
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20

Journal of Biomolecular Structure and Dynamics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tbsd20

Investigating the role of functional mutations
in leucine binding to Sestrin2 in aging and age-
associated degenerative pathologies using
structural and molecular simulation approaches

Abbas Khan, Muhammad Ammar Zahid, Muhammad Shahab, Raed M. Al-
Zoubi, Mohanad Shkoor, Tarek Benameur & Abdelali Agouni

To cite this article: Abbas Khan, Muhammad Ammar Zahid, Muhammad Shahab, Raed M.
Al-Zoubi, Mohanad Shkoor, Tarek Benameur & Abdelali Agouni (30 Apr 2024): Investigating
the role of functional mutations in leucine binding to Sestrin2 in aging and age-associated
degenerative pathologies using structural and molecular simulation approaches, Journal of
Biomolecular Structure and Dynamics, DOI: 10.1080/07391102.2024.2335289

To link to this article:  https://doi.org/10.1080/07391102.2024.2335289

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 30 Apr 2024.

Submit your article to this journal 

Article views: 830

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbsd20
https://www.tandfonline.com/journals/tbsd20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07391102.2024.2335289
https://doi.org/10.1080/07391102.2024.2335289
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbsd20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2024.2335289?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07391102.2024.2335289?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2024.2335289&domain=pdf&date_stamp=30 Apr 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2024.2335289&domain=pdf&date_stamp=30 Apr 2024


Investigating the role of functional mutations in leucine binding to Sestrin2 in 
aging and age-associated degenerative pathologies using structural and 
molecular simulation approaches

Abbas Khana, Muhammad Ammar Zahida, Muhammad Shahabb, Raed M. Al-Zoubic,d,e, Mohanad Shkoorf,  
Tarek Benameurg and Abdelali Agounia,h 

aDepartment of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; bDepartment of Chemistry, Beijing 
University of Chemical Technology (BUCT), Beijing, China; cSurgical Research Section, Department of Surgery, Hamad Medical Corporation, 
Doha, Qatar; dDepartment of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; eDepartment of 
Chemistry, Jordan University of Science and Technology, Irbid, Jordan; fDepartment of Chemistry, College of Arts and Science, Qatar 
University, Doha, Qatar; gCollege of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia; hOffice of Vice President for 
Research and Graduate Studies, Qatar University, Doha, Qatar 

Communicated by Ramaswamy H. Sarma

ABSTRACT 
Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly 
important, as it influences the activity of mTOR in aging and its associated pathologies. It is important 
to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine 
affect the binding of leucine. Therefore, this study was committed to investigating the impact of non- 
synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular 
dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions 
between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm 
for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. 
Moreover, these mutations compromised the dynamic stability by altering the conformational flexibil
ity, sampling time, and leucine-induced structural constraints that consequently caused variation in 
the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the 
regions 217–339 and 371–380 demonstrated a higher fluctuation. Noteworthy, these regions corres
pond to a linker (217–339) and a loop (371–380) that cover the leucine binding cavity that is critical 
for the ‘latch’ mechanism in the N-terminal, which is essential for leucine binding. Further validation of 
reduced binding and modified internal motions caused by the mutants was obtained through binding 
free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. 
By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to 
pave the way for innovative strategies to combat the inevitable tide of aging and its associated 
diseases.
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Introduction

Aging is a universal biological process that comes with a 
gradual decline in physiological function and an increased 
susceptibility to an array of diseases due to the diminished 
efficacy of the defense mechanisms against different types of 
cellular stress states (Budanov, 2015; Fatima et al., 2021). 
Research efforts to understand and slow down the effects of 
aging are not new and have long been a central theme in 
biomedical research, but recent years have witnessed an 
increased surge of interest in the molecular pathways that 
govern longevity and are involved in age-related pathologies. 
Central to this research is Sestrin2 (Sesn2), an evolutionary 
conserved protein, that plays an important role in cellular 
homeostasis, antioxidant defense, and modulation of 

metabolic processes (Budanov et al., 2010). Sesn2 is a leucine 
sensor for the mechanistic target of the rapamycin (mTOR) 
pathway (Wolfson et al., 2016; Zahid et al., 2023). As the 
mTOR pathway is a central regulator of cell growth and 
metabolism and lies at the heart of a molecular network of 
aging biology, Sesn2 functions as a crucial node in this net
work. Sesn2 plays a crucial part in the mTOR signaling cas
cade by influencing the activity of mTOR in complex 1 
(mTORC1). This regulation is achieved through the inter
action of mTORC1 with the RAAG family of GTPases, which 
form two types of heterodimers, RRAG-A/B and RAAG-C/D 
(Budanov, 2015). The activation of these heterodimers is con
tingent upon GTP and GDP binding to RRAG-A/B and RRAG- 
C/D, respectively. This interaction is essential for the recruit
ment of mTORC1 to lysosomal membranes, its subsequent 
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activation by RHEB, and the modulation of its activity via 
guanine nucleotide exchange factors (GEFs) and GTPase-acti
vating proteins (GAPs). Sesn2’s role becomes particularly sig
nificant during leucine deficiency, where it binds to GATOR2, 
thereby relieving GATOR1, a GAP for RAAG, from GATOR2’s 
suppression, culminating in the inhibition of mTORC1 
(Chantranupong et al., 2014). Upon leucine binding, Sesn2 
dissociates from GATOR2, inhibiting GATOR1 and leaving 
mTORC1 unleashed to perform anabolic activities, which 
come at the cost of oxidative stress. Additionally, mTORC1 
activation inhibits autophagy which is one of the important 
mechanisms for degrading damaged macromolecules and 
organelles and provides defense against cellular stress 
(Gelino & Hansen, 2012). Stimulation of AMP-activated pro
tein kinase (AMPK), inhibition of mTORC1 activation, and ini
tiation of autophagic signaling have demonstrated the 
potential to enhance the lifespan and overall health of 
model organisms (Gelino & Hansen, 2012; Harrison et al., 
2009; Miller et al., 2011; Wilkinson et al., 2012). Loss of 
Drosophila Sestrin (dSesn) resulted in early onset of aged 
phenotype as evidenced by skeletal and cardiac muscle 
degeneration, mitochondrial dysfunction, and the accumula
tion of triglycerides through uncontrolled activation of 
mTORC1 (Lee et al., 2010). The aged cardiac muscles express 
low levels of Sesn2 and are more prone to damage by stress 
(Quan et al., 2017; 2020). As Sesn2 activates AMPK, inhibits 
mTOTC1, and activates autophagy, modulation of Sesn2 is a 
viable strategy to prevent or delay the onset of age-associ
ated pathologies (Cordani et al., 2019; Kim et al., 2015; 
Morrison et al., 2015). The discovery of NV-5138, a leucine- 
like ligand of Sesn2 to activate mTORC1, is the proof of con
cept that the modulation of the mTORC1 pathway is possible 
through Sesn2 (Sengupta et al., 2019). Sestrin 2 emerges as a 
pivotal target in combatting chemotherapeutic drug resist
ance, given its role in triggering the activation of AKT and/or 
AMPK pathways. Within human SCC and melanoma cells, ses
trin 2 has been observed to foster chemotherapeutic drug 
resistance through AKT pathway activation and modulation 
of PTEN activity (Pasha et al., 2017).

