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Abstract

Background: The incidence rate of oropharyngeal squamous cell carcinoma (OPSCC) worldwide is alarming. In the clinical community,
there is a pressing necessity to comprehend the etiology of the OPSCC to facilitate the administration of effective treatments. Methods:
This study confers an integrative genomics approach for identifying key oncogenic drivers involved in the OPSCC pathogenesis. The
dataset contains RNA-Sequencing (RNA-Seq) samples of 46Human papillomavirus-positive head and neck squamous cell carcinoma and
25 normal Uvulopalatopharyngoplasty cases. The differential marker selection is performed between the groups with a log2FoldChange
(FC) score of 2, adjusted p-value< 0.01, and screened 714 genes. The Particle SwarmOptimization (PSO) algorithm selects the candidate
gene subset, reducing the size to 73. The state-of-the-art machine learning algorithms are trained with the differentially expressed genes
and candidate subsets of PSO. Results: The analysis of predictive models using Shapley Additive exPlanations revealed that seven
genes significantly contribute to the model’s performance. These include ECT2, LAMC2, and DSG2, which predominantly influence
differentiating between sample groups. They were followed in importance by FAT1, PLOD2, COL1A1, and PLAU. The Random Forest
and Bayes Net algorithms also achieved perfect validation scores when using PSO features. Furthermore, gene set enrichment analysis,
protein-protein interactions, and disease ontology mining revealed a significant association between these genes and the target condition.
As indicated by Shapley Additive exPlanations (SHAPs), the survival analysis of three key genes unveiled strong over-expression in the
samples from “The Cancer Genome Atlas”. Conclusions: Our findings elucidate critical oncogenic drivers in OPSCC, offering vital
insights for developing targeted therapies and enhancing understanding its pathogenesis.

Keywords: biomarker discovery; explainable artificial intelligence; human papillomavirus; oropharyngeal squamous cell carcinoma;
RNA-sequencing; shapley additive explanations

1. Introduction

Head and neck squamous cell carcinoma (HNSCC)
significantly impedes increases in global life expectancy,
resulting in a substantial number of deaths worldwide. With
over 562,328 annual occurrences, HNSCC ranks as the sev-
enth most common cancer, posing a significant global bur-
den and epidemiological risk [1]. The term HNSCC en-
compasses a range of diseases that manifest in the head
and neck region, including cancers linked to the oral cav-
ity, nasopharynx, and oropharynx [2]. Each subset under
this category has a different etiology, epidemiological pat-
terns, and medical regimen [3]. HNSCC has historically
been linked to smoking and alcohol abuse. However, it has
been increasingly evident in recent years that Human Papil-
lomavirus (HPV) infection, primarily affecting the orophar-
ynx, is critical in developing HNSCC [4]. Oropharyngeal
squamous cell carcinoma (OPSCC) has drawn attention re-

cently due to an incredible surge in cases, distinctly those
pertinent to HPV [5–7]. On a global scale, HPV infection
contributes to 20–60% of OPSCC cases, with HPV-16 be-
ing the predominant strain, accounting for almost 80% of
HPV-related OPSCC cases [8–10].

HPV-associatedOPSCC conditions are predominantly
observed in individuals below 60 years. They tend to have
less smoking and drinking habits than non-HPV-associated
OPSCC conditions, with a more significant percentage of
cases in men reportedly having more oral sex partners be-
longing to a higher fiscal community [11–13]. The dispari-
ties can explain the contrarieties in age in sexual habits be-
tween the older and younger consociates [10]. Additional
risk factors include deep kissing, vaginal intercourse, hav-
ing oral sex before the age of 18, marijuana abuse, and prior
incidences of cervical HPV infection. Despite the efforts,
very little is known about the carcinogenic pathway in OP-
SCC from initiation of HPV infection to cancer develop-
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ment; most disease hypotheses are adapted from cervical
cancer studies. In addition to immune cells, pathogens such
as HPV can infiltrate the mucosal lining of palatine tonsils
[14]. Untreated HPV infections may progress, leading to
premalignant lesions and potentially culminating in an ag-
gressive variant of OPSCC.

