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ABSTRACT Electrical and mechanical equipment with rotating parts often face the challenge of early 

breakdown due to defects in the gears or rolling bearings. Automated industrial systems can be significantly 
impeded by this type of fault in revolving components because of manual fault detection and the additional 
time required for repairing and replacing them. This research presents GearFaultNet, a novel, lightweight 1D 
Convolutional Neural Network (CNN)-based network, designed to detect gearbox faults. GearFaultNet can 
be an effective measure for real-time detection of sudden shutdowns and can alleviate downtime and system 
losses in the industrial aspect. The proposed framework involves the integration of four-channel vibration 
data from different loading conditions, which are preprocessed in the temporal domain and fed to 
GearFaultNet to classify the gearbox's condition as either Healthy or Broken. The developed lightweight deep 
learning network has achieved higher accuracy than those proposed in existing literature. The overall 
accuracy achieved by this framework is 94.04%. This shallow network can also be applied to estimate other 
mechanical faults in different machinery. 

INDEX TERMS GearFaultNet, Fault Detection, Gearbox, 1D-CNN, Deep Learning

I. INTRODUCTION 

The power system always requires condition monitoring to 

maintain robust and secure operation and ensure a safe supply 

to users. Condition monitoring is essential for preventing 

unplanned outages and preserving the reliability and safety of 

the electrical grid by detecting potential problems with 

equipment before they occur. In power systems, various 

approaches are employed for condition monitoring, such as 

monitoring electrical parameters like frequency, current, or 

voltage [1], vibration and oscillation analysis [2]-[5], analysis 

of oil or lubricant quality, insulation discharge monitoring, and 

temperature fluctuation analysis through Infrared radiation 

(IR) or thermal cameras [6], among others. A power system 

comprises generation, transmission, distribution, substations, 

and loads. Each sector requires a condition monitoring system 

with various critical monitoring applications to avoid system 

interruption and energy loss [7]. Switch-gear circuit breakers 

protect electrical systems against overload and short circuits. 

This is accomplished by regularly checking contact wear, 

braking speed, and timing [7]. Transformers are monitored for 

oil level, temperature, insulation resistance, and partial 

discharge. Power cables also have a similar status monitoring 

system, excluding oil level, to prevent system failure. 

Generators and motors are inspected using parameters such as 

temperature, voltage, current, frequency, revolutions per 

minute (RPM), vibration, and more [7]. 

Gearboxes are utilized in rotating instruments such as 

generators, wind turbines, hydro turbines, pump turbines, and 

marine current turbines (MCT) to mechanically transmit 

power at the required torque or speed. The operational range 

of variable-speed wind generators (VSWG) exceeds that of 

other types of wind turbines (WT) because they can adjust 

their rotating speed to match the wind's velocity [8]. Various 

types of wind generators can generate power at different 

speeds, including the doubly-fed induction generator (DFIG) 

[8], the variable speed drive (VSD), and others. The two 

primary types of issues that may arise with a WT generator are 

electrical and mechanical. Electrical problems include open 

circuits, voltage fluctuations, and damaged stator and rotor 

insulation [7]. Common mechanical problems comprise 

insufficient lubrication, a bent shaft, a fractured rotor bar, an 

irregular air gap, and a failed bearing [9]. Any problems with 

these components can result in unexpected and unscheduled 
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downtime, costly maintenance, production losses, and delays 

in power delivery. 

In 2014, there were more power outages than ever before, 

affecting 14.2 million people [10]. Identifying and predicting 

these defects early in the operation and maintenance process, 

as well as improving power output, are essential for preventing 

power outages and catastrophic failures. According to recent 

studies, gearbox failure results in more downtime than any 

other component. On average, 256 hours are spent maintaining 

gearboxes in wind turbines [11]. Failures in these turbines are 

caused by the gearbox in 59.1% of cases, by bearings in 

76.1%, and by gears in 17.1% [11]. With various machine 

learning, deep learning models, and sophisticated spectrum 

analysis, artificial intelligence (AI) has become essential in 

rotating equipment for fault detection or estimating the 

"Remaining Lifetime" and replacements of various 

components. The growing prominence of deep learning in the 

field of signal processing is becoming increasingly evident 

[12]-[14]. Deep learning models have also proven their 

effectiveness in defect diagnosis using signals from gearboxes 

[15] and rolling bearings [16], which are detailed in the next 

section. Innovative, lightweight models are necessary for real-

time usage in industrial sectors to detect faults in rotating 

equipment. Complex models or laborious preprocessing 

techniques could prolong fault prediction time, making them 

unsuitable for real-time applications. Thus, the contributions 

of this research can be highlighted as follows: 

• The proposed framework offers a unique and efficient 

approach to gearbox fault detection in rotating 

equipment, providing a lightweight solution for real-time 

applications. It showcases the effectiveness of deep 

learning models in identifying and predicting defects, 

leading to improved operational efficiency and reduced 

downtime. 

