
Available online at www.sciencedirect.com

2212-8271 © 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientific Committee of “The 47th CIRP Conference on Manufacturing Systems” 
in the person of the Conference Chair Professor Hoda ElMaraghy” 
doi: 10.1016/j.procir.2014.01.072 

 Procedia CIRP   17  ( 2014 )  428 – 433 

ScienceDirect

Variety Management in Manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing 
Systems 

Robust Metaheuristics for Scheduling Cellular Flowshop with Family Sequence-
Dependent Setup Times 

 
 Al-mehdi Ibrahema*, Tarek Elmekkawyb and Qingjin Pengc 

  
a,c Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada 

           b Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar 
 

* Corresponding author. Tel.: +1-204-4747474; fax: +1-204-275-7507. E-mail address: umalmehd@cc.umanitoba.ca 

Abstract 

In manufacturing systems, minimization of the total flow time has a great impact on the production time, the productivity and the profitability 
of a firm. This paper considers a cellular flowshop scheduling problem with family sequence setup time to minimize the total flow time. Two 
metaheuristic algorithms based on Genetic algorithm (GA) and particle swarm optimization (PSO) are proposed to solve the proposed problem. 
As it is customarily accepted, the performance of the proposed algorithms is evaluated using Design of Experiments (DOE) to study the 
robustness of the proposed metaheuristics based on the Relative Percentage Deviation (RPD) from the lower bounds. The results of the DOE 
evaluation of the proposed algorithms show that PSO-based metaheuristic is better than GA for solving scheduling problems in cellular flow 
shop, which aims to minimize the total flow time.  
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1. Introduction 

The challenges faced by manufacturing companies have 
forced them to place a significant value on efficiency, timing, 
and cost to remain competitive [1]. Cellular manufacturing 
system (CMS) aims to optimize the efficiency, timing, and 
cost effectiveness. In flowshop manufacturing, cells usually 
consist of a number of machines that are dedicated to produce 
a specific group of part families that have similar production 
requirements. In a manufacturing cell, parts (jobs) having 
similar tooling or required setup on machines are assigned to 
be processed as one family. This is done, in order to improve 
the efficiency of the production cell. The required setup time 
on a machines used for switching between jobs that belong to 
the same part family is usually considered as a part of 

processing time of these jobs. This is because the setup 
required for switching the process between part families is 
quite significant.  Further, the setup time depends on the 
family to be processed and the preceding part family. Such a 
problem is called cellular flowshop scheduling problem with 
sequence dependent setup times. Readers may refer to 
Allahverdi et al [2] for a comprehensive study of the 
scheduling problems with setup times. Broadly, efficient job 
scheduling is a crucial aspect of any manufacturing 
environment [3]. Scheduling a flowshop cellular 
manufacturing with family setup times has been the subject of 
several studies reported in the literature, which was initiated 
by Schaller et al [4]. They developed several heuristic 
algorithms with minimization of the makespan as the criteria. 
Further, they developed a lower bounding method to evaluate 
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the solution quality of the proposed algorithms.  Franca et al 
[5] developed the Genetic Algorithm (GA) and Memetic 
algorithm (MA) with local search for the makespan 
minimization performance measure.  The authors concluded 
that the solution quality of the MA outperformed the available 
algorithms.  Hendizadeh  et al [6] developed a meta-heuristic 
algorithm based on Tabu Search (TS) for the proposed 
problem to minimize the makespan. They concluded that the 
solution quality is the same as that proposed by Franca et 
al[5]. Lin et al [7] studied the same problem and proposed a 
simulated annealing based meta-heuristic algorithm to 
minimize the makespan as the criterion. Salmasi et al [8] 
investigated the aforementioned problem for total flow time 
minimization for the first time; they then developed two 
metaheuristics based on Tabu Search and Ant Colony 
Optimization algorithm to minimize the total flow time as the 
criterion for the first time.  They claimed that the algorithm 
has a superior performance in comparison the TS algorithm. 
Their algorithm is considered as the best available 
metaheuristic. Moreover, tight lower bounds for makespan 
minimization and total flow time minimization are developed 
by Salmasi et al [8]and [9]. Later, Naderi, and Salmasi [10] 
developed two different mixed integer linear programming 
models. These models were effective in solving even medium-
sized problems and providing the optimum solution in a 
reasonable time.  

