et al. [15] examined the second order slip, viscous
effects and Ohmic dissipations in a thermally stratified porous
medium of a hydrodynamic nanofluid over a shrinking/stretching
sheet. Ferdows and Liu [16] illustrates the characteristics of inertia
with internal heat generation on free convection from a horizontal
sheet surrounded in a porous medium.
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It is well-known fact that the evaluation of stretchable surfaces
surrounded by fluids leads to extensive features of industrial and
technological significance including glass blowing, paper produc-
tion, crystal growing, and aerodynamics extrusion of plastic mate-
rials etc. As the impacts of partial slip and magnetohydrodynamics
are observed by Nadeem et al. [17] on obliquely striking rheologi-
cal fluid past a stretching surface. Rashidi et al. [18] explored heat
transfer in a transverse magnetic fluid flow saturated in a porous
medium. Further, the impact of magnetic field over a stretching
surface in a suspension of nanoparticles and gyrotactic microor-
ganisms is scrutinized by Akbar and Khan [19]. Nadeem and
Muhammad [20] proposed the influence of theory of the
Cattaneo-Christov and stratification in the flow over a stretching
sheet. Nadeem et al. [21] inspected convective heat transfer in slip
flow over a stretching surface in the presence of carbon nanotubes
along with the impact of magnetohydrodynamics. Some applica-
tions may be found in [22-35].

To the best of our knowledge, no one has depicted the impacts
of thermal stratification and stagnation point in a ferromagnetic
Jeffrey fluid saturated with a porous medium over a linear stretch-
ing sheet. We are interested here in explaining the characteristics
of stagnation point and thermal stratification in a Jeffrey fluid in
presence of magnetic dipole. The medium is taken to be porous.
The respective equations are considered under the assumptions
of a boundary layer. After utilizing the similarity variables the
resulting differential equations are solved numerically and analyt-
ically with the help of BVPh2-midpoint method and OHAM respec-
tively. Physical features are interpreted through graphs and tables.

Ferrohydrodynamic and thermal energy equations
Flow analysis

An electrically non-conducting, steady and an incompressible
two- dimensional ferrofluid is merged over a linear stretching sheet.
The stretching is initiated in the sheet having velocity U,,(x) due toa
force exerted on the sheet at y = 0. The stretching is directly propor-
tional to the distance from the origin. The magnetic dipole is
arranged on outer surface at some distance from the fluid. A mag-
netic dipole is precisely put in the system in such a manner that
its center lies at a distance b from the x-axis on the y-axis. The direc-
tion of the magnetic field lines due to magnetic dipole are in the pos-
itive x-direction. A notable strength of magnetic field is shown by
the saturating ferrofluid. Curie temperature T, is greater than the
temperature at stretching sheet T,, is taken, whereas temperature
of the fluid element away from the sheet is considered T = T, and
T. > T, > T,.The magnetic effect vanishes beyond the temperature
T.. Variable temperature T,, = Tg + ¢1X, T, = Tg + CX are scruti-
nized at the sheet distant from the surface. The influence of heat
generation is imperceptibly small. For ferrofluid, the governing

boundary layer equations and heat transferring rate are shown as
ou ov
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Here u, v are the velocity components along x- and y-directions
respectively, o exemplify thermal diffusibility, p displays for fluid
density, v signify the kinematic viscosity of fluid, p indicate pres-
sure, ¢, represents the specific heat, whereas o exemplify thermal
diffusibility, p, signify the magnetic permeability, T symbolize the
temperature, H represents the magnetic field, M denotes the
magnetization.

The pertinent boundary conditions are of the form

ulyo =Uwx)=a1x, 2|, =0, T|,_o=Tw=To+cCi1x,

ul, . — U.(x) = ayx, T, o = T =To + C2x. (4)

In above equations, U,,(x) indicates the stretching velocity, a; and a,
are dimensionless constants, T, identify reference temperature,
whereas T, define the temperature of an ambient fluid, ¢; and c;
are the dimensional constants.

