
R E V I EW

Phytochemical-mediated modulation of autophagy and
endoplasmic reticulum stress as a cancer therapeutic approach

Mazoun Al Azzani1 | Zohra Nausheen Nizami1 | Rym Magramane1 |

Mohammed N. Sekkal2 | Ali H. Eid3 | Yusra Al Dhaheri1 | Rabah Iratni1

1Department of Biology, College of Science,

United Arab Emirates University, Al Ain,

United Arab Emirates

2Department of Surgery, Specialty Orthopedic,

Tawam Hospital, Al Ain, United Arab Emirates

3Department of Basic Medical Sciences,

College of Medicine, QU Health, Qatar

University, Doha, Qatar

Correspondence

Rabah Iratni, Department of Biology, College

of Science, United Arab Emirates University,

Al Ain, United Arab Emirates.

Email: r_iratni@uaeu.ac.ae

Abstract

Autophagy and endoplasmic reticulum (ER) stress are conserved processes that gen-

erally promote survival, but can induce cell death when physiological thresholds are

crossed. The pro-survival aspects of these processes are exploited by cancer cells for

tumor development and progression. Therefore, anticancer drugs targeting autop-

hagy or ER stress to induce cell death and/or block the pro-survival aspects are being

investigated extensively. Consistently, several phytochemicals have been reported to

exert their anticancer effects by modulating autophagy and/or ER stress. Various

phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate

the unfolded protein response to induce ER stress-mediated apoptosis through dif-

ferent pathways. Similarly, various phytochemicals induce autophagy through differ-

ent mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition).

However, phytochemical-induced autophagy can function either as a cytoprotective

mechanism or as programmed cell death type II. Interestingly, at times, the same phy-

tochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotec-

tive autophagy or programmed cell death type II depending on cellular contexts, such

as cancer type. Although there is well-documented mechanistic interplay between

autophagy and ER stress, only a one-way modulation was noted with some phyto-

chemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and

δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent

phytochemicals and while numerous phytochemicals have been investigated in pre-

clinical and clinical studies, the search for novel phytochemicals with anticancer

effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum

majorana). Nonetheless, the clinical translation of phytochemicals, a promising
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avenue for cancer therapeutics, is hindered by several limitations that need to be

addressed in future studies.
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1 | INTRODUCTION

Autophagy and endoplasmic reticulum (ER) stress are two distinct

physiological processes that normal cells use to (1) promote survival

under stress conditions or (2) mediate cell death under sustained and

chronic conditions that have greatly damaged the cell (Almanza

et al., 2019; Debnath et al., 2023). Given this dual, context-dependent

role of both autophagy and ER stress, it is unsurprising that these two

processes have broader and far-reaching implications in cancer devel-

opment, progression, and cancer therapeutics. The present review

explores the role of autophagy and ER stress as mechanisms underly-

ing the anticancer effects of phytochemical compounds and plant

extracts.

2 | AUTOPHAGY

Autophagy is a highly conserved degradative recycling process that

maintains homeostasis and promotes survival. Through this process,

organelles, proteins, and other macromolecules are degraded in lyso-

somes in response to various stresses, including nutrient depletion

and hypoxia (Glick et al., 2010; Parzych & Klionsky, 2014). There are

three major forms of autophagy in mammalian cells: microautophagy,

macroautophagy, and chaperone-mediated autophagy. All three forms

deliver cytoplasmic materials to the lysosome for degradation and

recycling to meet cellular energy and metabolic demands (Parzych &

Klionsky, 2014). This process is characterized by the following steps:

(i) induction of autophagy in response to signals; (ii) nucleation and

expansion of the phagophore; (iii) phagophore membrane sealing

and autophagosome formation; and (iv) autophagosome maturation,

which signals docking and fusion with lysosome and results in the for-

mation of an autolysosome (Glick et al., 2010; Wen & Klionsky, 2016).

The key molecular events involved in autophagy have been schemati-

cally depicted in Figure 1.

2.1 | Role of autophagy in cancer development
and progression

The role of autophagy in cancer is complex–autophagy can play both

cancer-supportive and cancer-suppressive roles, and is suggested to

play opposing roles in different stages of tumorigenesis. Initially,

autophagy was thought to function as a tumor suppressive process as

loss of autophagy-related protein genes (namely BECN1, ATG5, and

ATG12) was noted in several different cancers, including breast, ovar-

ian, prostate, and hepatocellular cancers (Debnath et al., 2023).

Autophagy is also thought to play a suppressive role during the early

stages of tumorigenesis by mediating the targeted degradation of

oncogenic molecules (Chavez-Dominguez et al., 2020). Additionally,

during the early stages of tumorigenesis, it serves as a mechanism to

combat reactive oxygen species (ROS)-induced oxidative damage,

which is heavily implicated in tumorigenesis (Lim et al., 2021).

Conversely, autophagy is reported to play a tumor-supportive

role in the later stages of tumorigenesis, specifically following onco-

genic activation. In the later stages, autophagy supports tumor growth

by meeting the increased energy and metabolic demands of proliferat-

ing cancer cells (Debnath et al., 2023; Yun & Lee, 2018). Autophagy is

also implicated in other hallmarks of cancer cells, such as migration

and invasion through inhibition of anoikis, immune evasion through

decreased presentation of cancer antigens, among other hallmarks of

cancer (Hasan et al., 2022; Lim et al., 2021).

2.2 | Targeting autophagy as a cancer therapeutic
approach

Given the dynamic role of autophagy in tumorigenesis, targeting

autophagy is a promising therapeutic approach for cancer. Namely,

chloroquine and its derivative hydroxychloroquine are autophagy

inhibitors that are well-studied as adjuvants to conventional treatment

approaches. These two drugs are classically used for the treatment of

malaria and inhibit autophagy by specifically blocking autophagosome

fusion with the lysosome. However, there are limitations to their use.

First, the two drugs exhibit pH-related sensitivity, which results in

inefficient uptake in acidic tumors, and also exhibit autophagy-

independent effects, raising concerns of off-target effects (Mulcahy

Levy & Thorburn, 2020; Russell & Guan, 2022). Lys05 is a chloroquine

derivative that is more potent than both chloroquine and hydroxy-

chloroquine. It accumulates more readily in the lysosome and

increases lysosomal membrane permeability resulting in lysosome-

dependent cell death in glioma cells (Zhou, Guo, et al., 2020) and has

been reported to enhance the effect of ionizing radiation in lung can-

cer cells (Cechakova et al., 2019). Apart from chloroquine derivatives,

other autophagy inhibitors, namely 3-methyladenine (a phosphatidyli-

nositol 3-kinase inhibitor) and bafilomycin A1 (a V-ATPase inhibitor)

have also been investigated for anticancer effects both alone or in

combination with other chemotherapeutic drugs. However, their clini-

cal translation is greatly hindered by several factors including poor
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bioavailability and off-target effects. Further, 3-methyladenine is not

a specific inhibitor of autophagy and can in fact induce autophagy at

higher concentrations (Klionsky et al., 2021); hence, its use is mainly

limited to mechanistic studies.

Given the limitations of general autophagy inhibitors, more

targeted approaches to autophagy inhibition are being investigated.

SBI-0206965 is a ULK1 inhibitor that suppresses ULK1-mediated

phosphorylation events, which are integral to autophagy induction

(Egan et al., 2015). Similarly, MRT403, another ULK1 inhibitor, was

recently reported to sensitize patient-derived leukemic stem cells to

tyrosine kinase inhibitors (TKIs; Ianniciello et al., 2021). ATG4 is a cru-

cial protein in macroautophagy as it regulates the cleavage of ATG8

for lipidation as well as the delipidation of ATG8 homologs during

autophagosome maturation. Hence, targeting ATG4B, a homolog of

ATG4, is another promising mechanism of autophagy inhibition (Yang,

Li, Zhao, et al., 2021). NSC185058, an ATG4B inhibitor, was reported

to inhibit the progression of osteosarcoma in vivo (Akin et al., 2014).

Another ATG4B inhibitor, DC-ATG4in, was identified by high-

throughput screening and was reported to inhibit the proliferation of

hepatocellular carcinoma by blocking Sorafenib-induced autophagy

and synergizing with Sorafenib, a protein kinase inhibitor (Xie

et al., 2023).

As of May 2024, only chloroquine and hydroxychloroquine are in

clinical trials for various solid and hematological cancers in

F IGURE 1 Key molecular events in autophagy. Autophagy is characterized by several steps. (i) Induction of autophagy is regulated by the

mTORC1-AMPK axis. Under nutrient-rich conditions, mTORC1, a complex including mTOR and regulatory proteins, phosphorylates the Ser757
residue of ULK1 to disrupt its interaction with AMPK. Conversely, under nutrient-low conditions, mTORC1 is inactivated by AMPK via the
activation of TSC1/2, and subsequent inhibition of RHEB. Additionally, AMPK inhibits mTOR, the core component of mTORC1, and Raptor, a key
adaptor protein involved in the downstream effects of mTORC1. AMPK also directly activates the ULK1 complex to initiate phagophore
nucleation by phosphorylating ULK1 at the Ser317, Ser555, and Ser777 residues. (ii) The ULK1 complex further activates the PI3K complex,
which regulates phagophore expansion. Beclin1 in the PI3K complex serves as a point of crosstalk between autophagy and apoptosis through its
interaction with Bcl-2, an anti-apoptotic protein that also inhibits autophagy. (iii) There are two conjugation systems, the ATG12 and ATG8
conjugation systems, that facilitate both the elongation and maturation of the growing phagophore membrane, allowing sequestration of
ubiquitinated proteins and other cytoplasmic cargo. (iv) The phagophore eventually seals to give rise to the double-membraned autophagosome,
which fuses with the lysosome to form the autophagolysosome.
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combination with other approaches (https://clinicaltrials.gov/).

Although autophagy inhibition is the main approach targeting autop-

hagy as a cancer therapeutic approach, some groups have also investi-

gated induction/promotion of autophagy for the same. In this regard,

pevonedistat (MLN4924), a NEDD8-activating enzyme, which induces

autophagy by inhibiting mTOR through the HIF1-REDD1-TSC1 axis

(Li, Wang, et al., 2021), is presently in clinical trials for hematological

cancers in combination with other approaches (https://clinicaltrials.

gov/).

3 | ER STRESS

The ER is a complex organelle integral to cell fate and homeostasis,

and is the site of protein synthesis and folding, lipid synthesis, and

Ca2+ homeostasis. Generally, protein biosynthesis in the ER is regu-

lated through a quality control system–ER-associated degradation,

which ensures that unfolded and/or misfolded proteins are degraded

through the ubiquitin–proteasome pathway to avoid their potentially

cytotoxic effects (Krshnan et al., 2022; Ruggiano et al., 2014). Several

intrinsic and extrinsic factors can cause perturbations in the ER, which

results in the accumulation of unfolded and/or misfolded proteins,

and consequently, “ER stress.” In cancer cells, ER stress can be attrib-

uted to the high mutation load, which can overwhelm the protein

folding capacity, particularly due to increased incidence and stability

of misfolded proteins as a result of mutations (Hetz & Papa, 2018).

