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a b s t r a c t

The stochastic attribute of renewable energy sources and the variability of energy load is a preeminent
barrier to design hybrid renewable energy systems. In this paper, a new methodology is advanced to
incorporate the uncertainties associated with RE resources and load in sizing an HRES in the application
of buildings with low to high renewable energy ratio (RER). Dynamic multi-objective particle swarm
optimization (DMOPSO) algorithm, simulation module, and sampling average technique are used to
approximate a Pareto front (PF) for an HRES design through a multi-objective optimization framework.
The main aim of design is to simultaneously minimize total net present cost (NPC), maximize renewable
energy ratio, and minimize fuel emission while satisfy a desirable level of loss of load probability (LLP).
The existing randomness in wind speed, solar irradiation, ambient temperature, and energy load is
considered using synthetically data generation and sampling average method. The performance of the
model has been examined in a building located in Canada as the case study, in which RER of the building
is increased by using renewable energy technologies. The generated PF by the stochastic approach is
compared to a deterministic PF using well-known performance metrics. Finally, a sensitivity analysis is
carried out where the economic characteristics of the model are varied.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Looking for a sustainable environment restricts the fossil fuels
consumption and consequently encourages the usage of renewable
energy (RE) sources [1]. In fact, RE sources are becoming popular as
their negative environmental impact are not significant in contrast to

the fossil fuels [2–5]. Renewable energy is titled as clean energy sources
by which greenhouse gas emission can be reduced and secondary
wastes are generated at minimum level. In the future, renewable
energy application is expected to increase since RE resources are local
and environmental friendly. Furthermore, they can aid in cutting down
the running of traditional fuels [1]. The application of hybrid renewable

Nomenclature

AðdayÞ daily amplitude of temperatures [1C]
ad;h random number between 0 and 1
Amean;d mean daily amplitude of temperature [1C]
Amax ;d maximum daily amplitude of temperature [1C]
Am monthly amplitude of wind speed [m/s]
Cb;Col biomass collection cost [CAD/t]
Cb;St biomass storage cost [CAD/t]
Cb;Tr biomass transportation cost [CAD/t km]
cd;h correlated values for wind speed
Celec;s electricity price sold to the grid [CAD/kW h]
Celec;b electricity price bought from grid [CAD/kW h]
CGas gasoline price [CAD/l]
CI;j capital cost per unit for component j [CAD/unit]
CNG natural gas price [CAD/m3]
CO&M;j operation and maintenance cost per unit for compo-

nent j [CAD/unit]
Crep;j replacement cost per unit for the component j [CAD/

unit]
COE cost of energy
CRF capital recovery factor
DM diversification metric
dm the number of days in a month
EEX excess electricity should be sold or bought [kW h]
Els;y annual sold electricity to the grid [kW h/year]
Ebought bought electricity from the grid [kW h]
EAR electricity consumption by air refrigerator [kW h]
EEV electricity consumption by PEV [kW h]
EHP electricity consumption by heat pump [kW h]
ESold sold electricity to the grid [kW h]
EPV net power generated by PV panel [kW h]
EPV�Re PV panel power output [kW h]
EPVR�Re rural PV panel power output [kW h]
EWT net power generated by wind turbine [kW h]
Load the total energy load over a year [kW h]
PBio biomass boiler capacity [kW]
PHP heat pump capacity [kW]
PHST heat storage tank capacity [m3]
PSC solar collector capacity [kW]
PPVR rural PV panel capacity [kW]
PPV PV panel capacity [kW]
PWT wind turbine capacity [kW]
Tbase(day) daily base temperature [1C]
Tmin,m monthly averaged minimum ambient temperature

[1C]
Tmax,m monthly averaged maximum ambient temperature

[1C]
Tmean,m monthly averaged mean ambient temperature [1C]
Unmet load unmet energy load over a year [kW h]
wd;h hourly wind speed [m/s]
wav;m average monthly wind speed [m/s]
wn,m average monthly night speed [m/s]
Weibulld,h random number following a Weibull distribution
εh random number

EWT�Re wind turbine power output [kW h]
EFE emission factor for grid electricity [kg CO2/KW h]
EFGas emission factor for gasoline [kg CO2/l]
EFNG emission factor for NG [kg CO2/m3]
Elb;y annual electricity bought from grid [kW h/year]
fcorrection-m correction factor
GAS hourly gasoline consumption [kW h]
Gasoline annual gasoline consumption [l/year]
hmax,m the hour of maximum daily speed [h]
HEBio heating load on biomass boiler [kW h]
HEHP heating load on HP [kW h]
HENG heating energy generated by NG boiler [kW h]
HPðtÞ hourly heat pump output [kW h]
HSTðtÞ level of hot water in storage tank in time step t [kW h]
HWBio�tank hot water load on biomass boiler [kW h]
HWHP�tank hot water load on HP [kW h]
HWNG�tank hot water generated by NG boiler [kW h]
HWSC�tank hot water generated by SC [kW h]
HWT�load total hot water sent to load [kW h]
Ho(day) extraterrestrial solar radiation in a given day [kW h/

m2]
Ho(month) monthly averaged daily extraterrestrial solar radia-

tion [kW h/m2]
i Interest rate [%]
Ih hourly solar radiation [kW h/m2]
Imax,m monthly average of maximum solar radiation for a

day [kW h/m2]
Imax(day) the maximum solar radiation for a day [kW h/m2]
Imax(month) the maximum solar radiation in a month [kW h/

m2]
K single payment present worth
NPC net present cost
NPV net present value
LLPmax loss of load probability upper limit [%]
LLP loss of load probability [%]
PT temperature periodic term [1C]
RER renewable energy ratio [%]
SC set coverage metric
SD standard deviation
SM spacing metric
ST solar term of temperature [1C]
T tð Þ hourly ambient temperature [1C]
Tbase base term of temperature [1C]
Tmean dayð Þ mean daily temperature [1C]
εTr;gas transportation allocation coefficient of gasoline car
εTr;PEV transportation allocation coefficient of PEV
εCO;AR cooling allocation coefficient of air refrigerator
εCO;HP cooling allocation coefficient of heat pump
εHE;bb heating and hot water allocation coefficient of

biomass boiler
εHE;HP heating and hot water allocation coefficient for

heat pump
θh the scale factor of Weibull distribution
μd;h average hourly solar radiation [kW h/m2]
χ random variable with normal distribution function
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energy systems (HRES) for remote area has attracted many attentions
due to the rise in the prices of fossil fuels and the resultant advances in
renewable energy technologies. Generally, an HRES includes two or
more renewable energy sources integrated together to improve both
power reliability and system efficiency.

