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Abstract
The COVID-19 pandemic has highlighted that effective early infection detection methods are essential, as they play a 
critical role in controlling the epidemic spread. In this work, we investigate the use of wearable sensors in conjunction 
with machine learning (ML) techniques for pandemic infection detection. We work on designing a wristband that meas-
ures various vital parameters such as temperature, heart rate, and SPO2, and transmits them to a mobile application 
using Bluetooth Low Energy. The accuracy of the wristband measurements is shown to be within 10% of the readings of 
existing commercial products. The measured data can be used and analyzed for various purposes. To benefit from the 
existing online datasets related to COVID-19, we use this pandemic as an example in our work. Hence, we also develop 
ML-based models that use the measured vital parameters along with cough sounds in order to determine whether a case 
is COVID-19 positive or not. The proposed models are shown to achieve remarkable results, exceeding 90% accuracy. One 
of our proposed models exceeds 96% performance in terms of accuracy, precision, recall, and F1-Score. The system lends 
itself reasonably for amendment to deal with future pandemics by considering their specific features and designing the 
ML models accordingly. Furthermore, we design and develop a mobile application that shows the data collected from 
the wristband, records cough sounds, runs the ML model, and provides feedback to the user about their health status 
in a user-friendly, intuitive manner. A successful deployment of such an approach would decrease the load on hospitals 
and prevent infection from overcrowded spaces inside the hospital.

Keywords  Convolutional neural network (CNN ) · COVID-19 · Deep neural network (DNN ) · Machine learning (ML ) · 
MHealth · Pandemic infection detection · SpO2 sensor · Wearable devices · XGboost

1  Introduction

Despite the fact that pandemics seem to be rare events, reports have shown that the pace at which pandemics emerge 
is accelerating. Ever since 1980, more than 35 infectious diseases have appeared, at a rate of one disease every 8 months 
[1]. The world’s recent experience with COVID-19 has demonstrated the impact pandemics have on the human health and 
the global economy. Moreover, they lead to a huge load on healthcare institutions and affect the services they provide. 
Figs. 1 and 2 from [2] show the burden healthcare professionals were facing by the number of tests that needed to be 
performed (Fig. 1), and the number of patients that were being admitted to the hospitals (Fig. 2). In fact, the COVID-19 
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pandemic has highlighted the need for effective early infection detection methods, as they play a critical role in con-
trolling the epidemic spread. Existing infection detection methods, like Polymerase Chain Reaction (PCR), and Rapid 
Antigen (RAT) tests, and diagnostic procedures involving blood samples, X-rays, and CT scans, require individuals to 
visit the hospital. This leads to overcrowded waiting areas in healthcare facilities, which increases the infection rate and 
poses a health risk on patients. Therefore, a more effective infection detection method is required to deal with the influx 
of patients that arrive in hospitals, and simultaneously reduce the number of extra infections caused as a result of the 
packed hospitals. A remote preliminary diagnostic test using common symptoms like Cough Sounds, Body Temperature, 
Heart Rate, and Saturation of Peripheral Oxygen (SpO2) levels can be created to determine whether a person needs to 
visit the hospital. This helps individuals to determine whether they are suspected of an infection, and only visit hospitals 
in this case, consequently reducing the load on healthcare facilities.

Studies have shown the importance of using Artificial Intelligence in the medical field, as it can efficiently ana-
lyze medical data and improve digital technology [3]. In our previous work [4], we present a solution using Machine 

Fig. 1   Daily COVID-19 tests 
per a thousand people [2]

Fig. 2   Number of COVID-19 
patients in hospitals [2]
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Learning (ML) algorithms to help in the early detection of coronavirus (COVID-19) using patient cough sounds. 
Patient symptomatic data is also collected through a wristband, including Body Temperature, Heart Rate, and SpO2 
levels. This data is continuously transmitted to the Mobile Application via BLE technology for analysis. In this paper, 
we present a generalized approach that uses ML algorithms by jointly including the vital parameters data with the 
cough sounds in the classification process. The ML algorithms are used to identify any abnormalities in the readings 
to alert the user to take a cough test or visit a doctor for further evaluation.

Thus, the contributions of this paper can be summarized as follows: (i) Implementing a wristband that uses wear-
able sensors to measure vital signs parameters; (ii) Deriving ML models that use cough sounds and vital signs meas-
urements to detect infection, and showing that they perform well compared to the existing literature; and (iii) 
Designing a mobile application that collects the wristband’s readings, allows to user to perform a cough test, and 
implements the ML models to detect infection and inform the user accordingly.

The remainder of the paper is organized as follows: Sect. 2 reviews the existing literature, Sects. 3 presents our 
proposed solution and explains our work, and 4 showcases the obtained results. Finally, the conclusion is drawn in 
Sect. 5, and future research advancements are explored.

2 � Literature review

This section presents an overview of the most relevant works in the literature, and outlines the novelty of the pro-
posed approach.