The Sesn2 protein is composed of a singular polypeptide 
chain that spans 480 amino acids, with an overall molecular 
weight of approximately 55 kilodaltons. Structurally, Sesn2 is 
characterized by its globular form that solely consists of 
alpha-helical structures without the presence of beta sheets. 
The three-dimensional conformation of SESN2, as determined 
through X-ray crystallography and cataloged under the 
Protein Data Bank identifier 5DJ4, reveals distinct domain 
organizations: an N-terminal domain (NTD) composed of 
amino acids 66 to 220, a C-terminal domain (CTD) consisting 
of amino acids 339 to 480, and a flexible linker domain (LD) 
spanning amino acids 221 to 338 that connects the NTD and 
CTD (Saxton et al., 2016; Wolfson et al., 2016). Within the 
CTD lies a leucine-binding site, formed by the convergence 
of three alpha helices and one helix from the LD. Essential 
for the protein’s function, the residues GLU451 in the CTD 
and LEU261 in the LD are integral to leucine’s attachment to 
Sesn2. Furthermore, the residues SER190 in the NTD, along
side Asp406 and Asp407 in the CTD, are pivotal for Sesn2’s 

interaction with the protein complex GATOR2, with the latter 
two residues’ proximity to the leucine-binding site shedding 
light on the leucine-dependent modulation of Sesn2 and 
GATOR2’s interaction. However, the comprehensive structural 
nuances of Sesn2’s engagements with other stress-response 
regulating proteins like AMPK and LKB1, particularly how leu
cine binding influences these interactions, remain to be fully 
elucidated. Unraveling these details is essential for the syn
thesis and optimization of small molecules that could poten
tially enhance SESN2’s activity by reinforcing these protein- 
protein interactions.

Leucine is the native known ligand of Sesn2, and its inter
action with Sesn2 is particularly noteworthy, as it influences 
the activity of mTOR (Saxton et al., 2016; Sengupta et al., 
2019). Understanding the nuances of leucine binding to 
Sesn2, therefore, has profound implications for therapeutic 
strategies aimed at modulating aging and its associated 
pathologies. It is important to find out how leucine interacts 
with Sesn2 and how mutations in the binding pocket of leu
cine affect the binding of leucine. Mutations within the Sesn2 
gene can alter the structural integrity and function of the 
protein, potentially affecting leucine binding and subsequent 
mTOR pathway signaling. The exploration of these functional 
mutations provides a window into the complexity of aging 
mechanisms, revealing how subtle genetic variations can 
have far-reaching effects on cellular function and organismal 
health. This study is committed to investigating the impact 
of these mutations on the binding dynamics between leu
cine and Sesn2. By employing state-of-the-art structural and 
molecular simulation approaches, we aim to dissect the 
dynamics of atoms and energies that dictate the affinity and 
specificity of this interaction. These computational analyses, 
grounded in empirical data, will enable us to predict the 
effects of specific mutations on Sesn2 structure and function. 
Moreover, the apo structure of Sesn2 is still elusive (Saxton 
et al., 2016). The differences in leucine bound and apo state 
of Sesn2 are of utmost importance to decipher the mechan
ism of binding and dissociation of mTORC1 to GATOR2.

Incorporating a broad spectrum of simulation techniques, 
from molecular dynamics to free energy calculations, our 
study is designed to model the atomic-scale interactions 
between leucine and mutant forms of Sesn2 already 
described in the literature (Kim et al., 2015; Wolfson et al., 
2016). The implications of these interactions for the mTOR 
pathway and downstream biological effects are profound, as 
they may unveil novel regulatory mechanisms at play in the 
aging process. The translational impact of this research is sig
nificant, as it has the potential to inform the development of 
targeted interventions. By identifying mutation ‘hotspots’ 
that critically alter leucine binding, we can pinpoint potential 
drug targets for the modulation of the mTOR pathway. Such 
therapeutic agents could be instrumental in the manage
ment of metabolic diseases, cancer, and neurodegenerative 
disorders, thereby extending the health span and improving 
the quality of life for the aging population. As the global 
demographic shifts toward an older population, the urgency 
to understand and mitigate the effects of aging becomes 
increasingly paramount. Our research stands at the 
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intersection of gerontology, structural biology, and computa
tional biophysics, aspiring to contribute valuable knowledge 
to the scientific community. By unraveling the molecular 
intricacies of Sesn2-leucine interactions and their mutations, 
we hope to pave the way for innovative strategies to combat 
the inevitable tide of aging and its associated diseases.