The main challenge of the design of HRESs is the variability and
availability of RE resources [6]. The performance of HRES is fluctuating
drastically over years since the renewable resources can be distinct in
terms of average values and distribution over years. Taking into account
the randomness associated with RE resources and load is critical since it
has significant effect on the reliability and the overall performance of
HRESs. The reason for this fact is that system operation and produced
power are dependent on the stochastic nature of RE sources. It is not
easy to make the reliability analysis of an HRES without considering its
probabilistic nature due to inherent uncertainties in renewable
resources. In other words, employing reliability as an objective in the
optimization of an HRES design cannot be executed deterministically
[7]. In recent past, the advancement of probabilistic designmethods has
become more popular among the researchers due to the diagnosing of
the drawback of deterministic methods in the design of HRES [7]. The
design of such energy suppliers involves the approximation of the
capacities of the generators and storage devices to fulfil a given
demand. Stochastic approaches of sizing HRESs cover the issue of the
RE variability in the system design [8].

A few researchers have carried out stochastic analysis of HRESs
respecting to their performance and their design optimization. Table 1
summarizes the recent studies that applied stochastic analysis in
HRESs design. Dufo-López et al. [9] studied the impact of the
uncertainty of wind data on the optimal design of wind-batteries
stand-alone systems by using hybrid optimization of genetic algo-
rithm (HOGA). They considered two types of input data including
measured hourly data and synthetically generated hourly wind speed
data over a year. They implied that the main advantage of their
approach is to consider a certain number of consecutive days of
“calmness” for generating the wind speed data. Handschin et al. [10]

proposed a “scenario-wise” approach to develop an engineering tool
to optimize a coordinated operation of distributed generation (DG)
units incorporating the uncertainties associated with electric load,
power prices, and infeed from renewable resources. Arun et al. [8]
utilized chance constrained programming based on the design space
approach for the optimum sizing of an off-grid PV-battery system
under the uncertainty of solar insolation. In their study, the set of all
possible design configurations was illustrated by drawing a sizing
curve in which a desirable confidence level is used to integrate the
possible combinations of the PV sizes with the equivalent minimum
battery capacities. Ekren et al. in [1,11] optimized the size of a hybrid
energy system including PV/wind and battery storage employing two
simulation-based optimization methods. The probabilistic distribution
functions for solar radiation, wind speed and electricity consumption
were fitted employing ARENA simulation software. Lastly, they applied
response surface methodology (RSM) and the OptQuest tool in ARENA
to optimize the total cost of the system. They extended their work in
[12] to perform a Simulated Annealing (SA) algorithm for the optimal
design of the HRES. They concluded that the SA algorithm gives better
result than RSM approach. In [13], for the optimal design of a
renewable power generation system, the uncertainties of weather
data and the operating efficiency of the studied subsystems were
addressed by using probability distribution function. The stochastic
annealing optimization algorithmwas used to minimize the economic
objective. Khan et al. [14] represented the stochastic nature of wind
speed and solar radiation level by using a sensitivity analysis
approach. They performed a simulation study of a hybrid energy
system for application in Canada. A renewable energy simulation
software (HOMER) was used as a sizing tool to discuss the cost and
the performance of renewable and non-renewable energy sources.
Kuznia et al. [15] presented a stochastic mixed integer programming
model to identify the optimal combination and the size of a hybrid
system consisting randomness in wind speed and electricity load.
They created a Benders’ decomposition algorithm to obtain
the optimal solution. Maheri [7] developed a multi-objective

Table 1
The summary of recent published studies for stochastic optimization of HRESs.

Authors System components MOP Objective functions Stochastic parameters Optimization approach
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Ekren et al. [1] ● ● ● NO NPC Wind speed, Solar radiation,
Electricity load

RSM/Simulation based Opt
Quest in ARENA

Maheri [7] ● ● ● YES LCE Reliability Wind speed, Solar radiation,
Electricity load PV array
efficiency

GA

Arun et al. [8] ● ● NO Energy cost Solar insolation Design space/Chance constrained
programming

Dufo-López et al. [9] ● ● NO NPC Wind speed HOGA
Handschin et al. [10] ● ● ● NO Operation Cost Power prices, Power load,

In feed from RE
Scenario-wise MILP

Garyfallos et al. [13] ● ● ● ● NO NPV Wind speed, Solar radiation,
Efficiencies of EL and FC

SA

Khan et al. [14] ● ● ● ● NO NPC Wind speed, Solar radiation,
Diesel price, FC cost

Sensitivity analysis HOMER

Kuznia et al. [15] ● ● ● NO NPC Wind speed/Electricity load SMIP
Roy et al. [16] ● ● NO COE Wind speed Chance constraint programming/

Graphical method
Subramanyan et al. [17] ● Yes CO2 emissions Capital cost

Current density Overall
efficiency

Fuel cell current density MINSOOP/NLP/Sampling method

Wang [18] ● ● ● ● Yes NPCReliability Emission Wind speed, Solar radiation,
Electricity load

Generating scenarios/MOPSO
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optimization method for design under uncertainty of a wind-PV-
diesel configuration. The probabilistic analysis was used to quantify
the system reliability since there are uncertainties in renewable
resources and electricity demand. To tackle the uncertainties, only
the uniform distribution functionwas fitted to all random parameters.
Roy et al. [16] developed a chance constrained programming techni-
que to design an off-grid wind-battery system incorporating uncer-
tainty in wind speed. In their study, Monte-Carlo simulation approach
validated the system reliability where the hourly wind speed was
modeled as Weibull random variable, and the cost of energy was
selected as design criteria to evaluate the proposed system configura-
tion. Subramanyan et al. [17] used MINSOOP, NLP optimizer, and
sampling techniques to pass the Pareto set for the design of a solid
oxide-proton exchange membrane fuel cell (SOFC–PEM) by means of
a multi-objective optimization framework. The existing randomness
in fuel cell current density was modeled to convert the approach to a
stochastic multi-objective optimization one. Wang [18] presented
multi-criteria meta-heuristic method to design an HRES including a
wind turbine and PV panels according to cost, reliability, and emission
criteria. Adequacy evaluation was performed to consider system
uncertainties based on the primarily defined scenarios.