Additionally, the inherently high protein production in cancer cells due

to their high proliferation rate, among other reasons, also contributes

to ER stress (Almanza et al., 2019). Further, extrinsic factors, such as

hypoxia and nutrient deprivation, which are characteristic of cancer

cells also contribute to ER stress (Almanza et al., 2019).

The unfolded protein response (UPR) is the cellular stress

response to ER stress, which aims to restore ER homeostasis. This sig-

nal transduction pathway is classified into three branches based on

three ER transmembrane protein sensors that recognize unfolded

and/or misfolded proteins: (i) inositol-requiring enzyme 1α (IRE1α);

(ii) protein kinase R-like ER kinase (PERK); and (iii) activating transcrip-

tion factor 6 (ATF6) (Almanza et al., 2019; Hetz & Papa, 2018). Under

normal physiological conditions, binding immunoglobulin protein (BiP;

also called GRP78) represses the UPR by binding to the luminal

domains of PERK and IRE1α, preventing their dimerization and hence

activation (Hetz & Papa, 2018; Oakes & Papa, 2015). Similarly, BiP

binds to ATF6 and prevents its translocation to the Golgi, which is

essential for ATF6 activation (Corazzari et al., 2017; Hetz &

Papa, 2018). However, under ER stress, BiP functions as an allosteric

regulator. Misfolded proteins bind to the substrate binding domain of

BiP and release it from the ER sensors, allowing their dimerization

(PERK and IRE1α) or translocation to the Golgi (ATF6) for activation

of the UPR (Hetz & Papa, 2018). Similarly, BiP binds to hydrophobic

stretches in unfolded proteins (Karagöz et al., 2019), and ER-localized

DnaJ family members also facilitate the interaction of BiP with

unfolded proteins (Pobre et al., 2019). The three branches of the UPR

have been schematically depicted in Figure 2.

3.1 | Role of the UPR in cancer development and
progression

The UPR governs both pro-survival and pro-death functions; hence, it

is unsurprising that it plays a pro-tumorigenic role and at the same

time can also be exploited as a therapeutic approach. In many cancers,

the UPR is upregulated to combat ER stress caused by intrinsic stres-

ses, and plays different roles in different stages of tumorigenesis.

Given the dual roles of the UPR, its upregulation in cancers is facili-

tated in a manner that promotes tumor survival without triggering

UPR-mediated apoptosis.

For example, IRE1α is a commonly mutated kinase in cancers;

however, mutations often retain RNase activity, which facilitates

X-box binding protein 1 (XBP1) mRNA splicing and the adaptive pro-

survival responses, while not retaining RIDD and the downstream

apoptotic responses (Hetz & Papa, 2018). Interestingly, XBP1s specifi-

cally mediates various pro-tumorigenic processes. XBP1s has been

reported to enhance autophagy as a pro-survival mechanism to meet

energy demands by binding to BECN1 promoter, thereby enhancing

Beclin-1 expression (Oakes, 2020). Furthermore, XBP1s reportedly

forms a complex with hypoxia-inducible factor 1α (HIF-1α), a tran-

scription factor induced during hypoxia, to facilitate transcription of

its downstream gene targets (Madden et al., 2019; Siwecka

et al., 2019). Consistently, XBP1s has also been implicated in angio-

genesis through upregulation of vascular endothelial growth factor

(VEGF), a classical HIF-1α target gene, and interleukin (IL)-6 and IL-8

(Hetz & Papa, 2018; Oakes, 2020).

The PERK–ATF4 pathway also upregulates VEGF expression

(Corazzari et al., 2017) and reportedly promotes antioxidant responses to

combat hypoxia-induced oxidative stress (Madden et al., 2019; Siwecka

et al., 2019). The IRE1α–XBP1s and PERK–ATF4 pathways have been

implicated in epithelial–mesenchymal transition (EMT), a key event dur-

ing the invasion and metastasis of cancer cells (Madden et al., 2019;

Oakes, 2020). Interestingly, several existing chemotherapeutic drugs,

including cisplatin, tunicamycin, methotrexate, 5-fluorouracil, sorafenib,

doxorubicin, among others, have been reported to induce ER stress

resulting in UPR activation. However, this has been implicated in che-

moresistance, specifically through UPR-mediated activation of adaptive

autophagy and BiP/GRP78-mediated inhibition of apoptosis (Avril

et al., 2017).

3.2 | Targeting the UPR as a cancer therapeutic
approach

Targeting of the UPR for cancer treatment involves two

approaches, both of which overload the UPR, ultimately inducing

ER stress-mediated apoptosis: (i) induction of ER stress or

(ii) inhibition of one of the main components of the UPR (Cole

et al., 2019; Li et al., 2011; Ojha & Amaravadi, 2017; Wang, Law,

et al., 2018). Consistently, in this section, we have discussed anti-

cancer drugs that target UPR components, including PERK, IRE1α,

and BiP/GRP78 inhibitors.
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GSK2606414 was the first reported selective inhibitor of PERK

(Axten et al., 2012) and its anticancer activity has been reported

against pancreatic cancer (Li, Ge, et al., 2022), leukemic (Zhang

et al., 2017), neuroblastoma (Rozpędek et al., 2017), and colorectal

cancer (CRC) (Rozpędek et al., 2017) cells. Despite promising results

in in vitro studies, its clinical use is limited due to associated toxicities.

On the other hand, HC-5404-FU, first reported in 2021, is another

selective PERK inhibitor (Calvo et al., 2021) that is presently being

tested in a Phase I clinical trial (NCT04834778; https://clinicaltrials.

gov/). Recently, HC-5404-FU was reported to sensitize renal cell car-

cinoma cells to VEGF receptor TKIs (Stokes et al., 2023), which further

highlights that this PERK inhibitor is a promising anticancer agent.

As mentioned earlier, the IRE1α arm of the UPR mediates both

adaptive and proapoptotic responses through XBP1 mRNA splicing

and RIDD, respectively. Hence, inhibitors of its RNase domain, which

can inhibit XBP1 mRNA splicing to inhibit the adaptive responses, and

consequently increase apoptotic signaling, are the main focus area of

research. Consistently, several IRE1α kinase inhibitors have demon-

strated anticancer activity against hematological cancers in preclinical

studies, including toyocamycin, STF083010, A106, MKC-3946 IRE1,

4μ8C IRE1, and 3-methoxy-6-bromosalicyl-aldehyde (Raymundo

et al., 2020; Wang, Law, et al., 2018; Wiese et al., 2022). Presently,

ORIN1001, a first-in-class IRE1α inhibitor formerly known as

MKC8866, is undergoing Phase 1/2 clinical testing for advanced solid

tumors alone or in combination with paclitaxel for relapsed refractory

metastatic breast cancer (NCT03950570; https://clinicaltrials.gov/)

(Rimawi et al., 2023). Although not a specific IRE1α kinase inhibitor,

Sunitinib is a multi-target TKI that is also known to target the IRE1α

F IGURE 2 The ER stress sensors PERK, IRE1α, and ATF6. The UPR is triggered in response to ER stress, which is characterized by the
accumulation of unfolded and/or misfolded proteins. Under normal conditions, the UPR sensors, PERK, IRE1α, and ATF6, are associated with BiP.
However, during ER stress, BiP preferentially binds to unfolded and/or misfolded proteins, dissociating from these sensors and facilitating their
activation. (i) PERK branch: Upon BiP disassociation, PERK dimerizes and undergoes autophosphorylation, subsequently, phosphorylating eIF2α,
which inhibits global protein synthesis. Phosphorylated eIF2α upregulates ATF4, which induces the expression of autophagy-, antioxidant-, and
amino acid metabolism-related genes as well as GADD34, and CHOP. GADD34 inhibits eIF2α phosphorylation, while CHOP induces the
expression of apoptosis-related genes. (ii) IRE1α branch: Upon BiP disassociation, IRE1α dimerizes, undergoes autophosphorylation, and splices
XBP1 mRNA to produce XBP1s mRNA. XBP1s induces the expression of protein folding, secretion-, and ERAD-related genes. Constituent IRE1α
activation facilitates its oligomerization, which induces apoptosis through RIDD and activation of JNK pathway. (iii) ATF6 branch: Upon BiP
disassociation, ATF6 translocate to the Golgi, where SP1 and SP2 proteolytically cleave it to release ATF6f, a transcription factor. ATF6f induces
the expression of protein folding-related genes, and other UPR components, including XBP1, CHOP, and BiP. ERAD, ER-associated degradation;
RIDD, regulated IRE1-dependent decay.
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kinase domain, and is FDA approved for pancreatic neuroendocrine

tumors, imatinib-resistant gastrointestinal stromal tumors, and

advanced renal cell carcinoma (Blumenthal et al., 2012).

BiP/GRP78 is a central regulator of ER stress as it inactivates the

UPR sensors by binding to them under physiological conditions. Inter-

estingly, GRP78 is upregulated in various cancers, and downregulation

of GRP78 has hence been proposed as a therapeutic approach for

cancer. In fact, several natural and synthetic compounds downregu-

late GRP78 in in vitro studies. GRP78 antibodies PAT-SM6 and Bold-

100 showed potent anticancer activity in animal models and have

been tested in clinical trials. Bold-100 is presently being tested in a

Phase 2 clinical trial (NCT04421820; https://clinicaltrials.gov/) involv-

ing three countries and has reported promising findings, resulting in

orphan drug designation for gastric and pancreatic cancers

(Hernandez & Cohen, 2022; Raymundo et al., 2020).

4 | PHYTOCHEMICALS THAT MODULATE
AUTOPHAGY AND/OR ER STRESS

Plant-based cancer therapeutics is one of the oldest branches of cancer

therapeutics, specifically, the use of phytochemical compounds or their

derivatives. For example, vinca alkaloids were first isolated from

Madagascar periwinkle (Catharanthus roseus; syn. Vinca rosea) in the

1950s and two natural vinca alkaloids, vinblastine and vincristine, are

used to this day for the treatment of solid cancers as well as hematologi-

cal and lymphatic cancers (Martino et al., 2018). The continuing interest

in phytochemicals as anticancer drugs has led to the investigation and

characterization of numerous phytochemical compounds in preclinical

studies. Moreover, various other phytochemicals are also in different

stages of clinical trials for other cancers (Choudhari et al., 2019).

In the present review, we have comprehensively reviewed phyto-

chemicals with demonstrated anticancer activity that can be attrib-

uted to the induction of autophagy and/or ER stress. In the coming

sections, various phytochemical compounds have been grouped and

discussed based on their chemical class (Figure 3). It is important to

note that the phytochemicals discussed in the text are not exhaustive

and others, less extensively studied are mentioned in Table 1.