• The proposed framework facilitates efficient means for 

prompt detection of sudden shutdowns, reducing 

downtime and system losses in industrial environments. 

It also enables the timely detection of faults in rotating 

equipment, ensuring prompt maintenance and averting 

significant machinery failures. 

• The novel GearFaultNet attains an overall accuracy of 

94.06%, surpassing previous literature on gearbox fault 

detection. It also exhibits elevated precision, specificity, 

and recall, particularly in identifying faulty signals. 

• The proposed approach holds promise for being utilized 

in fault estimation across a range of mechanical devices 

beyond gearboxes. 

The rest of the paper is organized as follows: Section II 

explores previous research on gearbox fault detection and 

various methodologies employed. Section III outlines the 

methods and materials employed in this study. Section IV 

presents the results and discusses them using suitable 

evaluation metrics. Lastly, in Section V, conclusions are 

drawn, and future work is outlined. 

II. LITERATURE REVIEW 

In this section, we delve into a comprehensive background 

research encompassing several pivotal aspects of this study. 

Initially, we explore different types of gear faults. 

Subsequently, we provide an in-depth discussion of pertinent 

studies conducted on gear fault detection employing various 

techniques throughout the years. 

A. TYPES OF GEAR FAULT 
Conventional rotating machinery systems, including rotary 

kilns, wind turbines, water turbines, and steam turbines, play 

a crucial role as strategic assets supporting major businesses 

[17], [18]. Monitoring their condition and predicting faults is 

imperative to maintain their ongoing efficiency, safety, and 

reliability. Mechanical defects or faults in rotating machinery 

systems typically fall into three main categories: issues with 

the rotor body, problems with the rotor support bearing, and 

faults in the transmission gear [19]. The latter category 

encompasses conditions such as tooth breakage, spalling, 

missing teeth, surface wear, chipping of the tip, and tooth 

pitting. Fig. 1 illustrates various types of faulty gear 

conditions. 

 
(a) 

 
(b) 

FIGURE 1. (a), (b) Different types of faults in the gearbox [20], [21]. 

B. GEAR FAULT DETECTION 
The past decade has seen a proliferation of various machine-

learning approaches in the monitoring and prediction of faults 

in rotating machinery. For fault detection, researchers employ 

diverse types of data, including vibration data [2]-[5], oil and 

gear bearing temperatures [22], vibration and current signals 

[1], and other combinations of time series data. In [23], the 

authors introduced a 1D deep neural transfer learning model 

to interpret torque measurements and predict the health status 

of gearboxes, achieving an accuracy of over 82% for different 

transfer tasks. Three deep neural network models, namely 

stacked autoencoders (SAE), deep belief networks (DBN), and 

deep Boltzmann machines (DBM), were investigated in [24]. 

Fault detection in rolling bearings was predicted through 

preprocessing methods in both the time and frequency 

domains, involving seven types of faults, and achieved an 

accuracy of over 99% for all three methods. The modified SAE 

model proposed in [25] outperformed the raw SAE by 

minimizing overfitting using the rectified linear unit (ReLU) 

activation function and the dropout technique. 
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On the other hand, a multiscale convolutional learning 

structure with an attention mechanism based on acoustic-

based diagnosis demonstrated an 82.8% accuracy [26]. Fault 

feature vectors obtained through vibration signal 

decomposition using the Hilbert empirical wavelet transform 

(HEWT) were classified with a self-organizing map (SOM) 

model to detect faulty gears, as described in [27]. A deep 

random forest fusion approach was employed to integrate 

acoustical emission and vibrational data for the detection of 11 

different condition patterns indicative of gearbox failures, 

resulting in a classification rate of 97.68 percent, as reported 

in [28]. Vibration signals were transformed into time-

frequency spectral images using wavelet analysis integrated 

with a convolutional neural network (CNN) model [29], and 

the features from the images were then extracted to classify 

the faults. Specifically, for single-condition gearbox fault 

diagnosis, attentive kernel residual network (AKRNet) [30] 

achieved a high average recognition accuracy of 99.51% 

across various health states of the gearbox, including normal, 

worn teeth with five defect levels, pitting teeth, cracked teeth, 

and three bearing defects (inner race defect, ball defect, and 

cage defect). 