In summary, few articles used stochastic analysis for the design
of HRESs. However, persisted researches and development are still
required to improve these systems sizing process. Most of the
previous studies have only considered economic objectives at the
design stage (see Table 1) while it is very important to size an
HRES based on pollutant emission, reliability, and renewable
energy ratio. In addition, they neglected simultaneously providing
energy for heating, cooling, and appliances. Furthermore, mostly
in the previous studies, the random parameters are generated
using a simple distribution function.

In this paper, a new stochastic multi-objective approach is devel-
oped to incorporate the existing uncertainties in RE resource and
energy load when sizing an energy supply system. The proposed
methodology is trying to simultaneously examine the economic,

reliability, and environmental issues for different renewable energy
ratio (RER). This study is the extension of the previous work of the
authors [19] with difference in involving the stochastic evaluation
instead of using a deterministic design approach. The contribution of
the present work is that a comprehensive energy supply system is
studied incorporating uncertainties in RE resources and energy load.
Moreover, similar to the previous work [19], the transport load is
considered rather than electricity, heating, and cooling load. Addition-
ally, simple methods for synthetic generation of daily load profile and
weather data has been applied to handle the existing uncertainties in
the model.

Mostly, in the probabilistic analysis of HRES designs, an objective
function cannot be evaluated exactly but rather approximation
methods are required. In this study, the sampling average approxima-
tion is integrated with dynamic multi-objective particle swarm
optimization algorithm (DMOPSO) to help in handling the complex
optimization problem. The generated solutions by the implemented
approach are evaluated by comparing with the solutions obtained by
deterministic analysis. Then, a sensitivity analysis is carried out to
identify the economic parameters that have significant impact on the
design objectives. Based on the best authors’ knowledge, it is the first
time a MOP approach incorporating a comprehensive stochastic
analysis is implemented for the optimal design of a renewable energy
supply system in the application of low energy buildings. In other
words, it is the first time, the randomness in wind speed, solar
radiation, ambient temperature, electricity load, heating and cooling
load, hot water demand (HWD), and transportation load are simulta-
neously considered in the sizing of HRESs.

Section 2 explains the problem description. Section 3 begins
with the definition of considered objective functions in the
proposed design methodology, and then elaborates on the sam-
pling average approach and the synthetic generation of random
parameters. Section 4 describes a summary of the employed
DMOPSO algorithm. Section 5 details the design scenarios and

Fig. 1. Energy flow in the proposed hybrid renewable energy system [19].
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the results of the case study that is delivered by using the
proposed design methodology.

2. Problem description

A hypothetical grid-connected hybrid renewable energy system
including renewable and non-renewable energy conversion technol-
ogy is chosen as our case study. This HRES is used to increase the
renewable energy ratio of a building located in Canada. As shown in
Fig. 1, this energy system may employ wind turbines, PV panels, solar
thermal collectors, heat pumps, biomass boilers and heat storage
tanks [19]. The employed renewable energy technologies are sup-
posed to provide energy for electricity, heating, and cooling load. The
employed backup systems such as grid and natural gas (NG) boiler
help to supply the energy demand when the considered RE sources
are not able to satisfy the required energy. In a city like Winnipeg, it is
not legal to install a wind turbine in the city area. For this reason, it is
assumed that wind turbines would be installed in the rural area of the
city and its electricity can be easily sold to the grid. The rural area is
supposed to be located in area that the electrical grid is established.
Thus, there is no limitation to connect the employed wind turbines
and PV panels to the grid and selling their produced electricity to the
grid. In this study, as it is assumed that the employed system meets
the technical requirements [20], it is possible to export electricity to
the grid. In Fig. 1, two alternative locations for PV panel installation are
designed; it can be installed either on the top of the building roof or in
the rural area. There are two options to meet required transportation
of the building: using plug-in electric vehicle (PEV) or gasoline car. It is
assumed that the energy required for PEV is met by electricity, if there
is no enough electricity, the gasoline will be used to guarantee the
load. A heat pump or air refrigerators will cover the cooling load
through summers.

It is intended to find the optimal configuration and optimal size of
the employed technologies such that simultaneously minimize the
total net present cost (NPC) of the system for entire life time of the
system, minimize annual CO2 emission, and maximize RER while
satisfying a certain level of reliability.

Moreover, there is uncertainty in weather data (wind speed, solar
radiation, and ambient temperature) and energy load. These uncer-
tainties have significant effect on the design space. The main aim of
this study is to establish a methodology to deal with uncertainties
existing in the design process of this type of energy supply system. In
other words, the developed approach returns best combination of
employed technologies and their corresponding optimal size while
considering randomness existing within input data. For this purpose,
the design problem is formulated as a stochastic multi-objective
optimization problem including three objective functions. In this
regards, RE resources data, heating, cooling, and electricity load profile
on an hourly basis are generated by using the most common models,
see Section 3.2. To specify employed technologies, their actual cost
data is considered as well as their mathematical models and the
technical structures are stated. Based on these data, the three objective
functions are optimized with respect to the energy balance equations
as well as other technical constraints. In order to solve the complex
optimization problem, a practical engineering method has been
performed, which is based on hybridizing simulation modeling with
an optimization algorithm. Moreover, the sampling average approach
for sizing and optimization of hybrid energy systems is employed to
handle the challenges related to existing uncertainties.