2.1 � Mobile health technologies

The integration of wearable sensors and intelligent applications, exemplified by research such as that conducted 
by [5], marks a significant advancement in healthcare. This amalgamation enables the creation of innovative detec-
tion methods capable of identifying various diseases based on common symptoms. The early detection facilitated 
by these methods is vital for prompt medical intervention, crucial in curbing the spread of infectious diseases 
and potentially saving lives. Recent studies underscore the significant impact of these technologies on enhancing 
healthcare practices.

Currently, there are a lot of wearable sensors on the market that are used to track important health metrics. Fit-
ness trackers, exemplified by Fitbit and Garmin Vivosmart as examined in the study by [6], wearable Electrocardi-
ography (ECG) monitors like the Apple Watch (with ECG feature) enable continuous monitoring, detecting irregular 
heart rhythms as mentioned by [7], and smartwatches, like those covered in the study by [8], are a few instances 
of mHealth technology available in the market. Moreover, several studies have explored wearable medical-grade 
sensors, including remote patient monitoring systems as discussed in [9]. Due to developments in wearable sensor 
technology, people may now continuously monitor health metrics outside of conventional clinical settings, giving 
them more autonomy to take charge of their health and well-being.

An important symptom indicating a COVID-19 infection is the low percentage of oxygen in the blood. SpO2 levels 
can be measured using pulse oximeters found in wearable sensors, and readings that are equivalent to or below 92% 
indicate that the person might be infected by the disease and needs to urgently visit the hospital [10]. Efforts were 
made to create a pulse oximeter in contact-tracing devices like Samsung, Fitbit, and Apple watches, however, the 
readings are unreliable due to poor contact between the wristband and the watch, and continuous wrist movements 
[11]. Therefore, more focus is put into the reading of heartrate in these devices than the SpO2 levels.

Authors in a recent work [12] implement a wristband prototype that gives accurate measurements for blood oxy-
gen levels. The MPU9250 Inertial Measurement Unit (IMU) motion sensor is used to track the wrist rotation and the 
acceleration of the wrist. The values measured are then used to decrease the error rate of the SpO2 measurements, 
creating a reliable blood oxygen level monitoring device. We refer to the authors’ work in our paper, and we build 
on it by including other vital parameters and creating a connection with the mobile application via BLE, as will be 
explained later in Sect. 3.1.
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2.2 � Sensor connectivity

A Near Field Communication (NFC) ring and an Android application are used in the Rose-Hulman study Institute 
of Technology to show the viability of a Wireless Body Area Networks (WBAN) system [13]. A system prototype was 
created and tested as proof of concept. One of the sensors used in the system’s implementation, the TCRT1000, trans-
forms the heart rate data it receives into an electrical output. A microcontroller (MSP430G2553) receives the signal 
after it has been filtered and amplified. The microcontroller calculates the timing difference between two successive 
pulses. The NFC tag is written with the computed value. An Android phone’s application launches and reads the data 
from the NFC tag when the phone is in the tag’s transmission range. After that, the received data is put into a local 
SQLite database and processed further to create trends.

In our work, we benefited from the insights provided by the research paper [13] while diverging from its approach 
by adopting BLE technology instead of NFC. By incorporating BLE, we capitalized on its numerous advantages, includ-
ing extended range and compatibility with our wristband design. This decision allowed us to overcome challenges 
encountered with NFC components.

2.3 � Cough and symptom data classification

Various types of machine learning techniques are utilized for cough classification and detection of COVID-19. The 
authors in [14] display the techniques and findings of many researchers in the case of Cough classification and 
respiratory disease detection. The results of 10 papers that perform COVID-19 diagnosis with cough are shown in a 
table, and different models, such as Support Vector Machine (SVM), Deep Neural Network (DNN), and Convolutional 
Neural Network (CNN), and DTL-BC (Deep Transfer Learning-based Binary Classifier) are used. The results shown range 
from 68% to as high as 98.5%. In [15], a paper included in the comparison, the authors use a DNN model to classify 
Cough Sounds and other Symptom data. Good results are achieved, being [Precision: 95.04%, Recall: 90.1%, Accu-
racy: 96.83%]. The authors dataset consists of around 30,000 audio segments collect from 150 patients. The features 
extracted from the audio segments include: Mel Frequency Ceptstral Coefficients (MFCCs), Log Energy, Zero Crossing 
Rate, Skewness, Entropy, Format Frequencies, Kurtosis, and Fundamental Frequency. The other symptom data used 
include the common symptoms like Fever [1, 0], Difficulty Breathing [1, 0], etc. In our work, one of the experiments 
will consist of extracting the MFCC features from the audio files, as will be explained later on in Sect. 3.2.5.

