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Abstract
Many researchers have shown interest in profile monitoring; however, most of the applications in this field of research are

developed under the assumption of normal response variable. Little attention has been given to profile monitoring with

non-normal response variables, known as general linear models which consists of two main categories (i.e., logistic and

Poisson profiles). This paper aims to monitor Poisson profile monitoring problem in Phase II and develops a new robust

control chart using support vector regression by incorporating some novel input features and evolutionary training algo-

rithm. The new method is quicker in detecting out-of-control signals as compared to conventional statistical methods.

Moreover, the performance of the proposed scheme is further investigated for Poisson profiles with both fixed and random

explanatory variables as well as non-parametric profiles. The proposed monitoring scheme is revealed to be superior to its

counterparts, including the likelihood ratio test (LRT), multivariate exponentially weighted moving average (MEWMA),

LRT-EWMA and other machine learning-based schemes. The simulation results show superiority of the proposed method

in profiles with fixed explanatory variables and non-parametric models in nearly all situations while it is not able to be the

best in all the simulations when there are with random explanatory variables. A diagnostic method with machine learning

approach is also used to identify the parameters of change in the profile. It is shown that the proposed profile diagnosis

approach is able to reach acceptable results in comparison with other competitors. A real-life example in monitoring

Poisson profiles is also provided to illustrate the implementation of the proposed charting scheme.

Keywords Control charts � Particle swarm optimization � Poisson profiles � Profile monitoring � Statistical process control �
Support vector regression

1 Introduction

A control chart demonstrates a virtual representation of a

process over time; hence, they are a valuable tool for

monitoring process performance in statistical process

control (SPC). Control charts have been widely used in

industrial processes since the 1920s in various applications;

see, for example, Aslam et al. (2020). Usually, control

charting in SPC is implemented in two phases: Phase I

(retrospective phase) and Phase II (monitoring phase). The

aims of Phase I include estimation of process’s stability,

the in-control (IC) parameters and control limits through a

preliminary retrospective study using historical datasets;

while, in Phase II analysis, one uses the IC model, obtained

from Phase I, as a base scheme to control the process in

real time and detect outliers as quickly as possible

(Yeganeh et al. 2022a). So, it is vital to control the process

over time in Phase II as changes in the process parameters

might be caused by some unnatural patterns which might

be due to faults, non-compatible products, low quality raw

materials and so forth (Montgomery 2019; Gupta et al.

2006). In on-line monitoring (Phase II analysis), the

instability of a process, should be identified as early as

possible, is declared with the out-of-control (OOC) signals.

This is usually evaluated in terms of the required number of

drawn points on a control chart before an OOC signal; it is

denoted as average run length (ARL). In a fair evaluation,

the ARL value for the IC process, referred to ARL0, is

adjusted at a constant and desired value and the charts

endeavour to provide the minimum ARL value in OOC

condition, called ARL1 (Yeganeh et al. 2023). Note that the

greater the ARL1, the weaker the detection ability of a

control chart (Montgomery 2019). In addition to the ARL,Extended author information available on the last page of the article
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control charts’ performance metrics include the, perfor-

mance comparison index (PCI), standard deviation of run

length (SDRL), relative average run length (RARL) and

extra quadratic loss (EQL) (Riaz et al. 2014).

To construct a control chart in SPC either in Phase I or

Phase II, two different approaches can be used: (i) investi-

gation of the distribution function of a single or multiple

quality characteristics; (ii) checking the stability of a

functional relationship between a dependent (response) and

one or several independent (explanatory) variables over

time. The term profile monitoring hints using of SPC

techniques to investigate the stability of the functional

relationship over time instead of monitoring a single or

multivariate quality characteristic.

It is noteworthy to mention that this topic has firstly

been introduced with ‘signature’ term in Gardner et al.

(1997) and the use of ‘profile’ became more commonplace

after the extension of exponentially weighted moving

average (EWMA) control charts in monitoring simple lin-

ear profiles in which there is a linear relationship between a

response and an explanatory variable (Kang and Albin

2000). Since then, many researchers have been focusing on

monitoring linear profiles; see, for example, Gupta et al.

(2006), Zou et al. (2007), Huwang et al. (2014), Motasemi

et al. (2017), Haq (2020), Yeganeh et al. (2021) and the

references therein. Also, some researchers focused on

monitoring other types of profiles including nonlinear

(Williams et al. 2007), roundness (Pacella and Semeraro

2011), exponential (Steiner et al. 2016), circular (Zhao

et al. 2020), multi-channel autoregressive (Zhou et al.