3. Proposed approach

This study intends to provide an engineering tool based on a
simulation-based optimization approach for the proposed design

problem. For this purpose, a stochastic multi-objective optimization
model is developed for thementioned design problem. The capacity of
the components and the allocation coefficients of the technologies to
meet heating, cooling, electricity, and transportation load are defined
as decision variables. The below vectors contain the summary of
decision variables of the model:

P
!¼ ½PPV; PWT; PSC; PHP; PHST ; PBio ; PPVR � ð1Þ

ε!¼ ½εHE;HP; εHE;bb; εCO;HP; εCO;AR ; εTr;PEV; εTr;gas� ð2Þ
Three objective functions are to minimize total NPC, maximize

RER, and minimize CO2 emission. These objectives are subjected to
a desirable level of reliability and other technical constraints
which introduce the physical concept of the problem. The sub-
sequent section introduces the mathematical formulation of the
three objective functions. Readers are referred to the previous
work for more details of the optimization problem formulation
and the constraints mathematical formulation [19].

In this study, investment cost of components, their operation
and maintenance cost, as well as their replacement cost are
marked as total NPC. Additionally, it composes of fuel cost, rental
cost of the land, biomass collection, storage and transportation
cost over the project life time, Eq. (3) [19].

NPC¼
X
j

CI;jþCO&M;j
1

CRF i; Tð ÞþCrep;jKj

� �
Pj

þ Celec;bEboughtþCNGNGy�Celec;sESoldþCGasðGasolineÞ
�

þBiomassyðCb;ColþCb;StþCb;TrÞ
� 1
CRF i; Tð Þ ð3Þ

One aim of this study is to inspect the possible approaches to
increase renewable resource utilization. A simple way to quantify
this is to calculate the renewable energy ratio. It demonstrates the
corresponding shares of renewable and non-renewable sources of
energy consumption. There is a simple definition for RER which
can be used for the future energy planning of communities. The
formula below (Eq. (4)) is applied for calculating RER. It is defined
as the ratio of total used renewable energy and total used primary
energy [19].

RER¼ Renewable energy
Primary energy

ð4Þ

The environmental criterion that is being considered in the
optimization problem is to minimize pollution emission. In order
to quantify the amount of produced pollutants, CO2 is assumed as
the only pollution emission since it is the main cause of emission.
The CO2 is emitted by gasoline cars, natural gas boiler, and it is
resulted from the electricity bought from the grid, Eq. (5) [19].

CO2 ¼ ðGasolineÞEFGasþNGyEFNGþEboughtEFE ð5Þ
The maximum level for loss of load probability (LLP) is applied

in a constraint that the designed system should satisfy its desired
level, Eq. (6). LLP is defined as the total unmet energy divided by
total energy load, Eq. (7) [19].

LLPoLLPmax ð6Þ

LLP¼Unmet load
Load

ð7Þ

3.1. Sampling average method

In this study, the sampling average method (SAM) is applied to
tackle the existing randomness and consequently to approximate
the objective functions. In order to acquire a model that is able to
tackle the randomness, the most popular way is to optimize the
expected value of an arbitrary function of the parameters, which is
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defined over an appropriate probability space. Suppose a multi-
objective stochastic optimization problem as following [21]:

Min F1 xð Þ; F2 xð Þ; …� �
Subject to xϵS ð8Þ

In which, Fv xð Þ is estimated by E f v x;ωð Þ� �
, where, v¼ ð1; 2;…Þ, S

defines the bound of decision space, and ω reflects the random-
ness effect. Let ω1; …; ωN as N random scenarios that are all
independent, the sample average estimation of Fv xð Þ can be
calculated by [21]:

1
N

XN
v ¼ 1

f ϑ x;ωvð Þ � Eðf ϑ x;ωð ÞÞ ð9Þ

The basic idea of SAM is to replace the expected value function
with its corresponding approximation, Eq. (9), and then find a
solution for the derived deterministic model. By a similar way, the
expected value of functions in a multi-objective optimization
problem can be replaced by their sample average approximations
to compute an estimation of their solution. Thusly, the following
deterministic multi-objective problem is resulted, Eq. (10) [21].

Min
1
N

XN
v ¼ 1

f 1 x;ωvð Þ; 1
N

XN
v ¼ 1

f 2 x;ωvð Þ; …

 !
ð10Þ

Typically, it is a complex task to exactly compute the expected
value in the problem represented by Eq. (8) that is why the
approximation method is needed. In fact, Eq. (10) is an approx-
imation for the original problem of Eq. (8). Hence, a solution
algorithm produces a set of arbitrary and independent samples to
estimate the expected value of the objective functions. Then, the
complex stochastic problem is converted to a deterministic pro-
blem which can be solved by either exact algorithm, or alterna-
tively by a (multi-objective) meta-heuristic to determine a PF for
the given problem [21]. In this study, DMOPSO is used as the
solution method [21].

3.2. The synthetic generation of the random parameters

3.2.1. Wind speed
In this study, the methodology that is proposed by Dufo-López

et al. [22] is used to reproduce hourly wind speed data. The idea of
the model is simple as described in Eq. (11) in which the hourly
wind speed data (wd;h) is calculated [22].

wd;h ¼ ed;h:f correction�m ð11Þ
where ed;h is obtained by subtracting a fraction of the average
monthly value ðwav;mÞ from the value of cd;h, Eq. (12). When a
negative value is resulted by Eq. (12), it must be set as zero.
fcorrection-m is named correction factor and it is calculated by
Eq. (13). Its role is to check that monthly average of measured
data is the same as the estimated wind speed data.

ed;h ¼ cd;h� f substract: wav;m ð12Þ

f correction�m ¼wav;m U24Udm=
X
month

ed;h ð13Þ

where wm;h denotes the average of wind speed for an hour
(h: 0rhr23) in the month m, which is computed by Eq. (14);
dm is the number of days in the month m; cd;h stands for the
hourly correlated values of each day, Eqs. (15) and (16) [22].

wm;h ¼wn;mþ Max ½0; ðAm�Fm: t�hmax ;m
� �2� ð14Þ

where Fm is a factor providing information about the relation
between the time of day and wind speed; Am is the monthly
amplitude; hmax,m is the hour that maximum speed in a day is
occurred; and wn,m is the average monthly night speed [22].