Magnetic dipole

The magnetic dipole produces the magnetic field that influences

the ferrofluid flow, which is described by a magnetic scalar poten-
tial Q* as
. 0 X
= 5
27 X2 4 (y + b)’ ®)

here o4 illustrate the magnetic field strength at the source. The

components of the magnetic field H are given by
oH  0Q" oy x*—(y+b)

A= =5 —————, (6)
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since the magnetic body force is (generally) proportional to the gra-
dient of the magnetic of H, in this manner we have

0 2 #\ 2
() (5):

Making use of Egs. (6) and (7) in Eq. (8), we get the successive equa-
tions, after expanded in powers of x and held terms up to order x? ,

OH  op 2x

a_ _E mv (9)
OH oy 4x? 2

- _ = . 10
dy 2n <(y+b)5 (y+b)3) (10)

Effect of magnetization M with temperature T is given by the
linear expression below,

M=K"(T -T,), (11)

here K* denotes the pyromagnetic co-efficient. The physical sche-
matic of a heated ferrofluid appears in Fig. 1. Here the roundabout
lines demonstrate the magnetic field.

Solution procedure

Here we compose the dimensionless variables as perceived by
Anderson [9]
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=01(&) + C02(8), (12)

here 0;(¢, ¢) and 02(§, ¢) exhibits dimensionless temperature and p
express dynamic viscosity, the corresponding non-dimensional
coordinates are

1/2 1/2
=) e ()"

The stream function is defined in such a way that the continuity
equation is directly satisfied, here the stream function (¢, ¢) and
the comparable velocity components u and v are defined as

o

u=—-=xaf (),

3y ~(va)'°f(2), (14)

Z} —_ a —
where prime expresses differentiation with respect to ¢. Applying
the boundary layer approximation (O(x)=O(u)=0(1) and
O(y) =0O(v) = 0(5)) and using similarity variables given in Egs.
(12)-(14), the Egs. (2) and (3) along with boundary conditions given
in Eq. (4) reduces to the following system of equations and corre-
sponding boundary conditions

f/// - (.1 + }VZ)U,—/Z 71-[//) + '))1 (fuz *ff4) _ (-1 + /12) 2ﬁ01 .
(E+oan)
+Pu(R?—f) =0, (15)
0] + Prfo, + M +20, — 4f%) =0, (16)
&+ Oh)
/' / ! 2’* 9
0y + Pr(fo, — 2f'0;) + %
2f/ 4f 5 pl2
- — -4, =0,
o 8)<(é+0€1)4+(é+0h)5> /e=0 17
fO=0f(6)=1,01(&) =1-51,0,(¢) =0, at&=0, (18)
f1(&) = R,0,(&) = 0,0,(¢) = 0, when & — oo. (19)

In above system of nonlinear equations, the parameters of 8 (ferro-
hydrodynamic interaction), y; (Deborah number), S; (thermal strat-
ified parameter), A (viscous dissipation), R (ratio), P, (the
permeability of porous medium), ¢ (curie temperature) and Pr
(Prandtl number) are defined as

U, Tc y: W
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Fig. 1. Geometry of the flow.
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Skin friction coefficient and Nusselt number are defined as
2Ty x oT 0
Cr = ) =07 a0 ; w = M= 21
= To—Tw Y, 0 Favl, o (21)

Using the similarity variables the following dimensionless expres-
sions are obtained

Re'2C; = —2"(0), Re "*Nu = —(6,(0) + *6,(0)). (22)

Optimal homotopy analysis method

Optimal homotopy analysis method is employed for a solution
of the problem. The method is used to interpret the solutions for
highly non-linear problems. The optimal homotopy analysis
method gives us a better flexibility to get the auxiliary linear oper-
ator and the initial guess than the conventional nonperturbative
techniques, as pointed out later by Liao [36,37]. The linear opera-
tors and initial guesses for the existing flow problem are
d3f d*f d*0, d*0

g ) =gm =0 Ln(0)= 2~ 0y,

Ls(f) = el

(23)

fol&) =1+R(E=1) = (1 =R)exp (=),
019(&) =(1 = S1) exp (<),
0, (¢) =Eexp (=¢). (24)

where L¢(f), £y, (01) and Ly, (6-) portray the linear operators, fur-
thermore, fy(&),01,(¢) and 6,,(¢) exemplify the respective initial
guesses of fg, 0;, and 6,,.

