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• RF-based drone detection is one of the most effective methods for drone detection.
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a b s t r a c t

The omnipresence of unmanned aerial vehicles, or drones, among civilians can lead to technical,
security, and public safety issues that need to be addressed, regulated and prevented. Security
agencies are in continuous search for technologies and intelligent systems that are capable of detecting
drones. Unfortunately, breakthroughs in relevant technologies are hindered by the lack of open source
databases for drone’s Radio Frequency (RF) signals, which are remotely sensed and stored to enable
developing the most effective way for detecting and identifying these drones. This paper presents
a stepping stone initiative towards the goal of building a database for the RF signals of various
drones under different flight modes. We systematically collect, analyze, and record raw RF signals
of different drones under different flight modes such as: off, on and connected, hovering, flying, and
video recording. In addition, we design intelligent algorithms to detect and identify intruding drones
using the developed RF database. Three deep neural networks (DNN) are used to detect the presence
of a drone, the presence of a drone and its type, and lastly, the presence of a drone, its type, and flight
mode. Performance of each DNN is validated through a 10-fold cross-validation process and evaluated
using various metrics. Classification results show a general decline in performance when increasing
the number of classes. Averaged accuracy has decreased from 99.7% for the first DNN (2-classes), to
84.5% for the second DNN (4-classes), and lastly, to 46.8% for the third DNN (10-classes). Nevertheless,
results of the designed methods confirm the feasibility of the developed drone RF database to be used
for detection and identification. The developed drone RF database along with our implementations are
made publicly available for students and researchers alike.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Commercial unmanned aerial vehicles, or drones, are gaining
great popularity over the recent years, thanks to their lower
cost, smaller size, lighter weight, higher capabilities, and advance-
ments in batteries and motors. This has rendered drones viable
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for various applications, such as traffic monitoring [1,2], weather
observation [3], disaster management [4], spraying of agricultural
chemicals [5], inspection of infrastructures [6], and fire detection
and protection [7]. Drones are remotely controlled using wireless
technologies such as Bluetooth, 4G and WiFi; hence, by using
off-the-shelf upgrades, drones have become a modular solution.
The ubiquitous utility of drones can lead to technical, security,
and public safety issues that need to be addressed, regulated and
prevented, e.g. spying, transfer of illegal or dangerous goods, dis-
turbing electricity and telephone lines, and assault [8]. Therefore,
regulating entities need technologies that are capable of detecting
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and identifying drones without prior assumption on their type or
flight mode.

Conventional methods for detecting and identifying intruding
drones, e.g. radars, vision and acoustics, are not solely reliable as
they can be easily restrained [9,10]. Radio frequency (RF) sensing
combined with deep learning approaches promised a solution;
however, it was hindered by the lack of databases for the RF sig-
nals of drones [11]. In this paper, we (1) build a novel open source
database for the RF signals of various drones under different flight
modes, and (2) test the developed database in a drone detection
and identification system designed using deep neural networks.
This work is a stepping stone towards a larger database built by
a community of researchers to encompass the RF signals of many
other drones.

The rest of the paper is organized as follows: Section 2 is an
overview of related work. We present in Section 3 the system
model and describe our methodologies to build and test the
database. In Section 4, we present and discuss results of the drone
detection and identification system, and finally, we conclude in
Section 5.

2. Related work

In this Section, we review current anti-drone systems and
discuss the need for open source drone databases. Moreover,
we review state-of-the-art methods used to detect and identify
intruding drones and discuss their applicability in real-life sce-
narios. Finally, we review the role of deep learning techniques
in anti-drone systems and discuss their feasibility to test the
developed RF database.

Anti-drone systems: several commercial and military anti-
drone systems have been discussed in the literature. A compre-
hensive overview of various systems and their deployed tech-
nologies is presented in [8]. Challenges and open research issues
have been discussed in which ‘‘Database Build-Up"; the need to
build up an increasing database of drone signatures, was empha-
sized upon. In [10], state-of-the-art studies on drone surveillance
have been surveyed and several anti-drone systems have been
discussed. Moreover, various ways to detect, track, and interdict
intruding drones have been reviewed in [11]. The authors have
concluded that accurate detection and tracking requires a com-
prehensive database of drone’s signatures, hence our work comes
as a stepping stone towards this goal.

Drone detection methods: various methods to detect and
identify intruding drones have been discussed in the literature
such as: radars [12], video surveillance [13], acoustic sensors [14],
WiFi sniffing [15] and RF sensing [16]. In [17], a light weight,
X-Band radar system was designed to detect drones using their
Doppler signatures. Furthermore, a radar sensor was proposed
in [18] to automatically detect and classify three distinct drones
in a laboratory setting. Moreover, in [19], a drone detection
method was introduced by exploiting 5G millimeter-wave de-
ployments as radars. In [20,21], computer vision object detection
methods were used to detect drones in the vicinity of birds. In
addition, a system to detect and identify drones from surveil-
lance videos was developed in [9,22]. In [23], acoustic drone
detection and identification was performed using support vec-
tor machines. In addition, the same methodology was deployed
in [24] to classify drones by their emitted sounds. Furthermore,
in [25,26], drone detection and tracking was performed using
acoustic cameras and by direction of arrival (DOA) estimation
in [27]. Moreover, in [28,29], drone sound identification was
performed using correlation analysis. In [15,30], WiFi sniffing
based drone detection was performed by statistically analyzing
WiFi traffic for drone signatures. In addition, WiFi-based drone
detection and disarming was conducted successfully in [31,32].