4.1 | Polyphenolic compounds

Polyphenols are a broad and diverse class of phytochemicals and sev-

eral polyphenols have been studied extensively for their biological

effects including anticancer effects. In this section, polyphenolic phy-

tochemicals have been classed into polyphenolic amides, stilbenoids,

flavonoids, lignans, curcuminoids, and gingerols. Other polyphenols

including methyl gallate, guangsangon E, among others, have been

listed in Table 1.

4.1.1 | Polyphenolic amides

Capsaicin is a polyphenolic amide that accounts for the sensation of

burning and heat in chili peppers of the Capsicum genus. In recent

years, numerous studies have investigated capsaicin as both a chemo-

preventive and an anticancer agent. Its anticancer effects have been

characterized in numerous cancers both in vitro and in vivo (Adetunji

et al., 2022). However, clinical trials have shown limited anti-

proliferative efficacy.

ER stress has been implicated as a mechanism underlying the

observed anticancer effects of capsaicin. Activation of the PERK-

F IGURE 3 Chemical structures of phytochemicals that exert their anticancer effects through induction of autophagy and ER stress discussed
in the review. Structures were retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/).
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eIF2α-ATF4 and the IRE1α-XBP1s pathways was reported in

capsaicin-treated oral squamous cancer cells (Huang et al., 2021).

Downstream of ER stress, ER stress-mediated autophagy (Huang

et al., 2021) was reported in these cancer cells. In the context of

autophagy, both pro-survival and pro-death autophagy were reported.

Cytoprotective autophagy as a survival mechanism was reported to

be induced by capsaicin in osteosarcoma (Wang, Deng, et al., 2018)

and melanoma (Chu et al., 2019) cells. Whereas, other studies

reported autophagy as a pro-death mechanism in oral squamous cell

cancer (Chang et al., 2020; Huang et al., 2021), melanoma (Islam

et al., 2021), renal cancer (Que et al., 2022), and thyroid cancer (Wu,

Xu, et al., 2022) cells. Inhibition of the PI3K-AKT–mTOR pathway

(Islam et al., 2021; Wu, Xu, et al., 2022), ROS induction (Islam

et al., 2021), AMPK activation (Que et al., 2022), increased ULK1 acet-

ylation via the tNOX-SIRT1 axis (Chang et al., 2020; Islam

et al., 2021), and downregulation of ribophorin II (Huang et al., 2021)

were reported as mechanisms underlying capsaicin-mediated autop-

hagy. The contrasting results on cytoprotective autophagy versus

autophagic cell death can be attributed to numerous factors including

cellular context, threshold, among others. Nonetheless, it is important

to note that under specific conditions autophagy can trigger other

forms of cell death, such as apoptosis, further highlighting the adap-

tive aspect of this physiological process (Klionsky et al., 2021).

Other reported effects of capsaicin include decreased stemness

(downregulation of OCT4A) (Wu, Xu, et al., 2022), inhibition of EMT

(Que et al., 2022), and G0/G1 cell cycle arrest (Wang, Deng,

et al., 2018). However, contrasting results were also noted; for exam-

ple, in contrast to Que et al. (2022) who reported that capsaicin

decreased EMT, Amantini et al. (2016) reported increased EMT as a

consequence of capsaicin-induced cytoprotective autophagy. These

findings are in line with our existing understanding of autophagy and

EMT–different pathways activated downstream of autophagy differ-

entially regulate EMT induction and repression (Chen et al., 2019).

This highlights the need for in-depth investigations into the down-

stream effects of phytochemical-induced autophagy in the context of

different cancers, especially for facilitating clinical translation.

4.1.2 | Stilbenoids

Resveratrol (3,40,5 tri-hydroxystilbene) is a stilbenoid that is found in

plants of over 34 families, encompassing 100 species, with red grapes

(Vitis vinifera L.) being the most common source of extraction (Tian &

Liu, 2020). The anticancer activity of resveratrol is well established

and induction of ER stress has been implicated as one of the main

mechanisms of its cytotoxic effects across various cancers, including

neuroblastoma (Sun et al., 2023), melanoma (Heo, Kim, et al., 2018),

breast (Bian et al., 2022), and lung (Bian et al., 2022) cancers. Resvera-

trol induces ER stress through different mechanisms including ROS

induction (Heo, Kim, et al., 2018; Sun et al., 2023), ER calcium deple-

tion (Selvaraj et al., 2016), impairment of protein glycosylation, and

ceramide accumulation. With respect to modulation of UPR compo-

nents, resveratrol increased the expression of Grp78/Bip (SunT
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et al., 2023), and activated different UPR sensors: PERK in melanoma

(Heo, Kim, et al., 2018) and ATF6α in ovarian cancer cells (Gwak

et al., 2016). Additionally, resveratrol induced ER stress-mediated

apoptosis through upregulation of the proapoptotic factor CHOP

(Gwak et al., 2016; Heo, Kim, et al., 2018), activation of p38MAPK

(Bian et al., 2022; Heo, Kim, et al., 2018), and upregulation of

sirtuin 1 (Bian et al., 2022). Resveratrol also induced DNA damage

(Bian et al., 2022), mitochondrial dysfunction (Bian et al., 2022), and

senescence (Bian et al., 2022) in an ER stress-dependent manner.

Resveratrol has also been reported to induce autophagy in neuro-

blastoma (Sun et al., 2023).

It is noteworthy to mention that resveratrol exerted synergistic

effects with the conventional chemotherapeutic drug cisplatin in gas-

tric cancer cells (Ren et al., 2020) through the induction of ER stress.

Recently, Önay Uçar et al. (2023) and Li, Zhang, et al. (2022) reported

that the effects of resveratrol can be enhanced by depletion of heat

shock proteins (Hsp27, Hsp60, Hsp70, or Hsp90) and knockdown of

lncRNA H19, respectively, to further modulate ER stress in glioblas-

toma and gastric cancer cells, respectively.

4.1.3 | Flavonoids

Flavonoids represent one of the most diverse classes of polyphenols

and phytochemicals in general. Based on their chemical structures, fla-

vonoids are further classified into different subclasses. In the present

review, flavanols, flavones, flavonols, flavanones, and chalcones have

been discussed.

Flavanols

Epigallocatechin gallate (EGCG), a flavanol, specifically a catechin, is

found abundantly in green tea (Camellia sinensis) and has been studied

extensively for its biological effects against a variety of health condi-

tions, including obesity, metabolic syndrome, and cancer. Its antican-

cer effects have been characterized in multiple cancer types both

in vitro and in vivo (Gan et al., 2018). EGCG has also been investigated

in combination with various other chemotherapeutic drugs (Gan

et al., 2018).

With respect to induction of autophagy, EGCG was reported to

synergize with gefitinib (an epidermal growth factor receptor [EGFR]

TKI) (Meng et al., 2019) to induce autophagy in CRC and NSCLC cells.

Modernelli et al. (2015) reported that in prostate cancer (PC3) cells,

EGCG antagonizes bortezomib (a proteasome inhibitor) to promote

cytoprotective autophagy and downregulate ER stress induction by

decreasing the expression of eIF2α, BIP, and CHOP, thereby protect-

ing prostate cancer cells from bortezomib cytotoxicity. Cytoprotective

autophagy was also reported to be induced by EGCG in CRC cells,

conferring resistance to TRAIL-induced apoptosis as a result of

decreased expression of death receptors (Kim, Moon, & Park, 2016).

In contrast to Modernelli et al. (2015), Wu, Xu, et al. (2022) and Wu,

Gou, et al. (2022) reported that EGCG in combination with irinotecan

(a topoisomerase I inhibitor) induces BiP-mediated endoplasmic retic-

ulum stress in CRC cells (Wu, Gou, et al., 2022). The underlying reason

for this contrasting finding is unclear and can perhaps be attributed to

different molecular targets in the combination approach. This further

highlights a gap in phytochemical research with respect to the elucida-

tion of the exact molecular targets of these compounds.

An analog of EGCG, 4-(S)-(2,4,6-trimethylthiobenzyl)-EGCG, has

been reported to exhibit better effects than the parent compound in

melanoma cells (Xie et al., 2017). Specifically, it was more effective

in inducing cell death and selectively induced ROS in cancer cells and

not in normal cells. Additionally, it suppressed tumor growth in vivo.

The mechanisms underlying its effects included ROS-dependent

autophagy through AMPK activation, and induction of ER stress

through upregulation of IRE1α, p-elF2α, and CHOP.

Flavones

Luteolin (30 ,40,5,7-tetrahydroxyflavone) is a flavone, a class of flavo-

noid compounds, which is found in several dietary plants including

celery (Apium graveolens), Broccoli (Brassica oleracea var. italica), Bell

pepper (Capsicum annuum), among others. It exhibits various biological

effects including anti-inflammatory, antioxidant, and anticancer

effects, which have been reported in various types of solid organ can-

cers both in vitro and in vivo. Activation of autophagy and ER stress

has been reported to be involved in the anticancer effects of luteolin

(Imran et al., 2019). Luteolin induced autophagy via the

SGK1-FOXO3a-BNIP3 axis in triple-negative breast cancer (TNBC)

cells (Wu, Lin, et al., 2023) and p53-dependent autophagy in CRC cells

(Yoo et al., 2022). In metastatic colon cancer cells, luteolin induced

MEK/ERK-dependent cytoprotective autophagy, and the inhibition of

the MEK/ERK signaling pathway using PD0325901 (a MERK inhibi-

tor) induced apoptosis (Potočnjak et al., 2020). As stated previously,

phytochemical-based induction of cytoprotective autophagy requires

deeper studies to determine the underlying mechanisms, and high-

lights the need for combination approaches when considering the clin-

ical translation of phytochemicals. With respect to ER stress, luteolin

was reported to induce ER stress in hepatocellular carcinoma in p53

null, but not in p53 wild-type cells (Lee & Kwon, 2019), and ROS-

dependent ER stress in glioblastoma cells through the PERK-eIF2α-

ATF4-CHOP pathway (Wang, Wang, et al., 2017).

Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one) is

another flavone that was originally isolated from roots of Chinese

skullcap (Scutellaria baicalensis) and is an active ingredient of tradi-

tional Chinese and Japanese herbal formulations. Its anticancer effects

have been demonstrated both in vitro and in vivo for several cancers

with various underlying molecular mechanisms including autophagy

and ER stress (Morshed et al., 2023). Several mechanisms of baicalein-

mediated induction of autophagy have been reported in various types

of cancers, including: mTOR inhibition in breast (Yan et al., 2018) and

gastric (Li, Hu, et al., 2020) cancer cells; AMPK activation in glioma

(Liu, Ding, et al., 2019) cells; and AKT inhibition in gastric (Li, Hu,

et al., 2020; Qiao et al., 2019) and undifferentiated thyroid (Wang,

Qiu, & Qin, 2019) cancer cells. Both ERK activation and inhibition

have been reported as the underlying mechanism for Baicalein-

induced autophagy, in ovarian cancer (Wang, Xu, et al., 2017) and

undifferentiated thyroid cancer (Wang, Qiu, & Qin, 2019) cells,
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respectively, suggesting cancer type-specific effects, perhaps reflect-

ing the role of the ERK pathway in the cancer type. Noteworthy, bai-

calein induced cytoprotective autophagy in CRC (Phan et al., 2020) as

the inhibition of autophagy enhanced baicalein-mediated apoptotic

cell death. In combination assaya, baicalein increased sensitivity of

gastric cancer cells to cisplatin (Li, Hu, et al., 2020) and of TNBC cells

to doxorubicin (Hua et al., 2023).