If d¼ 0&h¼ 0ð Þ : cd;h ¼Weibulld;h ð15Þ

Else : cd;h ¼ f cUcd;h�1þ 1� f cð ÞUWeibulld;h ð16Þ

where Weibulld,h is a random number which is generated by a
Weibull distribution function with b form factor and the scale
factor of θh, Eqs. (17) and (18) [22].

Weibulld;h ¼ ½�θbh U lnð1�ad;hÞ�1=b ð17Þ

where ad;h indicates a random number in range of (0–1).

θh ¼wm;h=Γð1þ
1
b
Þ ð18Þ

where Γ(1þ1/b) is the Gamma function. In order to control that
the monthly average of measured data is the same as desired
values, the cumulative distribution function of both generated
series and the Weibull distribution function are compared [22]. In
this study, fc is assumed 0.9 and fsubtract is set at 0.8 [22].

3.2.2. Solar radiation
With the collected data, a mathematical model is developed to

generate random hourly solar radiation, Eq. (19). The solar radia-
tion is divided into two parts deterministic part and random part.

Ih ¼ μhþεh ð19Þ

where Ih is the solar radiation of the model; μh is the average of
solar radiation for hour h which represents the average of hourly
historical data. In other words, it is identified by making average
for each hour of historical data. εh is a random number that is
approximated by a normal distribution function. The distribution
function is resulted by fitting the function on hourly standard
deviation of solar radiation.

3.2.3. Ambient temperature
According to Krenzinger et al. [23], the ambient hourly tem-

perature can be estimated by adding one random part (δÞ to a
periodic term (PTÞ, a solar term (STÞ and a base term Tbase; Eq. (20)
shows their model [23]:

T tð Þ ¼ Tbase tð ÞþPT tð ÞþST tð Þþ δ

2
ð20Þ

The following section describes the mathematical model for
three mentioned terms. In order to define the base term of
temperature, a linear interpolation is used as it is shown in
Eq. (21). There is an experimental term for the purpose of
adjusting the mean of final result [23].

Tbase tð Þ ¼ Tmean dayð Þþ tþ1ð ÞTmean dayþ1ð Þ�Tmean dayð Þ
24

�½1þ0:155AðdayÞ� ð21Þ

where Tmean dayð Þ is the mean daily temperature which is identi-
fied by Eq. (22) [23].

Tmean dayð Þ ¼ Tbase dayð ÞþSD ð22Þ

SD¼ 4:2�0:15ðTmin ;mÞ ð23Þ

The base temperature Tbase dayð Þ is defined by Eq. (24); AðdayÞ is
named daily amplitude of temperatures as seen in Eq. (25).

Tbase dayð Þ ¼ 1
3
ðTmean;mÞ 2þ H0ðdayÞ

H0ðmonthÞ

� �
ð24Þ

where Ho(day) is the extraterrestrial solar radiation in a given day and
Ho(month) is the monthly averaged daily extraterrestrial solar radia-
tion. Tmin,m, Tmax,m and Tmean,m, respectively, give the monthly averaged
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minimum, maximum and mean ambient temperature [23].

A dayð Þ ¼ Imax dayð Þ� Imax ;m
� � Amax ;d�Amean;d

Imax monthð Þ� Imax ;m

� �
þAmean;dþδ

ð25Þ
Imax(day) is the value of maximum solar radiation for each day; Imax,m

is the monthly average of maximum solar radiation for each day;
Imax(month) is the maximum value of solar radiation in whole the
month; Amean;d and Amax ;d are mean and maximum daily amplitude,
respectively, those are calculated by Eqs. (26) and (27) [23].

Amean;d ¼ Tmax ;m�Tmin ;m ð26Þ

Amax ;d ¼ 25�0:42ðTmin ;mÞþ
δ

2
ð27Þ

where δ is a random variable uniformly distributed between �1 and
þ1. Eqs. (28) and (29) are used to examine the periodic term according
to the time of a day. The first equation is related to time before sunrise
and the next one is assigned for time after tsr [23].

If totsr then PT tð Þ ¼ AðdayÞ
4

1
2
þ COS

ð20þtÞ
20�tsr

π

2

� 	
 �
ð28Þ

Else PT tð Þ ¼ AðdayÞ
8

COS
ð16�tÞ
15�tsr

π

2

� 	
þ COS

ð14�tÞ
13�tsr

π

2

� 	
 �
ð29Þ

The solar term is then determined through a simple equation in
which the maximum temperature Tmax(day), a recurrent term (Δ),
and the time of the maximum solar radiation are the main terms,
Eq. (30) [23].

ST tð Þ ¼ Tmax dayð Þ� Tbase tð ÞþPT 15ð Þ½ �
Imax dayð Þ þΔ


 �
Iðt�1Þ ð30Þ

The maximum temperature in the day is evaluated through
adding a half of daily amplitude to the mean daily temperature, as
seen in Eq. (31) [23].

Tmax dayð Þ ¼ Tmean dayð ÞþAmaxðdayÞ
2

ð31Þ

After generating hourly temperature for a day, a comparison
between the resulted mean temperature and input data will be
performed based on Eq. (32) to updated the Δ, and then iteration
is repeated for daily generation[23].

If Tmean dayð Þ�
X T tð Þ

24

� 	
40:5 then

Δ¼Δþ Tmean dayð Þ�P T tð Þ
24

Imax dayð Þ ð32Þ

3.2.4. Load
In the feasibility study of renewable energy systems, it is required

to develop a simple method to identify an energy load profile. A
cluster analysis approach that is proposed in [24] has been applied for
the purpose of generating electric and hot water load profile. For a
representative building, the daily information of appliances such as

their utilization, energy consumption, ownership, and occupied dura-
tion is used to produce daily load profile [24].

As the load profile is directly related to the occupation pattern
of the buildings, it can be a promising task to identify the building
clusters [24]. In this study, five most common scenarios of building
occupancy pattern are considered since there is a lack of informa-
tion [24]. In Table 2 these five scenarios are represented [24].