Moreover, an energy efficient system capable of detecting and
disabling video feeds of WiFi-based drones was presented in [33].
In [16], a passive cost-effective RF sensing drone detection system
was designed. In addition, drone detection based on RF sensing
was proposed in [34]. Preliminary investigation of active/passive
RF approaches for the detection of drones was presented in [35].
Furthermore, in [36,37], RF-based drone localization methods
were developed by DOA estimation and surveillance drones.

Applicability of drone detection and identification methods
depends on requirements mandated by real-life scenarios. That
being said, we observed that methods other than RF sensing,
cannot be solely reliable to detect or identify intruding drones.
On one hand, radar, vision, and acoustic based methods can be
restrained in various ways such as: using stealth technology,
changing the drone physical shape and rotors, using low noise
rotors, and by emitting natural sounds, e.g. bird chirps, or white
noise [9]. In addition, such methods require expensive equipment,
e.g. high quality video cameras, that is not designed to detect
drones [9]. Moreover, WiFi-based methods are inherently limited
as they cannot detect drones operated by other wireless tech-
nologies e.g. 4G, and they require knowledge of the drone’s WiFi
parameters, e.g. protocol and channel number. On the other hand,
we found that RF sensing based methods for drone detection and
identification are adequate to be used in real-life scenarios [37].
Such methods are independent of the wireless technology uti-
lized by the drone, e.g. Bluetooth, 4G or WiFi, and are immune
to physical alterations and differences among drones. However,
current methods are still not fully automated nor robust due to
the lack of large labeled databases for the drones RF signals. This
has motivated us to build an open source database for the RF
signals of various drones under different flight modes.

Drone detection techniques: intelligent detection and iden-
tification techniques have emerged vastly by the rise of data
driven algorithms, such as neural networks. Deep neural net-
works (DNN) have shown surpassing results in various cognitive
tasks such as speech recognition [38,39], object detection and
identification [40], signal compression [41], and others in all fields
of science [42]. In [18], a deep belief network was utilized to clas-
sify the spectral correlation functions of three drones. Moreover,
a convolutional neural network (CNN) was used to detect the
presence of drones from CCTV videos in [43], from surveillance
images in [44], from Doppler signatures in [45], and from audio
Spectrograms in [46]. In addition, the utility of CNNs as object
detectors for reconnaissance and surveillance using drones was
proposed in [47]. Furthermore, reinforcement learning was used
in [48] to detect temperature anomalies in drone’s motors. DNNs
versatility in solving optimization problems was demonstrated in
other fields. For instance, in [49], it was used to detect known and
unknown DDoS attacks; in [50], to detect and identify supply side
fraud in programmatic exchanges; in [51] to control the water
level in a four-tank system; in [52,53] to solve various numerical
problems; and finally, in [54], to solve person search and re-
identification problems. This has motivated us to utilize DNNs for
the design of a drone detection and identification system using
the developed RF database.

3. Methodology

In this Section, we present the system model that is used to
build up the drone RF database and to test its feasibility in a
drone detection and identification system. First, we discuss the
subsystems and components of the model and summarize their
requirements and roles. After that, we elaborate on the discussion
for each component and present the experimental setup to build
the drone RF database. Finally, we design a drone detection and
identification system using DNNs to test the feasibility of the
developed RF database in real-life applications.
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3.1. System model

Fig. 1 demonstrates our system model that can be divided into
two subsystems; RF database development and drone detection
and identification, see subsystems A and B in Fig. 1 respectively.
The RF database development subsystem is comprised of the
following three components:

• Drones under analysis: various drones that vary in size, ca-
pability, price, and technology. Flight modes are controlled
by RF signals coming from and to the flight control module.
See elements 1–3 in Fig. 1. The main requirement for this
component is to use many different drones to produce a
large descriptive database for the drone’s RF signals.

• Flight control module: a mobile phone or a flight controller
that sends and receives RF commands to and from the
drones under analysis to change their flight mode. Control-
ling drones via mobile phones requires installing mobile
applications that can be downloaded from various stores.
See elements 4–6 in Fig. 1.

• RF sensing module: an RF receiver that intercepts the drone’s
communications with the flight control module. The re-
ceiver is connected to a laptop, via cable, that runs a pro-
gram responsible for fetching, processing and storing the
sensed RF data in a database. The requirement for this
component is to capture all unlicensed RF bands that drones
operate on without any prior assumption on its flight mode.
See elements 7–10 in Fig. 1.

The drone detection and identification subsystem is comprised of
the following two components:

• Signal transformation: it transforms the archived complex
RF signals to reveal latent information that can be learned
for efficient detection and identification. See element 11 in
Fig. 1.