Flavonols

Fisetin (3,30 ,40 ,7-tetrahydroxyflavone) is a flavonol, which is character-

ized by a CA 3-hydroxyflavone backbone, and this class of polyphe-

nols are distinct from flavanols. It is found in a wide variety of edible

plants including strawberry (Fragaria � ananassa), apple (Mallus spp.),

and persimmon (Diospyros spp.), among others. With respect to the

anticancer effects of fisetin, antiproliferative, antiangiogenic, and anti-

metastatic effects have been reported (Zhou, Huang, et al., 2023). In

oral cancer cells, fisetin increased ROS and intracellular Ca2+ levels,

and induced apoptosis through the ER stress-associated ATF6-CHOP

pathway (Su et al., 2017). In NSCLC cells, fisetin induced ER stress

through activation of the MAPK pathway, which resulted in activation

of all three arms of the UPR, the IRE1α-XBP1s, ATF6-CHOP, and

PERK-eIF2α-CHOP pathways, and hence, downstream induction of

ER stress-mediated apoptosis (Kang et al., 2016). With respect to

autophagy, in hepatocellular cancer cells, fisetin was reported

to mediate its anticancer effects through inhibition of autophagy

(Sundarraj et al., 2021). In contrast, in oral squamous (Park

et al., 2019) and pancreatic (Jia et al., 2019) cancer cells, fisetin

induced cytoprotective autophagy since its inhibition increased

fisetin-mediated cell death.

Kaempferol (3,40 ,5,7-tetrahydroxyflavone) is another flavonol that

has been extensively studied for its biological effects against various

diseases, including cardiovascular diseases, neurodegenerative dis-

eases, obesity, and cancer. It is found in numerous plants including

dietary plants, such as capers (Capparis spinosa), cruciferous vegeta-

bles (Brassica oleracea; cabbage, kale, cauliflower, etc.), Aloe vera,

among others. Its anticancer effects have been explored extensively

against various cancer types (Amjad et al., 2022) and induction of

autophagy is a primary mechanism of the anticancer effects of kaemp-

ferol. Mechanisms underlying kaempferol-mediated autophagy

include AMPKα activation in gastric cancer cells (Kim, Lee,

et al., 2018), ULK1 activation in gastric cancer cells (Kim, Lee,-

et al., 2018), AKT inhibition in NSCLC cells (Wang et al., 2023), and

mTOR inhibition in NSCLC cells (Wang et al., 2023). Involvement of

the ER response was noted in gastric cancer cells through activation

of the IRE1 pathway (Kim, Lee, et al., 2018), in ovarian cancer cells

through activation of the IRE1α, ATF6-CHOP, and PERK-eIF2α-CHOP

pathways (El-Kott et al., 2020), and in melanoma cells through the

eIF2α-CHOP pathway (Heo, Lee, et al., 2018). ER stress-mediated

autophagy was reported in gastric cancer cells as autophagy was

induced by IRE1α-JNK1-mediated disruption of Bcl-2-Beclin-1 (Kim,

Lee, et al., 2018). ER stress-mediated cell death was reported through

the IRE1-JNK-CHOP pathway in gastric cancer cells (Kim, Lee,

et al., 2018) and eIF2α-CHOP-mediated activation of the intrinsic

apoptotic pathway in melanoma cells (Heo, Lee, et al., 2018). Addi-

tionally, ROS involvement has been reported in kaempferol-induced

autophagy in melanoma cells (Heo, Lee, et al., 2018) and ER stress in

breast cancer cells (Nandi et al., 2023).

Kaempferol has also been explored in combination with other

drugs. It synergized with docetaxel to induce autophagy and the com-

bination was more efficient than each drug alone in prostate cancer

both in vitro and in vivo (Zhou, Fang, et al., 2023). Additionally, the

combination of kaempferol and verapamil (a calcium channel blocker)

induced ROS-dependent autophagy in breast cancer cells (Nandi

et al., 2023), increased sensitivity to cisplatin in ovarian cancer cells

(El-Kott et al., 2020), and synergized with cisplatin and paclitaxel in

gastric cancer cells (Kim, Lee, et al., 2018).

Flavanones

Naringin (flavanone-7-O-glycoside) is a flavanone, a class of aromatic

ketones, and is found commonly in citrus fruits, such as grapefruits,

oranges, lemons, and accounts for the bitter taste in citrus juices. Vari-

ous biological effects of naringin have been reported including antioxi-

dant, anti-inflammatory, anti-osteoporotic, and anticancer effects

(Chen et al., 2016). In cervical cancer cells, naringin induced ER stress

through the p-eIF2α-CHOP pathway to induce ER stress-mediated

apoptosis (Chen et al., 2020). In ovarian cancer cells, naringin induced

ER stress-mediated apoptosis through the PERK-CHOP pathway and

inhibited autophagy through activation of the PI3K-AKT–mTOR path-

way (Zhu et al., 2023). However, in gastric cancer cells, Xu et al.

(2021) reported that naringin induced autophagy by suppressing the

PI3K-AKT–mTOR pathway. Later, Raha et al. (2020) further reported

that naringin induced ROS-dependent autophagy as well as lysosomal

membrane permeabilization and cathepsin D release, which induced

ERK1/2-p38-dependent autophagic cell death.

In combination therapy, Albayrak et al. (2021) reported that narin-

gin in combined with tunicamycin (ER stress inducer) and BAY

11-7082 (NF-κB inhibitor) induced mitochondrial apoptosis through

ROS-dependent activation of the PERK-eIF2α-ATF4-CHOP pathway

in CRC cells. Additionally, the combination of naringin and cisplatin

was shown to be more effective than either drug alone in ovarian can-

cer cells (Zhu et al., 2023).

Chalcones

Flavokavain B (or flavokawain B; 20-hydroxy-40 ,60-dimethoxychal-

cone), isolated from the Kava plant (Piper methysticum), is a flavoka-

vain that belongs to the class of chalcones/chalconoids, which are

phenolic compounds characterized by an α, β-unsaturated ketone

backbone. Of the three identified flavokavains, flavokavain B exhibits

more potent anticancer effects compared to flavokavains A and C

(Abu et al., 2013). Flavokavain B induced ER stress in glioma cells,

through activation of the eIF2α-ATF4-CHOP pathway (Wang, Qi,

et al., 2018). Autophagy is also involved in the anticancer effect of fla-

vokavain B. Various mechanisms of autophagy induction were

reported, including inhibition of the PI3K-AKT–mTOR pathway (He

et al., 2018; Hseu, Chiang, et al., 2020; Wang, Qi, et al., 2018), AMPK

activation (He et al., 2018), and dysregulation of Beclin-1 and Bcl-2
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interaction (Hseu, Chiang, et al., 2020). Cytoprotective autophagy was

reported in flavokavain B-treated glioma (Wang, Qi, et al., 2018) and

thyroid (He et al., 2018) cells, since inhibition of autophagy improved

cell death in both studies. Additionally, the combination of flavokavain

B with doxorubicin or cisplatin was more efficient in inducing cell

death in gastric cancer both in vitro and in vivo (Hseu, Lin,

et al., 2020). While flavokavain C has also been reported to induce ER

stress and CHOP-mediated apoptosis in CRC cells (Phang

et al., 2016), to the best of our knowledge, as of May 2024, there

have been no reports on flavokavain A with respect to autophagy

and/or ER stress induction.

4.1.4 | Lignans

Honokiol is a lignan, a class of phenolic compounds that are consid-

ered precursors to phytoestrogens. Honokiol was isolated from Mag-

nolia species and is widely used in traditional Japanese medicine.

Various biological effects of honokiol have been reported including

neuroprotective, antioxidant, antimicrobial, cardioprotective, anti-

inflammatory, and anticancer effects (Rauf et al., 2021). Autophagy

and ER stress have both been implicated in the anticancer effects of

honokiol. Increased BiP and intracellular Ca2+ levels were noted in

osteosarcoma cells (Huang et al., 2018). With respect to the specific

sensors of the UPR activated by honokiol, activation of the PERK-

eIF2α-CHOP pathway was reported in lung cancer cells (Zhu, Xu,

et al., 2019) and activation of the PERK and IRE1α sensors in mela-

noma cells (Chiu et al., 2019). Downstream of ER stress induction,

CHOP-mediated apoptosis was reported in lung cancer (Zhu, Xu,

et al., 2019) and melanoma cells (Chiu et al., 2019) cells. Interestingly,

honokiol-induced ER stress downregulated HDAC3 expression

through inhibition of the NFκBp65-CEBPβ pathway in gastric cancer

cells, which consequently led to the inhibition of EMT (Wu, Jan,

et al., 2023). Similarly, honokiol-induced ER stress inhibited EMT in

melanoma cells through suppression of the MITF and β-catenin path-

ways (Chiu et al., 2019). Honokiol was also reported to induce

autophagy-mediated apoptosis in neuroblastoma cells (Lin

et al., 2019), and osteosarcoma cells (Huang et al., 2018). In the latter

cancer type, activation of the ERK1/2 pathway was implicated in

autophagy induction (Huang et al., 2018).

4.1.5 | Curcuminoids

Curcumin is a linear diarylheptanoid, a class of polyphenols also

referred to as curcuminoids. Curcumin is the main active component

of turmeric (Curcuma longa) extract, which has long been used in tradi-

tional Chinese and Indian medicine for various conditions. In fact, cur-

cumin is one of the most well-studied phytochemicals with respect to

its anticancer activity both in vitro and in vivo, and is also being inves-

tigated in Phase I and II clinical trials for solid and hematological can-

cers (Tomeh et al., 2019).

Curcumin was reported to induce autophagic cell death in glio-

blastoma cells (Lee et al., 2020), whereas it induced cytoprotective

autophagy in breast cancer cells (Akkoç et al., 2015) and laryngeal

cancer cells (Wan et al., 2017). Inhibition of autophagy in the latter

two cell types increased curcumin-mediated apoptosis. Similarly, the

curcumin derivative tetrahydrocurcumin was shown to induce autop-

hagy as a pro-death mechanism in NSCLC cells through inhibition of

the PI3K-AKT–mTOR pathway (Song et al., 2018). Other curcumin

derivatives also induced pro-death autophagy through AMPK activa-

tion, such as PAC (5-Bis (4-hydroxy-3-methoxybenzylidene)-N-

methyl-4-piperidone) in oral cancer cells (Semlali et al., 2021). On the

other hand, WZ35 (1-(4-hydroxy-3-methoxyphenyl)-5-(2-nitrophenyl)

penta-1,4-dien � 3-one), another synthetic curcumin derivative, inhib-

ited YAP-mediated autophagy to promote apoptosis in hepatocellular

carcinoma cells (Wang, Zhu, et al., 2019).