To evaluate the daily energy and hot water load profile, first, an
average daily consumption of each appliance is determined based
on monthly energy bill and the annul Canadian appliance energy
consumption [25]. Fig. 2 represents the schematic of load profile
generation process. For a specific scenario, a random load profile
for appliances is generated according to a random number gen-
erator technique. By adding the random load profile of all
appliances, the load profile of a specified scenario is produced
produce which named “Specific Profile” since it is resulted from a
certain occupation scenario [24]. The daily load profile of a specific
scenario can change over different days. The random gen-
eration is repeated 20 times to return an approximately smooth
load curve for a given day [24]. A specific load profile cannot
reflect the general load profile for the building since it represents
only one certain scenario of occupancy pattern. Hence, five specific
profiles resulted by five scenarios are aggregated to produce a
typical load profile for the electricity, hot water, and required
energy for transportation of the building.

In Fig. 2, Ai is appliances name; Ei is the average daily energy
consumption of the appliances; P1, P2, …, Pn describe random
profiles those are generated for the appliances; PSi is related to the
specific profile corresponding to a particulate occupancy scenario;
PT is a typical load profile [24]. It is worth mentioning that the
heating and cooling load is approximated by degree hour [19]
while other types of energy demand are estimated by using the
mentioned methodology.

Table 2
Occupancy pattern for a three-person household
[24].

Scenarios Occupied period

1 0–9:00 & 13:00–23
2 0–9:00 & 18:00–23
3 0–9:00 & 16:00–23
4 0–24
5 0–13:00 & 18:00–23

A1Appliance . . . .

Average daily
consumption E1

A2

E2 En. . . .

Random number
generator

Random profile

Random profile
specified scenario

P1 P2 Pn

A2

∑Pi

PS1 PS2 PS3 PS4 PS5

∑PSi

PT

. . . .

Fig. 2. Framework of generating the electricity or hot water load profile.
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4. Solution approach

In order to solve the mentioned stochastic multi-objective optimi-
zation problem, a simulation-based optimization approach is used to
generate a Pareto front. This approach is trying to apply simulta-
neously the advantage of simulation and optimization methods. In
complicated systems, it is difficult to handle the model uncertainties
and non-linearity with a stand-alone optimization method since it
requires the precise mathematical model of the system. In these cases,
the simulation can be considered as a powerful assessment engine to
precisely contain all details of the system and involve existing
uncertainties [26]. However, simulation suffers from the fact that it
is inherently unable to return the optimal solution of the problem.
Thus, the integration of these twomethods can be an efficient solution
approach when the optimization problem is complex due to either
existing uncertainties or non-linear terms.

In this study, the simulation module accommodates the mathe-
matical models for the components of the employed system (see
Fig. 1). The main role of the simulation module is to check the
feasibility of each candidate solution proposed by the optimization
algorithm. The utilized optimization algorithm is developed based on
the Particle Swarm Optimization (PSO) approach. Recently, PSO is
implemented for multi-objective optimization problems since it was
performed successfully in single objective problems [27]. This type of
algorithms is named Multi-Objective Particle Swarm Optimization
(MOPSO) [27]. In MOPSO a set of solutions named non-dominated
solutions or Pareto front is derived instead of single solution resulted
by PSO. In this study, MOPSO is extended to dynamic multi-objective
particle swarm optimization (DMOPSO) algorithm which was devel-
oped in the previous work of the authors [27]. By using DMOPSO a
promising improvement in the quality of garneted PF is obtained
compared with well-known MOP approaches. The difference between
the employed algorithm and MOPSO is that multi-leaders and
dynamic cell-based density calculation strategy is utilized in the
performed algorithm to update the solutions [27]. For detail explana-
tion of the algorithm, readers are referred to the previous work [27].

5. Results and discussion

In order to evaluate the proposed methodology, a case study is
selected which is located in Winnipeg, Canada. The case study is an
apartment that contains 12 two-bedroom units and 31 one-bedroom
units, and its total floor area and foot print is approximated by
2940m2 and 980m2, respectively. The current energy consumption
of the building includes natural gas, grid-electricity and gasoline. In
other words, a natural gas boiler is in charge of supplying heating load
and hot water demand while the cooling load is met by air
refrigerators. The building residences use gasoline to provide energy
of their cars. In addition, the required electricity for appliance is
satisfied by hydroelectricity which is bought from the grid. The
primary RER of the building is estimated as 10% and the total GHG
production is calculated as 277.1 (t/year) [19]. The average monthly
energy use of the building is represented in Fig. 3 per type of energy
carriers.

0.0
20.0
40.0
60.0
80.0
100.0
120.0

M
W
h

Electricity
NG
Gasoline

Fig. 3. Monthly energy consumption of the building per type of energy carrier [19].

Fig. 4. Daily average hourly wind speed for Winnipeg.

Fig. 5. Daily average hourly normal irradiation for Winnipeg.

Fig. 6. Daily average hourly ambient temperature for Winnipeg.

Fig. 7. Daily average electricity load of the building.

Fig. 8. Daily average hourly heating load for heating and hot water purpose of the
building.

M. Sharafi, T.Y. ElMekkawy / Renewable and Sustainable Energy Reviews 52 (2015) 1668–1679 1675



The daily average hourly wind speed at 10 m height, direct normal
irradiance, and ambient temperature over one year for the location are
plotted in Figs. 4–6. These figures include stochastic data which is
generated by the mentioned models in Section 3.2 while the
deterministic one is obtained by averaging the measurement data
over 15 years (1990–2004) [28]. In Figs. 4–10, the data represented
and labelled as stochastic are the result of stochastic model over one
sample year. It is worth mentioning that in these graphs, the day
0 represents the first day of January.

Similarly, Figs. 7–10 depict the required energy for different
purposes (heating, cooling, HWD, electricity, and transportation)
used in the stochastic model. In order to estimate the cooling and
heating load, the concept of the degree-day is utilized in which it
is assumed that the energy requirement for heating and cooling
are directly depend upon the difference between base and outside
temperature. In the deterministic model, the hourly input data
over one year is entered to the model and stay constant over
simulation run while the data in stochastic model is varying over
years through the simulation run.