HPV-positive OPSCC exhibits unique auguring traits
and genetic patterns compared to HPV-negative conditions.
With a greater survival rate and fewer reported side effects,
HPV-positive OPSCC is linked to a better overall treat-
ment outcome than HPV-negative OPSCC. Radiation ther-
apy alone or combined with concurrent chemotherapy has
demonstrated a more favorable prognosis for HPV-OPSCC
[15,16]. Despite the favorable prognosis, diagnosis of OP-
SCC at its initial stages remains challenging due to its mul-
tifaceted nature [17]. Early identification is crucial as it can
increase the 5-year survival chances of OPSCC by up to
85% [18]. Current methods for diagnosing and monitoring
OPSCC remain insufficient; the development of biomark-
ers can help in early patient diagnosis and monitoring of
treatment response, thereby improving the survival rates
and lowering the recurrence rates. The development of pre-
dictive biomarkers can predict a disease’s course and as-
certain therapeutics’ success [19]. Differential expression
analysis scrutinizes gene expression motifs and collocates
the molecular processes underlying convoluted illnesses.
Gene expression profiles delineate with high dimensional
data and significant correlations between genes. Due to
this, thousands of robustly linked genes are frequently in-
cluded as outputs from the differential expression analysis.
It is inefficient to use all the differential genes to develop
a predictive model; here, dimensionality reduction comes
into play.

Oncology has led the way in integrating AI into cancer
management [20]. Researchers are actively implementing
AI-based machine learning (ML) approaches to investigate
the genetic differences among malignancies, which may be
utilized to enhance the accuracy of cancer diagnosis, iden-
tification of novel biomarkers, and development of novel
cancer therapeutics [21–23]. AlthoughML approaches help
to identify putative biomarkers, their potentiality must be
assessed by highly developed computational techniques. In
addition, greater model complexity is typically used to at-
tain higher performance, turning these systems into black-
boxmethods that create ambiguity in their functionality and
decision-making ability [24–26]. Relying onmodels whose
findings cannot be comprehended efficiently is quite labo-
rious. Building a pipeline combining efficient algorithms
for identifying and characterizing biomarkers that incorpo-
rate expert knowledge with data-driven analysis is impera-
tive. Using a particle optimization technique (PSO) and ex-
plainable A.I. (XAI) approach, in this study, we introduce
a refined multi-objective approach for prioritizing marker
genes as potential biomarkers instrumental in predicting the
pathogenesis of OPSCC. Our methodology integrates so-

phisticated feature subset selection techniques within the
biomarker identification pipeline, enhancing the precision
and efficacy of predictive markers in OPSCC.

2. Materials and Methods
2.1 Data Acquisition

The study intends to find oncogenic biomark-
ers associated with OPSCC from the RNA-Seq data.
The dataset consists of samples collected from 46
HPV-positive OPSCC tumor samples, and 25 normal
tissue samples from uvulopharyngoplasty (UPPP) se-
quenced using the HiSeq 2500 sequencing approach at
John Hopkins University (Accession ID: GSE112026)
[27]. The Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/.) was used to explore
the OPSCC-related RNA-Seq data; the selection criteria
follow the dataset size and group disparities matching the
need of building a machine-learning model.

2.2 Differential Gene Expression Analysis
The disparities in gene expression within the diseased

and healthy control groups can be assessed by perform-
ing differential gene expression analysis. Using the DE-
Seq2 package (Version 1.44.0), the count matrix file was
employed to scrutinize the differentially expressed genes
(DEGs) between OPSCC and the normal tissue samples
[28]. The count matrix file was subjected to preprocessing
steps such as removing genes with low expression counts,
collapsing replicates, and data normalization. The multidi-
mensional scaling analysis (MSA) evaluated the expression
pattern for OPSCC tumors and normal tissues [29]. The
DEGs were identified with the criteria of Log2fold change
(FC) >|2| and a significance threshold of adjusted p-value
< 0.01. The visualization plots were generated employing
the DEVis r package (v. 1.0.1) [30].

