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Leptin is a potential biomarker of childhood obesity and an
indicator of the effectiveness of weight-loss interventions
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Summary

Childhood obesity represents a significant public health concern, imposing a substan-

tial burden on the healthcare system. Furthermore, weight-loss programs often

exhibit reduced effectiveness in adults who have a history of childhood obesity.

Therefore, early intervention against childhood obesity is imperative. Presently, the

primary method for diagnosing childhood obesity relies on body mass index (BMI),

yet this approach has inherent limitations. Leptin, a satiety hormone produced by adi-

pocytes, holds promise as a superior tool for predicting both childhood and subse-

quent adulthood obesity. In this review, we elucidate the tools employed for

assessing obesity in children, delve into the biological functions of leptin, and exam-

ine the factors governing its expression. Additionally, we discuss maternal and infan-

tile leptin levels as predictors of childhood obesity. By exploring the relationship

between leptin levels and weight loss, we present leptin as a potential indicator of

the effectiveness of obesity interventions.
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1 | INTRODUCTION

Obesity represents an escalating global public health concern, mani-

festing as an epidemic that affects individuals across diverse age

groups and ethnic background.1 It is a multifactorial, chronic disease

manifested by the excessive buildup of adipose tissue.2 According to

the World Health Organization (WHO), obesity is often determined

by having a body mass index (BMI) of 30 or higher. Over the last few

decades, obesity has emerged as a serious global public health chal-

lenge, with its prevalence nearly tripling since 1975 and afflicting over

600 million adults worldwide.3,4 Notably, the surge in obesity is not

confined to adults, as childhood obesity has surged at an alarming

rate. The WHO reports a surge in the number of overweight children

under the age of five, rising from 32 million in 1990 to 41 million in

2016.5 Similarly, the prevalence of obesity in children and adolescents

aged 5–19 years has increased dramatically from 8% to 22% between

1990 and 2022.6

Obesity is a complex and multifactorial disease influenced by an

interplay of various behavioral, environmental, and genetic factors.2

The development of childhood obesity is conceptualized by an eco-

logical model that encompasses a complex set of interacting predic-

tors to elevate the child's risk of obesity. These predictors operate at

various levels, including the individual child (e.g., behavioral patterns,
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age, gender, and familial predisposition), family (e.g., parental dietary

intake and weight status, physical activity, and child feeding practices),

and the broader sociodemographic environment (e.g., socioeconomic

status, ethnicity, and school physical education and launch programs).7

Essentially, child risk factors such as poor dietary habits, lack of physi-

cal activity, and sedentary lifestyle significantly heighten the risk of

childhood obesity. Child characteristics, such as age, gender, and

genetic predisposition to weight gain, dynamically interact with these

risk factors, influencing their impact on body weight. Furthermore,

parental factors play pivotal roles in shaping a child's obesity risk.