Convergence analysis

The auxiliary parameters hy, hy, and h,, have a magnificent aim
to stabilize and control the convergence of homotopic solutions. To
get convergent solutions, we take preferred values of these param-
eters. For this purpose, residual errors are scrutinized for momen-
tum and energy equations by implementing the equations given
below

"1

Al = /0 [R)(&,hy)] de, (25)
1

= [ [Ra (e e (26)
1

A :/0 [R% (&, hy,)]de. (27)

The convergence of the parametric values is computed by optimal
homotopy analysis method (Tables 1-4).
The graphical representation for the 10th and 12th order
approximation shows the error decay in the following Figs. 2 and 3.
The total discrete squared residual error A}, are described
through the following equation.

AL = AL+ Al AL (28)

Here the A!, is utilized to obtain the optimal convergence control
parameters.
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Table 1
Shows the average residual square errors (A') are tabulated.
% hf hrn huz A;
4 —0.981921 —0.872958 —0.09223 4.61754 x 1078
6 ~0.01206 -0.943273 ~0.02714 159062 x 10~
8 —0.05365 —0.914006 —0.06445 6.70151 x 10~ 1°
10 ~0.04371 ~0.05362 ~0.01794 1.01087 x 10-18
12 ~0.03177 ~0.92185 ~0.06242 411943 x 102
Table 2
Shows individual residual square errors for A7 A’ and A,.
”gfggr hy = —0.04371 hy, = —0.05362 hy, = —0.01794
A, Ap AR
4 1.10421 x 107° 3.42476 x 107”7 3.63257 x 10°°
8 3.54190 x 10717 2.51890 x 1072 4.44569 x 1071°
12 8.43786 x 1072 7.42327 x 1071° 5.65326 x 10714
20 256190 x 107 0.53438 x 1072 7.96546 x 10720
Table 3
Comparison of Nusselt number for the case when

p=Pm=y,=kh=5S=r=e=y=0.

Pr Abel et al. [38] Ze?\igﬁerzgnd [7] OH{h&Zgiults BVPh{;)?/([:]c;pomt
0.72 1.0885 1.088534 1.088542 1.0882302
1.0 1.3333 1.333347 1.333341 1.3332183
2.0 - - 2.021082 2.0215192
3.0 - 2.509729 2.509783 2.5097533
4.0 - - 2.903042 2.9034172
10.0 4.7968 4.796874 - 4.7868615

Results and discussion

Optimal homotopy analysis method is used to get the solution
of the boundary value problem described in Egs. (15)-(19). Here
the effects of sundry physical parameters on the flow field are
under discussion. The impacts of dimensionless parameters /1 (vis-
cous dissipation), g (ferrohydrodynamic interaction), S; (thermal
stratified), y (dimensionless distance from origin to center of mag-
netic dipole), R (ratio), and Pr (Prandtl number) are scrutinized.
Moreover, other parameters in the flow framework are fixed.
The fixed values of the parameters are taken as ¢ =2.0,4 = 0.01,
y=1.0.