• Multi-class classification: it classifies the transformed RF
signals using deep neural networks to detect and identify
intruding drones. See elements 12–13 in Fig. 1. The require-
ment for this component is to be computationally light for
real-time deployment and operation.

3.2. RF Database development

3.2.1. Drones under analysis
Different drones can manifest in different RF signals; which in

return, can be exploited by intelligent systems for detection and
identification. The following is an initial list of the drones used to
build our database:

• Parrot Bebop, shown in Fig. 2(a).
• Parrot AR Drone, demonstrated in Fig. 2(b).
• DJI Phantom 3, illustrated in Fig. 2(c).

These drones are commonly used in research and civilian applica-
tions as they vary in size, price, capability and technology [55,56].
Table 1 lists the drones main specifications. In this work, we
are limited by having only three drones; however, the developed
open source database is meant to be expanded by researchers and
students using other types of drones.

3.2.2. Flight control module
It consists of flight controllers, or mobile phones, that send

and receive RF commands to and from the drones under analysis
to alter their flight mode, see Fig. 3. Controlling the drones by
a mobile phone requires mobile applications that are specifically
developed for each drone. ‘‘FreeFlight Pro", ‘‘AR.FreeFlight", and

Fig. 1. System model comprised of the following subsystems: (A) RF database
development and (B) drone detection and identification. The system elements
are as follows: (1) drones under analysis, (2) RF signal transmitted from the
drone to the flight module, (3) RF signal transmitted from the flight module to
the drone, (4) flight controller, (5) mobile phone acting as a flight controller,
(6) mobile applications used to control various drones, (7) NI-USRP 2943R RF
receiver to intercept the drone RF communications, (8) PCIe cable connecting
the RF receiver with a laptop, (9) laptop acting as a processing unit for the
intercepted RF data, (10) archived RF signals of various drones under different
flight modes, (11) signal transformation to reveal latent information on the
archived RF data, (12) multi-class classifier designed using DNNs, and (13) the
system output showing the identity and flight mode of an intruding drone.

Table 1
Specifications of the drones under analysis. For more details, one can read the
full specifications in [57–59].
Drone Parrot Bebop Parrot AR Drone DJI Phantom 3

Dimensions (cm) 38×33×3.6 61×61×12.7 52×49×29
Weight (g) 400 420 1216
Battery capacity
(mAh)

1200 1000 4480

Max. range (m) 250 50 1000
Connectivity WiFi (2.4 GHz

and 5 GHz)
WiFi (2.4 GHz) WiFi (2.4 GHz

−2.483 GHz)
+RF (5.725 GHz
−5.825 GHz)

‘‘DJI Go" are free mobile applications developed to control the Be-
bop, AR, and Phantom drones, respectively. Other applications can
be used; however, in this work, we utilized the official application
of each drone.

3.2.3. RF Sensing module
It consists of RF receivers, to intercept the drone RF communi-

cations with the flight control module, connected to laptops that
are responsible for fetching, processing and storing the recorded
RF signals in a database. In this work, we assumed that all drones
use WiFi operated at 2.4 GHz. Hence, there are some minimal
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(a) Parrot Bebop drone [57].

(b) Parrot AR 2.0 elite edition drone [58].

(c) DJI Phantom 3 standard drone [59].

Fig. 2. Three drones used to build the drone RF database.

(a) Drone controller for the DJI
Phantom 3 drone [59].

(b) FS-TH9X general radio con-
troller for multicopters [60].

Fig. 3. Various drone radio controllers.

(a) NI USRP-2943R RF receiver [61]. (b) PCIe interface kit [62].

Fig. 4. Elements of the RF module to intercept the drones RF signals.

Table 2
Specifications of the USRP-2943 40 MHz RF receivers [61].
Number of channels 2
Frequency range 1.2 GHz – 6 GHz
Frequency step < 1 KHz
Grain range 0 dB to 37.5 dB
Maximum instantaneous bandwidth 40 MHz
Maximum I/Q sample rate 200 MS/s
ADC resolution 14 bit

Fig. 5. Front panel of the LabVIEW programs installed on the laptops to capture
the drones RF communications. The ‘‘Band" option is selected as ‘‘Low" for the
first laptop and ‘‘High" for the second laptop. This can be used to recreate the
developed LabVIEW programs from scratch; however, one can simply download
them from our database website in [64].

assumptions. Nevertheless, one can determine the drone operat-
ing frequency using various methods such as passive frequency
scanning.

First, raw RF samples are acquired using two National In-
struments USRP-2943 (NI-USRP) software defined radio reconfig-
urable devices, shown in Fig. 4(a). Table 2 lists the NI-USRP RF
receivers specifications. Since each RF receiver has a maximum
instantaneous bandwidth of 40 MHz, both receivers must be op-
erated simultaneously to at least capture a technology spectrum
such as WiFi (i.e. 80 MHz2) where the first receiver captures the
lower half of the frequency band, and the second, records the
upper half. After that, captured RF data is transferred from the NI-
USRP receivers to two standard laptops via Peripheral Component
Interconnect Express (PCIe) interface kits, as shown in Fig. 4(b)
Finally, data fetching, processing and storing are performed by
programs we designed in LabVIEW Communications System De-
sign Suite [63]. The programs are designed in a standard LabVIEW
manner using front panel and block diagram environments. As
demonstrated in Fig. 5, by using the front panel, one can alter the
captured band; lower half or upper half of the RF spectrum, car-
rier frequency, IQ rate, number of samples per segment, gain, and
activate a specific channel of the NI-USRP receiver. In addition,
one can select different flight modes and experiments to build
a comprehensive database. One can download the developed
LabVIEW programs from our database website in [64].