As it highlighted in the previous paragraphs, most of the 
research effort has focused on developing approximation 
algorithms to minimize the makespan. However, the total 
flow time minimization is an important measure that needs to 
be considered. Optimizing total flow time reflects a stable 
utilization of resources, reducing the work-in-process 
inventory, and minimizing the setup time costs. In addition, 
the research reported in the literature evaluates the quality of 
the solution based on the Percentage Deviation Error (PDE) 
from the lower bounds.  In our view, according to El-Ghazali 
(2009) [11], the analysis of metaheuristics should be done in 
three steps: experimental design, measurement (e.g., quality 
of solutions, computational effort, and robustness), and 
reporting (e.g., box plots, interaction plots) [11]. In our 
research, two metaheuristics based on Genetic Algorithm 
(GA) and Particle Swarm Optimization (PSO) are developed 
to minimize the total flow time in a cellular flowshop 
scheduling problem with family sequence setup time. 
Moreover, the performance of the proposed algorithms is 
evaluated to find the most robust algorithm by means of the 
Design of Experiments (DOE) approach.  This paper aims to 
present the paradigm to identify the most robust metaheuristic 
in a cellular flowshop scheduling problem.   

2. Problem description  

The focus of this research is to schedule a flowshop 
cellular manufacturing cell with sequence dependent family 
setup times with the aim of minimizing the total flow time 
which is notated as: | , , | jFm fmls Splk prum C .  The objective 
function of the proposed problem is: 

0

,
1

                                                            (1 )
N

j m
j

Minimize C   

To describe the problem, we first define the following 
notations: 

 
F: Number of the families,  
N0: Number of jobs; 
Nf:  Number of the jobs in each family, f ={1,2,…..,F} 
M: Number of machines; 
m: Index for machines, i={1,2,….,m} 
j, k: Index for jobs, j, k  ϵ {1,2,….,N0} 
f,l : Index for families,  f,l ϵ {1,2,….,F} 
pj,i : Processing time for job j on machine i 
Sel,f,m: Setup time of family  f  if it processed immediately 

after the family l on machine i 
 

The major assumptions are invoked in this study are: 

 The number of parts (jobs), their processing times, the 
number of part families, and their setup times are known in 
advance. 

 The sequence of parts in a part family, and part families are 
the same on all machines (permutation scheduling). 

 Once a part starts to be processed on a machine, the 
process cannot be interrupted before completion (pre-
emption is disallowed). 

 Each machine can handle only one part (job)at a time. 
 The jobs belonging to each family should be processed 

without any preemption by other jobs of other families 
(group technology assumption). 

 The ready time of all parts is zero, which means that all 
parts in all part families are available for processing at the 
start time. 

 Setup time depends on both the part to be processed and its 
preceding part. There is minor setup among parts within a 
family whereas there are major setup times among the part 
families.  
 
In general, a solution of the cellular flowshop scheduling 

problem is performed in two phases:  sequencing of the part 
families and sequencing parts (jobs) within each family. In 
other words, the solution representation consists of F + 1 
segments. While the first segment F represents the sequence 
of part families on each machine, the other segments 
correspond to the sequence of parts (jobs) within each part 
family[12].  For a feasible schedule, the sequence of the 
families is: 

π = {π [1], π [2]… π [f -1], π [f ], π [f +1],….., π [F]}  
Where π [f ] ={ δ[f ][1] , δ [f ][2] , δ[f ][ j] , ….., δ[f ][Nf] } is the 

sequence  of the jobs within the family. Two metaheuristics 
which are based on Genetic algorithm (GA) and particle 
swarm optimization (PSO) are developed to solve the 
proposed problem heuristically. 