Materials and methods

Structural modeling and preparation

The co-crystal structure of the Sesn2 in complex with leucine 
was downloaded from RCSB and the sequence was obtained 
from UniProt to model the missing residues (Consortium, 
2019). The sequences were submitted to Alpha Fold 2.0 to 
model the structures of the WT and mutants which uses a 
deep neural network architecture to model the structure of a 
query sequence (Jumper et al., 2021). It first predicts the dis
tances between the amino acid pairs and then refines the 
calculated distances to model the structure. For the calcula
tion of distance both the convolutional and residual layers in 
the ANN are considered. The predicted distances are repre
sented in a matrix form called the contact map. A new atten
tion mechanism has been incorporated into the network to 
facilitate the mapping of the 3D structure, allowing the net
work to concentrate on the most significant aspects of the 
input data. This attention mechanism has been modeled on 
the Transformer architecture employed in the natural lan
guage processing algorithm. Given a protein sequence S, 
Alpha Fold first generates a multiple sequence alignment 
(MSA) M using a profile Hidden Markov Model (HMM). The 
MSA is used to compute features such as the pairwise dis
tance matrix D. Next, the MSA and features are input into a 
deep residual neural network with L layers, which maps the 
protein sequence to a predicted 3D structure. The network 
consists of L residual blocks, each containing multiple convo
lutional layers and self-attention layers. The output of the 
last residual block is passed through a final layer to predict 
the per-residue coordinates in the 3D space (Skolnick et al., 
2021). The pLDDT score was used to evaluate the quality of 
each structure and also subjected to further validations. Each 
structure was minimized for 1000 steps using the steepest 
descent and 100 steps of conjugate gradient algorithms 
embedded in Chimera software. For structural deviations, the 
root mean square deviation (RMSD) method was used by 
aligning the wild-type (WT). For the visual representation of 
each, PyMOL and Chimera software were used (Goddard 
et al., 2005; Pettersen et al., 2004; Yuan et al., 2017).

Molecular interaction analysis using an in-silico docking 
approach

To decipher the binding variations induced by the naturally 
reported mutations on the binding of leucine with the Sesn2, 
we performed protein–protein docking using HADDOCK 
online server (Dominguez et al., 2003). It is an information- 
driven flexible docking approach that estimates the protein 

interfaces by using ambiguous interaction restraints (AIRs) and 
uses other approaches such as NMR residual dipolar couplings 
to model the complex. This docking is based on generating 
multiple conformations and then clustering the identical con
formations into their respective component. A blind docking 
protocol was employed to automatically search for the bind
ing interface. All three complexes revealed similar docking 
sites thus showing the accuracy of the employed algorithm. 
The top complexes were visualized and inspected for the 
potential hydrogen bonding and salt-bridges interactions 
using the PDBsum webserver and PyMOL software for 3D 
interactions (Laskowski, 2001).

All-atoms simulation in explicit solvent

To perform molecular simulations of all the systems, i.e., WT 
apo and holo state with the mutants and along with leucine, 
the coordinates, and topology files were prepared using the 
‘tLeap’ an integrated module in AMBER21 (Case et al., 2005; 
Salomon-Ferrer et al., 2013). A solvent box (OPC) was strategic
ally positioned around each system, followed by the addition 
of ions to neutralize the charge. Subsequently, the systems 
underwent energy minimization utilizing algorithms like steep
est descent and conjugate gradient until meeting convergence 
criteria, such as a maximum force or energy change threshold. 
To facilitate temperature equilibration, a temperature couplings 
algorithm such as Langevin Dynamics or Berendsen thermostat 
gradually heated the systems from a low temperature. Long- 
range electrostatic interactions were computed using the 
Particle Mesh Ewald (PME) method, while van der Waals forces 
were assessed via the Lennard-Jones potential (Toukmaji et al., 
2000). Each system underwent multiple stages of equilibration 
at the designated temperature and pressure. These stages 
included positional restraint, gradual heating, and unrestrained 
equilibration. To preserve covalent bond lengths, the SHAKE 
algorithm was employed to constrain both bond lengths and 
angles. The system pressure was regulated utilizing a barostat 
mechanism such as Berendsen or Andersen (Fyta, 2016). 
Following equilibration, each system underwent a production 
simulation lasting 300 ns, employing a molecular dynamics 
algorithm like the NPT or NVT ensemble (Salomon-Ferrer et al., 
2013). In this step, simulation parameters including time step 
and cut-off distances were set. We then analyzed each trajec
tory by using CPPTRAJ or PTRAJ modules (Roe & Cheatham, 
2013). For structural stability, RMSD, for residual flexibility, 
RMSF, for structural compactness, Rg, and hydrogen bonding 
for each system were calculated (Cooper, 1976; Lobanov et al., 
2008; Maiorov & Crippen, 1994).

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d2i ¼ 1

Natoms

s

(ii) 

where:
The parameter ‘di’ signifies the disparity in atom positions 

between the original and superimposed structures, with ‘I’ 
representing the reference point. Meanwhile, the root mean 
square fluctuation (RMSF) can be derived from the B-factor, a 
critical parameter for gauging the flexibility of protein 
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residues. Mathematically, RMSF is calculated using the follow
ing equation.

Thermal f actor or B − factor ¼ ½ð8p��2Þ=3�ðmsf Þ (iii) 

The radius of gyration measures the compactness of a 
protein structure.

R2
gyr ¼

1
M

XN

i¼1

mi ri − R2
� �

(iv) 

where

M ¼
XN

i¼1
mi (v) 

is the total mass and;

R ¼ N−1
XN

i¼1
ri (vi) 

is the center of mass of the protein consisting of N atoms.

Binding-free energy estimation through MM/GBSA 
analysis

Understanding how proteins recognize their biologically sig
nificant ligands or small molecule inhibitors is crucial for the 
development of effective treatments. This method offers 
advantages over others due to its time efficiency and low 
computational cost. It is commonly employed to determine 
the binding free energy (BFE) for both protein-protein and 
protein-ligand complexes. The BFE is computed as the dis
parity between the free energies of the bound protein-ligand 
complex (Gcomplex, solvated) and the unbound states of Sesn2 
(Gprotein, solvated) and Leucine (Gligand, solvated). The subsequent 
equation was utilized to compute each term contributing to 
the overall binding energy (Chen et al., 2016).

DGbind ¼ Gðcomplex, solvatedÞ – G protein, solvatedð Þ – Gðligand, solvatedÞ

(vii) 

This equation can be used to determine the contribution 
of interaction in the complex and can be expressed as;

G ¼ EMolecular Mechanics- Gsolvated – TS (viii) 

This equation can be further restructured to calculate the 
specific energy term.