3.2.4. RF database
RF-based drone detection and identification applications re-

quire a comprehensive database of RF signals to be used for
training and testing. The database must contain RF background
activities; when drones are absent, and RF drone activities; when
drones are present, to be used for drone detection. In addition,
it must encompass the RF signals of different drones operating
under different flight modes to be used for drone identification
purposes and to determine the flight mode of intruding drones.

2 The true bandwidth of 2.4 GHz WiFi is 94 MHz plus 3 MHz as guard
bands at the beginning and end. However for simplicity, we will not capture
the last channel, channel 14, and the first and last 1 MHz of the remaining
spectrum as they contain negligible information. Note that to acquire the entire
WiFi spectrum using a single receiver, different USRP with a larger bandwidth
is needed.
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Fig. 6. Experimental setup for the RF database development subsystem, sub-
system A in Fig. 1, using the Bebop drone. The Bebop drone is shown on the
middle, the NI-USRP RF receivers are shown on the right and are connected to
the laptops, shown on the left, via the PCIe connectors.

Fig. 7. Experiments to record drones RF signatures organized in a tree manner
consisting of three levels. The horizontal dashed red lines define the levels. BUI
is a Binary Unique Identifier for each component to be used in labeling. Note
that the BUI for background activities is always filled with zeros.

3.2.4.1. Experimental setup.
Fig. 6 illustrates the experimental setup for the RF database

development subsystem, subsystem A in Fig. 1, to be used for
populating the database with the required RF signatures. To con-
duct any experiment using this setup, one must perform the
following tasks carefully and sequentially. If you are recording RF
background activities, perform tasks 4–7.

1. Turn on the drone under analysis and connect to it using a
mobile phone or a flight controller.

2. In case the utility of a mobile phone as a controller, start
the mobile application to control the drone and to change
its flight mode.

3. Check the drone connectivity and operation by performing
simple takeoff, hovering, and landing tests.

4. Turn on the RF receivers to intercept all RF activities and
to transfer those to the laptops via the PCIe connectors.

5. Open the LabVIEW programs, installed on the laptops, and
select appropriate parameters depending on your experi-
ment and requirements.

6. Start the LabVIEW programs to fetch, process and store RF
data segments.

7. Stop the LabVIEW programs when you are done with the
experiment.

8. For a different flight mode, go back to step 6, and for
different drones go back to step 1.

3.2.4.2. Experiments.
The RF drone database is populated with the required signa-

tures by conducting experiments organized in a tree manner with
three levels as demonstrated in Fig. 7. The first level consists of

the following branches to train and assess the drone detection
system:

• Drones are off; RF background activities are recorded.
• Drones are on; drones RF activities are recorded.

The second level includes experiments that are conducted on the
three drones under analysis: Bebop, AR, and the Phantom drones,
to train and assess the drone identification system.

Finally, the third level expands its predecessor by explicitly
controlling the flight mode of each drone under analysis as fol-
lows to assess the identification system ability in determining the
flight mode of intruding drones.

• On and connected to the controller.
• Hovering automatically with no physical intervention nor

control commands from the controller. Hovering altitude is
determined by the drone manufacturer (approximately one
meter).

• Flying without video recording. Note that the drone must
not hit any obstacles in this experiment to avoid warning
signals.

• Flying with video recording. Note that the drone must not
hit any obstacles in this experiment to avoid warning sig-
nals.

The former experiments are conducted by following the steps
summarized in Section 3.2.4.1.

3.2.4.3. Labeling.
A Binary Unique Identifier (BUI) is used to label the RF database

entries according to the conducted experiment, drone type, and
its specific flight mode, see Fig. 7. The BUI is comprised of two
binary numbers concatenated such that: BUI = [msBUI, lsBUI].
msBUI is the most significant part of the BUI representing the
experiment and drone type, levels one and two, while lsBUI is
the least significant part of the BUI representing the drone flight
mode, third level. The BUI length L is determined using the total
number of experiments E, the total number of drones D, and the
total number of flight modes F as follows:

L = ⌈log2(E)⌉ + ⌈log2(D)⌉ + ⌈log2(F )⌉ , (1)

where ⌈ . ⌉ is the ceiling operator and in this work, E = 2, D = 3
and F = 4; therefore, L = 5. Extending the developed database
using other experiments, drones, or flight modes can be easily
done by increasing E, D, or F , respectively. One can always add
zeros to the left of the BUI parts to extend the database labeling.
For instance, if the current database is extended using E = 4,
D = 5 and F = 9, a previously developed BUI = 10111, will
become 010010011.