Curcumin was shown to induce ROS-dependent ER stress in CRC

cells (Huang et al., 2017), cervical cancer cells (Kim, Kim, et al., 2016), and

prostate cancer cells (Lee et al., 2015). Curcumin was also shown to

induce cell death through CHOP-mediated apoptosis in papillary thyroid

cancer cells (Zhang, Cheng, et al., 2018). Several curcumin derivatives

were reported to exert their anticancer effects through ROS-dependent

ER stress, such as WZ37 in head and neck squamous cell carcinoma cells

(Zhang, Lin, et al., 2020) and B2 (2E,20 E)-3,30-(1,4-phenylene)bis

(1-(2-chlorophenyl)prop-2-en-1-one) in NSCLC cells (Wei et al., 2022).

4.1.6 | Gingerols

Gingerols and shogaols, which are the dehydrated products of ginger-

ols, are the main bioactive constituents of fresh and dry ginger (Zingi-

ber officinale), respectively. The anticancer activity of 6-gingerol and

6-shogaol has been extensively studied. Some studies suggested that

6-shogaol is more potent and effective as an anticancer phytochemi-

cal than 6-gingerol (Kou et al., 2018). The anticancer effects of

6-gingerol seem to depend mainly on induction of autophagy, as listed

in Table 1.

Various biological activities of 6-shogaol including anti-

inflammatory, antioxidant, neuroprotective, cardioprotective, and anti-

cancer activities have been reported. In contrast to 6-gingerol,

6-shogaol has been reported to modulate various signaling pathways

including those regulating autophagy and ER stress in various types of

cancer (Kou et al., 2018). 6-shogaol induced ROS-dependent autop-

hagy and ER stress through the activation of ATF6, eIF2α, and IRE1α

in hepatocellular cancer cells (Wu et al., 2015). In addition, 6-shogaol

was reported to induce ER stress through inhibition of 26S protea-

some and ER stress-mediated paraptosis in TNBC and NSCLC cells

(Nedungadi et al., 2018).

The role of 6-shogaol-induced autophagy seems complex. In cer-

vical cancer cells, 6-shogaol induced cytoprotective autophagy

through inhibition of the PI3K-AKT–mTOR pathway, and the inhibi-

tion of autophagy increased ROS-dependent apoptosis in 6-shogaol-

treated cells (Pei et al., 2021). On the other hand, Bawadood et al.
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(2020) reported that 6-shogaol suppressed autophagy through inhibi-

tion of the Notch pathway in breast cancer cells (MCF7 and T47D).

These studies highlight the importance of investigating the context-

dependent role of cellular processes and the context-dependent

effects of phytochemicals. In combination approaches, 6-shogaol

was shown to enhance the effect of 5-fluorouracil, FOLFIRI

(5-fluorouracil + irinotecan), FOLFOX (5-fluorouracil + oxaliplatin),

and FOLFOXIRI (5-fluorouracil + oxaliplatin + irinotecan) in CRC cells

through induction of autophagy and apoptosis (Woźniak et al., 2020).

In hepatocellular cancer cells, the combination of 6-shogaol and TRAIL

enhanced ROS-dependent TRAIL-induced apoptosis by inhibiting

autophagic flux (Nazim & Park, 2018).

4.2 | Terpenes and terpenoids

4.2.1 | Diterpenes

Carnosol is a phenolic diterpene that was originally isolated from Sage

(Salvia carnosa) and has since been identified in various other herbs

including rosemary (Rosmarinus officinalis), basil (Ocimum basilicum),

and thyme (Thymus vulgaris). The anticancer activity of carnosol has

been demonstrated in various types of cancers in vitro and in vivo

(O'Neill et al., 2020). However, only few reports have attributed

autophagy and/or ER stress to its anticancer effects. ROS-dependent

autophagy in response to carnosol treatment was reported in TNBC

cells (Al Dhaheri et al., 2014) and in osteosarcoma cells (Lo

et al., 2017). Further, in TNBC cells, carnosol was reported to induce

Beclin-1-independent autophagy, which preceded apoptosis

(Al Dhaheri et al., 2014). Later, carnosol was reported to induce acti-

vation of p38, which further activated the UPR and induced

proteasome-dependent degradation of mTOR (Alsamri et al., 2022).

Both p38 activation and ER stress-mediated mTOR degradation were

implicated in carnosol-mediated autophagy in TNBC cells (Alsamri

et al., 2022). Interestingly, carnosol also induced proteasome-

dependent degradation of other proteins in TNBC cells, including

STAT3 (Alsamri et al., 2019), PCAF (Alsamri et al., 2021), and p300

(Alsamri et al., 2021). Additionally, activation of the PERK-

ATF4-CHOP pathway induced CHOP-mediated apoptosis in

carnosol-treated TNBC cells (Alsamri et al., 2022).

Tanshinones, represent the main active ingredients of the dried

roots of Red sage (Salvia miltiorrhiza), a plant widely used in traditional

Chinese medicine (TCM) for various conditions. More than 40 tanshi-

nones have been identified thus far, of which tanshinone I, tanshinone

IIA, dihydrotanshinone, and cryptotanshinone are the most well-

characterized with respect to their anticancer effects (Jiang

et al., 2019). The anticancer effects of tanshinone I and isocryptotan-

shinone are listed in Table 1.

Tanshinone IIA was reported to induce autophagy in leukemia

(Zhang, Geng, et al., 2019), oral squamous cell carcinoma (Qiu

et al., 2018), CRC (Qian et al., 2023), osteosarcoma (Yen et al., 2018),

and renal cell carcinoma (Kim et al., 2022) cells. Except in prostate

cancer cells (Li et al., 2016), tanshinone IIA-induced autophagy was

generally described as a pro-cell death mechanism. The mechanisms

underlying tanshinone IIA-induced autophagy include inhibition of the

PI3K-AKT–mTOR pathway in glioma (Ding et al., 2017), leukemia

(Zhang, Geng, et al., 2019), oral squamous cell carcinoma (Qiu

et al., 2018), and osteosarcoma (Yen et al., 2018), and activation of

the MEK–ERK-mTOR pathway in CRC (Qian et al., 2020) cells.

Regarding ER stress, tanshinone IIA inhibited the growth of pan-

creatic cancer xenografts through induction of ER stress via the

PERK-eIF2α, IRE1α, and ATF6-CHOP pathways (Chiu & Su, 2017).

Tanshinone IIA also induced ER stress and activated the PERK-

ATF4-CHOP pathway in NSCLC cells, and synergized with TRAIL to

increase apoptosis in TRAIL-resistant NSCLC cells (Kim, Kang,

et al., 2016).

Cryptotanshinone, another diterpene, activated the PERK sensor

of the UPR, induced ER stress-mediated autophagy and -apoptosis in

CRC cells (Fu et al., 2021). Similarly, another study showed that cryp-

totanshinone induced ER stress and increased intracellular Ca2+ levels

in CRC cells (Wang, Zhang, et al., 2020). The same study also reported

that inhibition of calpain improved cryptotanshinone-induced

p53-dependent apoptosis (Wang, Zhang, et al., 2020). Cryptotanshi-

none induced autophagy in oral squamous cell carcinoma cells (Jiang

et al., 2023).

4.2.2 | Triterpenoids

Astragaloside IV is a triterpenoid that is the main bioactive component

of Mongolian milkvetch (Astragalus mongholicus) extract, a plant used

in traditional Mongolian and Chinese medicine. Various biological

effects of astragaloside IV have been reported including hepatopro-

tective, neuroprotective, antidiabetic, and anticancer effects (Zhang,

Wu, et al., 2020). Studies suggest that astragaloside IV exerts its anti-

cancer effect mainly through modulation of autophagy. It induced

pro-death autophagy through the TGF-β/Smad signaling pathway in

vulvar squamous cell carcinoma cells (Zhao et al., 2018), and through

the PTEN-PI3K-AKT signaling via IDO1 inhibition in uterine leio-

myoma cells (Qiu et al., 2022). Similarly, it induced pro-death autop-

hagy in cervical cancer cells (Xia et al., 2020); however, the

mechanism underlying the induction of autophagy was not clarified.

Intriguingly, astragaloside IV acts as an inhibitor of autophagy when

used in combination approaches in NSCLC cells (Lai et al., 2020; Li, Li,

et al., 2022; Liu, Chen, et al., 2023). Indeed, the inhibition of autop-

hagy by astragaloside IV was implicated in sensitization of NSCLC to

cisplatin (Lai et al., 2020) and bevacizumab (Li, Li, et al., 2022) and in

the potentiation of the anticancer effects of propofol (Liu, Chen,

et al., 2023). Mechanistically, astragaloside IV was able to reverse

bevacizumab-mediated inhibition of the mTOR–AKT pathway (Li, Li,

et al., 2022). As for the modulation of ER stress, only Lai et al. (2020)

reported that astragaloside IV induced ER stress to sensitize NSCLC

cells to cisplatin; however, the underlying pathways were not

explored.

Celastrol (also known as tripterine), is an active component of

thunder god vine (Tripterygium wilfordii) root extract, commonly used
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in TCM. It has been reported to exhibit anticancer effects against vari-

ous cancer types including solid and homological tumors (Shi

et al., 2020). Celastrol induced cytoprotective autophagy in glioma

(Liu, Zhao, et al., 2019) and CRC cells (Zhang, Wu, et al., 2022) since

the inhibition of autophagy by 3-methyladenine promoted apoptosis.

The inhibition of the AKT–mTOR pathway was implicated in celastrol-

mediated autophagy in the former cancer type (glioma) (Liu, Zhao,

et al., 2019). Celastrol also promoted lipophagy, a selective form of

autophagy that maintains lipid homeostasis, and inhibited EMT in

clear cell renal cell carcinoma cells (Zhang, Zhu, et al., 2021).

Depending on the cancer type, celastrol-induced ER stress plays

either a pro-survival or pro-death role (Chen et al., 2018; Ren

et al., 2017). In hepatocellular carcinoma cells, celastrol induced ER

stress-mediated apoptosis through the PERK-elF2α-ATF4-CHOP

pathway (Ren et al., 2017). Conversely, the activation of the PERK

pathway in osteosarcoma cells was reported to be rather cytoprotec-

tive (Chen et al., 2018). In fact, GSK2656157 (PERK inhibitor)

increased celastrol-mediated apoptosis and autophagy in osteosar-

coma cells (Chen et al., 2018). In combination assays, celastrol syner-

gized with erastin (a ferroptosis inducer) to induce autophagy and

mitophagy, a selective form of autophagy that recycles damaged mito-

chondria, in NSCLC cells (Liu, Fan, et al., 2021).