2022) and non-parametric (Jones et al. 2020; Zou et al.

2008; Nassar and Abdel-Salam 2021).

As a secondary approach, some researchers considered

two restricting assumptions in all the monitoring schemes.

First, the response variables might not be continuous and

have a discrete form. For example, the response variable

may demonstrate the number of defects (percent of

defective) per item. Secondly, it is usually assumed that the

random error and therefore, the response variables follow

the normal distribution. For many real-life applications, the

normality assumption can be violated. Considering these

limitations, generalized linear models (GLM) constituting a

large class of statistical models relating responses to linear

combinations of predictor variables, have been extended to

the profile monitoring regime. There are two major cate-

gories of GLMs that have had the most applications in the

literature, these are logistic and Poisson profiles. For more

details on the former, readers are referred to the works of

Yeh et al. (2009), Shang et al. (2011), Huwang et al.

(2016), Alevizakos et al. (2019a) and Mohammadzadeh

et al. (2021). Recently, many studies are focused on

monitoring Poisson profiles, for instance, Zhou et al.

(2012) proposed an EWMA chart with random sample

sizes where it was observed that using a novel updating

formulation, not only yields a more robust IC and OOC

performance, but also a generally more sensitive chart to

small and moderate shifts. The Phase I monitoring of

Poisson profiles has been carried out by Amiri et al. (2015),

where they developed three different schemes based on the

likelihood ratio test (LRT), Hotelling’s T2 and F statistics.

To extend this work in Phase II, Qi et al. (2016) proposed

the weighted LRT (WLRT) scheme by combining the

EWMA and LRT statistics. They also evaluated the LRT,

LRT-EWMA and multivariate EWMA (MEWMA) control

charts in Phase II applications of Poisson profiles under the

assumption of fixed and random explanatory variables. The

results showed the superiority of WLRT over other com-

petitors. Later, Qi et al. (2017) extended the WLRT

approach for autocorrelated processes. A change point

statistic was developed by Shadman et al. (2017) which

was also applied for efficient monitoring of linear profile

parameters (Xu et al. 2012) for the GLM profiles. By

considering all samples as the candidate change point, they

computed LRT statistic for the two groups of samples

including IC (or before change point) as well as OOC (or

after change point) for both logistic and Poisson profiles.

More recently, the change point approach was also

implemented for autocorrelated Poisson profiles in He et al.

(2020). In addition to the existence of autocorrelation, they

assumed random explanatory variables. Another LRT

control chart for profiles with random variables was pro-

posed by Song et al. (2021). In addition to random pre-

dictors, they considered profiles with auto-correlation.

Similar to Shadman et al. (2017), Shang et al. (2018)

extended MEWMA charts for Poisson and logistic profiles

by considering no prior information about the process in

the OOC situations (i.e. non-parametric models). In other

words, only the profile parameters have been changed and

the type of relation is fixed in the parametric models;

whereas, the relation can be transferred to other types, for

example, changing a linear IC profile to a non-linear OOC

profile, without any limitations. Some remedial methods in

parameter estimations of Poisson profiles and computation

of process capability index can also be found in Maleki

et al. (2019) and Alevizakos et al. (2019b). A non-para-

metric approach to generalized likelihood ratio and the

EWMA schemes for a real case study could be found in

Wang et al. (2022).

4874 A. Yeganeh et al.

123



The investigation of the related mentioned literature and

the existing review papers in this field reveal that there is

little attention given to machine learning approaches in

comparison to statistical approaches; not only in the GLM

profiles, but also in all types of profiles monitoring (Maleki

et al. 2018; Woodall 2007). To the best of the authors’