In this study, the economic parameters and characteristics of
components such as the initial cost, operation and maintenance
cost are considered the same as what has been exhibited in the
previous work [19]. The employed HRES is implemented on the
hourly basis in the simulation program which is coded by using
Cþþ programming environment and executed in a 2.40 GHz Core
2 processor with 4 GB of RAM.

The Pareto fronts evolved using the proposed DMOPSO for the
stochastic and deterministic design approaches are shown in Figs. 11–
13, which show an illustration of the trade-off solutions. These figures
show the comparison between stochastic and deterministic PFs.
Besides, the descriptive non-dominated solutions evolved in the
stochastic and deterministic cases are listed in Table 3. These solutions
are tagged with numbers in Figs. 11–13. In Fig. 11, RER is outlined on
the vertical axis and the curves show different value of NPC needed to
obtain a design with corresponding RER value. Similarly in Fig. 12, the
curves illustrate the total net present cost required to gain the
corresponding value of CO2 emission. It is evident that the total NPC
has shifted to higher level in the stochastic case when it is compared
to the deterministic design surface. In addition, Fig. 13 describes the
trade-off solutions between RER and CO2 emission. When the
uncertainties are incorporated, this analysis helps us to reach up to

90% increasing in RER andwith up to 99.3% less CO2 emission than the
base case. The high RER and low emission region involve high total
net present cost. There are some low NPC points but these involve low
RER and high emission. As seen over stochastic curves in Figs. 11–13,
that is relatively a costly option to increase RER from 29.9% to 63%
since that requires 31% more NPC than the design configuration
represented by the solution 1. Furthermore, by moving from solution
1 toward solution 2, the CO2 emission is reduced moderately which is
less than 52% or 84.2 (t/year). Between solution 2 and 3, the NPC
would change moderately (less than 20%) while the value of RER is
increased by 37%. Note that the most likely region of RER for the
stochastic surface is between 29–80% and while for the deterministic
PF solutions are distributed uniformly in range of 27–100%. This can
be associated with the non-linearity of the model as well as it justifies
considering uncertainty analysis. In the stochastic case, it is clear from
the depicted PFs that the RER can reach to 100% through different
solutions. That is, there are some options for RER of 100%, inwhich the
NPC and CO2 emission is varied. Over these solutions CO2 emission is
reduced slightly from 3.2 t/year to 2.6 t/year while total NPC is
increased more than 18%. Hence, between solutions with the same
RER of 100%, it is more reasonable that a solution with less NPC
(solution 3) would be selected since there is no remarkable difference
between their CO2 emissions.

Fig. 9. Daily average hourly cooling load of the building.

Fig. 10. Daily average hourly required energy for the transportation of the building.

Fig. 11. The 2D Pareto front of the deterministic and stochastic design; RER vs NPC.

Fig. 12. The 2D Pareto front of the deterministic and stochastic design approaches;
CO2 emission vs NPC.

Fig. 13. The 2D Pareto front of the deterministic and stochastic design approaches;
RER vs CO2 emission.
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In this type of portrayal, decision makers can conveniently
distinguish the minimum NPC, CO2 emission, or maximum possi-
ble RER that can be achieved by this graph. That is, based on
decision maker’s desire, a convenient solution can be selected
from a set of non-dominated solutions. By retracting one step, the
value of decision variables can be found where we need to install
those capacities to obtain these kinds of performances.

The Pareto front attained as the result of deterministic optimi-
zation scheme is also presented in Figs. 11–13. As shown, there is
no significant different in PFs shape while there is moderate
different in level between the deterministic and stochastic PF
surfaces. The maximum, minimum, average of performance cri-
teria for non-dominated solutions laying over the stochastic and
deterministic PF surfaces are summarized in Table 4.

There is a slightly difference (less than 9%) between the average
total NPC of two cases. Additionally, the range of RER and CO2

emission that stochastic PF is able to enclose is competitive to the
deterministic case. The total NPC in stochastic design shows a
higher shift as the deterministic design is based on the average
values of historical data while stochastic evaluate more realistic
situation. In this regards, the decision variables are distinctive for
two cases as shown in Table 3. For instance, in the maximum RER
case, the installed capacity of the wind turbine in the deterministic
approach is less than the stochastic one. In the minimum RER
designs, the stochastic solution (see solution 1 in Table 3) use wind
turbine, SC, and PEV while deterministic one only employs wind
turbine and PEV. Correspondingly, this reduces total NPC more in
deterministic case than stochastic case which changes the non-
dominated solutions surface.

Furthermore, the quality analysis of generated Pareto fronts in the
stochastic and deterministic cases is performed using the well-known
performance metrics. For this purpose, three metrics are employed
which are named spacing metric, diversification metric, and set

coverage metric [27]. The spacing metric is used to measure the
distribution of individuals over PF while diversification metric deter-
mines the maximum extension that can be covered by non-
dominated solutions [27]. The set coverage metric is applied to
compare two given PFs and identify the closet PF to the optimal PF
[27]. The readers are referred to the previous work of this study [27]
for more details about the PF performance metrics definition and their
mathematical calculation. Table 5 shows the comparison between the
deterministic and stochastic PFs by using three performance metrics,
obtained PF size, and running time of the algorithms.

It seems the inclusion of uncertainties has decreased the range
of objective function almost for RER and CO2 emission, thereby
providing less flexibility to designer. This fact can be clearly
inferred from the diversification metric result since this metric
has slightly better outcome in the deterministic case. The spacing
metric of the stochastic case is greater than the deterministic case.
It means the solutions over deterministic PF are distributed more
uniform. The set coverage metric clearly shows the dominance of
the deterministic over stochastic PF. It represents that 55% of
solutions placed over the stochastic PF are dominated by the
solutions resulted by the deterministic PF. Here, the set coverage
metric is used to show that some of solutions of the PF generated

Table 3
Example solutions laying over the generated PF in the stochastic and deterministic cases.