DGbind ¼ DEMolecular Mechanics þ DGsolvated – DTS

¼ DGvaccum þ DGsolvated (ix) 

DEMolecular Mechanics ¼ DEint þ DEelectrostatic þ DEvdW (x) 

DGsolvated ¼ DGGeneralized born þ DGsurface area (xi) 

DGsurface area ¼ c:SASAþ b (xii) 

DGvaccum ¼ DEMolecular Mechanics − TDS (xiii) 

The total binding energy, denoted as DGbind, encom
passes contributions from various terms. Specifically, the 
overall gas-phase energy, comprising DEinternal, DEelectrostatic, 
and DEvdw, is encapsulated in DEMM. Additionally, DGsol rep
resents the summation of polar (DGPB/GB) and non-polar 
(DGSA) solvation contributions. Conformational binding 
entropy, often determined through normal-mode analysis, is 
denoted by -TDS. The internal energy originating from 
molecular mechanics (MM) force fields, encompassing bonds, 

angles, and dihedral angles, is reflected in DEinternal. 
DEelectrostatic and DEvdw signify electrostatic and van der 
Waals energies computed via MM, while DGPB/GB quantifies 
the polar solvation-free energy utilizing Poisson–Boltzmann 
(PB) or generalized Born (GB) methodologies. DGSA denotes 
nonpolar solvation-free energy, typically calculated using a 
linear function of the solvent-accessible surface area (SASA). 
It’s noteworthy that conformational entropy was omitted due 
to computational demands and inherent inaccuracies 
(Nadeem et al., 2023).

Dimensionality reduction through principal component 
analysis (PCA)

Principal Component Analysis (PCA) is a widely used method 
in analyzing data from molecular dynamics simulations of 
biological macromolecules. It simplifies the analysis by reduc
ing the complexity of the data while retaining important 
information. PCA is popular because it is easy to use and 
does not require extensive computational resources. It helps 
in removing the influence of overall motion from the data. 
The process involves calculating a covariance matrix from 
the data, determining its eigenvectors and eigenvalues, and 
identifying the principal components based on the highest 
eigenvalues. These principal components capture the most 
significant structural changes and movements in the system, 
allowing for a better understanding and visualization of the 
simulation results (Kurita, 2019). The subsequent mathemat
ical equation facilitates the computation of the covariance 
matrix (C) based on a series of n-dimensional vectors (xi):

C ¼
1
N

x
X

i ¼ 1 to Nð Þ ðxi − l xðxi − lÞ
T
�

h

(x) 

where:
The equation enables the derivation of the eigenvectors 

(V) and eigenvalues (k) from the covariance matrix C, with N 
representing the number of vectors, l denoting the mean 
vector, and T indicating the transpose operation.

C x V ¼ k x V (xi) 

where V represents the eigenvector matrix while the diag
onal matrix of eigenvalues is represented by k. The principal 
components of the system are represented by the eigenvec
tors with the highest corresponding eigenvalues. In our ana
lysis, we utilized the unsupervised PCA method to calculate 
the two principal components, PC1 and PC2, which are 
essential for understanding the motions in our systems. We 
employed the CPPTRAJ module within the AMBER21 soft
ware package, considering the entire simulation trajectory 
comprising 10,000 frames per system. The spatial covariance 
matrix was computed using the eigenvectors and atomic 
coordinates, followed by an orthogonal coordinate trans
formation to obtain a diagonal matrix of eigenvalues. These 
eigenvectors and eigenvalues were then used to identify the 
principal components of the system, enabling us to visualize 
significant movements during the simulation and detect any 
conformational transitions.
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Free energy landscape (FEL) of the molecular simulation 
trajectories

The free energy landscape (FEL) plays a crucial role in deter
mining the thermodynamics and kinetics of molecular proc
esses in solution. It is a very useful approach to interpreting 
and analyzing biomolecular processes such as molecular fold
ing, aggregation, and recognition (Maisuradze et al., 2010). It 
is a graph of the free energy (f) plotted against the configur
ation space, which is defined by the collective coordinates (r) 
of all the atoms in the molecule. In our study, we employed 
the two principal components (PCs) to map the conform
ational transitions in each system and characterize them con
sequently identifying the lower energy minima and meta- 
states separated by energy barriers, which were depicted as 
deep valley plots. The free energy graph, depicting (f) 
against the configuration space defined by the collective 
coordinates (r) of all molecule atoms, illustrates the energy 
landscape. Our analysis utilized the two principal compo
nents (PCs) to depict conformational transitions within each 
system. This approach allowed us to identify lower energy 
minima and meta-states, separated by energy barriers, which 
were visualized as deep valley plots.

Results and discussion

Structures retrieval, modeling and preparation

The 3D coordinates of the leucine-bound Sesn2 were 
retrieved from RCSD using the accession number 5DJ4. This 
bi-domain structure contains an NTD (N-terminal domain), 
CTD (C-terminal domain), and a linker that connects the two 
domains. The NTD spans from 1–219, the linker spans from 
220–338 while the CTD space over 339–480 residues. The 
domain organization is given in Figure 1(a). The region 371– 
380 is a loop and responsible for the ‘lid-latch’ mechanism 
which helps in the robust binding of leucine. The structure 
of Sesn2 contains missing loops which correspond to a loop 
region that connects L1 and L2 helices in the linker, the tail 

of the linker, and the NTD (N2 helix). These regions were 
modeled using a loop modeler as both domains are required 
for the leucine recognition and binding. To determine the 
binding pattern of leucine with Sesn2, the interaction pattern 
was determined which reported several hydrogen bonding 
interactions with the key residues. For instance, six hydrogen 
bonds involving Thr374, Tyr375, Thr377, Thr386, and Glu451 
residues are in direct contact with the leucine. The binding 
pattern strongly aligns with the crystallographic coordinates 
reported by previous literature (Saxton et al., 2016). To fur
ther decipher the impact of the aforementioned mutations 
the interaction pattern was revealed and compared with the 
WT. The interaction pattern of the WT Sesn2 and leucine is 
given in Figure 1(b).