3. Genetic Algorithm 

Genetic Algorithm (GA) has successfully been applied to 
the scheduling problems. It consists of making a population of 
solutions. These individuals are evolved by mutation and 
reproduction processes. The best fitted solutions of the 
population  survive while the worse fitted will be replaced [5]. 

The basic steps of the proposed GA are as follows: 
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 Step 1: Initialize the population by generating 
initial solutions. 

  Step 2: Assess each solution in the population 
based on the total flow time and assigning a 
fitness value. 

 Step 3: Select individuals for recombination and 
go to step 4. 

  Step 4: Recombine individuals generating new 
ones and enter step 5. 

  Step 5: Mutate the new individuals and go to 
step 6.  

 Step 6: If the stopping criterion is met, STOP, 
otherwise, replace old individuals with the new 
ones, and return to step 3. 

3.1. Selection   

The proposed algorithm starts with an initial solution that 
is generated randomly from the population (Pop. size). After 
that, the fitness function is estimated based on the objective 
function which is used to minimize the total completion time 
or total flow time (TFT).  The fitness function is equal to the 
inverse of TFT. Hence each solution, namely solution π, the 
desirable values of the fitness function is the higher values, 
and the normal probability can be determined by the 
following formula [10]: 

1

1
( )                                                            (2)
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Based on the fitness values, two solutions are randomly 
picked for the reproduction process using the crossover and 
mutation operators. 

3.2. Crossover Operator 

The crossover operator is used to find better solutions by 
recombining good genes from different parent chromosomes. 
The crossover operator combines the selected solutions to 
build two new ones. For instance, a random solution of the 
aforementioned problem can be represented in two segments: 
the sequence of the families, and the sequence of jobs in each 
family. In this paper, crossover has been performed similar to 
the crossover presented by Franca et al [5] and Hendizadeh et 
al [13].  A new offspring is constructed from two parents as 
follows: A segment of parent one is randomly selected and 
copied in the same position in the new offspring. The rest of 
the first part of the offspring is completed or filled from the 
second parent [13]. 

3.3. Mutation Operator 

The mutation operator generates offspring from a single 
parent. First, two random positions in each part of a parent are 
chosen and then their positions are swapped.  The offspring is 
compared with its corresponding parent. This different from 

the traditional GA, where either computation time or the 
number of generations is selected as termination criterion 
[14]. In this paper, intensive the parameters are tuned using 
Design of Experiments (DOE) to find the best combination of 
the algorithm parameters. We concluded that the population 
size is 30, the maximum CPU 60 sec, mutation rate is two, 
and crossover rate is 0.9.  

4. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a novel iterative 
computational evolution model that was developed by 
Kennedy and Eberhart [15]. They simulated birds’ swarm 
behaviour in PSO, and made every particle in the swarm 
move according to its experience and the best particle’s 
experience to find a new better position. After the evolution, 
the best particle in the swarm was seen as the best solution for 
the input problem. The population of PSO is called swarm, 
and each individual or particle which is a potential solution is 
known with its current position and current velocity. The new 
position of each individual particle is obtained by assigning a 
new position as well as a new velocity to the particle.  Each 
particle gains a different position, and the value of each 
position is evaluated based on the objective function value of 
the position. The main advantage of this approach is that 
every particle always remembers its best position in the 
experience. When a particle moves to another position, it must 
refer to its best experience and the best experience of all 
particles in the swarm.  The best position of each particle that 
has been gained so far during the previous steps is named the 
best particle (p-best). The best position gained by all particle 
so far is named global best (g-best) position of the search.  
The new position as well as the new velocity of each particle 
is obtained based on the previous positions, the p-best, and the 
g-best. Considering an n-dimension search space; there are S 
particles (swarm size) cooperating to find the global optimum 
in the search space.  