Other researchers used different types of models, including CNNs and SVMs [16–19]. In [16] and [17], CNNs are 
used to train on Cough sounds only. In [16], the CNN is made of two 2D Convolutional Layers with Max Pooling 2D 
and are trained on the image representation of 1,811 Cough samples. In [17], pre-processing is performed on the 
5,320 audio samples and passed to a biomarker to be later passed to the CNN model. The CNN model created is made 
of three parallel Residual Neural Networks-50, and the output of the three networks in pooled using a 2D Global 
Average Pooling layer.

On the other hand, [18] and [19] used SVMs to train on the Cough samples. The authors in [18], an SVM is used to 
train on 4 different classes, including Normal, COVID-19, Pertussis, and Pneumonia. Log-based Mel-Spectrograms 
of the Cough sounds are used to compute a vector (m) which is passed to the SVM. In [19], both Cough sounds and 
symptoms are used for the classification. From the Cough sounds, 16-framelevel descriptors are extracted, includ-
ing: Zero-Crossing-Rate, Root Mean Square frame energy, Pitch Frequency, Harmonics-to-Noise Ratio, and 12 Mel-
Frequency Cepstral Coefficients. The features are combined with the most common COVID-19 symptoms, specifically: 
chills, dizziness, dry cough, fever, headache, muscleache, short of breath, loss of smell/taste, sore throat, tightness 
in chest, and wet cough. A vector is used to indicate the presence or absence of these features using [1, 0]. Data 
augmentation using Synthetic Minority Oversampling Technique (SMOTE) is performed to balance the dataset, and 
the SVM was trained on the 828 resulting samples.

In [20], the authors test with multiple model structures, including, CNN, Long Short-Term Memory (LSTM), Hybrid 
CNN-LSTM, and Attend-based Hybrid CNN-LSTM. The dataset used is the COUGHVID Crowdsourcing Dataset [21], 
also used in our work. The researchers filter out the dataset to keep only the label cough segments, remove silent 
sections in the audio segments, and keep only the cough segments with a higher probability of a cough. Since the 
dataset classes are unbalanced, the researchers perform Frequency and Time masking to increase the number of 
samples in the smaller“COVID-19”class. 10-fold Cross Validation is used to train the models, and hyper-parameter 
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tuning is performed, and the best results are achieved by the Hybrid CNN-LSTM model structure. The authors work 
included only cough sounds, and no other symptom data were used. In our work, a similar model structure is used 
in the Initial Approach, and in the first experiment of the Second Approach, as will be explained later in detail.

2.4 � Novelty of the proposed approach

Most of the previous works either consider cough sounds only, or vital parameters only to detect infection. The few works 
that consider both, e.g., [19], achieve relatively low accuracy, as shown in the comparisons of the results section. In this 
work, we provide a more complete diagnosis by considering both cough sounds and vital parameters, while designing 
ML models that achieve significantly better results than the literature. Moreover, we provide a complete solution based 
on a prototype that uses sensor measurements from a wearable wristband, in conjunction with a mobile application 
that displays these measurements and allows the user to perform a cough test. Indeed, existing commercial wearable 
devices provide some vital parameter readings, without providing the capability, in their accompanying mobile apps, 
to use cough sound testing with ML to detect infection.

As mentioned above, we had previously developed a machine learning model that can diagnose a person’s health 
using their cough sounds [4], and achieved high results of around 92%. Moreover, we developed a basic prototype of a 
wristband with a MAX30102 sensor to collect the vital parameters of a user and process them to be sent to the mobile 
application. Building on that, the main contributions of the work mentioned in this paper can be summarized as follows:

•	 Develop a Machine Learning model that can detect pandemic infections from the user’s vital parameters, including 
Body Temperature, Heart Rate, and SpO2 Levels.

•	 Develop a single Machine Learning model that can diagnose a case as either COVID-19 or Healthy by utilizing the 
two different infection symptom types; the user’s Cough Sounds (audio data), and the three main Vital parameters: 
Body Temperature, Heart Rate, and SpO2 Levels (numbers).

•	 Develop a complete efficient diagnosis system, including a mobile application that allows the user to record their 
cough and is dedicated to the wristband to check a person’s health from the data collected. The application provides 
feedback to the user using colors that symbolize their health state (Green: Healthy, Red: Immediately visit the Hospital).

•	 Develop a wristband prototype that has a sensing unit to collect the user’s vital parameters and can process the data 
(microcontroller) and transmit it continuously to the application using BLE.

•	 Provide a diagnosing method that individuals can use to self-monitor their symptoms during a pandemic, and a solu-
tion for medical facilities to reduce the burden of in-person infection testing and patient visits.

3 � Proposed solution

In this work, we aim to create a system that can be used to conduct remote diagnostic tests to detect infections dur-
ing a pandemic. We apply our concept on the latest pandemic COVID-19 due to the availability of a large open-source 
crowdsourcing dataset COUGHVID [21] and a vital parameter dataset [22]. The system we create is a complementary 
tool to avoid pressure on healthcare facilities as the symptoms are tested remotely without the need for a COVID-19 
RAT or PCR test.