Empirical mode decomposition (EMD), long short-term 

memory (LSTM), and particle swarm optimization (PSO) 

were combined in a novel deep neural network presented in 

the paper, achieving 97.44% accuracy [31]. Another hybrid 

attention-based method for fault diagnosis combined ResNet 

[32] and wavelet transform. A multi-scale fusion global sparse 

network, a specialized form of CNN for gearbox fault 

evaluation, is discussed in [4], achieving an overall accuracy 

of 98.45%. In [20], a novel method of gear fault diagnosis was 

proposed, combining a 1D denoising convolutional 

autoencoder (DCAE-1D) and a 1D-CNN with anti-noise 

improvement (AICNN-1D), resulting in improved accuracies 

of 89.12% and 92.24%, respectively. LSTM and its variant Bi-

LSTM for gearbox fault estimation were compared in [33], 

achieving the best overall accuracy of 99.5%. Similarly, an 

application for diagnosing faults in a gearbox transmission 

chain using unsupervised deep belief networks is described in 

[34], where structural parameters are optimized using a 

genetic algorithm. This approach outperforms other machine 

learning techniques for classifying gearbox and bearing faults, 

achieving perfect accuracy for gearbox faults. 

The literature referenced above [28]-[19] utilized various 

datasets, techniques, and categories for gear fault detection. 

However, the "Gear Box Fault Diagnosis Data Set" [35] was 

exclusively employed for binary class classification in this 

study, distinguishing between Healthy and Broken categories. 

While the authors in [3] achieved an accuracy of 87.5% using 

the "Sigmoid-PSO + Hybrid LSTM" and "ReLU-Cuckoo + 

Hybrid LSTM" techniques, the accuracy remained relatively 

low. Conversely, in [2], 100% accuracy was reported using 

"NLMS Error (Adaptive filter) + SVM", "EMD-IMF 1 + 

SVM", "Plain Method + SVM", and random sampling 

methods. However, the random sampling approach presents a 

risk of data leakage between training and test sets, rendering it 

ineffective for real-world applications [36]. Consequently, 

there exists a research gap regarding the "Gear Box Fault 

Diagnosis Data Set" for classifying fault signals by testing the 

model with various loading condition data to prevent data 

leakage between training and test sets. In this research, 

preprocessing was simplified, and a model with five layers of 

shallow 1D convolutional networks was developed, 

surpassing the findings of previous studies. 

III. MATERIALS AND METHODS 

In this section, we delve into the materials utilized and the 

methodologies adopted throughout this study. We commence 

by presenting a high-level overview of the deep learning-

centered approach designed to detect gear faults from 

vibrational data. Following this, we examine the dataset, the 

steps involved in data preprocessing, the architecture of the 

proposed GearFaultNet model, the experimental setup, and 

the evaluation metrics devised for this research. 

A. FRAMEWORK OVERVIEW 
The proposed framework comprises two main sections: data 

preprocessing and 1D classification utilizing a deep-learning-

based classifier. The vibrational sensor data utilized in this 

study for gear fault detection are one-dimensional (1D) signals 

necessitating thorough preprocessing before utilization. 

Following initial preprocessing steps, we create independent 

folds based on loading conditions to ensure the robustness of 

the study. Additionally, we augment the training sets in each 

fold by employing overlapping, as deep learning models 

exhibit a voracious appetite for data and often suffer from 

insufficient data abundance. Next, we perform the pivotal step 

of this research that involves classifying the raw sensor data 

into Healthy and Broken gear classes based on the input 1D 

signals, accomplished by the deep classifier. Finally, we assess 

the performance of our novel proposed GearFaultNet model 

using commonly utilized metrics detailed in upcoming 

sections. Ablation studies are also conducted wherein we 

compare GearFaultNet's performance against other state-of-

the-art (SOTA) models. Furthermore, we contrast 

GearFaultNet's performance against existing studies in the 

current literature that have worked on the same dataset and 

attempted to classify the signal based on the presence of gear 

faults. 