knowledge, artificial neural network (ANN) has only been

used for profile monitoring in Hosseinifard et al. (2011),

Pacella and Semeraro (2011), Yeganeh et al. (2022a) and

Yeganeh and Shadman (2020). Li et al. (2019) used sup-

port vector regression (SVR) technique for function fitting

in the non-linear profile monitoring process. Autoencoders

and transfer learning are part of the deep learning tech-

niques that have also been developed in autocorrelated

(Chen et al. 2020) and multiple profiles (Fallahdizcheh and

Wang 2022). One of the main reasons of this reluctance,

may be the weaker performance of machine learning

techniques than statistical approaches in terms of ARL. For

example, the ANN-based control chart proposed by Hos-

seinifard et al. (2011) were not able to improve on the

performance of conventional EWMA control charts for the

detection of most of the shifts when there is a simple linear

profile model. To remedy this weakness, Yeganeh and

Shadman (2020) improved the performance of the Hos-

seinifard et al. (2011)’s control chart using supplementary

run-rules but there was no modification implemented in the

structure of the ANN by Hosseinifard et al. (2011). The

same can be said about other mentioned machine learning-

based control charts; in other words, they used a simple

conventional structure of ANN or SVR and it may be one

of the possible reasons for the weakness in their perfor-

mance. Another weakness of machine learning techniques

may be related to their complexity. Although machine

learning techniques are more complex and considered as a

‘‘black box’’, they can produce more accurate results

(Cuentas et al. 2022). On the other hand, with the rapid

development of digital technologies, the complexity issue

of machine learning techniques, in particular deep learning

models, are becoming less important over time in real-

world applications, in which several complicated on-line

models, such as image processing, computer vision and

speech recognition, have been developed that can easily be

applied in real applications (Chen et al. 2020). In addition,

interpreting the prediction of machine learning methods

have been studied recently (Pourpanah et al. 2016). How-

ever, it is not the focus of this study, but it is an interesting

area that requires further investigations.

Considering the limited use of machine learning tech-

niques in profile monitoring, this paper introduces a novel

SVR structure as a control chart for monitoring Poisson

profiles in Phase II of SPC. The aim of this study is to

develop a control chart with quicker detection ability over

conventional schemes in Poisson profile monitoring prob-

lem which is equivalent to have a more optimized process

with lower non-compatible products, cost, waste and other

non-desirable outputs. To achieve this, we first define/ex-

tract more informative input features and then fed them

into a well-known machine learning technique i.e., SVR for

training in an offline manner. Finally, the trained models

can be implemented to monitor the process online and

detect any OOC situations. It makes considerable contri-

butions not only in the input features of the SVR but also in

the training procedure to enhance the sensitivity in

detecting OOC situations. In addition to improvement in

detection ability of a Poisson process with machine learn-

ing, other contributions of this paper can be summarized as

follows:

• Develop a novel structure of SVR as a base control

chart.

• Introduce a new input layer structure for the proposed

and other related schemes.

• Taking advantage of a novel training of the proposed

SVR.

• Enhance the detection ability of the proposed charting

technique in comparison with ANN.

• Evaluation of the performance of the proposed

scheme under parametric and non-parametric scenarios.

• Use of the diagnosis procedure in Poisson profiles with

SVR.

The rest of this paper is briefly structured as follows: the

fundamental framework of Poisson profile model used in

Phase II monitoring and the formulations of the two fun-

damental control chart concepts are briefly presented in

Sect. 2. in addition, a brief introduction to some important

concepts about SVR is given in Sect. 2, which include the

principles of evolved SVRs and a description of particle

swarm optimization (PSO) algorithm. Section 3 provides a

full description of the proposed SVR-based control chart.

Section 4 investigates the performance of the proposed

scheme in terms of the ARL and SDRL. The comparisons

with the existing counterparts are presented in Sect. 5.

Section 6 presents the diagnosis procedure of the proposed

approach, while Sect. 7 provides an illustrative example.

Finally, the conclusion, recommendations and future

research works are presented in Sect. 8.
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2 Preliminaries

2.1 Phase II Poisson profile monitoring

Assume that n observations are collected for the jth (j = 1,

2, …) random profile. Let (xijk, yij) represent the pairs of

observations on two variables from the jth random profile

available in the GLM profiles in the form of Xij = (xij1,

xij2,…, xijp), with i = 1,2,…,n and k = 1,2,…,p. Since in

fixed design monitoring, the explanatory variables are

assumed to be constant in each profile, the j indices are

omitted in the explanatory variables then Xij = Xi 8j. Thus,
they can be written as an n 9 p matrix denoted as ~X and

can be defined by

~X ¼
X1

..

.

Xn

0
B@

1
CA ¼

x11 x12 � � � x1p

..

. ..
. . .