3.2.4.4. Database format.
Captured RF signals are stored as segments, to avoid memory

overflows, using a standard comma-separated values (csv) for-
mat. This makes the drone RF database easy to load and interpret
on any preferred software. Metadata for each segment in the
database is included within its filename. It contains the segment
BUI, followed by the selected RF frequency band; to determine if
it is the first or second half of the RF spectrum, and its segment
number. For instance, the third segment of the second half of the
RF spectrum with BUI = 11010, phantom drone with flight mode
number 3, will have the following file name: ‘‘11010H_3.csv".

3.3. Drone detection and identification

The developed drone RF database is used to train and test deep
neural networks to assess the database feasibility to be used for
drone detection and identification.
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3.3.1. Signal transformation
It is performed to reveal latent information on the archived RF

signals that can be learned for efficient detection and identifica-
tion (see component 11 in Fig. 1). First, since we are using two
NI-USRP RF receivers that are not operated in MIMO mode3, we
compute the discrete Fourier transform (DFT) of each recorded
segment coming from both receivers as follows:

y(L)i (m) =


N∑

n=1

x(L)i (n) exp
(

−j2πm(n − 1)
N

) , (2)

y(H)
i (m) =


N∑

n=1

x(H)
i (n) exp

(
−j2πm(n − 1)

N

) , (3)

where x(L)i is the ith RF segment coming from the first RF receiver
that captures the lower half of the RF spectrum, x(H)

i is the ith
RF segment coming from the second RF receiver that captures
the upper half of the RF spectrum, y(L)i and y(H)

i are the spectra of
the ith segments coming from the first and second RF receivers
respectively, n and m are the time and frequency domain indices,
N is the total number of time samples in the RF segment i,
and ∥ . ∥ is the magnitude operator used to compute the power
spectrum. Note that, y(L)i and y(H)

i solely hold the positive spectra
of x(L)i and x(H)

i to ensure non-redundant and concise spectral
projections. After that we concatenate the transformed signals of
both receivers to build the entire RF spectrum i.e.:

yi =

[
y(L)i , c y(H)

i

]
, (4)

c =

∑Q
q=0 y

(L)
i (M − q)∑Q

q=0 y
(H)
i (q)

, (5)

where c is a normalization factor calculated as the ratio between
the last Q samples of the lower spectra, y(L)i , and the first Q
samples of the upper spectra, y(H)

i , and M is the total number of
frequency bins in yi. The normalization factor c , ensures spectral
continuity between the two half’s of the RF spectrum as they
were captured using different devices; hence, a spectral bias is
inevitable. Note that Q must be relatively small to successfully
stitch the two spectra and large enough to average out any
random fluctuations, e.g. Q = 10 for M = 2048.

3.3.2. Multi-class classification
Detection and identification of intruding drones is performed

by a multi-class classifier designed using deep neural networks
(DNN). The system must be able to detect drones and to dif-
ferentiate between the RF spectra of various drones under dif-
ferent flight modes. A DNN consists of an input layer, hidden
layers, and an output layer as shown in Fig. 8. One can formu-
late the input–output relationship of a DNN using the following
expressions [65]:

z(l)i = f (l)
(
W (l)z(l−1)

i + b(l)
)

, (6)

W (l)
=

⎡⎢⎢⎢⎢⎣
w

(l)
11 w

(l)
12 · · · w

(l)
1H(l−1)

w
(l)
21 w

(l)
22 · · · w

(l)
2H(l−1)

...
...

. . .
...

w
(l)
H(l)1

w
(l)
H(l)2

· · · w
(l)
H(l)H(l−1)

⎤⎥⎥⎥⎥⎦ , (7)

where z(l−1)
i is the output of layer l − 1 and the input to layer l;

z(l)i is the output of layer l and the input to layer l + 1; z(0)i = yi

3 Utilizing two NI-USRP receivers in Multiple Inputs Multiple Outputs (MIMO)
mode ensures time domain synchrony between the two acquired signal; thus,
time domain summation can be performed. However, in this work, this is not
the case as receivers are operated independently.

Fig. 8. Deep neural network with L − 1 hidden layers. The input layer, on the
left, is outlined with a dashed rounded red rectangle; the hidden layers, on the
middle, are identified by blue solid rectangles; and lastly, the output layer, on
the right, is determined by a dashed rounded green rectangle.

is the spectrum of the RF segment i; z(L)i = di is the classification
vector for the RF segment i; W (l) is the weight matrix of layer l;
w

(l)
pq is the weight between the pth neuron of layer l and the qth

neuron of layer l−1; b(l) =

[
b(l)1 , b(l)2 , . . . , b(l)

H(l)

]T
is the bias vector

of layer l; f (l) is the activation function of layer l; l = 1, 2, . . . , L;
L−1 is the total number of hidden layers; H (l) is the total number
of neurons in layer l; H (0)

= M; H (L)
= C; and C is the number of

classes in the classification vector, di [65]. Note that f can be any
linear or non-linear function; however, the rectified linear unit
(ReLU) and the sigmoid functions, expressed in Eq. (8) and Eq. (9)
respectively, are typical selections that have shown promising
results [66].

f (x) =

{
x x > 0
0 x ≤ 0

. (8)

f (x) =
1

1 + e−x . (9)

The weights and biases of the DNN are determined through
a supervised learning process that minimizes the classification
error [67]. The minimization is performed by a Gradient de-
scent algorithm where the gradient is computed through back-
propagation [65,67]. The classification error of the system is mod-
eled by the mean square error such that:

L
(
di, d̂i

)
=

1
C

C∑
c=1

(
di(c) − d̂i(c)

)2
, (10)

where d̂i and di are the estimated and true classification vectors
of the RF segment i, respectively, and C = D F is the total number
of classes, see Section 3.2.4.3.