B. DATASET DESCRIPTION 
This study utilizes a dataset generated from SpectraQuest’s 

Gearbox Fault Diagnostics Simulator (GFDS), as outlined in 

[11]. The dataset is publicly accessible on the data.world 

repository [35]. The GFDS serves as a gearbox prognostics 

simulator, designed to replicate industrial gearboxes for 

research purposes. The simulator, depicted in Fig. 2, allows 

for the configuration of the gearbox with different gear ratios 

(ranging from 1 to 6) and various types of bearings, including 

rolling or sleeve bearings. Its development aims to offer 

researchers a broader range of gearbox configurations for 

investigating topics such as gearbox health monitoring, 

dynamics, and acoustic behavior, and vibration-based 

diagnostic and prognostic methods. 
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FIGURE 2. SpectraQuest’s Gearbox Prognostics Simulator (GPS) setup 
[37]. 

The gearbox is engineered to support multiple sensor types. 

Diagnostics of rotating equipment and in-process monitoring 

necessitate drawing inferences about defects and process 

conditions based on sensor readings. These readings and 

process states often exhibit intricate and non-deterministic 

relationships. Enhanced performance typically requires the 

incorporation of multiple sensors. When employing multiple 

sensors, each sensor's information may offer distinct insights 

into the same machine's status. Accelerometers can be affixed 

to the bearing housing to measure vibrations in all three 

directions. In the dataset utilized for this study, four 

accelerometers were positioned on the gearbox body to 

capture vibration signals. The recorded data is categorized into 

two classes: Healthy and Broken. Both classes encompass 10 

loading conditions, ranging from 0% to 90% in increments of 

10%. Each condition is associated with four channels of data 

from four sensors, with a sampling frequency of 30 Hz. 

C. DATA PREPARATION 
In deep learning frameworks, temporal data must be divided 

into smaller, uniform segments [38]-[40]. Initially, we 

partitioned all data from the four channels into segments of 

512 samples each. Deep learning models generally require a 

good number of high-quality samples to perform well in any 

task. In this case, the challenge of data limitations has been 

solved through augmentation. To enhance the training sets 

post-partitioning (i.e., fold creation), we employed a 50% 

overlapping technique, similar to studies in the domain of 

deep-learning-based 1D signal classification [43]-[45] or 

signal-to-signal reconstruction (segmentation) [46]-[49]. 

During overlapping, subsequent segments comprised half of 

the data samples from the preceding segments, and vice versa. 

For example, as shown in Fig. 3, the first segment 

encompasses the initial 512 samples of one sensor data for a 

loading condition of 10%, while the second segment begins 

from the 256th sample and extends to the 768th sample point, 

resulting in a total segment length of 512 samples. 

 
FIGURE 3. A depiction of data augmentation through 50% overlapping 

Once the segments were generated, the data underwent 

normalization. Normalization is performed to ensure that all 

features are treated with equal importance. We utilized z-score 

normalization [46]-[48] separately for each of the four input 

channels. Z-score normalization involves transforming each 

value in a dataset so that the mean of all values becomes 0 and 

the standard deviation becomes 1. This process is also referred 

to as "Standard Scaling," as defined in (1). 

‖𝒙𝒊‖ =
𝒙𝒊 − μ

σ
 (1) 

Here, 𝒙𝒊 and ‖𝒙𝒊‖ represent the ith raw and normalized 

samples, respectively, while 𝜇 and 𝜎 denote the sample mean 

and standard deviation, respectively, of all data within a 

specific channel. The vector quantities or arrays have been 

highlighted to distinguish them from the scalars. Following z-

score normalization, we apply global min-max normalization 

(also known as range normalization), which is the most 

commonly used method for normalizing 1D signals in deep 

learning systems [40], [1], [45]-[50]. In this process, the 

minimum value of each segment is scaled to -0.2, and the 

maximum value is scaled to 0.2. Subsequently, intermediate 

values are then mapped within this range, as formulated in (2). 
Fig. 4 depicts a graphical representation of raw and 

preprocessed signals using a bell curve. Only two loading 

conditions (0% and 30%) are shown in Fig. 4, while a high-

resolution version illustrating the normalized distribution of 

raw and preprocessed signals for all loading conditions can be 

found in Supplementary Table 2. 