A warm of S particles, the ith particle  is associated with the 
position vector 1 2 , , .., ,i i i inx x x x  and the velocity 

1 2   , , ..,i i i inv v v v the best solution is obtained by the ith 
particle (p-best), and the best so-far solution is obtained by 
whole swarm (global best) are updated each iteration. Each 
particle uses its own search experience and the global 
experience by the swarm to update the velocity and files to a 
new position based on the following equations: 

 

1 1

*
2 2

1    

                                            

                                    (4

           (3)
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Where  is the inertia weight that controls the influence of 

the previous velocity of particles, 1C , 2C  are called 
acceleration coefficient to weight the social influence. The 
parameters 1r  , and 2r   are uniformly distributed random 

variables in (0, 1), and. Particles fly in the search space based 
on Eqs. (3) and (4). Every particle always remembers its best 
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position in the experience, where 1,2, .,i S , and 

1,2, .,j n  . When a particle moves to another position, 

new velocity is calculated according to the previous velocity 
and the distance of its position both p-best and g-best. 
However, the new velocity is limited to the range min max[ , ]V V   
to control the extreme traveling of particles outside the search 
space. Particles gain their new positions according to the new 
velocity and the previous position (Eq.4).  These continuous 
positions of the particles will be converted into discrete values 
using the Ranked Order Value (ROV). It converts the 
continuous position value of the particles to job and family 
sequences. For more details, the reader may refer to  Liu et al 
[16]. 

The steps of the PSO algorithm are executed as follows: 
Step1: Initialize parameters. 
Step2:  Iteration =0; 

2.1 Generate initial position, initial velocity: 
0 0{ , 1,2, , } and  { , 1,2, , }i iX i n V i n  

2.2   Apply the (ROV) to find the permutation; 
2.3 Evaluate each particle based on the objective 
function 0{ , 1,2, , }if i n ; 
2.4 For each particle in the swarm using the objective 
function 0f  for 1,2,...,i i n  for each particle set: 

0 0 0 0 0 0 0 0 0
1 1 2 2 ,    ,  , .,    

together with its best fitness value f  for 1,2,...  
i i i i i i i in in

pb
i

P X where P p x p x p x

i n

 
2.5 Find the best fitness value among the whole 

swarm such as 0 {f }    f 1,2, ,l imin fori n   

2.6 Set the global best to 0 0
lG X  such that 

0
1 ,1 2 ,2 ,   ,   , .,  l l n l nG g x g x g x  with its 

fitness value gb
lf f  

Step3: Repeat until Iteration =Maximum Iteration 
Step 4: Update velocity  

1 1

*
2 2

1    

                                                    

ij ij ij ij

j ij

v t wv t C r y t x t

C r Y t x t
 

Step 5: Update position 1 1        ij ij ijx t v t x t  

Step6:  Apply the (ROV) to find the permutation  
Step7:  Update personal best 
Step8:  Update global best to l

t tG X  
Step9: If the stopping criterion is satisfied, STOP; 

otherwise, return to step 3. 
 
The algorithm starts with generating the initial velocity and 

position according to the following equations: 

min max min

min max min

                                (5)

                                    (6)
ki

kj

X X rand X X

V V rand V V
  

 
Where minX  and maxX   represent the minimum and maximum 
position values.  minV  And max  V  represent the minimum and 

maximum velocities. Also Rand is a random variable between 
(0, 1). These values are presented in Table 1. 

Table 1: The Min and Max. values of the PSO parameters. 

 Parameter  Max. Values Min. Value 

W 2 0.4 
C1 2 0.4 
C2 2 0.4 
Position value 0 4 
Velocity -4 4 

 
To evaluate the performance of the proposed algorithms, test 
problems developed by Salmasi [9] have been used in this 
research. . Three different parameters define a problem 
structure. These include: number of machines, number of 
families, and maximum job in family. The test problems are 
classified into small, medium, and large size problems with 
the number of families is a random integer from DU [1, 5], 
DU [6, 10], and DU [11, 16] respectively. The number of jobs 
in a family is also a random integer from DU [2, 4], DU [5, 
7], and DU [8, 10] for small, medium, and large problems 
respectively. Also, the test problems are classified into two 
and six machine problems.  