2.3 Candidate Marker Selection
The PSO algorithm containing themulticollinearity is-

sue tends to model overfitting when training with machine
learning algorithms. Feature selection methods strategi-
cally identify the best subset by computing the relevancy
of features with the target variable. Many techniques exist,
such as filter, embedded, non-linear, wrapper, and meta-
heuristic search optimization methods, each equipped with
several ingenious algorithms. This investigation uses PSO,
a robust stochastic optimization technique, to meticulously
select salient candidate genes [31]. PSO mimics the col-
laborative dynamics and trajectories of swarm particles
within a multidimensional search domain, aiming to pin-
point the most effective solution. Each particle symbol-
izes a prospective solution, and their collective, known
as the swarm, systematically navigates the search terrain
to identify the optimum solution. This process embodies
both exploration and exploitation attributes. During initial
phases, particles engage in an exploratory behavior by vary-
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ing their positions extensively. As the optimization process
advances, these particles gradually gravitate towards areas
of high potential, marked by individual and collective op-
timal positions, thereby exploiting the search domain for
superior solutions. The culmination of this procedure is the
generation of a refined subset by the PSO algorithm, which
serves as the foundational dataset for training various ma-
chine learning models.

2.4 Explainable A.I. for Model Interpretation
Several algorithms have been developed to categorize

cancer subtypes and potential biomarkers linked to a cancer
etiology [32–39]. However, the users of these models still
need to discern how different characteristics contribute to
the job at hand [40]. To overcome this problem, XAI has
emerged to tackle the void in deep learning models [41].
The dexterity of XAI methods to expound the comportment
of the model and establish confidence in it has been demon-
strated in several applications [42–44]. One such applica-
tion is the identification of cancer biomarkers; our study
aims to use the XAI-based feature selection approach to
identify a limited set of biomarkers associated with OP-
SCC. XAI framework aids in identifying the crucial genes
that training models can use to categorize the disease state.
SHapley Additive exPlanations (SHAP) is a methodology
for interpreting machine learning model predictions. It of-
fers a mechanism to assign the contribution of individual
features to the concluding prediction made by the model.
The mathematical representation of SHAP can be described
as follows:

SHAP evaluates the impact of each feature in an input
instance by assigning a specific value to it. The assigned
value signifies the difference in the predicted outcomewhen
the feature is incorporated versus when it is omitted. De-
noted as:

- X: The input features of an instance (a vector of
length n).

- f: The predictive model that anticipates the output
value.

- φ: The function responsible for determining SHAP
values.

The SHAP value function φ is structured in the fol-
lowing form:

φ(X) = φ₀ + φ₁(x₁) + φ₂(x₂) + ... + φₙ(xₙ)
Where:
- φ₀ indicates the predicted model output for a speci-

fied baseline reference.
φᵢ(xᵢ) signifies the influence of feature xᵢ on the model

output. It illustrates the shift in the prediction when feature
xᵢ is encompassed compared to when it is excluded, consid-
ering all conceivable subsets of features.

SHAP values satisfy certain properties, including lo-
cal accuracy, consistency, and missingness. These at-
tributes ensure that the summation of SHAP values across
all features equals the disparity between the model’s pre-

diction for a particular instance and the anticipated baseline
outcome. SHAP values represent the contribution of each
feature to confidence scoring in a local summary graphic.
A SHAP summary graphic also displayed the global fea-
ture relevance generated from the training data. Further,
a comprehensive literature study was carried out to under-
stand the relevance of the genes with the highest average
SHAP values in the pathogenesis of OPSCC.

2.5 Generation of Machine Learning Models
The model validation process involves employing the

10-fold cross-validation technique. Bayes Net, Logistic Re-
gression, Support Vector Machines, Random Forest, and
Adaboost algorithms were utilized to train the model us-
ing the gene subset. The model’s performance is evaluated
using accuracy, f-score, precision, recall, and Matthew’s
correlation coefficient. The variation in the performance
between three different feature subsets is benchmarked to
find the potency of the biomarker selected in each process.

2.6 Functional and Pathway Enrichment Analysis
The clusterProfiler R package was used to evaluate the

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways to comprehend the role
of DEGs associated with OPSCC [45]. The clusterProfiler
examines genes through GO and KEGG terms, aiming to
identify enriched terms and pathways associated with the
input DEGs. The GO analysis encompassed three separate
domains: biological processes (BP), cellular components
(CC), and molecular functions (MF). The cnetplot, dot plot,
emapplot functions, and Enrich R package were employed
to illustrate the enriched pathways. A p-value of less than
0.005 was used to evaluate whether genes and pathways
have a higher enrichment ratio.