The interaction paradigm of the mutants such as T374A, 
Y37F, T386A, R390A, W444E, and E451Q was also explored to 
determine the functional impact and variations caused by 
these substitutions. The interaction pattern for the T374A 
mutant is given in Figure 2(a), which shows that upon the 
substitution three hydrogen bonds are lost while only three 
are remaining. The interactions include Tyr375, Thr377 and 
Glu451. It has been previously reported that this mutation 
functionally impairs the binding of leucine and therefore 
plays an essential role in the leucin binding (Saxton et al., 
2016). Similarly, the Y375F reported four hydrogen bonds 
which were also observed in the T386A, R390A, and W444E. 
All these mutants determined a similar pattern of interac
tions and are presented in Figure 2(b–e). It can be seen that 
the interaction with T386 is primarily lost and, therefore, 
shows the essential role of T386 in leucine binding. The T386 
has been reported to be one of the three conserved threo
nines that make hydrogen bond contacts with the carboxyl 
group of leucine (Saxton et al., 2016). In the E451Q, the inter
action with the highly conserved residue E451 has been 
diminished and make is functionally impaired. The role of 
E451 has been described somewhere which reports the 
essential contribution of E451 in leucine binding (Wolfson 
et al., 2016). The interaction pattern for the E451Q mutant is 

Figure 1. Structural organization of Sesn2 and Leucine binding. (a) shows the domain organization of the Sesn2. The CTD is given in magenta color, NTD is given 
in green color while the linker is given as red. The Lid that is essential for the leucine robust interaction is given in blue color corresponding to 371-380 residues. 
(b) shows the interaction pattern of leucine with Sens. Hydrogen bonds are shown as dotted blue lines.
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shown in Figure 2(f). Overall, this shows that these mutations 
significantly affect the binding of leucine and, therefore, play 
an essential role and lead to a concomitant increase in the 
leucine concentration required for mTORC1 activation in cells.

Structural dynamics-based stability assessment

The investigation of structural stability using a dynamics- 
based trajectory determines essential information regarding 
the biological mechanisms of different processes. Dynamics 
stability influences the efficiency of biological reactions and 
any perturbation in the dynamics stability influences the 
overall reaction rate. Moreover, it also ensures the specificity 
of these interactions, and effective signal transduction within 
the cell, and is central to regulating gene expression and cell 
cycle control. Considering the essential role of structural sta
bility in deciphering many biological processes we also calcu
lated RMSD as a function of time for each system. As shown 
in Figure 3(a), the RMSD for the apo state remains higher 
than the WT-holo state. For instance, the RMSD for the apo 
state was calculated to be 5.80 Å while for the WT an aver
age RMSD remained lower and maintained a level of 3.10 Å 
during the simulation. No significant structural perturbation 
was observed, and a more rigid simulation was observed. In 
the context of T374A the RMSD remains similar to the apo 
state, however, a minor difference in the average RMSD was 
observed. An average RMSD for the T374A was estimated to 
be 4.86 Å during the simulation. As given, it can be seen that 
the WT bound to leucine maintains a more stable and lower 
RMSD level than the apo and T374A systems and, therefore, 
revealed that the apo state and T374A exhibit higher con
formational flexibility due to the absence/reduced binding of 
the ligand (leucine) that consequently reduces the ligand- 

induced–structural constraints and allows it to sample a 
broader range of conformations, resulting in a higher RMSD.

On the other hand, the Y375F reported a more similar 
RMSD pattern as the WT complex. The RMSD started to 
increase from 0 and reached a maximum of 3.5 Å at 110 ns. 
Then the RMSD gradually decreased and reached the lowest 
at 350 ns. Afterward, the RMSD started to gradually increase 
again and determined a pattern with no major deviation dur
ing the simulation. It can be speculated that the Y375F 
engages local structural changes in specific regions of the 
protein that are associated with the reduced binding of leu
cine to the leucine binding cavity of Sesn2. The RMSD results 
for the Y375F are given in Figure 3(b). Moreover, the T386A 
also reported similar RMSD levels as the WT and Y375F. The 
RMSD initially reported structural deviations until 320 ns and 
then stabilized after 320 ns and remained uniform until the 
end of the simulation. A similar RMSD levels does not neces
sarily reflect similar binding of leucine but may also deter
mine that the defined simulation time is enough for 
enhanced sampling in which this complex attained stability 
in contrast to the others. The RMSD results for the T386A are 
given in Figure 3(c).

Similarly, the R390A also reported a similar level of RMSD 
as the WT but after 450 ns the RMSD increased again which 
shows that the complex is still searching for stabilized con
formation and is sampling a broader range of conformations 
even after 400 ns of simulation time period. This shows that 
the mutations have induced some changes that are respon
sible for variations in the dynamic properties, particularly the 
structural stability, and cause functional variance. The RMSD 
results for the R390A are given in Figure 3(d). An average 
RMSD for the R390A complex was calculated to be 3.27 Å. 
The W444E mutation in the Sesn2 reported a higher RMSD 

Figure 2. Interaction patterns of Leucine with the mutants of Sesn2. (a) shows the binding pattern of T374A with Sesn2, (b) shows the binding pattern of Y375F 
with Sesn2, (c) shows the binding pattern of T386A with Sesn2, (d) shows the binding pattern of R390A with Sesn2, (e) shows the binding pattern of W444E with 
Sesn2, and (f) shows the binding pattern of E451Q with Sesn2. Hydrogen bonds are shown as dotted blue lines.
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than the WT complex and major perturbations were 
observed during the first 100 ns. The RMSD remained higher 
during the 1–280ns and then converged with the WT RMSD.

Similarly, the E451Q reported major perturbations during the 
first 300 ns and attained a stable conformation after 300 ns. An 
average RMSD for the W444E and E451Q were reported to be 
3.50 and 3.20 Å, respectively. The RMSD results for the W444E 
and E451Q complexes are reported in Figure 3(e and f). In sum, 
these mutations compromised the dynamic stability by altering 
the conformational flexibility, sampling time, and leucine- 
induced structural constraints that consequently caused vari
ation in the binding and structural stability.