5. Robustness  

A schedule is considered robust if its quality is only 
slightly sensitive to data uncertainties and to unexpected 
events [17]. Furthermore, robustness means the evaluation 
process that is able to determine the best or the most efficient 
algorithm that gives a high quality solution. Samarghandi et al 
[18] reported that the most important feature of Design of 
Experiments (DOE) is its ability to study the interaction 
effects between the considered factors.. The levels 
corresponding to each parameter are presented in Table 2.  

Table 2 Factor levels. 

Factor Level1 Level2 Level 3 

Max. Job. in 
Family 

 
2-4 

 
5-7 

 
8-10 

N. Family 2-5 6-10 11-16 
Machine 2 - 6 

6. Results and discussion  

In this section, we will compare the performance of two 
metaheuristics based on GA and PSO. The comparison is 
conducted to answer the following questions: 1) which 
algorithm is more robust? 2) What are the factors affecting the 
response? To answer the questions, a statistical analysis based 
on (DOE) is conducted.  The response is based on the 
Relative Percentage Deviation (RPD) that measures the 
deviation of the total flow time from the corresponding lower 
bound developed by Salmasi [8]. The RPD is calculated using 
the following formula: 

 

100                                               (7)TFT LBRPD
LB
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This study showed that the number of families has a more 
significant impact than the other factors. Nevertheless, 
maximum number of jobs in a family significantly affected 
the RPD values when the numbers of families is large as 
shown in Figures 1, and 2. 

 
Table 3: ANOVA results 

Source Degrees 
of 
freedom 

Seq. 
Sums of 
Squares 

Adj. 
Sum of 
Squares 

Adj. 
Mean 
Square 

F-
value 

P-
value 

Max. Job. 
in Family 

 
2 

 
0.04149 

 
0.04149 

 
0.02075 

 
0.64 

 
0.535 

N. Family 2 0.22447 0.25389 0.12695 3.92 0.033 
Machine 1 0.00598 0.00598 0.00598 0.18 0.671 
Algorithm 1 0.00684 0.00684 0.00684 0.21 0.650 
Error 25 0.80866 0.80866 0.03235   
Total 31 1.08744     

 
Furthermore, based on the P-values, analysis of variance 

(ANOVA) showed that the most significant factor is the 
number of families since its P-value is close to zero. Yet, as 
shown in Table 3, most of other factors are insignificant since 
their values are greater than 0.005.  
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Figure 1: The main effect plot 

 
Moreover, studying the interaction among the factors gives 

a better understanding about the effect of several 
simultaneous factors. As shown in Figure 3, GA is better than 
PSO if the number of families is small and medium.  Yet, 
large families are more practical in manufacturing. Even 
though the maximum jobs in families have greater effect on 
the RPD in both metaheuristics as shown in Figure 4, PSO 
shows better performance than GA.  

 
It should also be noted that metaheuristic algorithm based 

on PSO is more efficient than that based on GA. For instant, 
for the two-machine problems, the variation in RPD for GA is 
more than for PSO as shown in Figure 5. Yet, GA gives some 
solutions that are better than the ones obtained by PSO. 
However, in terms of the variation, PSO shows less variation 
than GA. 
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Figure 3: Interaction plots of maximum jobs in family vs. the 
proposed algorithms 
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Figure 4: Interaction plots of maximum jobs in family vs. the 
proposed algorithms. 

 
In addition, there is a considerable difference in the 

variation in RPD between the two metaheuristics for the six-
machine problems as shown in Figure 6, indicating that PSO 
is performed better than GA. Therefore, PSO is more efficient 
than GA in solving the cellular flowshop to minimize the total 
flow time. 
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Figure 5:Interval plot for two-machine problems. 
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Figure 6: Interval plot for six-machine problems 

7. Conclusion  

In this paper, we examined two metaheuristics to find 
robust schedules that minimizing total flow time in cellular 
flowshop scheduling problems with sequence dependent setup 
times. Metaheuristic algorithms based on PSO and GA is 
selected due to their successful implementation in scheduling. 
The Robustness of these metaheuristics are compared Design 
of Experiments (DOE) technique based on the Relative 
Percentage Deviation from the corresponding lower bounds 
proposed by Salmasi et al [8] . It was found the proposed PSO 
algorithm is more robust than GA even though high quality 
solutions can be obtained by GA based on the problems 
examined in this study. Future research on this study is to 
study the robustness of any other metaheuristic algorithms or 
other performance measures like makespan. Additionally, the 
proposed approach can be implemented in multi-objective 
optimization problems.  