Generators/Objectives Stochastic Deterministic

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

PV [kW] 0 0 0 0 0 0
Wind turbine [kW] 94 105 116 68 71 73
Solar collector [kW] 25 0 0 0 0 0
Heat pump [kW] 0 0 0 0 0 0
Heat storage tank [m3] 4.3 4.3 4.3 4.3 4.3 4.3
Biomass boiler [kW] 0 95 200 0 91 200
PV-rural area [kW] 0 0 0 0 0 0
εHE;HP 0 0 0 0 0 0
εHE;bb 0 0.3 1 0 0.4 1
εCO;HP 0 0 0 0 0 0
εCO;AR 1 1 1 1 1 1
εTr;PEV 0.94 1 1 1 1 1
εTr;gas 0.06 0 0 0 0 0
LLP [%] 4.8 4.8 4.8 5 4.9 4.9
NPC [C$] 480265 630741 763062 383284 579654 705180
RER [%] 30 63 100 28.5 67 100
CO2 emission [ton/yr] 175.1 84.2 3.2 171.2 73.4 2.4

Table 4
The bound of different objectives obtained by stochastic and deterministic optimization approaches.

Minimum Average Maximum

Stochastic Deterministic Stochastic Deterministic Stochastic Deterministic

RER [%] 29.9 28.5 56.2 63 100 100
Emission [ton/yr] 1.6 1.1 106.5 87.3 175 171.2
NPC [1000C$] 480.2 383.3 646.3 595 903.4 957

Table 5
The performance metric value for the stochastic and deterministic problem.

Performance metric Stochastic Deterministic

Spacing 0. 14 0.09
Diversification 4.24 4.96
PF size 20 42
Time (Second/iteration) 308 28
SC (Stochastic, Deterministic) 0%
SC (Deterministic, Stochastic) 55%
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by the stochastic model are shifted to higher NPC, less RER, and
higher CO2 emission. It is not relatively reasonable to compare
these two obtained PFs based on the set coverage metric as the
input data is notable different in the stochastic and deterministic
cases. The PF size of the deterministic case is almost two times of
the stochastic PF size. The time needed to solve the stochastic
problem is increased significantly (more than 11 times) compared
to the deterministic case. It can be concluded that the performance
of DMOPSO in the deterministic optimization problem is promi-
nent than the stochastic case. It means that when the system
randomness is incorporated, the efficiency and effectiveness of
DMOPSO in the developed multi-objective optimization problem
is reduced. Nevertheless, stochastic analysis result is preferred
over the deterministic one since it examines a significant range of
possible future outcomes and consequently its results are more
realistic. In other words, the stochastic optimization helps decision
makers to choose a solution that is evaluated in a condition closer
to the real life situation than what is predefined in the determi-
nistic design.

Finally, sensitivity analysis is implemented to assess the impact
of changing the values of parameters on the derived PF. In order to
carry out the analysis, 13 parameters are considered, and then
upper and lower limits for the parameters are examined to study
their effect on the resulted PF. The studied parameters are
summarized in Table 6.

The parameters are set in their upper and lower limits to
illustrate the change in the average of NPC of the solutions with
RER of 100%, Fig. 14. The average of total NPC and CO2 emission of
the solutions with RER of 100%, which are laying over the original
stochastic PF (see Figs. 11–13) are estimated as C$ 824039 and
2.61 (t/year), respectively. Fig. 14 shows the changes in total NPC
where the studied constants are fixed at their upper or lower
limits. For example, the interest rate is reduced by 50%, then the
changes in the average of total NPC of solutions with the highest
RER are monitored which are 12.9% higher than the value of the
base case.

In order to perform the sensitivity analysis, DMOPSO is run 5 times
to identify the standard deviation of the average of objectives. It
observes that the standard deviation of the average of NPC is set at
16.2%. In the inferring of the sensitivity analysis result, if the
differences between an objectives function and its original values
would be less than its standard deviation that can be neglected. As it is
obvious from the result, wind turbine capital cost and electricity and
price, have more effect on total NPC than others. It is clear from Fig. 14
that changing the solar collector and PV panels capital cost resulted in
a small variation of NPC as there is small contribution for them in the
obtained non-dominated solutions.

6. Conclusion

In this study, simulation-based optimization approach is proposed
to solve optimal sizing of HRESs taking into considerations the
uncertainties existing in RE resources and energy demand. A dynamic
multi-objective particle swarm optimization (DMOPSO) algorithm,
simulation module, and sampling average technique are used to
derive out a set of non-dominated solutions for an HRES applied to
buildings where multiple energy sources are used.

The proposed method applies synthetic data generation to provide
data series for wind speed, solar irradiance, ambient temperature, and
energy load. The sampling average technique integrated with the
simulation module is in charge of handing the complexity resulted by
incorporating uncertainties. In the developed multi-objective optimi-
zation problem, three design criteria are considered including total net
present cost of the system, renewable energy ratio, and CO2 emission
where a desirable level of loss of load probability should be satisfied. A
set of renewable energy technologies is assessed in order to increase
the RER of an apartment building located in Canada. The employed
renewable energy technologies contain PV panels, wind turbines, heat
pumps, biomass boilers, and PEV cars. In order to evaluate the
performance of the proposed approach, the obtained Pareto front is
compared with the deterministic PF through well-known perfor-
mance metrics. The result shows that RER can be increased by 100%
in both cases while a higher NPC is observed in the stochastic case. In
addition, the employed performance metric outcomes show that the
quality of the generated PF in the deterministic case is better than the
stochastic one. However, stochastic analysis result is more desirable
since it examines a significant range of possible future outcomes and
consequently its results are more informative and realistic. The
sensitivity analysis is performed to identify the economic parameters
that have more significant effect on the design criteria. Its finding
describes that wind turbine capital cost, and electricity price, have
most impact on total NPC.

For future research directions of the present work, hybridiza-
tion methods based on local search techniques can be used to
increase the efficiency and effectiveness of DMOPSO algorithm in
the application of the stochastic multi-objective optimization
problem. The DMOPSO can be modified to find a PF in a more
reasonable time since the incorporation of uncertainties increases
the complexity of the problem.
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Table 6
Studied parameters in the sensitivity analysis.

Parameters Abbreviation Parameters Abbreviation

Biomass transportation
cost

BioT Sold electricity price SoEP

Biomass collection cost BioC Wind turbine capital
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