The system is divided into two main sections, a Hardware section which consists of the Wristband, and a Software 
section which includes the Mobile Application as the Frontend, the Machine Learning model, the Database, and the 
Server as the Backend. To perform the diagnostic test, 4 symptoms are collected from the user, the Cough Sound, Body 
Temperature, Heart Rate, and SPO2 levels. The first symptom is collected through the Mobile Application through an 
interface that allows the user to record their cough while testing. The remaining three symptoms are collected through 
the wristband, processed, and sent to the backend server. When all the data is collected, the classification process begins, 
and the result is displayed to the user. A high-level architecture of the system can be seen in Fig. 3.

In our work, we create the Machine Learning model using two approaches. Initially, we create two separate machine 
learning models for each data type (Cough Sounds—Vital Parameters), however, we work on a more reliable diagnostic 
method in the second approach. Our final system uses the model created in the second approach. More details about 
the two approaches are explained in Sect. 3.2.
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3.1 � Hardware

3.1.1 � Components

The system’s hardware comprises three primary parts: the MAX30102 sensor, the Arduino Nano microcontroller 
(NodeMCU ESP32S), and the BLE protocol-based wireless communication subsystem. The modularity of the system has 
been thoughtfully considered throughout its design. The following circuit diagram, Fig. 4, illustrates the connections 
between these parts. The block MAX30102, which is in charge of gathering physiological data, is highlighted in the 
diagram. This module measures body temperature, heart rate, and SPO2 levels by integrating photo-detectors and LED 
emitters.

The data obtained from the MAX30102 sensor is then passed to the NodeMCU ESP32S block which serves as the 
system’s central control unit. The NodeMCU ESP32 handles the processing tasks related to the received sensor data. It 
processes the data and performs necessary algorithms or calculations to extract meaningful information.

A BLE is responsible for establishing wireless communication and allows data to be wirelessly transferred to the 
mobile application. This modular architecture enhances flexibility for future iterations and allows components to be 

Fig. 3   The structure of the 
proposed system

Fig. 4   Circuit diagram of hard-
ware system created in [23]
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easily updated. The MAX30102 sensor communicates with the NodeMCU ESP32 through the Inter-Integrated Circuits 
(I2C) protocol, and the wristband is carefully designed for comfortable and efficient system operation. The prototype 
design for the wristband in our system is shown in Fig. 5 below.

3.1.2 � Comparing our wristband with existing devices

In our effort to assess the efficacy of our wristband, we perform a comparison between our wristband and the Huawei 
Watch 3 Pro, both adept at conducting measurements which are body temperature, heart rate, and SPO2. This compara-
tive analysis serves as a litmus test to gauge the performance and accuracy of our wristband to a commercial device 
available in the market. By comparing both devices’ functionalities, precision, and user experience, we aim to ascertain 
strengths and areas for improvement of our wristband, ensuring that it meets the expectations set by existing industry 
standards. We also compared it with the Fitbit smartwatch, which only measures heart rate. Through this rigorous exami-
nation, we endeavor to affirm our commitment to delivering cutting-edge technology that competes and innovates 
within the health wearable devices landscape.

3.2 � Machine learning model

Our initial approach was to create a separate model for each datatype; a CNN model to classify the Cough Sounds 
recorded by the user, and a simple DNN model to classify the vital parameters sent from the wristband. Good results 
were achieved on both models, however, the diagnosing method of combining the results of two different models is 
not reliable. To create a single model for both data types, there should be a dataset that contains samples with Cough 
Sounds and Vital Parameters. Due to the unavailability of such a dataset, we create a new one by combining two existing 
datasets and training a single model to take both types of data and make a more efficient classification.

As explained in our work in [4], we convert the audio dataset (cough sounds) into mel-spectrograms. Since the dataset 
is unbalanced, we perform Pitch-Shifting and Spectral-data augmentation (Frequency and Time Masking) to create more 
samples that are slightly different from the original ones. We prefer this method over undersampling and oversampling 
since it prevents the model from overfitting on the data or under-learning.

In the initial approach (two separate models), there was no need to balance the samples of the two data types 
since each model would be trained separately. Augmentation was performed on the Cough dataset since the 
classes “Healthy” and “COVID-19” were unbalanced, and undersampling was performed on the “Healthy” class of the 
Vital Parameters dataset to match the number of samples in the “COVID-19” class.

Since in our second approach we are creating a new dataset by combining the COUGHVID Crowdsourcing Dataset and 
the Vital Parameters (Body Temperature, Heart Rate, and SpO2 Levels) from the COVID-19 Clinical Data Repository [22], 

Fig. 5   Wristband prototype 
design
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more augmentation and balancing steps are needed. We perform 6 main experiments as can be seen in Fig. 6. Some of 
the experiments require the Image Representation of the Cough Sounds, while others require the original audio format 
of the data. Since the Data Augmentation was done on the Image representation, the Audio and Vital Parameters dataset 
are unbalanced. Augmentation is performed on the Positive Cough Sounds and Positive Vital Parameters. Details of the 
Datasets used for the 6 experiments are shown in Tables 1, 2, and 3.