‖𝒙𝒊‖ =
𝒙𝒊 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (2) 

Here, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 represent the maximum and minimum 

limits, respectively, set for all data within a specific channel. 

 
FIGURE 4. A graphical representation of the distribution of raw and 
preprocessed signals at 0% and 30% loading conditions. 
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D. GEARFAULTNET ARCHITECTURE 
Since 1D signals have only one dimension which is the signal 

length, the convolution is done using a 𝑘 × 1 kernel in 1D-

CNN. If the input 𝑥𝑘
𝑙  of the 𝑘𝑡ℎ neuron at layer l can be 

defined, then the intermediate output 𝑦𝑘
𝑙  of that layer can be 

determined. 𝑥𝑘
𝑙  is formulated based on the output 𝑠𝑖

𝑙−1 and 

kernel  𝑤𝑖
𝑙−1 of the 𝑖𝑡ℎ neuron at the previous layer 𝑙 − 1. The 

input 𝑥𝑘
𝑙  can be expressed as in (3). 

𝒙𝒌
𝒍 = 𝑏𝑘

𝑙 + ∑ 𝐶𝑜𝑛𝑣1𝐷(𝒔𝒊
𝒍−𝟏, 𝑤𝑖

𝑙−1)

𝑁𝑙−1

𝑛=1

 (3) 

where, 𝑏𝑘
𝑙  represents the bias of the 𝑘𝑡ℎ neuron at layer 𝑥𝑘

𝑙 . The 

input 𝑥𝑘
𝑙  is passed through an activation function to generate 

the intermediate output 𝑦𝑘
𝑙 . If the activation function chosen is 

tanh (defined in (4) [51]), then the output 𝑦𝑘
𝑙  is calculated as 

in (5). 

𝒚𝒌
𝒍 = 𝑡𝑎𝑛ℎ(𝒙𝒌

𝒍 ) (4) 

𝑡𝑎𝑛ℎ =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
 (5) 

Using (4), the final output �̂�𝑓×1 with the feature vector of 

𝑓 × 1 at layer 𝑙 can be formulated as in (6). 

�̂�𝒇×𝟏 = ∑ 𝒚𝒌
𝒍

𝑓

𝑘=1

= ∑ 𝑡𝑎𝑛ℎ(𝒙𝒌
𝒍 )

𝑓

𝑘=1

 (6) 

MaxPooling serves to reduce the dimension of the feature 

map [52]. Utilizing a 𝑘 × 𝑘 kernel, it identifies the maximum 

feature within a 𝑘 × 𝑘 set of features with sliding increment s. 

The process of forward propagation of 1D-CNN with 1D-

MaxPooling is depicted in Fig. 5. If MaxPooling is employed 

to reduce the dimension of the output, then �̂� can be 

formulated in (7). 

�̂�𝒇×𝟏 = ∑ 𝒚𝒌
𝒍

𝑓

𝑘=1

= ∑ 𝑡𝑎𝑛ℎ (𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝒙𝒌
𝒍 ))

𝑓

𝑘=1

 (7) 

The input feature vector [𝑥1, 𝑥2, … . , 𝑥𝑛] undergoes 

convolution with a squeezing kernel of size 3 × 1, as 

illustrated in Fig. 5. Subsequently, the convolved output is 

subjected to MaxPooling and tanh activation layers to obtain 

the final feature map for the respective feature layer. 

 
FIGURE 5. 1D Convolution followed by MaxPooling and tanh activation for 
an input vector of length n. 

During backpropagation, the error 𝐸𝑝 can be computed from 

the output of the multilayer perceptron (MLP) or densely 

connected layers [53] in the end. If 𝐿 denotes the output layer, 

then for binary classification, the output vectors will be 

[𝑦1
𝐿 , 𝑦2

𝐿] for the target vector 𝑡𝑝 (ground truth) corresponding 

to an input vector 𝑝. The Soft-MMSE loss function 

implemented in this study has been constructed by passing the 

output and the target vectors through a softmax activation layer 

[54], followed by a mean squared error (MSE) layer. 

Consequently, the error 𝐸𝑝 can be expressed as in (8). 