. ..
.

xn1 xn2 � � � xnp

0
B@

1
CA: ð1Þ

A GLM model in the jth sample consists of the fol-

lowing three main components:

(i) The 1 9 n response vector Yj = (y1j, y2j, …, ynj)

under the discrete distribution, with the mean

lij ¼ E yijjðxi1; xi2; . . .; xip
� �

, which belongs to the

same distribution from the exponential family

(e.g., Poisson or binomial distribution). Consider-

ing the independency of observations within and

between profiles, we have lj = (l1j, l2j, …, lnj)

for the jth profile.

(ii) The matrix of the independent variables are the

same as those in (1).

(iii) The monotone link function g that connects the

mean of the response variable to the combination

of the linear predictors in the way that g(j) =

gj = ~Xb
_

j where gj is the linear combination of the

jth profile parameters b
_

j

 !
. From the above

framework, a Poisson GLM model is given by:

Yj ¼ Poisson lj

� �
;j ¼ 1;2;::::;

log lj

� �
¼ ~Xbj:

ð2Þ

The parameters of model (2) denoted by

bj
_

¼ b1j
_

; b2j
_

; :::; bpj
_

� �
, are estimated with the iterative

weighted least squares (IWLS) algorithm in this paper.

However, to save space, this is not included here. For more

details readers are referred to Yeh et al. (2009) and Amiri

et al. (2015). Hence, the aim of monitoring Poisson profiles

is defined as the detection of changes in bj
_

from its IC

value, denoted with b0 = (b10, b20, …, bp0). Note that

monitoring explanatory variables in GLM profiles is as

important as monitoring the response variable; see for

example, Shang et al. (2011); note though, this is not the

focus of this paper.

2.2 Existing control charts

In this subsection, the details of the two existing funda-

mental approaches based on the MEWMA and LRT

schemes are provided (Qi et al. 2016). To simultaneously

control the p-dimensional IC coefficient vector b0, its

estimate bj
_� �

is scaled as follows:

Zj ¼ S b
_

j
�b0

 !
; ð3Þ

with S ¼ ~X0W ~X
� �1

2

and bj
_

¼ b1j
_

; b2j
_

; :::; bpj
_

where S is a

p 9 p symmetrical matrix and b0 is the IC p-dimensional

parameters vector. Considering l0 = (l10, l20, …, ln0) and

log li0ð Þ ¼ X0
ib0, W is an n 9 n diagonal symmetrical

matrix with the main diagonal elements given by l10,

l20,…, l(n-1)0 and ln0. It is worth mentioning that S

depends on ~X in Eq. (1) hence there will be the varied

S matrix, indeed using of Sj instead of S, when the

explanatory variable is not constant in each profile.

From (3), the EWMA statistic for the scaled p-dimen-

sional parameters vector is defined as:

Ej ¼ kZj þ ð1� kÞEj�1; j ¼ 1; 2; :::; ð4Þ

where E0 is a vector of zeros with size (p ? 1) and k
(0\ k\ 1) is the EWMA constant (or smoothing param-

eter) which we considered to be equal to 0.2. Thus,

MEWMA statistic is given by:

Mj ¼ E0
jEj: ð5Þ

For more details on the LRT formulation for the Poisson

profiles, readers are referred to Amiri et al. (Amiri et al.

2015). By taking the logarithm on both sides of the joint

likelihood function of the independent observations, the

LRT statistic is constructed as:
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LRTj ¼ 2 lj b
_

j

 !
� lj b0ð Þ

 !
; ð6Þ

lj bj
_� �

¼
Xn
i¼1

yij log lij
� �

�
Xn
i¼1

log lij
� �

�
Xn
i¼1

log yij!
� �

;

lj b0ð Þ ¼
Xn
i¼1

yij log li0ð Þ �
Xn
i¼1

log li0ð Þ �
Xn
i¼1

log yij!
� �

;

lij ¼e
X0
i b
_

j ;

li0 ¼eX
0
ib0 :

The likelihood function which evaluates the goodness of

fit of a statistical model to a sample of data for given values

of the unknown parameters is demonstrated by lj(�) in the

LRT scheme. It is calculated by consideration of the IC

process and estimated parameters of profiles in (6).

2.3 SVR formulation

In 1995, an innovative machine learning method called

support vector machine (SVM) was introduced by Vapnik

(1995) in order to rectify the drawbacks of the ANN

methods especially in classification problems. The idea of

SVM is based on the minimization of the training error

with empirical or structural risk decreasing. For this aim,

the features of a nonlinear problem is mapped to another

hyperplane with the aim of maximization of the geometric

margins and minimization of the classification error.