3.2.1 � Balancing the vital parameters dataset

The first step in our work is to balance the classes in the COVID-19 Clinical Data Repository. The Dataset provides many 
patient health data, including Test Results, Epi Factors, Comorbidities, Vitals, Symptoms, Radiological Findings, and more. 
In our work, we only need some values from the vital parameters, which are the Body Temperature, Heart Rate, and SPO2 
levels.

Fig. 6   Experiments conducted in this paper

Table 1   Cough dataset: 
images count before and after 
balancing

Class Count before Count after Total

Positive 5,332 15,996 33,912
Negative 8,958 17,916

Table 2   Cough dataset: 
audio count before and after 
balancing

Class Count before Count after Total

Positive 5,332 15,996 33,912
Negative 8,958 17,916

Table 3   Vital parameters 
dataset: vitals count before 
and after balancing

Class Count before Count after Total

Positive 1,045 19,855 65,131
Negative 45,275 same
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After extracting the required data, the data was cleaned, and only the samples with the three values available (Body 
Temperature, Heart Rate, and SPO2 levels) are kept. The number of samples after cleaning are 1046 Positive samples 
and 45,275 Negative samples, as can be seen in Table 3. The Negative class has more samples than needed, however, the 
Positive class needed more samples, and therefore, augmentation was performed.

Two of the common symptoms of COVID-19 are (1) High Body Temperature, and (2) Low Oxygen Levels. Using this 
information, we created more versions of each Positive Sample by adjusting the Body Temperature, Heart Rate, and SPO2 
levels. For the Temperature values, we created more samples by adding each of the following three values once [0.1, 0.2, 
0.3]. The SPO2 levels, which are whole numbers, where augmented using the following three values [−1, −2, −3], while 
the Heart Rate was augmented with [1, − 1]. We will call these values the Augmentation Values.

Combinations of the Augmentation Values are created, and are used to create more samples from each Positive Sample. 
18 combinations can be made with the Augmentation Values, therefore, the number of samples after augmenting the 
Positive class is (18 + the original sample = 19) 1045 x 19 = 19,855. Since the total new size of the dataset is 65,131 samples, 
we already acquired enough samples to create combinations with the Cough Dataset, and no more balancing is needed.

3.2.2 � Balancing the cough dataset‑audio

The Image version of the Cough Dataset is already balanced from our previous work in [4], with 33,912 samples in total. 
As mentioned previously, Pitch Shifting on the Audio Data is performed, and Frequency and Time Masking are performed 
on the Mel-Spectrograms.

Since we are using the audio format of the data, we already have the first part of the augmentation done - the Pitch 
Shifting. However, more data augmentation is required to create more Positive samples. The Count Before column in 
Tables 1 and 2 show the number of samples in the classes after the Pitch Shifting was performed.

Frequency and Time masking can only be performed on spectrograms (Frequency and Time axes). Therefore, we apply 
Time Masking on the audio data by inserting a 1-second long silence at a random location in the audio file. The overall 
audio file length stays the same. For the each Negative sample, we perform the Time Masking only once, while we do it 
twice for each Positive sample. The total number of samples in the dataset is the same as the total number of samples 
in the Mel-Spectrogram Dataset, which is 33,912 samples.

3.2.3 � Creating combination datasets

We create two main Combined Datasets, the Mel-Spectrogram—Vitals dataset, and the Audio Features—Vitals dataset. 
A script was created to pair every Positive Image/Audio file with a vital parameter sample randomly while checking that 
no duplicate combinations are created. The resulting datasets are the same size as the Mel-Spectrogram and Cough 
Audio datasets. No Cough sound, Mel-Spectrogram, or vital parameter was used twice.

The number of samples in the final Combined datasets are the same as the final samples in Tables 1 and 2.

3.2.4 � Extracting additional statistical features from the vital Parameters

In [4], we extracted 6 main features from the vital parameters—Body Temperature, Heart Rate and SpO2, including: 
[’mean’, ’minimum’, ’maximum’, ’rms’, ’std’, ’skew’]. In this work, we train each model twice, once with the 6 features men-
tioned, and once with 9 additional features, including: [’range’, ’median’, ’variance’, ’percentile_25’, ’percentile_50’, ’per-
centile_75’, ’iqr’, ’cv’, ’kurt’], as can be seen in Fig. 6.

The features are not previously extracted and stored. During the model training process, the required features are 
extracted and fed into the model. Therefore, we have one copy of the vital parameters samples in the Combined Datasets, 
and we extract 6 or 15 features based on the experiment.