4.3 | Xanthonoid

Gambogenic acid is a xanthonoid, a class of polyphenolic compounds

with a xanthone backbone, commonly isolated from Gamboge tree

(Garcinia hanburyi). Gambogenic acid has been explored along with

other xanthonoids for its anticancer activity. In prostate cancer cells,

gambogenic acid induced ROS-dependent cytoprotective autophagy

since the inhibition of autophagy increased apoptosis induction

through activation of the JNK pathway (Wu, Wang, et al., 2023). Gam-

bogenic acid was also reported to induce pro-death ER stress in CRC

cells by downregulating Aurora A leading to the activation of the

PERK-eIF2α-ATF4 and IRE1α pathways (Liu, Xu, et al., 2021). Addi-

tionally, gambogenic acid was shown to induce ROS-dependent ER

stress and Noxa-mediated apoptosis, downstream of activation of

IRE1α-JNK in CRC cells (Zhao et al., 2020).

4.4 | Quinone derivatives

4.4.1 | Naphthoquinones

Shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methyl-3-pentenyl]-

1,4-naphthoquinone) is a 1,4-naphthoquinone analog that is found in

the dried roots of purple gromwell (Lithospermum erythrorhizon), a

plant used in traditional Japanese medicine. It exhibits a range of bio-

logical properties including antimicrobial, anticancer, and anti-

inflammatory effects, among others (Yadav et al., 2022). Shikonin is a

potent inducer of autophagy; however, depending on the cancer type,

both cytoprotective and pro-death autophagy have been reported.

Wang, Mayca Pozo, et al. (2020) reported that shikonin induced cyto-

protective autophagy in TNBC, NSCLC, and pancreatic cancer cells. In

gastric cancer cells, shikonin induced ROS-dependent cytoprotective

autophagy, and its inhibition enhanced ROS-dependent pyroptosis, a

caspase 1-dependent programmed cell death (Ju et al., 2023). Simi-

larly, in melanoma cells, shikonin also induced ROS-dependent cyto-

protective autophagy through p38 activation and its inhibition

enhanced apoptotic cell death (Liu, Kang, et al., 2019). In bladder can-

cer cells, inhibition of shikonin-induced cytoprotective autophagy aug-

mented ROS-dependent necroptosis (Liu, Liu, et al., 2023). Shikonin

was also reported to induce pro-death autophagy in hepatocellular

carcinoma (Zhang, Shang, et al., 2022), testicular cancer (Yao

et al., 2020), CRC (Zhu, Zhao, et al., 2019), and renal cancer (Tsai

et al., 2021) cells. In hepatocellular carcinoma, shikonin induced

autophagic cell death through inhibition of the PI3K-AKT–mTOR

pathway (Zhang, Shang, et al., 2022), while in renal cancer cells

through ROS-dependent activation of p38 (Tsai et al., 2021).

As for ER stress, shikonin has been reported to induce ROS-

dependent ER stress in adult T cell leukemia/lymphoma (Boonnate

et al., 2023), CRC (Qi et al., 2022), and melanoma (Liu, Kang,

et al., 2019) cells. Shikonin was also reported to induce ER stress-

mediated apoptosis through activation of the PERK-eIF2α-CHOP axis

in 5-FU-resistant CRC cells (Piao et al., 2022), CRC cells (Qi

et al., 2022), and melanoma cells (Liu, Kang, et al., 2019). Additionally,

the IRE1α-JNK pathway has been implicated in shikonin induced ER

stress-mediated apoptosis in adult T cell leukemia/lymphoma cells

(Boonnate et al., 2023) and CRC cells (Qi et al., 2022). Moreover, shi-

konin has been reported to sensitize wild-type EGFR NSCLC cells to

EGFR TKIs erlotinib and gefitinib (Li et al., 2018) and osimertinib (Hu

et al., 2020), through ROS-dependent ER stress, which enhanced

EGFR TKI-mediated apoptosis.

4.4.2 | Anthraquinone

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraqui-

none analog that is the active component of several medicinal herbs

used in traditional Chinese and Japanese medicine, including Chinese

rhubarb (Rheum palmatum), Asian knotweed (Reynoutria japonica), and

Aloe vera, among others. It has been demonstrated to exhibit a wide

range of biological effects including antimicrobial, anti-inflammatory,

antidiabetic, neuroprotective, and anticancer effects, the latter of

which is mediated through modulation of various pathways including

autophagy and ER stress (Dong et al., 2016). Emodin has been

reported to induce ER stress and CHOP-mediated apoptosis through

the PERK-eIF2α-CHOP pathway in CRC cells (Cheng & Dong, 2018).

Emodin-induced autophagy was generally described as a mecha-

nism of cell death. Emodin induced ROS-dependent autophagy

through inhibition of the AKT–mTOR pathway in NSCLC cells (Shen

et al., 2020). ROS-dependent autophagy was also reported in CRC

cells (Wang, Luo, et al., 2018). In hepatocellular carcinoma cells, emo-

din induced autophagy through inhibition of the PI3K-AKT–mTOR

pathway, which further inhibited EMT via autophagy-mediated
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degradation of Snail and β-catenin (Qin et al., 2022). Emodin was also

shown to mediate its cytotoxic effects through induction of autop-

hagy in pancreatic cells (Du et al., 2019); however, the molecular

mechanism underlying the induction of autophagy was not investi-

gated. Conversely, emodin was also reported to induce cytoprotective

autophagy and reverse adriamycin resistance in breast cancer cells

(Cheng et al., 2021).

In combination approaches, emodin exhibited synergistic effects

with gemcitabine in NSCLC cells (Shen et al., 2020). It also synergize

with carfilzomib (a proteasome inhibitor) in multiple myeloma cells to

increase ROS production, autophagy, and apoptosis (Hsu et al., 2022).

4.5 | Alkaloid

Tetrandrine is a bis-benzylisoquinoline alkaloid present in extracts of

plants from the moonseed family (Menispermaceae) including Stepha-

nia tetrandra, which is used extensively in TCM. It acts as a calcium

channel blocker with various biological effects including antidiabetic,

antimicrobial, anti-inflammatory, and anticancer effects (Bhagya &

Chandrashekar, 2016). Tetrandrine induced autophagy in TNBC

(Guo & Pei, 2019), hepatocellular carcinoma (Zhang, Liu, et al., 2018),

and gastric cancer (Bai et al., 2018) cells. Inhibition of the PI3K-AKT–

mTOR pathway was implicated in tetrandrine-induced autophagy in

TNBC (Guo & Pei, 2019) and gastric cancer (Bai et al., 2018) cells.

Downstream of autophagy, tetrandrine inhibited EMT in hepatocellu-

lar carcinoma cells through autophagy-mediated degradation of

Wnt2a and MA1 (Zhang, Liu, et al., 2018). Tetrandrine was also

reported to induce an ROS-dependent ER stress associated with an

increase of intracellular Ca2+ levels which consequently induced

CHOP-mediated apoptosis in nasopharyngeal carcinoma cells (Lin

et al., 2016; Liu et al., 2017). Similarly, tetrandrine was reported to

induce ER stress and apoptosis through the eIF2α-ATF4-CHOP path-

way in liposarcoma cells (Samsuzzaman & Jang, 2022). Tetrandrine

also sensitized nasopharyngeal cancer cells to irradiation, through

induction of autophagy (Wang, Yao, et al., 2020). Interestingly, and in

contrast to the above studies, tetrandrine sensitized EGFR mutant

lung adenocarcinoma cells to gefitinib (an EGFR TKI) by inhibition of

autophagy through lysosomal inhibition (Sato et al., 2019).

Other alkaloids that exert their anticancer effects through induc-

tion of autophagy (graveoline), through induction of ER stress (sophor-

idine and corynoxine) or induction of both autophagy and ER stress

(daurisoline) have been listed in Table 1.

5 | PLANT EXTRACTS

Given the rising popularity of phytochemicals as anticancer drugs, it is

unsurprising that plant extracts widely used in traditional/folk medi-

cine are being investigated for their anticancer activity. In particular,

in recent years, there has been growing evidence supporting the ther-

apeutic use of alternative traditional medicines, particularly TCM, for

cancer therapeutics (Yadav et al., 2022). Specifically, plant extracts,

which are at the heart of traditional medicine including TCM, are rich

in bioactive constituents that exhibit a variety of pharmacological

activities, including antioxidant, anti-inflammatory, and anticancer

activities (Zhang, Qiu, et al., 2021). Hence, this line of research, that is,

investigating the anticancer activity of traditionally used plant

extracts, is of paramount importance as it directs the isolation and

characterization of bioactive compounds with potential clinical appli-

cations for cancer treatment (Sasidharan et al., 2011). Indeed, several

chemotherapeutic agents that are presently used in clinical practice

have been identified through such means, including camptothecin and

its derivatives, vinca alkaloids, among others. Several others, such as,

resveratrol, curcumin, and berberine have undergone evaluation in

multiple clinical trials to assess their safety, efficacy, and clinical appli-

cability against various cancer types (McCubrey et al., 2017).

With regards to TCM, plant extracts and herbal formulas/

concoctions have been employed in China and other East Asian

countries as adjunct therapy to treat cancer-associated symptoms.

Notably, Bu-zhong-yi-qi-tang (Hochuekki-to in Japanese, or

Bojungikki-Tang in Korean), a concoction of seven traditional herbs, is

commonly prescribed by traditional Chinese physicians and was

reported to reduce the mortality hazard ratio of patients with lung

cancer, reduce chronic cancer-related fatigue, and increase infiltration

of lymphocytes in tumors (Zhang, Qiu, et al., 2021). Similarly, Shi-

quan-da-bu-tang (Juzentaiho-to in Japanese, or Sipjeondaebo-tang in

Korean), a concoction of 10 traditional herbs, is also prescribed in

South Korea for chronic cancer-associated fatigue and was reported

to reduce chemotherapy-associated adverse events (Zhang, Qiu,

et al., 2021). In the present review, we have focused on plant extracts

that have roots in traditional medicine, and not herbal concoctions.

Within this category, we have specifically highlighted plant extracts

that exhibit anticancer activity through modulation of autophagy

and/or ER stress (Table 2).

There are, however, limitations to the use of herbal concoc-

tions and plant extracts. The exact mechanisms of actions and

molecular targets of these concoctions and extracts are often not

known, and cannot be realistically elucidated owing to the diversity

of bioactive constituents. Further, the composition of these con-

coctions and plant extracts, and hence their clinical effects, can

vary drastically as environmental factors, such as temperature,

nutrient availability, salinity, environmental stress, altitude, soil

composition, and light intensity, among others, can greatly affect

the biosynthesis and accumulation of phytochemical compounds

(Li, Kong, et al., 2020). Hence, the lack of standardization in this

regard greatly hinders the clinical translation of traditional herbal

concoctions and plant extracts. Nonetheless, they serve as reser-

voirs of phytochemical compounds with potent anticancer activi-

ties. Therefore, we would like to emphasize the need for

researchers to focus on the identification of the active fractions of

herbal concoctions and plant extracts, and further the identification

of promising bioactive constituents using approaches such as UV–

visible spectroscopy, high-performance liquid chromatography-

mass spectrometry, and liquid chromatography with tandem mass

spectrometry (Altemimi et al., 2017).
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TABLE 2 Plant extracts that exhibit anticancer activity through modulation of autophagy and/or ER stress.