Although SVM has been able to present itself as a powerful

method in supervised learning classification problems, its

general form only solves the binary classification problems

and some treatments should be applied in multi-class

classifications and regression problems. In this paper, SVM

for regression (hereafter, SVR) is used and it is briefly

described in this section. For more details, an interested

reader is referred to Vapnik (1995), Cortes and Vapnik

(1995), Vapnik (1998) and Stoean and Stoean (2014).

Similar to other supervised learning techniques, a train

dataset is firstly prepared. For simplicity but without loss

of generality, we show inputs and targets with Bg and Tg
respectively in a way that g is the indicator of samples’

indexes. Also, it is assumed that inputs and targets are

continuous values with dimension U and 1, and there are G

samples in the training dataset. Hence, we have a

G 9 (U ? 1) dataset and it could be shown with (Bg, Tg);

g = 1, 2,…, G. Conventional SVM and SVR usually utilise

the following formulation for establishing a relationship

between inputs and outputs (estimated targets)

f Bg

� �
¼ w/ Bg

� �
þ b: ð7Þ

In (7), a predefined kernel function /(�) in combination

with some weights (w) and bias (b) are used to carry out the

mapping tasks and generally, the aim of training is to reach

the best values for weights and bias. To obtain the weights

and bias, a soft margin (i.e., a possible acceptable interval)

is defined as

e� n�g � f Bg

� �
� Tg � eþ nþg ; ð8Þ

where e is the absolute acceptable difference between the

target values and estimated ones; while ng is the generated
loss in the gth sample from the training dataset. In other

words, the loss function is defined as:

Loss f Bg

� �
; Tg

� �
¼ 0 f Bg

� �
� Tg

�� ��� e
f Bg

� �
� Tg

�� ��� e otherwise

	

ð9Þ

From (9), considering the principle of structural risk

minimization, the following minimization problem leads to

an optimum hyperplane or weights:

min
w;nþg ;n

�
gð Þ

1

2
wk k2þC

XG
g¼1

nþg þ n�g

� �

subject to

�f Bg

� �
þ Tg þ eþ nþg � 0 8g;

f Bg

� �
� Tg þ eþ n�g � 0 8g;
n�g � 0;nþg � 0 8g

8>><
>>:

ð10Þ

Because of the complexity of the above model and the

need to minimize the bias term (b) in the objective func-

tion, the corresponding dual form of (10) is often used in

the SVR training instead of the primal model in (10). The

new dual optimization problem of which the Karush–

Kuhn–Tucker (KKT) conditions are utilized in the con-

straints is defined as follows:

min
aþg ;a�gð Þ

1

2
a0Hað Þ þ ~qa

subject to

XG
g¼1

aþg � a�g

� �
¼ 0;

0� aþg �C 8g;

0� a�g �C 8g;

8>>>>>><
>>>>>>:

ð11Þ

where a ¼ aþ1 ; a
þ
2 ; :::; a

þ
G ; a

�
1 ; a

�
2 ; :::; a

�
G


 �
is a 2G 9 1

vector and ~q = [- T1 ? e, - T2 ? e, …,- TG ? e,
T1 ? e, T2 ? e, …, TG ? e] is a 1 9 2G vector. Also,

H ¼ h �h
�h h

� �
is a 2G 9 2G matrix of kernel trans-

formation with h(a,b) = /(B(a),B(b)). Hence, the above

optimization problem in (11) has 2G variables including

a = [a1
?, a2

?,…, aG
?, a1

-, a2
-,…, aG

-]T. The quadratic

programming algorithms such as kernel adatron (KA),

sequential minimal optimization (SMO), iterative single

data algorithm (ISDA) and so forth are used to solve the
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above problem. Then, the weights and bias, or equiva-

lently, the estimation of each observation are obtained

using the following relations:

S ¼ gj0\aþg � a�g \C
n o

;

b ¼
X
s2S

Ts �
X
s2S

aþs � a�s
� �

/ Bg;Bs

� �
� e� sign aþs � a�s

� �� � !
;

f Bg

� �
¼
X
s2S

aþs � a�s
� �

/ Bg;Bs

� �
þ b;

g ¼1; 2; :::;G:

ð12Þ

In (12), S is the support vector set which is usually a

small subset of vectors from the training dataset. The

magnitude of S or the number of support vectors still

depends on hyperparameters including C, e, kernel function
and the structure of the problem. It adjusts the model

accuracy by a trade-off between a high-complexity model

(increasing the number of support vectors) which may

over-fit the data and a large-margin (decreasing the number

of support vectors) which will incorrectly classify some of

the training data in the interest of better generalization.