Impacts of parameter B (ferrohydrodynamic interaction parameter)

In this subsection, we discuss the influence of g (ferrohydrody-
namic interaction) parameter. The impact of ferromagnetic effect

Table 4

on flow problem is stabilized by the existence of g (ferrohydrody-
namic interaction), ¢ (Curie temperature) and y (dimensionless dis-
tance from origin to center of magnetic dipole) parameters. In
Fig. 4 velocity field reduces by the increment in g (ferrohydrody-
namic interaction) parameter because of the presence of ferrite
particles which arises the viscosity of the fluid. The characteristics
of parameter B (ferrohydrodynamic interaction) on temperature
profile are shown in Fig. 5. It is observed that, by varying the
parameter g (ferrohydrodynamic interaction), temperature of fluid
inside the boundary layer increases. This occurs by the interaction
between movements of fluid particles and an action of a magnetic
field. The interaction between magnetic field action and fluid par-
ticles diminishes the velocity of the fluid whereas frictional heating
among fluid layers is growing which leads to the thickness of the
thermal boundary layer i.e., enhancement in heat transfer occurs
due to the reduction in movements of fluid particles, which is evi-
dent in Fig. 5.

The influence of parameters S; (thermal stratification)

The present study characterizes the effect of parameter S; (ther-
mal stratification) on velocity and temperature fields. Velocity and
temperature field are decreasing for greater values of the corre-
sponding parameter thermal stratification shown in Figs. 6 and 7.
It is noted that the decaying temperature difference between sur-
face and ambient of sheet is reducing the temperature field. Mag-
netohydrodynamic interaction parameter f is responsible for a
reduction in axial velocity and heat transfer is raised by increasing
parameter S; (thermal stratified), leads to increasing the density of
fluid. As magnetohydrodynamic interaction is raised by the high
density of ferrite particles moving towards the surface.

The influence of parameters y, (Deborah number) and 7, (ratio of
relaxation to retardation time)

This subsection concerns about the impacts of parameters 7,
(Deborah number) and /, (ratio of relaxation to retardation times).
Fig. 8 shows the impact of Deborah number y; on temperature
field. Increasing the values of parameter ), (Deborah number),
there is a diminishing in temperature field 0,(¢). Physically y, is
corresponding to retardation time /;, thus, an extensive retarda-
tion time of any material makes it less viscous, which may bring
about an enhancement in its movement, which subsequently
debilitates the thermal boundary layer thickness and lower tem-
perature field. Further, Fig. 9 depicts the impact of the ratio of
relaxation to retardation time parameter /, on temperature profile
01(¢). From figure, it is watched that temperature profile is slowly
expanding with an expansion in the value of ,. An enhancement in
/A, infers to an enhancement in relaxation time and decline in retar-
dation time. This adjustment in relaxation and retardation times

The skin friction coefficient —Re™'/? Cr and local Nusselt number —Re'/>Nu, for different values of #,7,,S; and Pr are tabulated via analytic solution based on optimal homotopy

analysis method.

Pr B "1 Si —~Re '2¢ —Re'”2Nu,
1.0 1.0 0.7 0.2 1.08721 1.28703
15 1.06532 2.08518
2.5 1.00532 2.34319
2.0 1.0 0.7 0.2 1.29365 2.44380
14 1.45329 2.31437
18 1.55430 2.31981
2.0 1.0 0.4 0.2 1.54828 0.95285
0.8 1.32063 0.97275
1.2 1.15042 0.98421
2.0 1.0 0.2 0.2 1.15476 0.79654
0.4 1.16543 0.87542
0.6 1.18043 0.96432
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Fig. 3. The error decay for the 12th order approximation.
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Fig. 4. Impact of ferrohydrodynamic interaction parameter 3b2 on velocity profile

f@.

illustrates the enhancement in temperature and increases the ther-
mal boundary layer thickness.