𝐸𝑝 = 𝑀𝑆𝐸 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡𝑝, [𝒚𝟏
𝑳 , 𝒚𝟐

𝑳])) (8) 

Here, MSE has been formulated in (9), 

𝑀𝑆𝐸 =
∑ (𝒙𝒊 − 𝒙𝒊)

2𝑛
𝑖=1

𝑛
 (9) 

In this case, 𝑥𝑖 and �̂�𝑖 denote the ith ground truth and 
estimated sample, respectively. The GearFaultNet, introduced 
in this study, comprises five sequentially connected 1D-CNN 
blocks, as illustrated in Fig. 5. The initial layer includes a 
MaxPooling layer to downsample the input feature map. The 
data from the four sensors employed for the gear fault 
classification task resulted in the input vector having a 
dimension of (4 × 512). In the first convolutional block, the 
channel-wise dimension was augmented by employing 
additional convolutional kernels or filters, while the length of 
the feature map was downscaled by a MaxPooling layer with 
a stride of 2. The dimension of the feature map is varied while 
sequentially passing through the intermediate four 1D-CNN 
blocks having a fixed set of filters: {32, 16, 32, 24}. After the 
fifth 1D-CNN block, the feature map is efficiently reduced 
through an Adaptive-Average-Pooling [55] layer that makes 
its length to be 8. The output of the Adaptive-Average-Pooling 
layer is passed through a Flatten layer [56] to convert the 
feature map into a single dimension before transmitting it to a 
block consisting of densely connected MLP layers. The dense 
layers further process the input feature maps from the CNN 
layers with the assistance of densely connected neurons [53]. 
The final layer of the MLP block comprises two neurons, 
facilitating the binary classification process to discern Broken 
and Healthy signals and identify faults in mechanical gears 
based on the fine-tuned features. We use the widely used Adam 
optimizer [57] to guide the learning process of GearFaultNet 
and reach optimum performance with the available data. The 
architecture of the GearFaultNet is illustrated in Fig. 6. 
Detailed model parameters have been provided in 
Supplementary Table 3. 

 
FIGURE 6. GearFaultNet architecture. 

E. EXPERIMENTAL SETUP 
In this research, we employ gear fault data collected under 10 

distinct loading conditions and adopt a 'leave-one-out' 

approach to construct training and evaluation folds. By 

reserving data from one loading condition for testing and 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3412274

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



utilizing the rest for training and validation, we create tenfold 

cross-validation sets. Google ColabPro serves as the platform 

for conducting our experiments, utilizing a 16 GB Tesla T4 

GPU and 12 GB of RAM. To optimize performance, we 

explore various hyperparameter tuning methods, including 

adjusting the batch size to optimize GPU memory usage, 

employing a lower learning rate for improved convergence, 

and increasing the number of epochs to enhance accuracy. 

Additionally, techniques such as epoch patience and 

EpochsStoppingCriteria [58] are employed to regulate the 

learning rate based on validation loss and mitigate issues of 

underfitting and overfitting, respectively. General 

hyperparameter settings utilized in the study are outlined in 

TABLE I. 

TABLE I 

EXPERIMENTAL CONFIGURATIONS 
Training Parameters Models 

Batch size 4 

Number of epochs 200 

Epochs patience 10 

Learning rate 0.0002 

Epoch stopping criteria 30 

Optimizer Adam 

Loss function Soft-MMSE 

Learning rate reduction factor 0.2 

F. EVALUATION METRICS 
To evaluate the gear fault classification performance of 

GearFaultNet, we employ standard evaluation metrics for 

classifiers such as accuracy (10), precision (11), recall or 

sensitivity (12), specificity (13), and F1-score (14). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

𝑆𝑝𝑒𝑖𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
≡

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

Here, TP, TN, FP and FN denote true positive, true negative, 

false positive, and false negative, respectively. F1-score 

represents the harmonic mean of precision and recall, as 

shown in (14). We utilize both weighted and overall accuracy 

to present the performance of GearFaultNet. In addition to 

accuracy, other metrics are weighted based on the samples per 

class. 