2.4 Evolutionary SVR

The combination of meta-heuristic and evolutionary algo-

rithms (EA) with machine learning techniques has re-

ceived a great deal of attention in the past decade. The

main aim of this hybridisation is to use EA in the training

or parameter tuning of a machine learning technique (Ojha

et al. 2017). As a pioneer work, Kim and Cho (2008)

proposed an evolutionary neural network based on the

genetic (GA) algorithm in a way that a speciation-based

model was established through fitness sharing and then

ANN was incorporated by a behaviour knowledge space

method. Due to promising results, several other researches

have investigated the performance of different EAs such as

extended marine predators algorithm (EMPA), gradient-

based optimization (GBO), moth-flame optimization

(MFO) and water cycle optimization algorithm (WCA)

(Adnan et al. 2021a; Ikram et al. 2022a; Kadkhodazadeh

and Farzin 2022). The integration of some EA has been

recently extended in the literature; for example, Adnan

et al. (2021b) implemented the combination of PSO and

grey wolf optimization (GWO) algorithms in the training

of extreme learning machine (ELM) technique.

Similarly, the paradigm evolutionary SVR (ESVR)

refers to the condition of hybridization between EA and

SVR. This has been well-received in the literature and can

be categorized in three different groups. The first group

used EA in the hyperparameter optimization of SVR, see

for instance, Adnan et al. (2022), Wang and Du (2014),

Ikram et al. (2022b) and Al-Zoubi et al. (2021). In their

studies, the optimum values for C, e and kernel function are
acquired with different EAs. In the second group, the EAs

were performed with feature selection in combination with

parameter optimization in the SVR training (Al-Zoubi et al.

2018; Ziani et al. 2017). In accordance with this paper’s

objective, in the third group, some researchers have used

either the primal or dual problem (see, Eqs. (10) and (11)),

with EAs instead of common quadratic problem solvers.

However, Arana-Daniel et al. (2016), Zhang et al. (2016)

and Dantas Dias and Rocha Neto (2017) used EAs entail-

ing GA, differential evolution (DE), PSO and simulated

annealing (SA) in the support vectors identification. One

may ask about the preference or application of EAs in

comparison with common quadratic solvers. Arana-Daniel

et al. (2016) and Dantas Dias and Rocha Neto (2017)

reported that the EAs have less computational complexity

and are easier to implement than other techniques. With

that being said, it is important to note that there is no

definite solution to this question and it depends on the

nature of the problem.

2.5 PSO algorithm

Note that EA is used in the third group of the ESVR

mentioned in the previous subsection. In other words,

solving of the dual problem defined in (11) is performed

with PSO as one of the versatile algorithms. By questing

the related literature, it was revealed that GA and PSO are

the most widespread approaches in this application, with

PSO more compatible than GA with continuous variables;

for example, the reasonable accuracy of PSO in compar-

ison with some other EAs has been reported in Dantas Dias

and Rocha Neto (2017). Also, our simulations reveal that

PSO made better accuracy than some other common EA

techniques (a brief part of the results are illustrated in the

sensitivity analysis section). Therefore, in this paper, PSO

is used for the solving of SVR optimization problem.

The PSO idea was extracted from migration of a crowd

of birds, where the individual knowledge and performance
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are determined based on the whole population. As a gen-

eral procedure in metaheuristic algorithms, the best solu-

tion is acquired by generation of supreme solutions from a

specific population. A specific location and velocity which

is determined based on its own best solution, the global

current best solution, and some random parameters are

considered for each candidate solution (sometimes called

particle) in the PSO algorithm. By reaching the best loca-

tion and velocity, PSO has been made an excellent evo-

lutionary algorithm in continuous variables or nonlinear

optimization problem. For more details about the PSO

updating relations, the readers are referred to Kennedy

(2010). It is inevitable to assign some hyper parameters in

the PSO algorithm including (i) the population size,

denoted by npopPSO here, (ii) iteration numbers (max-

ItPSO), (iii) and (iv) two coefficients for computation of

the difference between the current and best position of this

solution and best position of all solutions, respectively.