Plant name Traditional medicine

Plant

part Solvent Cancer typea Anti-cancer effects

ROS

involvement Ref

Garcinia dulcis

(Mundu)

Thailand, Indonesia,

Philippines, Vietnam

Flower Acetone Glioblastoma

(A172)

• ER stress-

mediated

autophagy

• S and G2/M

phase cell cycle

arrest

� (Siangcham

et al., 2022)

Elsholtzia

stachyodes

(Spiked mint)

TCM, North-east

India

Aerial

parts

Ethanol Leukemia (U937

and K562)

• ER stress

• G1 phase cell

cycle arrest

• UPR-mediated

Autophagy

• Apoptosis

+ (Kulaphisit

et al., 2023)

Cnidium

officinale

Makino

TCM, Korean

Peninsula, Japan

n/s Ethanol Multiple

myeloma

(U266),

lymphoma

(U937)

• ROS-dependent

apoptosis

• ER stress-

mediated

apoptosis

+ (Cha et al., 2018)

Salvia

miltiorrhiza

(Red sage)

TCM, Korean

Peninsula, Japan

n/s Ethanol Multiple

myeloma

(U266),

lymphoma

(U937)

• ROS-dependent

apoptosis

• ER stress-

mediated

apoptosis

+ (Kim, Song,

et al., 2018)

Origanum

majorana

(Marjoram)

Mediterranean,

Turkey, Cyprus,

Western Asia,

Arabian peninsula

Leaves Ethanol CRC (HT-29 and

CaCo-2)

• Autophagy-

mediated

apoptosis

• DNA damage

� (Benhalilou

et al., 2019)

Zingiber

officinale

(Ginger)

TCM, Indian

Subcontinent, Japan,

South East Asia

Rhizome Ethanol TNBC (MDA-

MB-231),

NSCLC (A549)

• ER stress

• Paraptosis

• DNA Damage

• Mitochondrial

dysfunction

+ (Nedungadi

et al., 2021)

Euterpe

oleracea Mart.

(Açai)

Brazil Seed Hydroalcoholic Breast (MCF7) • Autophagy + (Silva et al., 2021)

n/s Breast (MCF7) • ROS-dependent

autophagy

+ (Da Silva

et al., 2022)

Oil CRC (CaCo-2

and HCT-116)

• ROS-dependent

autophagy

• ROS-dependent

apoptosis

+ (Da Silva

et al., 2023)

Cichorium

(Chicory

grass)

TCM, South Africa,

Eastern Europe

Whole

grass

Ethyl acetate CRC (HCT116

and SW620)

• ROS-dependent

autophagy

• Apoptosis

+ (Wen et al., 2019)

Ficus carica

(Fig)

TCM, Indian

Subcontinent

Fruit Ethanol Pancreatic

(Panc-1 and

QGP-1)

• Autophagy

• ROS-dependent

apoptosis

• ROS-dependent

senescence

• Lipid

peroxidation

• Decreased

mitochondrial

membrane

potential

+ (Ou et al., 2022)

Buddleja

officinalis (Pale

butterfly

bush)

TCM, Korean

Peninsula, Vietnam

Flower Ethanol Head and neck

(FaDu)

• ER stress-

mediated

autophagy

• Apoptosis

• Autophagy

+ (Cho et al., 2018)

(Continues)
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TABLE 2 (Continued)

Plant name Traditional medicine

Plant

part Solvent Cancer typea Anti-cancer effects

ROS

involvement Ref

Quercus

infectoria galls

(Aleppo oak)

Indian Subcontinent n/s Aqueous CRC (CT-26 and

HT-29)

• Caspase-

dependent

Apoptosis

• ROS-dependent

autophagy

• ROS

accumulation

+ (Zhang, Wang,

et al., 2020)

Artemisia

vulgaris

(Mugwort)

TCM, Indian

Subcontinent

Aerial

parts

Methanol CRC (HCT-15) • ROS-dependent

autophagy

• ROS-dependent

decrease in

mitochondrial

membrane

potential

+ (Lian et al., 2018)

Malus pumila

Miller cv.

Annurca

(Annurca

apple)

Levant Fruit Phenol TNBC

(MDA-MB-231)

• ROS-dependent

G2/M phase cell

cycle arrest

• ROS-dependent

apoptosis

• ROS-dependent

autophagy

+ (Martino

et al., 2019)

Terminalia

bellirica

(Baheda)

TCM, Indian

Subcontinent

Seed Aqueous Oral squamous

cell (Cal33)

• ROS-dependent

apoptosis

• Autophagy

+ (Patra

et al., 2020)

Artemisia

kruhsiana

Besser (Alaska

wormwood)

Russia Leaves Methanol Prostate (PC-3) • Apoptosis

• Autophagy

+ (Lee et al., 2021)

Dendrobium

denneanum

TCM n/s Ether NSCLC (A549) • ER stress

• Apoptosis

• Autophagy

+ (Zhang, Li,

et al., 2019)

Paeonia

suffruticosa

(Tree peony)

TCM Root

bark

Aqueous Pancreatic

(AsPC1)

• ROS-dependent

ER stress

• ER stress-

mediated

autophagy

• ER stress-

mediated

mitophagy

• ER-mediated

apoptosis

+ (Liu et al., 2018)

Galenia

africana

(Kraalbos)

Southern Africa Leaves Ethanol Breast (MCF-7),

TNBC

(MDA-MB-231)

• DNA damage

• Autophagy-

mediated

apoptosis

• Apoptosis

• Necroptosis

• S and G2/M cell

cycle arrest

+ (Mohamed

et al., 2020)

Solanum

xanthocarpum

(Yellow-fruit

nightshade)

TCM, Indian

Subcontinent

Leaves Aqueous Nasopharyngeal

(C666-1)

• Autophagy

• ROS-dependent

Apoptosis

• DNA Damage

+ (Zhang, Wang,

et al., 2018)
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TABLE 2 (Continued)

Plant name Traditional medicine

Plant

part Solvent Cancer typea Anti-cancer effects

ROS

involvement Ref

Zingiber

officinale (Java

Ginger)

TCM, Indian

Subcontinent, Japan,

Korean Peninsula,

Southeast Asia

Rhizome n/s Cervical (SiHa) • Autophagy-

mediated

apoptosis

• Apoptosis

• Decreased

mitochondrial

membrane

potential

+ (Nath

et al., 2023)

Momordica

charantia

(Bitter melon)

TCM, Indian

Subcontinent, Turkey

Fruit Aqueous Oral (Cal27 and

JHU022)

• ER stress

• ROS-dependent

apoptosis

• Inhibition of

glycolysis

+ (Sur et al., 2019)

Polyalthia

longifolia

(False Ashoka)

Indian Subcontinent Leaves Ethanol Prostate (PC3,

DU145, C4-2,

and PC3M-LUC-

C6)

• G1/S phase cell

cycle arrest

• ER stress-

mediated

apoptosis

� (Afolabi

et al., 2019)

Taraxacum

mongolicum

(Dandelion)

TCM, Europe Whole

plant

Aqueous Cervical (HeLa) • S phase cell cycle

arrest

• ER stress

� (Lin, Liu,

et al., 2022)

Aqueous Breast (MCF7

and ZR-75-1),

TNBC

(MDA-MB-231)

• Decreased

mitochondrial

membrane

potential

• ER stress-

mediated

apoptosis

� (Lin, Chen,

et al., 2022)

Drimia

maritima (Sea

onion)

Indian Subcontinent,

Egypt

Bulb Methanol Breast (MCF7),

TNBC

(MDA-MB-468)

• ER stress

• Decreased

mitochondrial

membrane

potential

• Mitochondria-

mediated

apoptosis

+ (Hamzeloo-

Moghadam

et al., 2018)

Urtica dioica

(Stinging

nettle)

TCM, Europe Leaves Methanol NSCLC (H1299,

A549, H460 and

H322)

• DNA damage

• G2/M phase cell

cycle arrest

• ER stress-

mediated

apoptosis

� (D'Abrosca

et al., 2019)

Leonurus

japonicus

(Oriental

motherwort)

TCM, Japan, Korean

Peninsula

Whole

plant

Ethanol Acute myeloid

leukemia (U937

and THP-1)

• Decreased

mitochondria

membrane

potential

• ROS-dependent

apoptosis

• ER stress

+ (Park et al., 2022)

Rhododendron

luteum

(Honeysuckle

azalea)

TCM Leaves DMSO Cervical (HeLa) • S phase cell cycle

arrest

• ER stress

• Apoptosis

+ (Turan

et al., 2022)

Abbreviations: CRC, colorectal cancer; ER, endoplasmic reticulum; n/s, not specified; NSCLC, non-small cell lung cancer; ROS, reactive oxygen species;

TCM, Traditional Chinese Medicine; TNBC, triple-negative breast cancer.
aOnly studies performed in human cancer cell lines were considered in this review.

AL AZZANI ET AL. 4371

 10991573, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ptr.8283 by Q

atar U
niversity, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 | INTERPLAY BETWEEN AUTOPHAGY
AND ER STRESS

Autophagy and ER stress are both response processes to cellular

stress with complex interplay between the two. In the present review,

we identified six phytochemicals, carnosol, capsaicin, cryptotanshi-

none, guangsangon E, kaempferol, and δ-tocotrienol, that induce ER

stress-mediated autophagy (Figure 4a). This finding is in line with the

existing literature on the interplay between autophagy and ER stress,

as the UPR is a well-known regulator of autophagy (Figure 4b).

All three UPR sensors regulate autophagy in different ways:

(i) PERK-eIF2α-ATF4-CHOP upregulates transcription of autophagy

genes; (ii) IRE1α-XBP1s induces the expression of Beclin-1; (iii) ATF6

induces the expression of DAPK1, which phosphorylates Beclin-1

(Kwon et al., 2023). In fact, knockdown of any one of the UPR sen-

sors, PERK, IRE1, or ATF6 impairs the induction of autophagy (Rashid

et al., 2015). With respect to the underlying mechanism, the UPR sen-

sors induce autophagy through inhibition of the mTOR–AKT pathway,

and activation of the AMPK pathway. In the PERK arm, ATF4 upregu-

lates the expression of SESN2, DDIT3, and DDIT4, of which SESN2

and DDIT3 are negative regulators of mTORC1. DDIT4 further upre-

gulates TRIB3, which is a negative regulator of AKT. On the other

hand, IRE1α activation stimulates RPS6KA3, which activates AMPK,

and consequently, the ULK1 complex. AMPK activation is also

facilitated by PERK and ATF6, which activate AMPK via

DDIT3-mediated ATP depletion (Rashid et al., 2015). The interplay

between autophagy and ER stress also extends to a specialized form

of autophagy called ER-phagy, in which the autophagosome fuses

with damaged ER to restore ER homeostasis through interaction

between ER-phagy receptors and LC3 (Kwon et al., 2023; Rashid

et al., 2015). Further, there is also evidence to the effect that the UPR

regulates other forms of selective autophagy, specifically in mitophagy

through AFT4-mediated PARK2 expression (Rashid et al., 2015).