Protein structure size measurement through Rg 
calculation

Quantification of the structural size through Rg calculation 
reveals essential knowledge regarding the binding and 
unbinding events. It has been a widely used approach to 
determine the variation in the protein size caused by the 
mutations acquired by it. As depicted in Figure 4(a), the apo 
state has an Rg lower than the WT complex. The T374A 
reported a lower Rg value and thus maintained a tighter 
structure of the protein. During the first 225 ns, the WT com
plex reported lower Rg, which then gradually increased and 
reached up to 22.80 Å. The increase in the protein size deter
mines the conformational rearrangement that leads to opti
mized binding of the leucine than the mutants.

Similarly, the Rg value for the Y375F also determined a 
lower Rg during the first 225 ns and then increased up to 
22.41 Å in the last part of the simulation. The result strongly 
aligns with the RMSD results where the WT and Y375F con
verged with each other and hence here also followed the 
same pattern by determining similar behavior. The Rg graph 

for the Y375F mutant is shown in Figure 4(b). On the other 
hand, the T386A started to decrease the Rg gradually and 
reached the lowest at 500 ns. An average Rg for this complex 
was calculated to be 21.85 Å. The Rg graph for the T386A 
mutant is shown in Figure 4(c). A more similar behavior was 
observed for the R390A complex but similar to RMSD the Rg 
increased at the end of the simulation. After 475 ns, the Rg 
decreased and continues to maintain a similar level. The Rg 
graph for the R390A mutant is shown in Figure 4(d). The 
W444E mutant also reported a lower Rg than the apo and the 
WT complex. This complex continues to report a uniform Rg 
level but at 440 ns an abrupt increase was observed. The Rg 
graph for the W444E mutant is shown in Figure 4(e). Next, the 
E451Q complex reported a perturbation in the Rg pattern 
between 250 and 350 ns, and thereafter, no significant devi
ation was observed. The Rg graph for the E451Q mutant is 
shown in Figure 4(f). This shows that upon the leucine bind
ing a conformational expansion of the WT complex might 
take place therefore resulting in a larger Rg. Due to the loss 
of structural integrity, the mutant complex may disrupt pro
tein folding leading to a more compact and unstable structure 
rendering it dysfunctional. Misfolded proteins often fail to 
attain their native structure, leading to functional impairment. 
Moreover, flexibility is essential for proteins to carry out their 
functions, excessive rigidity or constraints in specific regions 
might impair dynamic motions required for catalysis, signaling, 
or other biological activities. Hence, the mutants’ structure 
maintained more constrained dynamics and therefore could 
potentially lead to leucine binding impairment.

Residue’s flexibility indexing

Within the domain of molecular dynamics (MD) simulations, 
the root mean square fluctuation (RMSF) emerges as a 

Figure 3. Dynamic stability analysis of the apo, holo (WT and mutant) systems. (a) shows the RMSD results for the apo state, WT (holo) and T374A complexes, (b) 
shows the RMSD results for the apo state, WT (holo) and Y375F complexes, (c) shows the RMSD results for the apo state, WT (holo) and T386A complexes, (d) 
shows the RMSD results for the apo state, WT (holo) and R390A complexes, (e) shows the RMSD results for the apo state, WT (holo) and W444E complexes, and (f) 
shows the RMSD results for the apo state, WT (holo) and E451Q complexes.
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valuable asset, facilitating the assessment and comparison of 
flexibility across diverse regions within a molecule or 
between molecules. It assists in pinpointing significant flex
ible areas pivotal in phenomena such as ligand binding or 
protein–protein interactions. Furthermore, RMSF plays a piv
otal role in validating MD simulations, as experimental RMSF 
measurements offer a means to authenticate the accuracy 
and effectiveness of the employed force field.

An alignment between the experimental and simulated 
RMSF values indicates that the simulation aptly captures the 
biomolecule’s flexibility and dynamics. To determine the 
residual flexibility and decipher the role of each residue in 
leucin recognition, binding, and stabilization we calculated 
the flexibility of each residue using the simulation trajectory. 
All the complexes demonstrated lower fluctuations for the 
region between 70–216, 340–370, and 380–470. The regions 
217–339 and 371–380 demonstrated a higher fluctuation. 
Nonetheless, these regions correspond to a linker (217–339) 
and a loop 371–380 that cover the leucine binding cavity 
that is involved in the ‘latch’ mechanism that lies in the N- 
terminal and makes it essential for the N-terminal involve
ment in leucine binding mechanism (Figure 5(a)). Three 
threonine residues, Thr374, Thr377, and Thr386, exhibit a 
high degree of conservation and are situated directly above 
the leucine-binding site. Mutations at these positions (T374A 
or T386A) lead to the disruption of the interaction with leu
cine, while concurrently establishing a constitutive inter
action with GATOR2 (Saxton et al., 2016). This underscores 
the indispensable role of the lid region in mediating leucine 
binding. Although both the domains are required for the leu
cine binding CTD comes in direct interaction only while resi
due His86 from NTD latches the cavity and makes it 

accessible to the active site residues. The linker that demon
strated higher flexibility and also the loop that is responsible 
for the lid-latch mechanism is shown in Figure 5(b).

Hydrogen bonding analysis

On the other hand, hydrogen bonds particularly in the con
text of protein–protein interaction are important to deter
mine the binding strength of interactions. It is an essential 
part of deciphering the mechanism of different biological 
processes, disease mechanisms, and the impact of mutations 
on protein coupling and molecular signaling. Considering 
the essential role of hydrogen bonding in various biological 
processes, we also estimated the hydrogen bonds in each 
trajectory over time. It can be observed that the average 
number of hydrogen bonds is higher in the WT than in the 
mutants, particularly in the T374A, T386A, R390A, and E451Q. 
This indicates a strong alignment of the current findings 
with the experimental reports where these residues were 
reported to be the most essential for leucine recognition and 
binding (Saxton et al., 2016). These observations also indicate 
that these mutations disrupt the regular hydrogen bonding 
patterns, reducing the ability of leucine to form hydrogen 
bonds leading to loss of functional integrity that conse
quently impacts the leucine binding. Hydrogen bonding 
graphs are depicted in Figure 6(a–f).