The effect of parameter Pr (Prandtl number)

The Pr (Prandtl number) is the silent characteristic number for
thermal boundary layers and heat transfer in forced convection.
The Pr (Prandtl number) is a measure of the ratio of heat transmis-

0.8

=0.5,0.7,1.0, 1.6

& (é)

0.0F

o

Fig. 5. Influence of ferrohydrodynamic interaction parameter 3b2 on temperature
field 01(¢).

ost g

$1=0.0.0.2,0.4,0.6

f'(£)

0.6\

$1=0.0,0.2,04,0.6

K (€)

N

Fig. 7. Influence of thermal stratified parameter S; on temperature profile 6; (¢).

sion and energy storage capacities of the molecules. Fig. 10 exhibits
the influence of parameter Pr (Prandtl number) on temperature
field. It is designated that due to increasing parameter Pr, thermal
diffusivity decreases. As a result, the temperature and thermal
boundary layer thickness decrease. Fig. 11 indicates the enhance-
ment in axial velocity for higher values of parameter Pr (Prandtl
number).
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Fig. 8. Influence of parameter y, (Deborah number) on temperature distribution
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Fig. 9. Effect of ratio of relaxation to retardation time /, on temperature
distribution 0, (¢).
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Fig. 10. Impact of Prandtl number Pr on axial velocity f'(¢).

The effect of parameters R (ratio) and P,, (porosity)

The stretchable sheet causes the change in velocities of the fluid
and a parameter R is introduced, which is the ratio of ambient fluid
velocity to surface velocity. The parameter R has a peculiar behav-
ior on axial velocity observed in Fig. 12. The parameter R have con-
trasting behavior for R > 1 and for R < 1. Moreover, axial velocity
remains constant for R = 1.0. Axial velocity is rising by the incre-

0.8

Pr=0.5,1.0,1.5,2.0

04

& (1)

oot

0.8F

06

£(£)

Pm=0.2,0.6, 1.0, 1.7

04

Uy

Fig. 13. Effect of porosity parameter P,, on velocity distribution f'(¢).

ment in ratio parameter R. Whereas Fig. 13 display the impact of
porosity parameter P,, on velocity. It is perceived that for increas-
ing values of porosity parameter, axial velocity increases.

Skin friction coefficient and local Nusselt number
Impact of various parameters R,S; and Pr are observed on skin

friction coefficient and Nusselt number. The enhancement in
parameter R causes an increase in skin friction coefficient. More-
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Fig. 14. Wall shear stress versus R.
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Fig. 16. Heat transfer rate versus Pr.

over, skin friction coefficient declines because plate velocity is hin-
dered by fluid velocity for greater values of parameter R causing an
increase in axial velocity. The fluid velocity and sheet velocity are
same due to stretching at R = 0, causing no change in the graph
Fig. 14. Further, the ascending behavior of stratification parameter
S: enhances the wall shear stress observed in Fig. 15. In addition,
heat transfer rate reduces due to variation in parameter Pr (Prandtl
number) but the increment of S; (thermal stratification) results in
an increase of heat transfer rate shown in Figs. 16 and 17,
respectively.

Re” I'IZNUX

Fig. 17. Heat transfer rate versus S;.

Concluding remarks

The aspects of thermal stratification on the ferrofluid past a hor-
izontally stretchable surface under the influence of Magnetic
dipole is under discussion. Bvph2 and Optimal HAM are used to
get the numerical and analytic series solution for flow problem.
The consequences of a few physical parameters, for example, ferro-
magnetic interaction parameter g, ratio of relaxation to retardation
times 1, thermally stratified parameter S;, Deborah number y,,
ratio parameter R, Prandtl number Pr and porosity parameter Pm
on velocity and temperature fields are inspected and discussed
graphically in points of interest. At last, Some critical perceptions
in view of the present study are as per the following.

An increase in parameter  (ferromagnetic interaction) gives
rise to heat transfer thereby reducing axial velocity.

e Higher values of parameter S; (thermal stratification) corre-
sponds to thinning of velocity and temperature fields. Further,
the heat transfer rate enhances for increasing values of param-
eter S;.

e Variation in parameter R (ratio) results in an increment in axial
velocity, while the wall shears stress decreases.

o Axial velocity increases as we enhance the porosity parameter
Pm.

e Prandtl number results in depletion in the temperature field
while enhancement in axial velocity.
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