2.7 Protein-Protein Interaction Analysis
Predicting protein interactions for tracing behavior

throughout the biological mechanism is crucial. Studying
new protein interactions helps identify the association with
a disease by unraveling complicated molecular pathways
and novel cellular activities. A confidence threshold of
0.7 was employed to assess the Protein-Protein Interactions
(PPI) of the DEGs using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database (STRING
v11.5, https://string-db.org/.) [46].

2.8 Survival Analysis
The Gene Expression Profiling Interactive Analysis

(GEPIA, http://gepia2.cancer-pku.cn/#survival) tool was
further used to examine the associativity between the three
DEGs (ECT2, LAMC2, DSG2) and the prognosis of OP-
SCC [47]. The OPSCC tumor and normal samples were
contrasted with the The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) and Genotype-Tissue Ex-
pression (GTEx) databases (https://gtexportal.org/home/).
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The tumor samples were grouped into high and low-
expression categories to assess their relationship with sur-
vival. The results were considered significant if the p-
values were below 0.05.

2.9 Drug Gene Interaction Analysis
The Drug Gene Interaction Database (DGIdb, version

3.0.2, https://www.dgidb.org/.) examined potential interac-
tions between drugs and genes related to the DEGs iden-
tified through PSO. The drug-gene interactions (DGI) for
the genes were acquired by utilizing the ‘query DGIdb()’
function within the ‘rDGIdb’ R package [48].

3. Results
3.1 Identification of DEGs and Candidate Selection Using
PSO

TheDESeq2 packagewas utilized to compare the gene
expression profiles of OPSCC and normal tumor samples.
We identified 714 genes DEGs, comprising 455 downreg-
ulated and 259 upregulated genes (Supplementary Table
1). Utilizing a Euclidean distance matrix, the DEVis pack-
age rendered a heat map, where each row signifies a dis-
tinct sample and its comparative distance from other dataset
samples. A pale yellow shade highlighted the outlier sam-
ples, which were subsequently excluded to mitigate batch
effects (Fig. 1A). Fig. 1B illustrates the volcano plot for
the DEGs. To scrutinize the divergence and overlap be-
tween OPSCC tumor and normal tissue samples in the
dataset, a multidimensional scaling analysis (MCA) was
conducted, revealing a pronounced, distinct clustering of
the two groups (Fig. 1C). A density plot was computed to
compare the aggregation for the p-values and DEGs in both
tissue types. Comparative analysis revealed a notable ele-
vation in DEGs within OPSCC samples relative to normal
tissues (Fig. 1D). The PSO algorithm effectively pinpointed
key markers, condensing the initial gene subset from 714 to
73 (Supplementary Table 2).

3.2 Interpreting the Model Predictions with Explainable
A.I.

The random forest model is trained with the PSO-
selected feature set for SHAP analysis. This algorithm in-
terprets the results of the pre-trained model to understand
the predictions. A bar plot function was utilized to con-
struct a local feature importance plot by supplying a collec-
tion of SHAP values. Using this significant bar plot, the
most relevant genes were depicted in a downward trend.
The top genes have a higher predictive power in the ML
model as they tend to contribute more. The bar plots in
Fig. 2A,B illustrate the genes in order of their connotation,
with the most significant genes placed at the top and vice
versa for both OPSCC and UPPP tissue samples. ECT2,
LAMC2, DSG2, FAT1, PLOD2, COL1A1, and PLAU were
observed to have higher SHAP values. Waterfall plots were
generated to provide explanations for diacritic predictions.

In OPSCC, the waterfall plot for the genes mentioned above
depicts contributions with ECT2 (–0.99), LAMC2 (–0.59),
and DSG2 (–0.53) was found to have the higher negative
score (Fig. 2C), indicating the prediction is favorable to-
wards OPSCC.