Binding-free energy calculation

The validation of docking results can be effectively achieved 
through the utilization of binding free energy calculation 
methods. These approaches, namely MM/PBSA (Molecular 

Figure 4. Structural compactness analysis of the apo, holo (WT and mutant) systems. (a) shows the Rg results for the apo state, WT (holo) and T374A complexes, 
(b) shows the Rg results for the apo state, WT (holo) and Y375F complexes, (c) shows the Rg results for the apo state, WT (holo) and T386A complexes, (d) shows 
the Rg results for the apo state, WT (holo) and R390A complexes, (e) shows the Rg results for the apo state, WT (holo) and W444E complexes, and (f) shows the Rg 
results for the apo state, WT (holo) and E451Q complexes.
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Mechanics/Poisson-Boltzmann Surface Area) and MM/GBSA 
(Molecular Mechanics/Generalized Born Surface Area), are 
recognized for their accuracy, efficiency, and computational 
cost-effectiveness. Widely applied across diverse research 
contexts, these methods offer a robust means of determining 

the binding potential of various protein complexes impli
cated in different diseases. In light of the demonstrated effi
cacy of this approach, we conducted binding free energy 
calculations using MM/PBSA and MM/GBSA methods to fur
ther validate our docking results. The MM/PBSA results are 

Figure 5. Residue’s flexibility analysis of the apo, holo (WT and mutant) systems. (a) shows the RMSF results for the apo state, WT (holo), and mutant complexes. 
It shows the regions that are dynamically more flexible than the others and are highlighted with the shade. (b) shows the mapped dynamically flexible regions, i.e. 
the linker and the lid. The linker is shown as red, the lid is given in blue while the NTD, CTD, and leucine binding are also highlighted.

Figure 6. Hydrogen bonds (H-bonds) analysis of the apo, holo (WT and mutant) systems. (a) shows the H-bonds results for the apo state, WT (holo) and T374A 
complexes, (b) shows the H-bonds results for the apo state, WT (holo) and Y375F complexes, (c) shows the H-bonds results for the apo state, WT (holo) and T386A 
complexes, (d) shows the H-bonds results for the apo state, WT (holo) and R390A complexes, (e) shows the H-bonds results for the apo state, WT (holo) and 
W444E complexes, and (f) shows the H-bonds results for the apo state, WT (holo) and E451Q complexes.
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summarized in Table 1. For the WT, the vdW was calculated 
to be −27.46 ± 0.19 kcal/mol while the mutants reported vdW 
values of −18.47 ± 0.10 kcal/mol for T374A mutant, 
−21.43 ± 0.18 kcal/mol for Y375F mutant, −20.47 ± 0.20 for 
T386A mutant, −21.39 ± 0.13 for R390A mutant, −21.84 ± 
0.14 kcal/mol for W444E mutant, and −22.81 ± 0.11 kcal/mol 
for E451Q mutant.

On the other hand, the electrostatic energy (EEL) was cal
culated to be −151.23 ± 0.75 kcal/mol for the WT, 
−136.14 ± 0.79 kcal/mol for T374A mutant, −130.37 ± 
0.85 kcal/mol for Y375F mutant, −129.62 ± 0.85 for T386A 
mutant, −134.35 ± 0.32 for tR390A mutant, −128.42 ± 0.23 for 
W444E mutant, and −130.78 ± 0.41 kcal/mol for E451Q 
mutant. The total binding free energy using the MM/PBSA 
approach was calculated to be −47.32 ± 0.71 for the WT, 
−31.93 ± 0.73 kcal/mol for the T374A mutant, −37.79 ± 
0.76 kcal/mol for Y375F mutant, −35.67 ± 0.82 kcal/mol for 
T386A mutant, −38.13 ± 0.85 for R390A mutant, −35.44 ± 0.84 
for W444E, and −32.21 ± 0.77 kcal/mol for the E451Q. The 
MM/PBSA results for each system are summarized in Table 1.

Furthermore, the total binding free energy was also calcu
lated for each complex using the MM/GBSA, and the results 
are summarized in Table 2. The total binding free energy for 
each complex was calculated to be −53.60 ± 0.38 kcal/mol for 
the WT, −43.45 ± 0.10 kcal/mol for T374A, −46.55 ± 0.89 kcal/ 
mol for Y375F mutant, −45.58 ± 0.47 kcal/mol for T386A 
mutant, −47.43 ± 0.18 kcal/mol for R390A mutant, −43.91 ± 
1.16 kcal/mol for W444E mutant, and −44.43 ± 0.16 kcal/mol 
for E451Q. The total binding free energy has significantly 
declined which aligns with previous findings where these 
mutations were reported to make Sesn2 non-functional 
(Saxton et al., 2016; Wolfson et al., 2016). From these data, it 
can be observed that each system gains free energy in the 
gas phase but not in the solvent. These findings suggest 
that the leucine binding is thermodynamically favored in 
terms of enthalpy, primarily owing to advantageous 

interactions in the gas phase. However, it is disfavored in 
terms of entropy due to the unfavorable effects of solvation.

Principal components analysis (PCA)

PCA provides a simplified representation of the essential 
motions in an MD simulation trajectory, making it easier to 
interpret and understand the dynamics of the molecular sys
tem. It is a valuable tool for extracting meaningful informa
tion from the often complex and high-dimensional data 
generated by MD simulations. Herein, the WT protein exhib
its a constrained motion in PCA suggesting that its native 
structure has a stable, well-defined conformation optimized 
for leucine recognition. The constrained motion implies lim
ited flexibility, possibly indicating a specific binding site 
geometry. On the other hand, mutated proteins with spread- 
out motions suggest altered or dynamic binding regions, 
potentially affecting ligand interactions. This increased flexi
bility in mutants influences binding kinetics or enables the 
accommodation of diverse leucine conformations. Overall, 
the PCA results hint at the structural impact of mutations on 
the protein’s binding dynamics, potentially influencing ligand 
recognition and binding affinity. The PCA results are shown 
in Figure 7(a–g).

Free-energy landscape analysis (FEL)

In the case of FEL analysis, a WT protein displaying a con
strained motion suggests a well-defined energy minimum in 
the landscape, indicating a stable native state optimized for 
ligand binding. The mutations, resulting in spread-out 
motions, imply a broader and less-defined landscape, poten
tially leading to multiple conformational states. This 
increased flexibility in mutants could result in a more 
dynamic and diverse FEL, affecting the energy barriers 

Table 1. Estimation of the BFE using the MM/PBSA approach for the whole simulation trajectory. All the results are provided in kcal/mol.