Maternal obesity, excessive weight gain during pregnancy, and gesta-

tional diabetes are linked to higher birth weight. Likewise, suboptimal

parenting practices may influence a child's dietary choices and prefer-

ences, thereby elevating obesity risk.8 Environmental factors, such as

socioeconomic status, cultural background, and urbanization, have

likewise been associated with an increased risk of childhood obesity.9

These multifaceted factors collectively contribute to the obesogenic

environment in children, explaining the rising prevalence of childhood

obesity in modern society.10

Obesity imposes a substantial disease burden, serving as a promi-

nent risk factor for premature mortality, especially in cases of elevated

BMI value.11 Moreover, it is closely associated with chronic diseases

such as cardiovascular disorders, type 2 diabetes, and certain types of

cancer, which significantly reduce both life expectancy and quality

of life.12,13 The economic burden of obesity is substantial as well,

encompassing expenditures related to healthcare, lost productivity,

and disability, amounting to billions of dollars annually.14

Several diagnostic methods have been established to measure

obesity-related parameters and provide valuable insights for health-

care professionals. The most widely employed methods are BMI,

waist-to-hip (WHR) and waist-to-height ratios, waist circumference

(WC), body fat percentage (BFP), and visceral fat area (VFA).15 While

BMI remains the most frequently utilized for obesity classification, it

exhibits limitations in accurately assessing excessive body fat accumu-

lation. Advanced techniques, such as magnetic resonance imaging

(MRI), offer a more precise evaluation of body fat distribution, but

their routine clinical availability remains limited.16 Biomarkers, includ-

ing adipokines, have recently gained attention as potential diagnostic

tools for obesity.16 Adipokines are bioactive molecules secreted by

adipose tissue, playing a crucial role in energy metabolism and inflam-

mation.17–19 They have been linked to health outcomes associated

with obesity and can serve as indicators of adipose tissue dysfunc-

tion.20 One such adipokine is leptin, a hormone primarily produced by

adipose tissue, which plays a vital role in the regulation of energy bal-

ance and body weight.21 It exerts its effects by binding to specific

receptors in the hypothalamus, activating signaling pathways that sup-

press appetite and promote energy expenditure.22 Leptin levels in cir-

culation are directly proportional to the amount of body fat, with

higher levels found in individuals with greater adiposity.23 The associ-

ation between leptin levels and obesity suggests the potential utility

of leptin as a diagnostic tool for assessing obesity. To our knowledge,

only one narrative review addressed the potential predictive value of

leptin in childhood obesity.24 Since then, there has been a

proliferation of reports in this area, underscoring the necessity for an

updated overview.25 In this review, we delve into the diagnostic tools

available for assessing obesity in children, highlight leptin as a novel

diagnostic instrument, and explore the effects of weight-loss interven-

tions on leptin levels.

2 | METHODS

We conducted a comprehensive literature review using the PubMed/

MEDLINE, Scopus, and Web of Science databases. The search utilized

the following terms: “adipokines,” “leptin,” “biomarker,” “childhood
obesity,” “pediatric obesity,” “obesity,” and “children.” No restrictions

were placed on language or publication year. Abstracts of identified

studies were screened to determine eligibility, and the reference lists

of included studies were examined to supplement the search strategy.

3 | DIAGNOSIS OF CHILDHOOD OBESITY

According to the WHO, obesity is having excessive fat accumulation

that impairs health.6 Various methods are employed to evaluate obe-

sity, but the BMI is the most commonly used method for screening

and diagnosing the condition.26 Although BMI does not provide a

direct measure of BFP, epidemiological studies clearly show that

a high BMI is correlated with body fatness and is linked to increased

morbidity and mortality.27 The WHO uses BMI cut-offs of 25 and

30 kg/m2 to classify adults as overweight and obese, respectively.28

However, in children, BMI varies significantly due to rapid develop-

ment, and there is no universal agreement on cut-off values. The

WHO, the Centers for Disease Control and Prevention (CDC), and

the International Obesity Task Force (IOTF) have proposed three main

definitions to assess obesity and overweight, using BMI charts stan-

dardized for age and sex.29 The 2000 CDC growth charts encompass

sex-specific BMI-for-age percentile curves tailored for children aged

2–19 years. These charts were constructed based on data collected

from a series of cross-sectional studies on the US pediatric population

collected between 1963 and 1994.30 To define overweight and obe-

sity, cut-off points above the 85th and 95th percentiles of BMI for

age and sex are employed, respectively.31 The IOTF approach involves

age- and gender-specific BMI centile curves constructed from data

sourced from six nationally representative datasets spanning six dif-

ferent regions (Brazil, the United Kingdom, Hong Kong, the

Netherlands, Singapore, and the United States). Overweight and obe-

sity for children aged 2–18 years are defined by sex- and age-specific

BMI cut-off points, which correspond to BMI of 25 and 30 kg/m2 at

the age of 18, respectively.32 Furthermore, in 2006, the WHO issued

growth standards for children up to 5 years of age, derived from data

collected from children raised under optimal conditions. The cut-offs

recommended for defining overweight and obesity are 2 and 3 stan-

dard deviations above the growth reference median for age and sex,

respectively.33 In 2007, the WHO extended growth references to

encompass children aged 5–19 years, defining overweight and obesity
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as BMI-for-age greater than 1 and 2 standard deviations above the