With respect to the six phytochemicals that induced ER stress-

mediated autophagy, different pathways were implicated. Capsaicin

upregulated the expression of TRIB3, which was concomitant with

upregulation of p-eIF2α, suggesting the involvement of the PERK arm

(Huang et al., 2021). The IRE1α arm was implicated in the anticancer

activity of kaempferol (Kim, Lee, et al., 2018) and guangsangon E (Shu

et al., 2021) as knockdown of IRE1α or use of a selective IRE1α

inhibitor (4μ8c) impaired autophagy induction. More specifically,

IRE1α-JNK1-mediated disruption of Bcl-2-Beclin-1 was noted as the

underlying mechanism in ER stress-mediated autophagy in

kaempferol-treated cells (Kim, Lee, et al., 2018). In contrast, carnosol

induced ER stress-mediated activation of p38, which regulated

proteasome-dependent degradation of mTOR, which in turn induced

autophagy (Alsamri et al., 2022). The specific underlying mechanisms

were not clarified for cryptotanshinone (Fu et al., 2021) and δ-

F IGURE 4 Interplay between ER stress and autophagy: ER stress-mediated autophagy. (a) The phytochemicals carnosol, capsaicin,
cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol induced ER stress-mediated autophagy. (b) All three UPR sensors regulate
autophagy. The PERKe-eIF2α-ATF4-CHOP axis upregulates transcription of autophagy gene. In this axis, ATF4 also upregulates the expression of
SESN2, DDIT3, and DDIT4. SESN2 and DDIT3 are negative regulators of mTORC1, while DDIT4 upregulates TRIB3, which is a negative regulator
of AKT. PERK also activates AMPK via DDIT3. The IRE1α-XBP1s axis induces Beclin-1 and IRE1α activates RPS6KA3, which in turn activates
AMPK, and consequently the ULK1 complex. ATF6 induces DAPK1, and also activates AMPK via DDIT3.
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tocotrienol (Fontana et al., 2019); however, ER stress-mediated

autophagy was confirmed using ER stress inhibitors 4-phenyl butyric

acid and/or salubrinal.

7 | LIMITATIONS TO CLINICAL
TRANSLATION, FUTURE DIRECTIONS, AND
CONCLUDING REMARKS

As is evident from the studies discussed herein, the anticancer effects

of various phytochemicals have been well characterized in preclinical

studies. However, the clinical translation of a vast majority of the

discussed phytochemicals is greatly hindered due to inherent

limitations.

One of the biggest limitations to the use of phytochemicals is

their context-dependent effects in different cancers, at times even

with respect to modulation of the same pathway/cellular process. For

example, as was noted multiple times in this review, the same phyto-

chemical can induce both cytoprotective autophagy and autophagic

cell death under different cellular contexts. In the present review, we

noted studies that reported induction of cytoprotective autophagy or

autophagic cell death in cancer-specific manners by the following

phytochemicals: 6-gingerol, capsaicin, celastrol, curcumin, emodin,

shikonin, and tanshinone IIA (Figure 5). This phenomenon is of con-

cern given that cytoprotective autophagy can serve as a tumor-

supportive mechanism (Debnath et al., 2023; Yun & Lee, 2018). While

the use of autophagy inhibitors is one approach to circumvent this

limitation, to date, no autophagy inhibitor has been approved for use

in cancers, further highlighting the existing gaps in cancer therapeutics

(Mohsen et al., 2022). In contrast to this, we only came across two

studies that reported cytoprotective ER stress, which was in celastrol-

treated osteosarcoma cells (Chen et al., 2018) and α-Mangostin-

treated TNBC cells (Huang et al., 2019). This perhaps speaks to the

tight regulation of ER homeostasis, such that external factors that

cause perturbations in the same greatly skew the UPR towards apo-

ptosis. It also suggests that focusing on phytochemicals that induce

ER stress over autophagy may present a more promising avenue for

clinical translation.

Another concerning limitation to the clinical translation of phyto-

chemicals is the lack of deep mechanistic studies identifying their

molecular targets. While many studies have explored the specific

pathways that were activated or inhibited to induce the reported anti-

cancer effects, the direct molecular targets of a vast majority of phy-

tochemicals have not been identified. The absence of clarity in this

regard raises the concern of off-target effects. Moreover, it also ham-

pers clinical translatability as it hinders informed decision-making by

F IGURE 5 Phytochemicals
induce cytoprotective autophagy
or autophagic cell death in a
cancer specific manner.
Phytochemicals can induce
autophagy as either a survival
mechanism, that is,

cytoprotective autophagy or as a
cell death mechanism, that is,
autophagic cell death, under
different contexts, including
cancer type. In cancer types
where a phytochemical induces
cytoprotective autophagy, the
use of autophagy inhibitors, such
as 3-MA and CQ, can augment
phytochemical-induced cell death
through other mechanisms, such
as apoptosis. For example,
curcumin induces autophagic cell
death in breast and laryngeal
cancer cells. On the other hand, it
induces cytoprotective
autophagy in esophageal cancer
and glioblastoma cells. In these
two cancer cell types, inhibition
of autophagy enhances
apoptosis. 3 MA,
3-methyladenine; CQ,
chloroquine; EGCG,
epigallocatechin gallate.
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clinicians about treatment options for patients, taking into consider-

ation their genetics or tumor profile/subtypes. Hence, elucidating the

molecular targets of phytochemicals is of paramount importance to

eventually enable personalized treatment approaches for cancer

patients. It is, therefore, our suggestion that researchers should con-

sider employing computational modeling for initial screening of molec-

ular targets, which can further be validated using genetic approaches

and/or chemical inhibitors (Tabana et al., 2023).

Tying into the same limitation, there is also a lack of studies inves-

tigating the effects of these phytochemicals on the broader landscape

of tumors, that is, the tumor microenvironment and tumor resident

and infiltrating immune cells. It is important to clarify whether these

phytochemicals promote anti-tumor immune responses or hinder the

same, or worse, enhance tumor immune evasion as an off-target

effect. Further, multimodal treatment approaches present the best

clinical outcomes and hence more emphasis is needed on combination

approaches. In this regard, some studies reviewed herein reported on

combination approaches: EGCG with gefitinib (an EGFR TKI) in CRC

and NSCLC cells (Meng et al., 2019) and irinotecan (a topoisomerase I

inhibitor) in CRC cells (Wu, Gou, et al., 2022), kaempferol with doce-

taxel in prostate cancer cells (Zhou, Fang, et al., 2023), verapamil

(a calcium channel blocker) in breast cancer cells (Nandi et al., 2023),

and with cisplatin and paclitaxel in gastric cancer cells (Kim, Lee,

et al., 2018), naringin with tunicamycin (ER stress inducer) and BAY

11-7082 (NF-κB inhibitor) in CRC cells (Albayrak et al., 2021) and cis-

platin in ovarian cancer cells (Zhu et al., 2023), flavokavain B with

doxorubicin or cisplatin (Hseu, Lin, et al., 2020), 6-shogaol with FOL-

FIRI, FOLFOX, and FOLFOXIRI in CRC cells (Woźniak et al., 2020),

celastrol with erastin (a ferroptosis inducer) in NSCLC cells (Liu, Fan,

et al., 2021), and emodin with gemcitabine in NSCLC cells (Shen

et al., 2020) and carfilzomib (a proteasome inhibitor) in multiple mye-

loma cells (Hsu et al., 2022). It is important to note here that some of

the reported combination approaches are not clinically translatable at

present; verapamil is not FDA approved for any solid organ or hema-

tological cancers, and tunicamycin and BAY 11-7082 have no

approved FDA indications and are used rather for experimental pur-

poses. We hence suggest that the focus with respect to combination

approaches be with approved and clinically used agents to facilitate

clinical translation.

Additionally, it is important to explore sensitization effects to clin-

ically used chemotherapeutic drugs, given that chemoresistance is a

major clinical concern. Herein, we reviewed that baicalein increased

sensitivity to cisplatin in gastric cancer cells (Li, Hu, et al., 2020) and

to doxorubicin in TNBC cells (Hua et al., 2023), kaempferol increased

sensitivity to cisplatin in ovarian cancer cells (El-Kott et al., 2020),

astragaloside IV increased sensitivity of NSCLC to cisplatin (Lai

et al., 2020) and bevacizumab (Li, Li, et al., 2022). Nonetheless, more

emphasis is needed on these fronts, especially in in vivo studies and in

combination to existing chemotherapeutic regimens as well as immu-

notherapy approaches. Additionally, there is also a need to explore

the contribution of other programmed cell deaths, such as pyroptosis,

ferroptosis, and necroptosis, in the anticancer activity of phytochemi-

cal compounds. Herein, we reviewed that 6-gingerol induced

ferroptosis in NSCLC (Tsai et al., 2020) and prostate cells (Liu

et al., 2022), and shikonin in combination with autophagy inhibitors

induced ROS-dependent necroptosis in bladder cancer cells (Liu, Liu,

et al., 2023) and ROS-dependent pyroptosis in gastric cancer cells (Ju

et al., 2023). Exploration of other forms of cell deaths would further

aid in understanding the molecular mechanisms underlying the effects

of phytochemical compounds, directing clinical translation and per-

sonalized treatment approaches.

The clinical translation of phytochemicals is also limited by com-

mon issues concerning bioavailability, pharmacokinetics, and adverse

effects. For example, while resveratrol has been investigated in Phase

1/Phase 2 clinical trials for various cancers (https://clinicaltrials.gov/),

its clinical translation has been vastly limited due to concerns about

adverse effects (at high doses), bioavailability (although the same has

been improved with micronized resveratrol SRT501), pharmacokinet-

ics, among others (Ramírez-Garza et al., 2018). While of use of alter-

nate delivery platforms are being explored to combat these issues,

these platforms are still far from being clinically applicable and repre-

sent another direction of research in phytochemical-based cancer

therapeutics that needs to be emphasized (Lagoa et al., 2020).

In summary, in the present review, we explored the contribution

of autophagy and ER stress in the anticancer effects of various phyto-

chemical compounds. While induction of ER stress does represent a

promising avenue of cancer therapeutics, the induction of cytoprotec-

tive autophagy is a cause of concern that can hinder the clinical trans-

lation of the concerned phytochemicals. Nonetheless, phytochemicals

represent a promising avenue for cancer therapeutics, with great

scope of research in this field.
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