In contrast, for the UPPP sample, the waterfall plot
displayed a positive contribution, with LAMC2 (+1.04),
DSG2 (+0.93), and ECT2 (0.69) showing the highest con-
tribution (Fig. 2D). The positive SHAP value evinces the
prediction that the input sample is more to the class UPPP.
The SHAP summary plot and SHAP beeswarm plot clearly
distinguish the genes between OPSCC and UPPP; in both
cases, the ECT2 gene shows higher feature importance, fol-
lowed by LAMC2 and DSG2 based on the SHAP values
(Fig. 3A,B). The low feature value with a positive SHAP
score predicts the input as UPPP, whereas the sample with
a higher feature value and negative SHAP score is predicted
as OPSCC. Observing that, the higher feature value repre-
sents the over-expression of gene value onOPSCC samples.
The cohort plot, depicted using a bar plot, represents the
consequence of each gene contributing to the disease states
(Fig. 3C). ECT2 gene was found to be of more global im-
portance in the cohort plot, followed by LAMC2 andDSG2.
A heatmap was generated to plot the instances based on the
sample clustering (Fig. 3D). In the composite visualization,
the bar plot positioned to the right side of the heat map
distinctly illustrates elevated SHAP values for the trio of
genes: ECT2, LAMC2, andDSG2. This elevation is marked
compared to the SHAP values associated with other genes
in this study. In summary, the SHAP interpretation of the
trained random forest model reports that a sample with a
positive SHAP value is predicted as UPPP and the negative
to OPSCC, respectively (Supplementary Table 3).

3.3 Performance of the Machine Learning Classifiers on
Candidate Markers Identified by the PSO Algorithm

The PSO subsets were trained with five ML classifi-
cation algorithms to benchmark the performance between
different models. The models achieved better results when
the irrelevant features were eliminated during each process.
The scores of the models are represented in Tables 1,2,3 for
the log2FC adjusted set, PSO subset, and SHAP gene list.

We utilized machine learning classifiers, including
BayesNet, Logistic Regression, Support Vector Machines,
Random Forest, and AdaBoost, to evaluate the effective-
ness of predictive screening performedwith PSO and SHAP
algorithms. Seven genes were elected for model training:
the initial gene set after the log2FC and adjusted p-value
screening (714), candidate markers obtained from the PSO
algorithm (73), and the final set of marker genes (7) from
the SHAP model. Tables 1,2,3 represent the classifiers’
performance on log2FC-p-value adjusted, PSO, and SHAP
gene subsets. The validation test showed a clear disparity
for gene sets before and after the feature screening process.
The F-score, a statistical assessment that combines accu-
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Fig. 1. Statistical analysis of Differentially Expressed Genes. (A) Heat map representation of oropharyngeal squamous cell carcinoma
(OPSCC) and uvulopharyngoplasty (UPPP) sample groups based on Euclidean distance matrix. (B) Volcano plot illustrating genes with
differential expression. A total of 714 genes exhibited statistically significant differences: depicted as up-regulated (in red) and down-
regulated (in blue). (C) Multidimensional scaling plots for OPSCC and UPPP clusters. Each dot represents a sample. (D) Density plot
comparing the aggregation of differentially expressed genes (DEGs) in OPSCC and UPPP tissue sample groups.

Table 1. Performance of classifiers on log2FC adjusted gene set.
Classifier Accuracy (%) Precision (%) Recall (%) F-Score (%) MCC (%)

BayesNet 95.8 95.9 95.8 95.9 90.9
Logistic Regression 93.0 93.0 93.1 93.0 84.6
Support Vector Machines 95.8 95.8 95.8 95.8 90.8
Random Forest 94.4 94.4 94.4 94.4 87.7
AdaBoost Classifier 95.8 95.8 95.8 95.8 90.8
MCC, Matthew’s correlation coefficient.

Table 2. Performance of classifiers on PSO gene set.
Classifier Accuracy (%) Precision (%) Recall (%) F-Score (%) MCC (%)

BayesNet 100 100 100 100 100
Logistic Regression 93.0 94.2 93.1 93.2 86.3
Support Vector Machines 97.2 97.4 97.2 97.2 94.2
Random Forest 100 100 100 100 100
AdaBoost Classifier 95.8 95.8 95.8 95.8 90.8
PSO, Particle Swarm Optimization.