growth curve median, respectively.34

Despite its simplicity and low cost, BMI has some limitations. It

incorporates lean body mass, fat mass, and total body water mass,

making it difficult to estimate the relative weight attributed to body

fatness. As a result, BMI tends to overestimate body fat in muscular

athletes.35 Additionally, its accuracy varies according to the degree of

fatness, with good predictive power for obesity in relatively fat chil-

dren and lower sensitivity in relatively thin children. A potential issue

known as normal weight obesity (NWO) syndrome can also arise in

children who have normal body weight according to BMI but excess

fat mass revealed by other techniques that directly measure body fat-

ness. This can result in moderate sensitivity and failure to identify a

proportion of children with excess body fat.36–39 Moreover, the asso-

ciation between BMI and cardiometabolic risks varies among ethnic

groups.40 For example, when compared with Caucasians, Asian popu-

lations are known to exhibit greater body fat for the same BMI, and

lower BMI cut-offs must be used in such populations while screening

for overweight and obesity.41 Additionally, BMI fails to predict com-

partmental body fat distribution, which is crucial given that different

distribution patterns pose varying health risks.28

WC is another anthropometric indicator used for the diagnosis of

obesity and correlation with visceral fat.42 However, its superiority to

BMI remains controversial.43 For children, WC percentiles have been

proposed for different countries.44–46 More importantly, Katzmarzyk

et al. developed WC percentiles to predict cardiovascular disease

(CVD) risk factors among children between 5 and 15 years of age, and

the sensitivity and specificity were comparable to that of BMI among

all gender/race groups.47 Alternatively, visceral obesity can be

assessed using waist-to-hip circumference ratio (WHR), and

population-based WHR reference percentiles have been developed,

although standardization among children is lacking.48 Moreover, waist

circumference-to-height ratio (WC/HT) ≥0.5 has been proposed to be

a sensitive tool for the detection of obesity in children.49

Measurements of body fat using advanced techniques such as

computed tomography (CT) and MRI, dual-energy X-ray absorptiome-

try (DXA), and bioimpedance analysis (BIA) instruments provide accu-

rate assessments of body composition.50 The advantage of such

techniques is their ability to quantify whole-body adipose tissue and

lean tissue. Additionally, some techniques can provide an accurate

three-dimensional profiling of body composition, thus allowing for the

volumetric distribution of visceral adipose tissue (VAT) and subcuta-

neous adipose tissue (SAT) to be obtained for different body compart-

ments.51 Among these techniques, DXA emerges as a useful tool for

pediatric adiposity assessment due to the minimal radiation exposure

and the short duration required for the child to remain still. However,

DXA lacks the ability to distinguish between visceral and subcutane-

ous fat.52 In contrast, MRI and CT allow accurate evaluation of differ-

ent depots of fat, with CT being unsuitable for routine use in children

due to radiation exposure concerns. Although MRI poses no radiation

exposure, its requirement for subjects to remain still for prolonged

periods poses a significant limitation.53 Nevertheless, MRI is acknowl-

edged as the gold standard for body composition analysis and

differentiation of VAT and SAT.54 Despite the usefulness of such

techniques, they are still far from being applied in routine clinical set-

tings. In fact, most are expensive and more complex to use compared

to simple anthropometric measures. Furthermore, no standardized

cut-offs have been established that define the amount of fat that is

abnormal or pathologic, and it is yet to be determined if this is influ-

enced by gender, age, and ethnicity.50 Overall, BMI is the prevailing

method for evaluating obesity in children, particularly for surveillance.

Nevertheless, due to its inadequate diagnostic accuracy in specific

clinical contexts, such as in some ethnic populations, novel diagnostic

approaches may be needed.26

4 | EVALUATION OF SERUM ADIPOKINES
IN CLINICAL SETTINGS

The discovery of leptin in the mid-1990s revolutionized the study of

adipose tissue, leading to its recognition as an endocrine organ that

secretes biologically active molecules known as adipokines. Since

then, numerous other bioactive molecules have been isolated from

adipose tissue and were shown to exhibit local and systemic effects.55

In essence, adipokines play a crucial role in regulating glucose and lipid

metabolism, energy expenditure, endothelial function, immunity, and

cardiovascular health.20 Changes in the size and number of adipocytes

have been linked to alterations in the adipokine secretion profile.

Notably, an excess of adipose tissue, as observed in obesity, is associ-

ated with an increase in pro-inflammatory adipokines such as resistin,

tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and a

decrease in anti-inflammatory adipokines such as adiponectin. This

dysregulation in adipokine release creates a state of chronic, low-

grade inflammation that contributes significantly to the pathogenesis

of obesity-related cardiometabolic complications.56 Conversely,

weight loss is associated with a decrease in pro-inflammatory cyto-

kines, highlighting the dynamic interplay between adipose tissue, adi-

pokines, and metabolic health.57

In the quest to identify potential biomarkers for obesity and its

associated complications, serum adipokines emerge as promising can-

didates. Increased adipose tissue mass in individuals with obesity cor-

relates with increased serum concentrations of leptin, potentially

contributing to obesity-related metabolic complications. Moreover,

higher leptin levels have been identified in various other diseases,

such as osteoarthritis,58 rheumatoid arthritis,59 Crohn's disease,60

nonalcoholic fatty liver disease,61 and multiple sclerosis.62 Further-

more, osteopontin levels are increased in patients with obesity, hence

contributing to heightened inflammation within adipose tissue.57 Like-

wise, resistin levels correlate positively with obesity and BMI, with

evidence pointing to its involvement in the development of athero-

sclerotic lesions in patients with type 2 diabetes.63 Elevated serum

resistin levels have also been reported in patients with Crohn's

disease,60 rheumatoid arthritis,59 and sepsis.64 Conversely, resistin

levels appear to be lower in patients with major depressive disorder.65

Furthermore, circulating levels of chimerin are increased in patients

with obesity and insulin resistance and have been found to positively
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correlate with blood pressure and cholesterol levels.66 Collectively,

these findings underscore the potential of serum adipokines as bio-

markers for inflammatory diseases, highlighting their role in the diag-

nosis and management of such conditions.