In this work, three DNNs are trained and tested using the
developed RF database to perform the following tasks: detect the
presence of a drone, detect the presence of a drone and identify
its type, and lastly, detect the presence of a drone, identify its
type, and determine its flight mode.

3.3.3. Cross-validation
Estimating the performance of the RF-based drone detection

and identification system is conducted using stratified K -fold
cross-validation; an iterative process that repeats for K times to
produce performance estimates with low bias and low variance
regardless of the size difference between classes [68].

First, the drone RF database is randomly segmented into K
disjoint folds with balanced number of instances of each class in
each fold [68]. After that, at an arbitrary iteration k, fold k is used
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as testing data for the DNNs while the rest of the RF database
is used for training. This process is repeated K times such that
the DNNs are tested using the entire RF database [69]. Finally,
performance of the system is estimated by the average perfor-
mance of all iterations resulting from the K -fold cross-validation
procedure [69].

3.3.4. Performance evaluation
Average performance of the RF-based drone detection and

identification system is presented using accuracy, precision, re-
call, error, false discovery rate (FDR), false negative rate (FNR) and
F1 scores via confusion matrices. These performance metrics are
defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
, (11)

precision =
TP

TP + FP
, (12)

recall =
TP

TP + FN
, (13)

error = 1 − accuracy , (14)

FDR = 1 − precision , (15)

FNR = 1 − recall , (16)

F1 score = 2
(
precision × recall
precision + recall

)
, (17)

where TP , TN , FP and FN are true positives, true negatives, false
positives, and false negatives, respectively.

Fig. 9 shows an example confusion matrix for a 3-class classi-
fication problem where the rows and columns of the inner 3 × 3
matrix correspond to the predicted and true classes respectively.
The diagonal cells, highlighted in green, represent correctly classi-
fied segments, while off-diagonal cells, highlighted in red, depict
incorrectly classified segments. The number of segments and the
percentage of the total number of segments are shown in each
cell in bold. The gray column on the far right illustrates the
precision in green, and FDR of the system in red. Furthermore,
the gray row at the bottom demonstrates the recall in green, and
FNR of the system in red. In addition, the blue cell in the bottom
right of the plot shows the overall accuracy in green, and error
in red. Moreover, the yellow column and row on the far left and
top show the F1 scores for predicting each class in green and its
complementary in red, (1 − F1 score), for completeness. Finally,
the orange cell in the upper left of the plot shows the averaged
F1 score for all classes in green and its complementary in red.

4. Results and discussions

In this Section, we first present the experimental settings
and preprocessing utilized in this work to develop the drone
RF database and the RF-based drone detection and identification
system. After that, we present snippets from the developed RF
database and analyze its spectral information for different drones
under different flight modes. Finally, we present and discuss
results of the RF-based drone detection and identification system.

4.1. Settings and preprocessing

The LabVIEW programs, installed on both laptops, are operated
with settings and parameters that are summarized in Table 3. We
recorded 10.25 s of RF background activities and approximately
5.25 s of RF drone communications for each flight mode. This
has produced a drone RF database with over 40 GB of data

Fig. 9. An example of a confusion matrix computed to evaluate the performance
of a 3-class classifier. The gray right column shows precision and FDR, the gray
bottom row demonstrates recall and FNR, the yellow upper row and left column
show the F1 score for predicting each class, the blue cell in the bottom right of
the plot shows the overall accuracy and error, and finally, the orange cell in the
upper left of the plot depicts the classifier averaged F1 score. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 3
LabVIEW selected settings and parameters to record the drones RF
communications to populate the developed database.
Settings and parameters Laptop 1 Laptop 2

NI-USRP device RIO0 RIO0
Active channel RX2 RX2
RF band L H
Carrier frequency (MHz) 2422 2462
IQ rate (MHz) 40 40
Number of samples per segment 107 107

Gain (dB) 30 30

encompassing various RF signatures. In addition, we further seg-
mented our database by a factor of 100 to increase the number
of segments for better learning and to ensure an instantaneous
representation of the RF signal (N = 105).

Signal transformation of each archived RF segment is per-
formed using MATLAB FFT function with 2048 frequency bins
(M = 2048). The full RF spectrum is constructed from its two
half’s, y(L)i and y(H)

i , using Eq. (4) with 10 returning points to
ensure spectral continuity (Q = 10). This results in 46,489,600
RF samples to be used in the drone detection and identification
system. Note that, the FFT is performed on zero-mean signals that
are computed by a de-trending process to remove zero-frequency
components.