3.2.5 � Explaining the data structures used in training

Three main experiments are performed in this work, and each experiment is conducted once with the six vital parameter 
features, and once with the 15 vital parameter features, as mentioned previously. The three main experiments can be 
explained as follows: 
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1.	 Experiment 1: [Model Type 1, Model Type 2] The Cough Mel-Spectrogram Combined Dataset is used in this experiment. 
The Images are kept in their Image format, and a Model is built by creating two sub models that have a common 
Input Layer and a common Output Layer. The input is split to the two models; the first being a CNN model to study 
the Images, and the second a Dense Neural Network to study the vital parameters. The output of the two sub models 
is concatenated and passed to the Output Layer.

2.	 Experiment 2: [Model Type 3, Model Type 4] The Cough Mel-Spectrogram Combined Dataset is used in this experi-
ment. The Images are flattened, and the vital parameters are concatenated to the end of the Image array to create 
one long array of data. The Model created is an XGboost model.

3.	 Experiment 3: [Model Type 5, Model Type 6] The Cough Audio Combined Dataset is used in this experiment. Features 
are extracted from the audio files. The features matrix is flattened and the vital parameters data is concatenated to 
the end of the array. XGBoost model is used, similar to Experiment 2.

Table 4 shows the naming convention that we will be using in the rest of the paper.

3.2.6 � Model structures

For the initial approach, the model used to classify the users’ cough sounds is a CNN model. As explained in [4], the audio 
cough sounds are converted to Mel-Spectrograms, converting the audio dataset into an image dataset. A hybrid CNN-
LSTM model is used, where the CNN part of the model is made of 4 Convolutional Layers with Average Pooling, Batch 
Normalization, ReLU Activation, and Dropout, while the LTSM section has 256 units with Dropout. The model was trained 
for 100 epochs with a batch-size of 256, a learning rate of 0.001, and an Adamax Optimizer. The model used for the vital 
parameters classification is a simple 2-Dense Layers model with ReLU Activation and Regularization, and was trained for 
20 epochs. Details of the model structures used in the first approach can be found in Fig. 7.

As explained in Sect. 3.2.5, we have three main experiments in our second approach, with a total of six models created. 
The first experiment type Image-Vital Parameters was trained for 100 epochs with 0.01 learning rate, batch-size 128, and 
an Adamax Optimizer. In this experiment, the model was divided into two parts with common Input and Output Layers. 
The first part of the model used for training on the cough images has the same model structure as the one used in the 
Initial Approach explained before. The second part of the model for the vital parameters is a simple DNN model of three 
Dense Layers.

Experiment Flattened Images-Vital Parameters uses an XGBoost Classifier with 600 estimators and 5 as the maximum 
depth, while experiment Audio Features-Vital Parameters uses an XGBoost Classifier with 1000 estimators, 5 as the 
maximum depth, and no-limit for the number of leaves. For experiment Images-Vital Parameters, the data was divided 
into 75% Training, 10% Validation, and 15% Testing. As for experiments Flattened Images-Vital Parameters and Audio 
Features-Vital Parameters that use an XGBoost model, the data was divided into 85% Training and 15% Testing.

4 � Results

In this section, we will show the results we received after comparing our wristband with existing products and the results 
from training our models.

4.1 � Comparing wristband readings

We have generated three graphs that showcase the performance metrics and readings obtained from our wristband and 
Huawei watch. One of the figures also includes heart rate measurements obtained from a Fitbit smartwatch. We consider 
two metrics to compare the performance of our wristband to these commercial products: (i) The average absolute dif-
ference and (ii) the mean absolute error.

Given two sets of N sample values an and bn , n = 1, ...,N , the average absolute difference is given by:

 Moreover, the mean absolute error is given by:

(1)AAD(a, b) =
1

N2

N∑

i=1

N∑

j=1

|ai − bj|
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Figure 8 shows a notable similarity between the curves, indicating consistent temperature readings. Both devices exhib-
ited nearly identical curve shapes, providing accurate readings ranging from 33.5 to 35.8◦ C. It shows less than natural 
temperature measures because they are both wrist-worn devices. To delve deeper into our analysis, we calculated the 
average absolute difference between our device and the Huawei watch, which amounted to 0.5%. This indicates a mini-
mal deviation between the two sets of readings, highlighting the reliability of our device in capturing temperature data. 
Furthermore, by computing the mean absolute error (MAE) across data points, we obtained a quantitative measure of 
the discrepancy between the devices’ readings, which was calculated to be 0.2. This value confirms that our model works 
well and is reliable.

Examining the graph depicted in Fig. 9, we observe fluctuations in SpO2 readings captured by both our wristband and 
the Huawei watch. Our wristband occasionally registers slight decreases before stabilizing at levels comparable to the 
Huawei watch. However, unlike the Huawei watch, which requires manual readings and minute-by-minute monitoring, 
our device seamlessly provides continuous, automated readings. The average absolute difference between the measure-
ments of the two devices being 2.9% indicates a relatively small deviation between their readings. Following this, we 

(2)MAE(a, b) =
1

N

N∑

n=1

|an − bn|

Fig. 7   Model Structures for 
the Initial Approach

Fig. 8   Temperature Compari-
son: Our Wristband vs. Huawei
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calculated the MAE across all data points, which resulted in a calculated MAE value of 2.7. This value further emphasizes 
the consistency and accuracy of our wristband’s SpO2 measurements compared to the Huawei watch.