5 | BIOLOGICAL FUNCTIONS OF LEPTIN

Leptin is a polypeptide hormone that is encoded by the leptin gene

(ob gene) located on chromosome 7. It is primarily produced by the

adipocytes of white adipose tissue (WAT) in proportion to fat

stores.67 It plays a crucial role in the regulation of food intake and

energy expenditure, primarily through its actions on the hypothalamus

in the brain. Specifically, leptin has been demonstrated to activate

anorexigenic pro-opiomelanocortin (POMC) neurons while inhibiting

orexigenic neuropeptide Y and agouti-related protein (NPY/AGRP)

neurons in the arcuate nucleus of the hypothalamus (Figure 1).68

Beyond its central role in appetite regulation, leptin exerts influence

over a range of physiological functions, including the regulation of glu-

cose and lipid metabolism, hematopoiesis, neuroprotection, immune

responses, and reproductive processes.69 Notably, in mouse models

with leptin deficiency (ob/ob mice) caused by a non-sense mutation in

the leptin gene's coding region, a characteristic phenotype has

emerged, including hyperphagia, obesity, diabetes, and hypogonadism.

Similar observations have been made in extremely rare cases of

humans lacking leptin due to genetic mutations, wherein they display

hyperphagic obesity and decreased energy expenditure. Importantly,

administration of exogenous leptin has been shown to ameliorate the

defects observed in leptin-deficient patients.70

Leptin receptor (LepR) belongs to the type I cytokine receptor

family. Alternative splicing of the LepR primary transcript produces six

LepR isoforms, which fall into three categories: short (LepRa, LepRc,

LepRd, and LepRf), long (LepRb), and secreted (LepRe) isoforms.71 All

isoforms share a common N-terminal domain that binds to leptin.

LepRe serves as the primary leptin-binding protein in the plasma and

regulates leptin signaling activity by maintaining equilibrium between

free and protein-bound leptin. The short and long isoforms are

membrane-bound, differing mainly in their C-terminal intracellular

domains. In contrast to the short isoforms, LepRb has an extensive

cytoplasmic domain that houses multiple motifs crucial for activating

the Janus kinase 2 (JAK2)–signal transducer and activator of transcrip-

tion (STAT) signaling pathway. This isoform is predominantly expressed

in brain regions responsible for regulating energy homeostasis, under-

scoring its central role in mediating the effects of leptin in the control

of body weight and metabolism.72 In fact, LepRb-deficient db/db mice

display a characteristic phenotype similar to that of ob/ob mice.73

Leptin-responsive neurons in the brain orchestrate leptin's effects by

(i) modulating ingestive behavior and promoting satiety and

(ii) increasing sympathetic impulses towards WAT, thereby stimulating

lipolysis in adipocytes. Furthermore, leptin stimulates the secretion of

F IGURE 1 Leptin's function in the
body. Leptin is primarily produced by
adipocytes in white adipose tissue, and its
secretion is proportional to the amount of
fat stores. It exerts its effects over a range
of biologic functions, including the
regulation of pubertal development and
reproduction, immune responses, and
hematopoiesis. Furthermore, leptin
modulates energy balance by acting on
the brain's hypothalamus. When leptin
reaches the brain and binds to its

receptor (LepRb) in the arcuate nucleus of
the hypothalamus, it activates pro-
opiomelanocortin (POMC) neurons while
simultaneously inhibiting neuropeptide Y
and agouti-related protein (NPY/AGRP)
neurons. This leads to increased energy
expenditure and reduced food intake.
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thyrotropin-releasing hormone (TRH), thus enhancing energy expendi-