Three DNNs are designed in Python using Keras to perform
the following tasks: detect the presence of a drone, detect the
presence of a drone and identify its type, and lastly, detect the
presence of a drone, identify its type, and determine its flight
mode. Each DNN is trained by an Adam optimizer to minimize the
classification mean square error, see Eq. (10), using the following
parameters: 3 hidden fully-connected layers (L − 1 = 3), 256,
128 and 64 total number of neurons at the first, second and third
hidden layers respectively (H (1)

= 256,H (2)
= 128,H (3)

= 64),
total number of epochs is 200, batch size is 10, and lastly, f
is the ReLU function for the hidden layers, see Eq. (8), and the
sigmoid function for the output layer, see Eq. (9). The classifica-
tion performance of each network is validated using a stratified
10-fold cross-validation process (K = 10) and evaluated using
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Table 4
Details of the developed drone RF database showing the number of raw samples
and segments for each class at each experiment level. Note that the total number
of samples is divided equally between the recordings coming from the first and
second RF receivers (x(L) and x(H)). For more details, see Fig. 7 and Section 3.2.4.2.
Level Class Segments Samples Ratio (%)

1 Drone 186 3720×106 81.94%
No Drone 41 820×106 18.06%

2

Bebop 84 1680×106 37.00%
AR 81 1620×106 35.68%
Phantom 21 420×106 9.25%
No Drone 41 820×106 18.06%

3

Bebop mode 1 21 420×106 9.25%
Bebop mode 2 21 420×106 9.25%
Bebop mode 3 21 420×106 9.25%
Bebop mode 4 21 420×106 9.25%
AR mode 1 21 420×106 9.25%
AR mode 2 21 420×106 9.25%
AR mode 3 21 420×106 9.25%
AR mode 4 18 360×106 7.93%
Phantom mode 1 21 420×106 9.25%
No Drone 41 820×106 18.06%

confusion matrices, see Sections 3.3.3 and 3.3.4. One must note
that, better classification results can be achieved using different
multi-class classifiers, deeper neural networks, and/or different
hyper parameters; however, in this work, we are only testing the
RF database feasibility to be used for drone detection and identi-
fication. Therefore, achieving highest performance is beyond the
scope of this paper.

4.2. Analysis of the drone RF database

Table 4 illustrates the total number of segments and samples
for the recordings in the developed drone RF database at each
experiment level. One can note a class imbalance problem due to
the different sample sizes for different classes, hence we will be
using stratified cross-validation to assess the drone detection and
identification system. Fig. 10 shows snippets of raw recordings
from the developed RF database. One can observe that drone
RF communications can be fully captured using one RF receiver
(x(H) amplitude is lower than x(L) in Fig. 10(b)). Nevertheless,
one cannot make such assumption as drones can automatically
or intentionally change their operating channel and the utilized
wireless technology.

Raw RF segments are transformed by DFT to reveal latent
information that can be learned for efficient detection and iden-
tification. Fig. 11 demonstrates spectral and statistical analysis of
the acquired RF data. Subfigures (a–c) show the average spectra
of the RF signals that are supplied to the first, second and third
DNNs respectively. In addition, subfigures (d–f) illustrate the
statistical distribution of the average spectra in subfigures (a–c)
using boxplots. One can note that by using Fig. 11(a), detecting
the presence of a drone can be performed effectively by the first
DNN as the two spectra show obvious differences that can be
verified by the boxplots in Fig. 11(d). Furthermore, in Fig. 11(b),
one can observe the alikeness among the Bebop and AR RF signals
and their different morphology when compared to the Phantom
drone or RF background activities. Such similarities can hinder
the second DNN from accurately differentiating these drones as
confirmed by the boxplots in Fig. 11(e). Lastly, by using Fig. 11(c),
the previous observation can be formally stated as follows: Be-
bop and AR drones have similar RF communications since they
produce similar spectra for different flight modes. This is logical,
as both drones are manufactured by the same company, Parrot.
Therefore, detecting the flight modes of these two drones present
difficulties for any intelligent system, see Fig. 11(f) for statistical
verification.

4.3. Drone detection and identification

Performance evaluation of the three developed DNNs is shown
in Fig. 12 using confusion matrices. See Section 3.3.4 for more
details on how to interpret a confusion matrix. First, Fig. 12(a)
shows the classification performance of the first DNN which
detects the presence of a drone. Results demonstrate an average
accuracy of 99.7%, average error of 0.3%, and average F1 score of
99.5%. Moreover, Fig. 12(b) depicts the classification performance
of the second DNN which detects the presence of a drone and
identifies its type. Results demonstrate an average accuracy of
84.5%, average error of 15.5%, and average F1 score of 78.8%.
Finally, Fig. 12(c) illustrates the classification performance of the
third DNN which detects the presence of a drone, identifies its
type, and determines its flight mode. Results demonstrate an
average accuracy of 46.8%, average error of 53.2%, and average F1
score of 43%. Generally, one can observe a decline in performance
when increasing the number of classes. This can be explained
by the similarities of RF communications of the Bebop and AR
drones, see Fig. 11. The recall when detecting background and
Phantom RF signatures remained high for the second and third
DNNs, 96.1% and 97.4% (see Eq. (13) and the right columns of
the confusion matrices in Fig. 12). However, detecting the Bebop
and AR drones or identifying their flight modes is almost random.
The former observations are aligned with the analysis presented
in Section 4.2. Nevertheless, results of the developed system still
demonstrate the feasibility of the developed drone RF database
to be used for detection and identification.