Finally, distinctive observations were made when comparing heart rates, as depicted in Figs. 10 and 11 below. In Fig. 10, 
we exclusively focused on the wristband and Huawei watch readings due to their automatic and continuous monitoring 
capabilities. Both devices’ curves exhibit a zigzag pattern, with simultaneous rises and falls, indicating similar trends.

In Fig. 11, readings from all three devices were captured for a shorter duration. This discrepancy arose because the 
Fitbit smartwatch necessitates manual readings and monitoring, unlike the other devices. Consequently, a significant 
discrepancy of 7.7% was observed between the readings obtained from Huawei and our wristband and 8.7% between 
the Fitbit and our wristband.

Subsequently, through the computation of the MAE, we derived a comprehensive assessment of the disparity between 
the readings recorded by the Huawei and Fitbit devices relative to our wristband. The resulting MAE values were 7.2 and 
8.1, respectively. These figures signify a notable deviation in comparison to their prior measurements, primarily attributed 
to the reduced number of measurements and the necessity of manual readings on these devices.

Fig. 9   SpO2 Comparison: Our 
Wristband vs. Huawei

Fig. 10   Heart Rate Compari-
son: Our Wristband vs. Huawei
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4.2 � Model results

The testing results of the models are shown in Tables 5 and 6. Table 5 shows the results of the models created in our first 
approach. The Cough Model achieved high results of around 92% in Precision and around 91% in Recall and F1-Score. 
The vital parameters model achieved even higher results, at around 99% in Precision and F1-Score, and 100% in Recall.

From our second approach, the models with the best performances are the ones trained with the MFCC features from 
the audio format of the cough sounds. Our results are compared with the model results obtained by the researchers 
mentioned in Sect. 2. Generally, the best results obtained in our work are from the Audio Features - Vital Parameters 15 
Features. Since we used an XGBoost Classifier, we cannot directly compare our results with the results from the other 
papers. However, if we are to compare the Experiment 3 models with the DNN model from [15], we used fewer cough 
features (only MFCC, while they included more features) and obtained better results with our method. Our models from 

Fig. 11   Heart Rate Compari-
son: Our Wristband vs. Huawei 
vs. Fitbit

Table 5   Testing results for the 
models in the first approach

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Cough model 92.00 91.77 91.22 91.49
Vital parameters model 99.52 99.05 100.0 99.52

Table 6   Testing results for 
the models in the second 
approach

Model Accuracy Precision Recall F1-Score

Experiment 1
 Images-Vital Parameters 6 Features 90.00% 90.25% 89.34% 89.79%
 Images-Vital Parameters 15 Features 88.00% 90.15% 85.27% 87.64%
Experiment 2
 Flattened Images-Vital Parameters 6 Features 90.00% 90.76% 87.51% 89.10%
 Flattened Images-Vital Parameters 15 Features 90.00% 91.67% 86.94% 89.24%
Experiment 3
 Audio Features-Vital Parameters 6 Features 96.00% 96.96% 95.40% 96.18%
 Audio Features-Vital Parameters 15 Features 97.00% 96.73% 96.08% 96.40%
 [15] DNN 95.04% 90.92% 90.41% 90.09%
 [16] CNN 79.00% 77.50% 69.00% 70.5%
 [17] CNN 97.00% – 98.50% –
 [19] SVM – – 68.00% –
 [18] SVM 93.75 90.00% 93.75% 88.75%
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Experiment 1 also used a CNN model to classify the Image part of the data, and high results were achieved. The models 
from Experiment 2 achieved good results as well, however, the best results come from the models where the cough 
features are extracted directly from the audio files, and not converted to images first. In this case, Feature Extraction 
performed better than Representation Learning.

From Table 6, it can be seen that not all contributions in the literature consider a comprehensive evaluation of all of 
the metrics (i) accuracy, (ii) precision, (iii) recall, and (iv) F1-score. Those who do, e.g., [15, 16], and [18], are significantly 
outperformed by the proposed approach, especially the results of Experiment 3. Although [17] has a slight advantage 
in terms of recall, it should be noted that most of the previous works either consider cough sounds only (including [17]), 
or vital parameters only to detect infection. The few works that consider both, e.g., [19], achieve relatively low accuracy, 
as shown in Table 6. Thus, the proposed approach achieves excellent performance by combining cough sounds and vital 
parameters, while having reasonable complexity for the machine learning models.

4.3 � Integrating the whole system with a mobile application

The final system created contains a Wristband, a Mobile Application, and a Server, as previously mentioned. The Mobile 
Application allows the users to monitor their health, and test for a COVID-19 infection by recording their cough and 
measuring their vital parameters. A full test can be performed using the “Take Test” functionality in the Mobile Applica-
tion, as can be seen in Fig. 12.