ture through the hypothalamic–pituitary–thyroid axis.74 Surprisingly,

humans with obesity and diet-induced obese animals demonstrate

higher levels of circulating leptin and a diminished response to exoge-

nous hormone treatment. This diminished ability of leptin to induce

satiety and provoke weight loss in subjects with obesity has given rise

to the concept of leptin resistance.75 Several mechanisms have been

put forth to explain leptin resistance, including impairment in the trans-

port of leptin across the blood–brain barrier (BBB), hypothalamic

inflammation, and endoplasmic reticulum stress.76 However, impaired

leptin signaling remains a hallmark of leptin resistance in individuals

with obesity. Leptin–LepRb signaling leads to the activation of STAT3,

which translocates to the nucleus and drives the expression of target

genes, including suppressor of cytokine signaling 3 (SOCS3), a negative

feedback regulator of leptin signaling. During obesity, elevated leptin

levels result in the overexpression of SOCS3, which blunts LepRb sig-

naling and contributes to leptin resistance (Figure 2).77 Furthermore,

overexpression of SOCS3 is associated with the development of meta-

bolic disorders, such as insulin resistance and glucose intolerance.78

Additionally, obesity-associated hyperleptinemia has been shown to

promote monocyte proliferation and recruitment, macrophage activa-

tion, and the release of pro-inflammatory cytokines such as IL-6, TNF-

α, and interleukin-12 (IL-12). In this context, the elevated leptin levels

associated with obesity appear to play a pivotal role in linking obesity,

insulin resistance, and related metabolic disorders.79

6 | REGULATION OF LEPTIN EXPRESSION

The leptin gene is predominantly expressed in WAT, the most abun-

dant form of adipose tissue in humans. WAT serves as a long-term

fuel reserve, which is released during periods of food deprivation, and

it also functions as an endocrine organ by releasing adipokines.80

While WAT is the primary source of leptin synthesis, other tissues

also produce this hormone in lower quantities. These tissues include

skeletal muscle, placenta, brain, pituitary gland, and mammary epithe-

lium.81–83 The concentration of leptin in the bloodstream directly cor-

relates with the percentage of body fat. Notably, increased adiposity

is associated with elevated leptin levels, indicating a positive associa-

tion between leptin and adipose tissue.84 Furthermore, the levels of

leptin mRNA are positively correlated with adipocyte size, with hyper-

trophic adipocytes displaying increased leptin expression compared to

smaller adipocytes within the same subject.85 Moreover, leptin

expression is influenced by the nutritional status, regardless of adipos-

ity. Energy deprivation results in decreased leptin levels prior to any

discernible impact on body weight or overall body fat. This reduction

in leptin levels stimulates appetite and initiates an anabolic response

aimed at restoring energy stores. Conversely, upon refeeding, leptin

levels promptly return to baseline.86 This interplay between leptin,

adipose tissue, and energy balance highlights the intricate role of lep-

tin in the regulation of body weight and metabolic processes.

Circulating leptin concentrations are significantly influenced by

gender, irrespective of total fat mass. In the adult human population,

females exhibit approximately threefold higher leptin levels per unit of

fat mass in comparison to males.87 This gender-related disparity may

be attributed to variations in body fat distribution, where women tend

to have larger quantities of subcutaneous fat, which also contain

higher levels of leptin.88 In fact, it has been demonstrated that leptin

expression in subcutaneous tissue of humans is three to five times

higher than in omental adipose tissue.89–92 Important to mention, pre-

pubertal leptin concentrations per unit of fat mass do not display sig-

nificant differences between boys and girls; however, across puberty,

F IGURE 2 Mechanisms
underlying leptin resistance. In
diet-induced obesity, higher fat
stores result in increased leptin
secretion, leading to
overactivation of the leptin
receptor and elevated suppressor
of cytokine signaling 3 (SOCS3)
expression. This forms an
inhibitory feedback loop, reducing
leptin signaling. Furthermore,
obesity is also linked to
heightened endoplasmic
reticulum (ER) stress and impaired
transport of leptin across the
blood–brain barrier. These factors
collectively contribute to leptin
resistance.
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leptin levels increase in girls while decreasing in boys.93 In this context,

several reports highlighted leptin's potential role as a mediator

between energy stores and pubertal timing. Studies have shown that

leptin plays a permissive role in initiating puberty by acting on

gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus.

Importantly, conditions characterized by leptin deficiency are often

associated with delayed or absent puberty,94 with the administration

of leptin ameliorating these conditions by virtue of its ability to induce

puberty onset in such cases. Similarly, reductions in leptin levels due to

energy deprivation, such as in anorexia nervosa, are linked to disrupted

gonadotropin secretion and secondary amenorrhea.95 Intriguingly, indi-

viduals with obesity, who typically have elevated leptin levels, may

exhibit a hypogonadal state. This phenomenon is partly attributed to

leptin's inhibitory action on other components of the hypothalamus–

pituitary–gonads (HPG) axis, particularly the gonads.96

Leptin expression is also regulated by endocrine signals (Figure 3).