MMPBSA

Wild-type (WT) T374A Y375F T386A R390A W444E E451Q

VDWAALS −27.46 ± 0.19 −18.47 ± 0.10 −21.43 ± 0.18 −20.47 ± 0.20 −21.39 ± 0.13 −21.84 ± 0.14 −22.81 ± 0.11
EEL −151.23 ± 0.75 −136.14 ± 0.79 −130.37 ± 0.85 −129.62 ± 0.85 −134.35 ± 0.32 −128.42 ± 0.23 −130.78 ± 0.41
EPB 133.47 ± 0.49 124.630 ± 0.74 116.68 ± 0.80 117.43 ± 0.80 120.78 ± 0.24 117.27 ± 0.22 123.26 ± 0.29
ENPOLAR −2.10 ± 0.33 −1.95 ± 0.21 −2.67 ± 0.02 −3.01 ± 0.01 −3.17 ± 0.01 −2.45 ± 0.00 −1.88 ± 0.01
EDISPER 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
DELTA G gas −167.94 ± 0.73 −130.58 ± 0.81 −133.48 ± 0.86 −118.23 ± 1.53 −136.95 ± 0.83 −122.96 ± 1.25 −157.59 ± 1.41
DELTA G solv 131.37 ± 0.49 116.29 ± 0.52 114.22 ± 0.77 108.25 ± 1.26 112.42 ± 1.24 119.78 ± 1.27 121.38 ± 1.29
DELTA Total 247.32 ± 0.71 231.93 ± 0.73 237.79 ± 0.76 235.67 ± 0.82 238.13 ± 0.85 235.44 ± 0.84 232.21 ± 0.77

Table 2. Estimation of the BFE using the MM/GBSA approach for the whole simulation trajectory. All the results are provided in kcal/mol.

MMGBSA

Wild-type (WT) T374A Y375F T386A R390A W444E E451Q

VDWAALS −27.46 ± 0.19 −18.47 ± 0.10 −21.43 ± 0.18 −20.47 ± 0.20 −21.45 ± 0.13 −21.84 ± 0.14 −22.81 ± 0.11
EEL −151.23 ± 0.75 −136.14 ± 0.39 −130.37 ± 0.85 −129.62 ± 0.85 −134.35 ± 0.32 −128.42 ± 1.23 −130.78 ± 0.41
EGB 128.51 ± 0.51 110.07 ± 0.46 108.42 ± 0.94 107.12 ± 1.26 110.90 ± 0.19 110.30 ± 1.20 116.53 ± 0.32
ESURF −3.42 ± 0.06 −2.91 ± 0.03 −3.17 ± 0.02 −2.61 ± 0.01 −2.41 ± 0.01 −3.95 ± 0.02 −3.37 ± 0.00
DELTA G gas −167.94 ± 0.73 −130.58 ± 0.81 −133.48 ± 0.86 −118.23 ± 1.53 −136.95 ± 1.03 −122.96 ± 1.25 −157.59 ± 0.41
DELTA G solv 125.08 ± 0.51 115.64 ± 0.64 109.82 ± 0.75 109.40 ± 1.26 118.86 ± 1.19 113.47 ± 1.27 122.16 ± 0.32
DELTA TOTAL 253.60 ± 0.38 243.45 ± 0.10 246.55 ± 0.89 245.58 ± 0.47 247.43 ± 0.18 243.91 ± 1.16 244.43 ± 0.16
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associated with ligand binding. Thus, the FEL analysis sup
ports the idea that mutations influence the protein’s energy 
landscape, potentially impacting ligand binding kinetics and 
specificity. The FEL results are shown in Figure 8(a–g).

Conclusions

Leucine is the native known ligand of Sesn2 and its inter
action with Sesn2 is particularly noteworthy, as it influences 
the activity of mTOR in aging and its associated pathologies. 
This study investigated the impact of non-synonymous muta
tions by incorporating a broad spectrum of simulation tech
niques, from molecular dynamics to free-energy calculations. 
Our results demonstrated that the interaction paradigm for 
the mutants has been altered and variations in the dynamic 
stability by altering the conformational flexibility, sampling 
time, and leucine-induced structural constraints consequently 
caused variation in the binding and structural stability. The 
regions 217–339 and 371–380 demonstrated a higher fluctu
ation and correspond to a linker (217-339) and a loop 371– 
380 that cover the leucine binding cavity that is involved in 
the ‘latch’ mechanism that lies in the N-terminal and makes 

it essential for the N-terminal involvement in leucine binding 
mechanism. The reduced binding and altered internal 
motions by the mutants were further validated by the bind
ing free energy, PCA, and FEL methods. Research findings 
have indicated the significant clinical relevance of SESN2 
across a spectrum of diseases. Notably, circulating levels of 
SESN2 have been recognized as informative markers for 
assessing disease severity or predicting prognosis in various 
conditions, including cardiovascular diseases, respiratory dis
eases, neurodegenerative diseases, metabolic disorders, and 
cancers. Given the dynamic alteration of SESN2 expression 
during liver pathology, we propose that SESN2 holds prom
ise as a valuable clinical biomarker and prognostic indicator 
for liver diseases (Fang et al., 2020; Kishimoto et al., 2020; 
Pasha et al., 2017). By unravelling the molecular intricacies of 
Sesn2-leucine interactions and their mutations, we hope to 
pave the way for innovative strategies to combat the inevit
able tide of aging and its associated diseases by using struc
ture-based methods and pharmacophore design using 
leucine as input for the design of the features and, therefore, 
can be used to develop novel therapeutics considering these 
essential features. The only limitation of the current study is 

Figure 7. PCA analysis of the WT and Sesn2 mutants.

Figure 8. FEL analysis of the WT and Sesn2 mutants.
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using microsecond simulations and repeated runs to ensure 
the replicated results that can be correlated for therapeutic 
purposes. Experimental validation of these mutations should 
be performed to guide the drugs development against 
SENS2 in various diseases.
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