The user records their cough and then connects the wristband to the application to read their vital parameters. The 
data recorded is sent to the Server to be classified using the Machine Learning model created. The Server will return the 

Fig. 12   Take test screen in the 
mobile application



Vol:.(1234567890)

Research	 Discover Applied Sciences           (2024) 6:451  | https://doi.org/10.1007/s42452-024-06156-x

classification result to the Mobile Application, and it will be displayed to the user, as can be seen in the screenshots in 
Fig. 13.

4.4 � Discussion

It should be noted that the wristband device could include many other sensors. First, the MAX30102 sensor could be 
replaced by a more expensive and accurate sensor. It was chosen for this preliminary prototype/proof of concept due 
to its wide availability and low cost. In addition, more sensors can be added to expand the applicability of the proposed 
approach. For example, an accelerometer could be used to detect falls and sudden movements. This is important in 
COVID situations where the patient is quarantined at home as it gives an indication that the patient needs immediate 
assistance (e.g., after falling due to the worsening of their condition). Moreover, a sensor for measuring blood sugar levels 

Fig. 13   Full diagnostic test 
completed
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could be added, as COVID was known to exacerbate the situation of diabetic patients [24]. Furthermore, a GPS sensor 
can be used (or the location can be used from the mobile app, not necessarily by adding an extra sensor to the bracelet; 
both options could work). If the mobile app is integrated with a national health system, this could allow the authorities 
to track the pandemic spread, identify the most infected areas (by using the locations of the infected users and evaluat-
ing their density per area), and even check for quarantine violations (in case the patient moves for large distances while 
they should stay at home). This could help complement the works that model pandemic spread and try to analyze user 
behavior in times of pandemics, such as [25–27], for example.

Moreover, the proposed approach is adaptable, since it can be expanded to diagnose other respiratory diseases, or 
re-trained for future pandemics. However, significant challenges need to be surmounted in this case. Before training for 
any future pandemic, the features of the pandemic need to be quickly identified, and the medical teams need to perform 
a significant number of tests to build datasets that can be used for training appropriate machine learning models. It is 
only then that such models can be integrated with the proposed approach. Particularly, in case of respiratory pandemics, 
cough sounds need to be distinguished between various diseases. The sounds used in this paper, based on the common 
datasets in the literature, e.g., [21], are classified as either “Covid” or “Non-Covid”. Similar datasets need to be derived for 
future pandemics (say, “Pandemic X”), to distinguish cough sounds between “Pandemic X” or “Non-Pandemic X”. However, 
this might not be sufficient in the prevalence of multiple serious pandemics. Elaborate datasets containing cough sounds 
from multiple pandemics need to be derived, so that training can be done to have accurate classification between “Pan-
demic 1”, “Pandemic 2”, etc., or “Healthy”. A possible way to deal with this is to have multi-stage classification, such as 
“Healthy” versus “Non-Healthy” first, then classify the “Non-Healthy” cases between the various candidate pandemics. 
Despite these huge challenges, once they are overcome, the proposed system can be upgraded mainly through a soft-
ware update. The user would still perform a cough sound and have their vital parameters collected by the wristband, but 
the machine learning model used in the application would be more advanced to handle the more complex situation.

5 � Conclusion

Our research demonstrates the potential of machine learning for early respiratory disease detection, particularly in the 
context of COVID-19. Through the analysis of common infection symptoms, we have developed a wristband device 
designed to accurately detect respiratory symptoms. Our wristband prototype demonstrates remarkable accuracy, with 
temperature, heart rate, and SPO2 measurements exhibiting an 99.7%, 82.0%, and 95.3% accuracy, respectively, com-
pared to existing commercial products. This accuracy is evident through comparisons with widely-used wearable devices 
like the Huawei watch and Fitbit smartwatch. The continuous and automated monitoring capabilities of our wristband 
empower individuals to actively manage their health, enabling early intervention and personalized healthcare strate-
gies. Additionally leveraging machine learning techniques, including several ML models utilizing cough sounds and vital 
parameters measurements, our approach has demonstrated remarkable accuracy. In fact, our proposed models have 
outperformed other state-of-the-art models in the literature, solidifying their efficacy in accurately diagnosing respira-
tory illnesses. Moreover, our approach is adaptable, since it can be expanded to diagnose other respiratory diseases, 
or re-trained for future pandemics. In this way, we mitigate the spread of the disease and contribute to an enhanced 
healthcare system.

Looking ahead, our research sets the stage for numerous future opportunities, including further enhancing our wrist-
band device by integrating additional sensors and functionalities to improve diagnostic capabilities. Furthermore, we 
anticipate exploring future extensions such as implementing analogous methodologies for addressing other pandem-
ics and refining our system to distinguish cough sounds associated with multiple diseases. These endeavors promise 
to broaden the scope of our research and its practical implications, positioning our technology as a versatile tool for 
healthcare monitoring and management.
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