Notably, insulin and glucocorticoids appear to increase leptin expres-

sion, whereas catecholamines and thyroid hormone exert a downre-

gulating effect.97 Moreover, in vitro studies have shown that leptin

secretion increases following the incubation of rat epididymal adipose

tissue with insulin, suggesting that insulin also promotes leptin secre-

tion.98 Additionally, agents that inhibit lipolysis, such as prostaglandin

E2 (PGE2), stimulate leptin synthesis, whereas hormones that increase

lipolysis, such as growth hormone, have the opposite effect.99 Certain

pro-inflammatory cytokines, such as TNF-α, IL-6, and interleukin-8

(IL-8), elicit a biphasic change in leptin release, characterized by an

acute increase in leptin secretion followed by a long-term suppression

of both leptin expression and secretion.100

7 | MATERNAL LEPTIN LEVELS AS A
POTENTIAL MARKER OF OFFSPRING
OBESITY

Leptin levels exhibit a well-documented physiological increase during

pregnancy and play a significant role in fetal–placental communica-

tion.101 Research has unveiled a connection between maternal leptin

levels during pregnancy and childhood obesity. Indeed, a study evalu-

ating the effect of maternal leptin on neonatal adiposity, as measured

by air displacement plethysmography, was conducted in a cohort of

61 pregnant women. This study reported that neonates born to

mothers with leptin levels exceeding the median displayed a 2%

higher adiposity compared to those born to mothers with lower leptin

levels. Interestingly, this study did not find a significant correlation

between neonatal adiposity and maternal body weight in this con-

text.102 In support of this, another study reports that higher maternal

leptin levels are linked to a greater gain in BMI standard deviation

score (BMI-SDS) in the first year of life, indicating that this effect is

not limited to birth weight.103 On the other hand, another group

examined the rate and timing of leptin changes during pregnancy,

rather than solely focusing on its absolute levels.104 Although it is

clear that serum leptin baselines are higher in pregnant women with

obesity, this study suggested that a more rapid increase in leptin levels

during the second half of pregnancy, particularly in these women, was

associated with a decrease in fetal birth weight (aBW).104,105 This is

to say that the more the change in leptin levels resembles the physio-

logic changes in a normal pregnancy, the better the outcomes are on

fetal birth weight.

F IGURE 3 Factors regulating
leptin expression. Leptin secretion
is regulated by various factors.
Increased secretion occurs in
response to excess adiposity,
elevated levels of glucose, insulin,
glucocorticoids, and certain
inflammatory cytokines, such as
prostaglandin E2. Conversely,
secretion is downregulated by
factors including thyroid
hormone, catecholamines, growth
hormone, and states of energy
deprivation.
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8 | CORD LEPTIN AND CHILDHOOD
OBESITY

Cord leptin levels refer to the amount of leptin present in the blood of

a newborn baby's umbilical cord. Cord leptin primarily originates from

fetal adipose tissue and, to a lower extent, from placental tissue, as

maternal leptin cannot readily cross the placenta. The presence of

cord leptin can be detected as early as 18 weeks of gestation, with

levels increasing progressively as pregnancy advances.106 Interest-

ingly, LepRs are identifiable in various fetal tissues, including cartilage,

brain, lung, and kidney, suggesting a potential role for fetal leptin in

regulating intrauterine development.107 Indeed, a growing body of

research is investigating the relationship between cord leptin levels

and various health outcomes, including infant growth velocity, birth

weight, and child growth trajectories. Lower levels of leptin in cord

blood at birth are associated with smaller size and reduced adiposity,

as assessed by measuring skinfold thicknesses.108,109 However, these

lower levels are correlated with more significant weight gain in the

first 6 months of life, as well as a greater BMI z score at the age of

3 years.103,108,109 Notably, a sexual dimorphism in leptin sensitivity

programming, with this 3-year effect of cord leptin predominantly

noted in boys, has been proposed. Moreover, a correlation between

cord leptin levels and adiposity at the age of 5 was not established.109

These observations might align with the hypothesis that a newborn

experiences a critical period of leptin sensitivity, followed by a subse-

quent period of leptin resistance.