5. Conclusions

As drones are becoming more popular among civilians, reg-
ulating entities demand intelligent systems that are capable of
detecting and identifying intruding drones. However, the design
of such systems is hindered by the lack of large labeled open
source databases. This work is a contribution towards this goal by
developing a database of drones Radio Frequency (RF) communi-
cations that can be further extended by researchers and students.
The developed database encompasses RF signals of various drones
under different flight modes; therefore, it can be used to test
and validate intelligent algorithms, and can be adopted to design
drone detection and identification systems.

We have collected, analyzed, and recorded raw RF signals of
different drones under different flight modes such as: off, on
and connected, hovering, flying, and video recording. After that,
to test the feasibility of the developed database, we used deep
neural networks (DNNs) to detect and identify intruding drones
and to determine their flight mode. We designed, validated, and
evaluated three DNNs to perform the following tasks: detect the
presence of a drone, detect the presence of a drone and identify
its type, and lastly, detect the presence of a drone, identify its
type, and determine its flight mode.

Results of the developed systems showed a general decline
in performance when increasing the number of classes. Average
accuracy has decreased from 99.7% for the first DNN (2-classes),
to 84.5% for the second DNN (4-classes), and lastly, to 46.8%
for the third DNN (10-classes). This decrease was shown to be
caused by similarities observed on some drones RF spectra as
they were manufactured by the same company, e.g. the Bebop
and AR drones. This introduces a challenging obstacle that can
be mitigated using deeper neural networks or by other advanced
classification algorithms. Nevertheless, results of the developed
drone detection and identification system demonstrate the fea-
sibility of the developed database to be used for testing and
validating intelligent algorithms and to design advanced drone
detection and identification systems. The developed drone RF



94 M.F. Al-Sa’d, A. Al-Ali, A. Mohamed et al. / Future Generation Computer Systems 100 (2019) 86–97

Fig. 10. Snippets from the developed drone RF database. x(L) and x(H) are plotted in blue and red respectively with normalized amplitudes from −1 to 1. Fig. 10(a)
shows segment number 5 of the acquired RF background activities, Fig. 10(b) shows segment number 10 of the acquired Bebop RF signals when flying and video
recording, and lastly, Fig. 10(c) shows segment number 7 of the acquired Phantom RF signals when on and connected. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Spectral and statistical analysis of the acquired RF signals to be supplied for three drone detection and identification DNNs. Figs. (a–c) show the average
power spectra of the acquired RF signals while Figs. (d–f) show the boxplot of the computed spectra. Note that amplitudes of the average spectra are normalized
to discard biases in the analysis and that they are smoothed using a 10-point moving average filter to ease visual interpretations. In Fig. 11(a), class 1 is for RF
background activities and class 2 is for the drones RF communications (to be supplied to the first DNN). In Fig. 11(b), class 1 is for RF background activities and
classes 2–4 are for the Bebop, AR and Phantom drones (to be supplied to the second DNN). In Fig. 11(c), class 1 is for RF background activities, classes 2–5 are for
the Bebop 4 different flight modes, classes 6–9 are for the AR 4 different flight modes, and lastly, class 10 is for the Phantom single flight mode (to be supplied to
the third DNN).

database is open source and can be found in [64] along with
all the implementations required to reproduce the results of this
work.

In the future, one can extract features from the developed
drone RF database to be used for detection and compare their
results with the outcomes of our system. In addition, the devel-
oped database can be used to train and test different detectors

and network architectures to systematically converge to the best
detection and identification system. Furthermore, fusing the de-
veloped database with other drone detection modalities such as
camera images and videos, radar echoes, and acoustic recordings,
can ameliorate the performance of the detection and identi-
fication system by exploiting the strengths of each modality.
The developed database can be extended by researchers and
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Fig. 12. Average classification performance for the three designed DNNs using confusion matrices. In Fig. 12(a), class 1 is for RF background activities and class 2
is for the drones RF communications. In Fig. 12(b), class 1 is for RF background activities and classes 2–4 are for the Bebop, AR and Phantom drones. In Fig. 12(c),
class 1 is for RF background activities, classes 2–5 are for the Bebop 4 different flight modes, classes 6–9 are for the AR 4 different flight modes, and lastly, class 10
is for the Phantom single flight mode.

students alike in various ways such as: (1) investigating other
classification algorithms, (2) expanding the developed database
by augmentation, e.g. adding channel fading or noise, (3) perform
the same experiments using other drones, (4) study the effects of
RF interference and noise when detecting and identifying drones,
(5) conduct experiments for indoor and outdoor flying, (6) vary
the drone speed and distance from the RF receiver, and many
others.
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