In addition to these metrics, for a comprehensive 

understanding of the overall performance across classes, we 

aggregate the test results from all 10 folds to construct a 

confusion matrix. This matrix illustrates the classification 

model's performance in terms of TP, TN, FP, and FN counts 

[59]. Indeed, these four counts derived from the confusion 

metrics were utilized to calculate higher-level evaluation 

metrics such as accuracy, precision, recall, F1-score, and 

specificity, as previously discussed. Furthermore, we depict 

the per-class, micro, and macro-average receiver operating 

characteristic (ROC) curves based on GearFaultNet's 

performance. A ROC curve illustrates the performance of a 

classification model across all classification thresholds, 

plotting two parameters: true positive rate (TPR) and false 

positive rate (FPR) [60]. Additionally, we present the area 

under the ROC curve (AUC or AUROC) for each of the four 

variables (per-class, micro, and macro-average) [60]. 

IV. RESULTS 

In this section, we provide experimental outcomes of this 

research along with relevant discussions in detail. First, we 

assess the effectiveness of GearFaultNet in detecting gear 

faults by examining the aforementioned evaluation metrics. 

Subsequently, we juxtapose GearFaultNet's performance in 

1D classification with several commonly employed state-of-

the-art (SOTA) models within the relevant field. Additionally, 

we analyze GearFaultNet's performance in comparison to 

methodologies proposed in the existing literature. 

A. GEAR FAULT DETECTION PERFORMANCE 
TABLE II presents the comprehensive performance 

evaluation of GearFaultNet in detecting gear faults using 

accelerometer-recorded vibration data. The model achieves a 

weighted accuracy and an overall accuracy of 94.06%. 

Moreover, the weighted precision, recall, and specificity of the 

model are 94.11%, 94.06%, and 94.01%, respectively. The 

weighted F1-score of GearFaultNet stands at 94.05%, a 

crucial metric for gauging overall model performance given 

the dataset's uneven class distribution. 

TABLE II 

DETAILED PERFORMANCE OF GEARFAULTNET 

Class 
Accuracy 

Precision Recall 
F1-

score 
Specificity 

Weighted Overall 

Broken 94.06 - 95.60 92.21 93.87 95.86 

Healthy 94.06 - 92.66 95.86 94.23 92.21 

Overall 94.06 94.06 94.11 94.06 94.05 94.01 

In TABLE II, we also detail the model's performance 

individually for each class. The precision is higher for the 

Broken class but lower for the Healthy class. Conversely, 

recall displays the opposite trend for both classes. Because of 

this ambiguity observed among these higher-level metrics, we 

calculate the confusion matrix as elaborated below 

 
FIGURE 7. Overall confusion matrix for gear fault detection using the novel 
GearFaultNet. 

Fig. 7 depicts the confusion matrix of the proposed 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3412274

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13 VOLUME 4, 2023 

 

 

GearFaultNet. Here, the Broken cases are designated as 

positive, while Healthy cases are regarded as negative. Across 

all 10 folds, there are 7,488 test samples, comprising 3,697 

instances for Broken conditions and 3,791 instances for 

Healthy conditions. Among the 3,697 samples representing 

Broken conditions, 3,409 were correctly predicted as true 

positives, while 288 were incorrectly classified as false 

negatives. Conversely, out of the 3,791 Healthy samples, 

3,634 were accurately predicted as true negatives. However, 

there were 157 instances of false positive predictions, where 

signals were erroneously classified as Broken despite being 

labeled as Healthy. Both overall and per-class metrics detailed 

in TABLE II were derived from the confusion matrix depicted 

in Fig. 7. Nevertheless, it is apparent from the confusion 

matrix that the proposed model exhibited superior 

performance in classifying Healthy instances compared to 

Broken cases. 

 

FIGURE 8. ROC curves and AUROC for GearFaultNet in terms of per-class, 
macro and micro measures. 

On the other hand, Fig. 8 illustrates the ROC curves for each 

class (Healthy and Broken), as well as the macro- and micro-

averages of the predictions. The x-axis of the ROC curves 

represents the false positive rate (FPR), while the y-axis 

represents the true positive rate (TPR). The ROC curves 

plotted in Fig. 8 reveal that, for all macro- and micro-averages, 

as well as the individual classes, the TPR almost reaches 1 

within the FPR range of 0.1 to 0.2. It is noteworthy that both 

Broken and Healthy classes, as well as the micro- and macro-

averages, exhibit the same AUC or AUROC of 0.98 or 98%. 

These observations further confirm GearFaultNet’s capability 

to distinguish between Broken and Healthy cases, beyond the 

traditional classification metrics. The training curve, loss 

curve, and fold-wise accuracy provide additional insights into 

GearFaultNet's fold-wise performance, all of which have been 

outlined in Supplementary Table 1. 