Table 3. Performance of classifiers on the SHAP gene set.
Classifier Accuracy (%) Precision (%) Recall (%) F-Score (%) MCC (%)

BayesNet 100 100 100 100 100
Logistic Regression 94.4 94.7 94.4 94.5 88.1
Support Vector Machines 94.4 95.2 94.4 94.5 88.8
Random Forest 97.2 97.2 97.2 97.2 93.9
AdaBoost Classifier 95.8 95.8 95.8 95.8 90.8

racy and sensitivity parameters, was compared among the
classifications for the seven genes. A higher F-score was
observed in both PSO and SHAP-identified gene sets, indi-
cating accuracy in algorithm predictions. Matthew’s corre-
lation coefficient (MCC) score is higher in PSO and SHAP-
subset values than the initial log2FC-p-value adjusted set,

indicating the algorithms’ effectiveness in predicting the
gene subsets. The BayesNet and Random Forest classi-
fier attained 100% performances for PSO and SHAP genes
compared to the log2FC-p-value adjusted gene set, outper-
forming the benchmark classifiers.
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Fig. 2. Local bar plot and Waterfall plot representation of a randomly selected OPSCC and UPPP samples. (A) Local bar
plot representation for OPSCC sample group generated using the Shapley Additive exPlanation (SHAP) values. (B) A local bar plot
representation for the UPPP sample group was generated using the SHAP values. (C) Waterfall plot for OPSCC sample group. (D)
Waterfall plot for the UPPP sample group. The OPSCC and UPPP sample groups are represented in orange and violet colors, respectively.

3.4 Functional and Pathway Enrichment Analysis

The 73 identified marker genes were further subjected
to gene enrichment analysis using the clusterProfiler R
package. Gene functions and associated disorders were rig-
orously analyzed through Disease Ontology (DO) via the
DOSE R package (Version: 3.30.1). This comprehensive
analysis aimed to establish a well-defined understanding of
gene activities and their correlations with specific diseases.
Employing the Enrichplot package, the most significant
ten disorders linked to the identified genes were meticu-
lously illustrated using barplot and dot plot methodologies.
These visual depictions emphasized a noteworthy associ-
ation between these genes and neoplasms related to head
and neck cancer, especially within the DEGs framework
(Fig. 4A,B). The Jaccard correlation coefficient linked the
GO terms to the 73 identified PSO gene markers. The gene-
related GO terms were systematized into five categories as-
sociated with adenocarcinoma, biliary head neck cancer,
focal lipodermatosclerosis-glomerulosclerosis, ascending
aorta aneurysm syndrome, and cerebral choroidal infarction

artery (Fig. 4C). The line graphs in Fig. 4D generated by
the PMC plot indicate an upward trend in publications on
adenocarcinoma and head and neck cancer neoplasms. To
further understand DEGs’ role in the pathogenesis of OP-
SCC pathway enrichment, analyses such as GO and KEGG
were carried out. Predominantly, genes implicated in this
study are integral to the extracellular matrix and its struc-
tural organization (Supplementary Fig. 1A). Based on the
molecular function study, most genes were implicated in
integrin binding, cytokine activity, and extracellular matrix
structural components (Supplementary Fig. 1B). The top
two cellular components of the identified genes were the
collagen-comprising extracellular matrix and the endoplas-
mic reticulum (ER) lumen (Supplementary Fig. 1C).

3.5 Protein-Protein Interaction Analysis

The seven biomarkers (ECT2, LAMC2, DSG2, FAT1,
PLOD2, COL1A1, and PLAU) identified from the SHAP
analysis were input into the STRING database. The PPI
network, with an average clustering coefficient of 0.768 and
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Fig. 3. Visualization of top genes identified with SHAP summary plot, Beeswarm plot, Cohorts plot and Heatmap plot using
SHAP values. (A) SHAP summary plot illustrating the feature importance of the top 10 genes. The color intensity represents the value
of gene features in increasing order. (B) Beeswarm plot representing the impact of top gene features on the SHAP model. (C) Cohort
plot showing the global summary of gene features. The summary is shown separately for the top 9 genes belonging to UPPP and OPSCC
sample groups, respectively. (D) A SHAP heatmap plot was generated based on the sample clustering. The bar plot on the right-hand
side of the heatmap signifies the SHAP values.

an enrichment p-value of 3.33 × 10−16, detected 97 edges
and 27 nodes with a node degree of 7.19. The visualization
representing the PPI is illustrated in Supplementary Fig.
2.

3.6 Survival Analysis
The survival analysis was carried out by employing

the GEPIA platform. Kaplan-Meier (K-M) survival curves
and log-rank tests were used to subtend the differences in
survival between the high-risk and low-risk gene expression
groups. The head and neck cancer samples in the TCGA
cancer dataset were divided into high-risk (n = 519) and
low-risk (n = 44) groups. The correlation between the tumor
cell composition and patient outcomes were anticipated by
assigning the risk categories to ECT2, LAMC2, and DSG2
genes.