9 | CHILDHOOD LEPTIN AS A PREDICTOR
OF ADULTHOOD OBESITY

Childhood leptin levels can emerge as a significant predictive factor in

anticipating the development of obesity during adulthood. In a study

involving children at a high risk for adult obesity due to early-onset

childhood overweight and/or parental overweight, it was observed

that higher baseline serum leptin concentrations were associated with

greater BMI and DXA-estimated fat mass over time, irrespective of

baseline BMI or fat mass.110 Another prospective study on non-obese

children aged 6–11 years reported that higher baseline leptin levels

and leptin-to-adiponectin ratio positively correlate with greater

increase in BMI z score and WC/HT over the 6-year follow-up

period.111 Nevertheless, it is crucial to address the age at which chil-

dren begin to exhibit leptin resistance. For example, in a weight-loss

intervention study, children with higher leptin concentration regained

less weight following the intervention.112 This suggests that the chil-

dren had likely not yet developed leptin resistance, as a high level of

leptin promoted satiety and hence resulted in decreased weight

regain. The authors explained this observation by noting that the

follow-up data were collected from younger children with less obesity.

These findings, along with evidence highlighting the inverse associa-

tion between cord leptin and body fatness during the early years of

life, underscore the importance of accurately characterizing the patho-

physiology of leptin resistance and developing indices to accurately

estimate this resistance. Essentially, a lower degree of obesity and a

younger age may maintain responsiveness to leptin and its appetite-

regulating effects, emphasizing the need for early intervention in the

treatment of childhood obesity before it progresses into adulthood

obesity.

10 | LEPTIN MODIFICATION IN RESPONSE
TO WEIGHT REDUCTION

The regulation of food intake and body weight involves a complex

interplay between the brain and peripheral organs. The hypothalamus

in the brain assumes a central role in this process, orchestrating food

intake by integrating both peripheral and central signals through a

combination of homeostatic and hedonic mechanisms.113 Following

a meal, specialized chemoreceptors and mechanoreceptors on the sur-

face of gut neuroendocrine cells detect nutrient stimuli. This prompts

the release of key satiety hormones, including cholecystokinin (CCK),

glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic

polypeptide (GIP), and pancreatic polypeptide (PP). These neurohor-

monal satiety signals, originating in the gastrointestinal tract, then

travel through the bloodstream and the vagal afferents to reach the

brain. They provide pivotal information regarding the body's nutri-

tional status on a meal-to-meal basis, effectively regulating appetite

between meals.114 Leptin, produced by adipose tissue, serves as

another key player by communicating the body's fat stores to the

brain. It exerts its influence by inhibiting orexigenic neurons and stim-

ulating anorexigenic neurons in the arcuate nucleus of the hypothala-

mus, helping to suppress food intake during periods of energy

surplus.115 Despite these homeostatic mechanisms aimed at maintain-

ing body weight stability, individuals with obesity often consume

quantities of food that exceed their metabolic needs. In fact, the

hedonic pathway related to the pleasurable aspects of food consump-

tion can override the homeostatic pathway and stimulate food intake

independently of energy deficits.116

Energy-restricted weight loss prompts compensatory adjustments

in the biological pathways regulating food intake and energy hemosta-

sis, which are aimed at restoring energy stores and increasing nutrient

availability.117,118 One significant feature of weight loss is the

decrease in circulating leptin levels. This reduction in leptin concentra-

tion is related to the reduction in fat mass, as leptin gene expression is

proportional to body fat mass.119 Importantly, this reduction in leptin

levels occurs independently of the modality used for weight loss. For

instance, in a study involving children and adolescents with obesity, a

2-month inpatient weight-loss program comprising dietary restriction

and daily physical activity led to a significant decrease in plasma leptin

levels.120 Furthermore, a recent systematic review and meta-analysis

demonstrated that pharmacologic treatment of obesity by GLP-1 ago-

nists leads to a significant decrease in leptin concentrations.121 Simi-

larly, weight loss through surgical interventions is associated with a

comparable reduction in leptin levels.122 In a study evaluating the

impact of Roux-en-Y gastric bypass or vertical sleeve gastrectomy sur-

gery on adipokines in adolescents with severe obesity, leptin levels
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significantly decreased 12 months after surgery.123 Interestingly,