References 

[1] Dennie JS. Efficient job scheduling for a cellular manufacturing 
environment. Rochester Institute of Technology, 2006. 

[2] Allahverdi A, Ng C, Cheng T, Kovalyov M. A survey of scheduling 
problems with setup times or costs. Eur J Oper Res 2008;187:985–1032. 

[3] Shiyas CR, Madhusudanan Pillai V. Cellular manufacturing system 
design using grouping efficacy-based genetic algorithm. Int J Prod Res 
2014:1–14. 

[4] Schaller J, Gupta JND, Vakharia AJ. Scheduling a flowline 
manufacturing cell with sequence dependent family setup times. Eur J 
Oper Res 2000;125:324–39. 

[5] Franca P, Gupta J, Mendes A, Moscato P, Veltink K. Evolutionary 
algorithms for scheduling a flowshop manufacturing cell with sequence 
dependent family setups. Comput Ind Eng 2005;48:491–506. 

[6] Hamed Hendizadeh S, Faramarzi H, Mansouri SA, Gupta JND and, 
Elmakkawy T. Meta-heuristics for scheduling a flowline manufacturing 
cell with sequence dependent family setup times. Int J Prod Econ 
2008;111:593–605. 

[7] Lin S-W, Gupta JND, Ying K-C, Lee Z-J. Using simulated annealing to 
schedule a flowshop manufacturing cell with sequence-dependent family 
setup times. Int J Prod Res 2009;47:3205–17. 

[8] Salmasi N, Logendran R, Skandari MR. Total flow time minimization in 
a flowshop sequence-dependent group scheduling problem. Comput 
Oper Res 2010;37:199–212. 

[9] Salmasi N, Logendran R, Skandari MR. Makespan minimization of a 
flowshop sequence-dependent group scheduling problem. Int J Adv 
Manuf Technol 2011. 

[10] Naderi B, Salmasi N. Permutation flowshops in group scheduling with 
sequence- dependent setup times. Eur J Ind Eng 2012;6:177–98. 

[11] El-Ghazali T. Metaheuristics: from design to implementation. Jonh 
Wiley Sons Inc, Chichester 2009. 

[12] Bouabda R, Jarboui B, Rebai A. A nested iterated local search algorithm 
for scheduling a flowline manufacturing cell with sequence dependent 
family setup times. (LOGISTIQUA), 2011 4th 2011:526–31. 

[13] Hendizadeh H, Elmekkawy T, Wang G. Bi-criteria scheduling of a 
flowshop manufacturing cell with sequence dependent setup times. Eur J 
Ind Eng 2007;1:1751–5254. 

[14] Zhang Y, Li X, Wang Q. Hybrid genetic algorithm for permutation 
flowshop scheduling problems with total flowtime minimization. Eur J 
Oper Res 2009;196:869–76. 

[15] Kennedy J, Eberhart R. Particle swarm optimization. Proc ICNN’95 - Int 
Conf Neural Networks 1995;4:1942–8. 

[16] Liu B, Wang L, Jin Y-H. An effective hybrid PSO-based algorithm for 
flowshopscheduling with limited buffers. Comput Oper Res 
2008;35:2791–806. 

[17] Wang L, Ng AHC, Deb K, editors. Multi-objective Evolutionary 
Optimisation for Product Design and Manufacturing. London: Springer 
London; 2011. 

[18] Samarghandi H, Elmekkawy TY, Ibrahem AM. Studying the effect of 
different combinations of timetabling with sequencing algorithms to 
solve the no-wait job shop scheduling problem. Int J Prod Res 2013;51-
16:4942–65.  