The hazard ratio was computed for three genes, of
which the LAMC2 gene showed a higher hazard ratio (1.4)

and a Logrank p-value of 0.013, followed by DSG2 with a
hazard ratio of 1.2 and Logrank p-value of 0.13, whereas
ECT2 genes showed a hazard ratio of 1 with a Logrank p-
value of 0.99 (Fig. 5A). Using whisker plots, the expression
levels for the three biomarker genes were depicted for both
high and low-risk groups. Fig. 5B shows that higher enrich-
ment scores were observed for all three genes present in the
higher-risk groups.

3.7 Drug Gene Interaction Analysis
To explore the potential therapies that may assist in

disrupting cancer etiology, the 73 DEGs were analyzed by
using the established DGI database. The DGI analysis re-
vealed that 251 potential therapeutic targets were identified
for DEGs. LAMC2 and PLAU genes have been identified
to play imperative roles in tumor progression in OPSCC pa-
tients. Identifying potential inhibitors for the genes to pro-
mote the antitumor activity in OPSCC patients is crucial.

7

https://www.imrpress.com


Fig. 4. Disease Ontology analysis of candidate biomarkers. (A) The bar plot illustrates the top diseases associated with the 79
candidate markers by count and Q-score. (B) Dot plot depiction of top diseases linked to 79 candidate markers based on gene ratio. The
circle size increases, and the intensity of color deepens to dark red, signifying the increase in gene count. (C) A tree plot was generated
to categorize marker genes to the Gene Ontology (GO) terms. (D) Line graphs made using pmcplot functions exhibit the trend in the
number of publications from 2000–2020.

Ocriplasmin was identified as a potential target for LAMC2,
whereas 26 drug targets were identified for the PLAU gene
(Supplementary Table 4).

3.8 Biomarker Validation on the Benchmark Dataset

The reproducibility and the effectiveness of the find-
ings from the current study are validated with similar
datasets. The GEO database is queried to identify the
dataset with HPV active OPSCC and normal control sam-
ples. GSE55546 is the only identified dataset relevant to
this study, with 12 HPV active and 4 Uvula control sam-
ples. The differential marker selection is performed be-
tween the groups with a log2FC score of 2, adjusted p-value
< 0.01, the same criteria followed in this study. A total
of 223 genes were reported and out of all, the biomarkers
ECT2, LAMC2, andDSG2 are observed to validate with the
findings. All the three genes are down-regulated, as iden-
tified in the present study correlates with the experimental
results. The down-regulation of these genes are reported
to reduce the survival rate among the individuals affected
with HPV+ OPSCC and the evidences are cited in the fur-
ther discussion. The explainable AI model evaluation is not
possible due to the dataset size. Despite, the statistical sig-
nificance test proves the three genes are significant in regu-

lating the disease condition at molecular level. The detailed
information of the statistical results are made available in
(Supplementary Table 5, Supplementary Document 1).

4. Discussion
The intricate molecular, environmental, and epige-

netic coalition makes understanding the biological mech-
anism of OPSCC pathogenesis more laborious. Recently,
several genes have been identified to play a significant role
in the pathogenesis of OPSCC, including ECT2, LAMC2,
and DSG2. ECT2 (epithelial cell transforming sequence
2) is a gene that codes for a protein functioning as a gua-
nine nucleotide exchange factor (GEF). ECT2 regulates
the Rho family of GTPases, playing a crucial role in cell
migration, proliferation, and survival. In OPSCC, ECT2
downregulation has been reported in several studies [49–
52]. LAMC2 (laminin subunit gamma 2) encodes a compo-
nent of the extracellular matrix (ECM) protein laminin-332.
Laminin-332 is a heterotrimeric protein involved in cell ad-
hesion and differentiation. LAMC2 downregulation is as-
sociated with OPSCC tumor progression [53,54]. DSG2
(desmoglein 2) is a gene that encodes a desmosomal cad-
herin protein. Desmosomes are cell adhesion complexes
critical in maintaining tissue integrity and strength. Re-
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Fig. 5. Survival Analysis for the top-three genes (ECT2, LAMC2, and DSG2). (A) The K-M plots represent the survival curves from
the log-rank test, comparing high-risk and low-risk groups for the top three genes (ECT2, LAMC2, andDSG2). (B) The box plot displays
the enrichment scores for each risk group across the three genes. * represents the outlier.

search delineates that the DSG2 gene modulates pathways
in individuals afflicted with OPSCC [55,56]. The down-
regulation of ECT2, LAMC2, and DSG2 increases the in-
vasion and metastasis of OPSCC. Their knockdown has
been shown to inhibit cell proliferation and decrease tumor
growth. These genes could serve as potential targets for
therapeutic interventions in OPSCC. This actuality is ev-
idently proven by reproducing the same workflow with a
similar dataset (Supporting Information: Supplementary
Document 1).