B. COMPARISON WITH SOTA MODELS 
In this ablation study, we trained and evaluated two cutting-

edge 1D-classification models, namely ResNet18 [61] and 

Self-ResNet18, while adhering to the experimental 

configurations outlined in TABLE I, to compare their 

performance with that of GearFaultNet. The 1D-ResNet18 

model utilized in this investigation is based on the ResNet18 

architecture, a pioneering deep learning model introduced by 

He et al. [61] in 2015 for 2D image classification. ResNet 

models have been widely adopted across various 1D and 2D 

domains due to their efficacy and lightweight nature. We 

developed Self-ResNet18, a variant of the original architecture 

known as an operational neural network (ONN) [62], by 

replacing its conventional CNN layers with self-ONN layers 

[63]. The outcomes of this ablation study are presented in 

TABLE III. 

TABLE III 

GEARFAULTNET AGAINST SOTA MODELS 

Models Accuracy Precision Sensitivity 
F1-

score 
Specificity 

ResNet18 

[61] 
77.74 78.10 77.74 77.64 77.58 

Self-

ResNet18 
92.74 93.20 92.74 92.71 92.60 

GearFaultNet 94.06 94.11 94.06 94.05 94.01 

From TABLE III, it is evident that GearFaultNet attained 

the highest accuracy of 94.06%, closely trailed by Self-

ResNet18 at 92.74%, and ResNet18 at 77.74%. Precision, 

sensitivity, and F1-score metrics likewise exhibit the 

consistent superiority of GearFaultNet over the two state-of-

the-art (SOTA) models. Furthermore, GearFaultNet displayed 

well-rounded performance across all metrics, showcasing high 

precision, sensitivity, and specificity, which indicates its 

efficacy in accurately detecting gear faults. 

C. COMPARISON WITH EXISTING STUDIES 
TABLE IV presents the performance of GearFaultNet 

compared to studies in the current literature. While our 

proposed method's results did not surpass those reported by 

[2], the preprocessing approach fundamentally differed 

between the two studies. For instance, before the 10-fold split, 

the authors in [2] employed sample shuffling, which could 

potentially lead to data leakage in the train and test sets. 

Conversely, in this study, we adopted the more challenging 

"leave-one-out" strategy for train-test splitting, affirming the 

robustness of the process. Additionally, GearFaultNet 

outperformed the performance reported in the literature by [3]. 

This enhancement in GearFaultNet's performance highlights 

its effectiveness in distinguishing between Broken and 

Healthy signals compared to the currently best-performing 

studies. 

TABLE IV 

GEARFAULTNET AGAINST EXISTING STUDIES 
Study Method Accuracy 

[2] 

NLMS Error (Adaptive filter) + SVM 100% 

EMD-IMF 1 + SVM 100% 

Plain Method + SVM 100% 

[3] 
Sigmoid-PSO + Hybrid LSTM 87.50% 

ReLU-Cuckoo + Hybrid LSTM 87.50% 

Current 1D Deep Classifier (GearFaultNet) 94.06% 

V. CONCLUSION 

Detecting gearbox faults in rotating machinery is crucial for 

averting catastrophic machine breakdowns. Vibration signals 

are commonly employed in fault diagnosis across various 

loading conditions. This study introduces a novel 1D-CNN 

model, GearFaultNet, after incorporating standard 

preprocessing steps like z-score and min-max normalization 

during data preparation. The adoption of such normalization 

methods reduces the computational time compared to complex 

preprocessing techniques proposed in prior studies. The 

proposed GearFaultNet demonstrates significant performance 
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enhancement with its expedited preprocessing technique and 

lightweight deep learning model. GearFaultNet achieves an 

overall accuracy, precision, and specificity of 94.06%, 

94.11%, and 94.01%, respectively, in classifying Broken and 

Healthy signals. These classification results notably surpass 

those reported in contemporary literature for gearbox fault 

detection. Such a precise model can facilitate the 

differentiation between Healthy and Broken vibration signals 

in industrial sectors for real-time monitoring, and its scope can 

also be extended to similar domains. Future endeavors could 

focus on seeking even more accurate and lightweight models 

to further improve performance while maintaining reliability 

and portability. Furthermore, compiling a more diverse dataset 

with additional data from various sensors could enable early 

detection of Broken conditions from real-time sensor data. 
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