plasma leptin levels decrease to a greater extent than what would be

expected for the lost fat mass. For example, a 10% decrease in fat

mass among adult women with obesity results in an average drop of

plasma leptin levels by 30%.124 This disproportionate reduction in

plasma leptin is consistent across various weight-loss protocols and

can be attributed to the reduction in adipocyte volume during weight-

loss interventions.125,126 In a study involving 10 women with obesity

who reached a non-obese state (BMI < 30 kg/m2) after either bariatric

surgery or lifestyle modification, weight loss was accompanied by

reductions in fat cell volume, leptin secretion, and plasma leptin con-

centrations. Interestingly, the fat cell volume and adipocyte leptin pro-

duction were lower in the post-obese subjects compared to controls

matched for the percent body fat and BMI.127 This decline in leptin

levels following weight-loss interventions results in a state of

leptin insufficiency. In fact, leptin supplementation as an adjunct of

energy restriction enhances weight loss in human adults in a dose-

dependent fashion.128,129 Furthermore, the decrease in leptin levels

after weight loss increases the risk for weight regain by inducing

changes in energy intake and expenditure. Specifically, human adults

who maintain a reduced body weight at 10% below initial body weight

demonstrate brain activity consistent with heightened sensory and

emotional responses to food and reduced control over food intake.

These changes are reversed by leptin administration, resulting in a

neural activity similar to that observed prior to weight loss.130 Addi-

tionally, leptin repletion has been shown to reverse the decrease in

satiation observed in individuals attempting to maintain weight

loss.131 Maintenance of reduced body weight is also associated with

reduced energy expenditure. This reduction can be attributed to

increased skeletal muscle work efficiency, decreased sympathetic

tone, and decreased thyroid hormone levels. Notably, these changes

are reversed by leptin supplementation.132,133 The alterations in

energy intake and expenditure observed in individuals maintaining a

reduced body weight, combined with their responsiveness to leptin,

suggest that neural circuits interpret the weight-reduced state as a

state of leptin insufficiency, which predisposes the individual to

weight regain.

11 | LEPTIN AS A PREDICTOR OF
RESPONSE TO WEIGHT-LOSS
INTERVENTIONS

The role of the neuroendocrine system in predicting responses to

weight-loss interventions remains inadequately identified. Attempts

have been made to forecast the outcomes of lifestyle interventions by

assessing baseline plasma leptin levels. Among adult individuals with

obesity, it has been observed that higher baseline leptin concentra-

tions were inversely correlated to the extent of weight loss achieved

through lifestyle interventions.134–136 This inverse relationship

between hyperleptinemia and weight loss is likely due to the presence

of leptin resistance in subjects with obesity. In such cases, elevated

leptin levels fail to effectively suppress appetite and increase energy

expenditure. Similar trends have been identified in children with obe-

sity who participated in weight-loss programs, where a higher baseline

leptin level was found to be a poor predictor of weight loss during the

intervention.120,137,138 Furthermore, the percentage reduction in lep-

tin levels showed a positive correlation with the amount of fat loss in

children. Interestingly, children with high baseline leptin levels who

experienced substantial reductions in leptin during weight loss exhib-

ited the most significant improvements in lipid profile and insulin sen-

sitivity. Hyperleptinemia in children may thus not necessarily signify

leptin resistance; instead, weight loss can lead to significant reduc-

tions in leptin levels that, in turn, predict favorable metabolic

outcomes.120

The link between baseline leptin and weight-loss maintenance

has also been explored. However, studies have yielded inconsistent

findings, showing negative, positive, or no correlation between base-

line leptin levels and weight regain.139–141 For instance, in a study

involving children aged 8–18 years, a high baseline leptin level was

associated with less weight regain following a weight-loss interven-

tion.112 Conversely, opposite results were observed in studies involv-

ing adults.140–142 These conflicting outcomes may be attributed to

variations in leptin responsiveness, with children suffering from obe-

sity not yet displaying leptin resistance. Consequently, higher leptin

levels promote satiety and assist in maintaining weight.

12 | CONCLUSION

Childhood obesity is a pressing concern in many countries today.

While BMI is commonly employed to anticipate the development of

obesity, its accuracy is limited. Moreover, BMI proves suboptimal for

monitoring a child's weight changes and response to weight-loss

treatments, as it cannot discern the proportion of body mass attribut-

able to body fatness. Given this inability to distinguish between adi-

pose tissue and lean tissue, it is imperative to replace BMI with

markers that provide a more precise assessment of a child's excess

fat. Maternal serum leptin concentration holds promise as a potential

marker for predicting a neonate's susceptibility to childhood obesity.

Moreover, substantial evidence has consistently demonstrated that a

child's serum leptin concentration can forecast the success of weight-

loss interventions and even anticipate the risk of adult obesity. Future

research in this domain should prioritize addressing gaps in our under-

standing of the link between a child's serum leptin concentrations,

those of the prenatal mother, and the child's subsequent development

of obesity. Additionally, forthcoming investigations should delve dee-

per into gender-specific variations in the utility of leptin for predicting

adult obesity and evaluating the effectiveness of weight-loss

interventions.
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