The extant literature robustly correlates the genes de-
lineated herein with diverse oncological phenotypes. High
levels of ECT2 expression have been observed in clinical
samples, such as colorectal, ovarian, and hepatocellular car-
cinoma [57]. Elevated levels of LAMC2 expression have
been observed in several cancer types, such as gastric can-
cer, breast cancer, and ovarian cancer [58]. Aberrant ex-
pression of DSG2 has been documented in different can-
cer types, including breast cancer, prostate cancer, and oral
squamous cell carcinoma [59]. The increased mortality in

OPSCC cases is associated with a lack of understanding of
the disease’s prognosis and dynamics. Comprehending the
molecular mechanism is vital in deciding optimal treatment
strategies to improve the condition. The clinical biomark-
ers identified in the present study give credence to devel-
oping potential therapeutics. PSO approaches help to im-
pute the disparity between profoundly edifying and non-
edifying features. Identifying such informative features
tends to make a monumental contribution when subsumed
withinmolecular signatures. The algorithm reduces the fea-
ture subset size to 73 by selecting the genes correlated with
the target class type. By applying Shapley values and visual
representations, we accentuate the significant features and
interpretations of the ML model [60]. The Shapley values
evaluate the conspicuousness of the output, considering all
possible feature combinations, and deliver consistent and
accurate assessments for each feature within the prediction
model.

The results of the SHAP approach identified seven
genes concurrent with the OPSCC, of which three genes
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were considered most vital for model decision. The genes
unveiled by the SHAP model on the PSO-identified genes,
such as ECT2, LAMC2, and DSG2, contribute directly to
the OPSCC etiology. The vital information unraveled by
the model reinforces that the overexpression of gene val-
ues is linked with OPSCC and is a contributing factor. Su-
pervised machine learning classification algorithms were
trained with the different subsets of the datasets (log2FC-
p-value adjusted, PSO subset, and SHAP interpretations).
The results exhibit significant improvement in the scores
when eliminating the irrelevant features. BayesNet and
Random Forest models performed best with the PSO sub-
set compared to other benchmark algorithms and attained
100% scores against all evaluation metrics. These models
displayed effective results with the seven marker genes of
SHAP analysis. The experimental results further support
the XAI models’ significance in accurately disclosing the
interpretations.

This study has a few limitations, primarily the bench-
marking with multiple datasets. The lack of similar datasets
matching the phenotypic information turned the study val-
idation with an independent dataset impractical. However,
the current findings stand as evidence by supporting the rel-
evance of existing literature. With the advent of explainable
artificial intelligence methods, interpreting the black-box
predictions of machine learning algorithms becomes facile.
Future studies endeavor to integrate multi-omic biological
information logically to untangle the pathophysiology be-
hind complex diseases.

5. Conclusions
OPSCC remains an erratic illness with a dismal prog-

nosis. The necessity for progressive diagnostic methodolo-
gies in OPSCC is underscored by the significant comorbidi-
ties and high recurrence rates associated with existing treat-
ments. Exploring biomarkers, particularly those accessi-
ble through non-invasive collectionmethods, holds promise
for transformative patient management strategies. The cur-
rent study aimed to identify oncogenic drivers implicated
in the pathogenesis of OPSCC by using a genomics ap-
proach. Integrating bioinformatics analysis and machine
learning techniques with a thorough examination of RNA-
seq datasets led to the identification of ECT2, LAMC2, and
DSG2 as viable molecular markers for OPSCC. The find-
ings from the study may be beneficial for improving the
survival rates of OPSCC patients. Further research could
use the findings and methodology of this work in clinical
and experimental settings. In the future, we intend to in-
crease the sample sizes to validate and closely monitor our
findings.
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