Suppose our proposed method denoted by ESVR here-

after is available after the training procedure. Generally,

some features or characteristics of a generated profile are

extracted and imported to the ESVR and the condition of

the process as an IC or OOC is identified by its output. In

this paper, the ESVR output denoted by Oj is compared

with a predefined cutting value (CV) which is considered as

upper control limit (UCL) in common control charts. By

our training procedure, it is not needed to define the lower

control limit (LCL); this adaptation is consistent with some

previous works; for example see Hosseinifard et al. (2011)

in which they adjusted LCL at 0. For better understanding,

Fig. 1 depicts the conceptual model of ESVR for deciding

about the process condition.

The determination of input features would be the next

key step; however, not much attention was given to it in the

previous machine learning based control charts. For

example, the estimation of parameters were only imported

as the input features in Hosseinifard et al. (2011); note

though, adding other input features would be significant for

better detection ability of OOC profiles in general. The

proper input features not only should be indicator of the

process parameters properties but also have to embrace the

effect of the former samples in the contemporaneous

statistic. As one of the contributions of this study, the input

features of the jth generated profile consist of four major

groups:

• The normalized estimated parameters: After estima-

tion of the parameters by IWLS algorithm and consid-

ering a p-dimensional normal distribution as

b
_

j
�Np b0;

~X0W ~X
� ��1

� �
in Yeh et al. (2009), the

estimation of the parameters are scaled through (13)

(more details are provided in Sect. 4.2 of Johnson and

Wichern (2007):

b0j ¼ ~X0W ~X
� ��1

2� bj
_

�b0

� �T
;

b0j ¼ b01j; b
0
2j; :::; b

0
pj

� �
:

ð13Þ

• The normalized average of responses parameters:

Considering (2), we have yij � Poisson(lij) for

i = 1,2,…,n. Although the exact distribution of the

average of the responses in the jth profile is not known,

the central limit theorem enables us to scale it as:

Fig. 1 Basic model of ESVR for

determination of process

condition at the jth generated

profile in Phase II
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y0j ¼
yj �

Pn
i¼1

l0i

nffiffiffiffiffiffiffiffiffiffiPn
i¼1

l0i

r

n

; ð14Þ

in such a way that

yj ¼

Pn
i¼1

yij

n
; ð15Þ

where log(l0) and l0 have been defined after (3). It is

better to import the above parameters as an EWMA

form; in other words, an EWMA form of p ? 1

parameters EWMAPj ¼ b01j; b
0
2j; :::; b

0
pj; y

0
j

h i� �
are com-

puted in each generated profile as in (4) with the initial

values [0,0,…,0]p?1.

• The ratio of MEWMA statistics: The better detection

ability of the runs-rules monitoring scheme proposed by

Yeganeh and Shadman (2020) and Yeganeh et al.

(2021) led us to adopt a similar approach in this paper.

They applied the ratio of points as a supplementary tool

to increase the chart’s performance. Because of the

complexity in the design of run-rules schemes, it is

recommended to use the ratio of points in the input

features. To this end, the UCLMEWMA are obtained by

specifying a desired ARL0 considering only the

MEWMA chart (this has been reported in Table 2 of

Qi et al. (2016) for ARL0 equal to 370). Then, MEWMA

statistics are computed using (5) in the jth profile and

the number of samples in the three different regions

entailing 0; UCLMEWMA

2

� �
, UCLMEWMA

2
;UCLMEWMA

� �
and

beyond the control limits UCLMEWMA;þ1ð Þ which

are each denoted as d
ð1Þ
MEWMA, d

ð2Þ
MEWMA and d

ð3Þ
MEWMA,

respectively. The 1 9 4 vector

d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j ;
d
ð3Þ
MEWMA

j ;Mj


 �� �
is imported to the ESVR

to incorporate the effect of previous samples, in similar

fashion as run-rules.

• The ratio of LRT statistics: Because LRT chart has

superior performance than MEWMA chart for detection

of large shifts of Poisson profiles (see for example,

Table 3 of Qi et al. (2016)), this statistic is also added in

the input features by definition of UCLLRT. Hence, using

a similar approach as in the previous point and using

(6), the 1 9 4 vector
d
ð1Þ
LRT

j ;
d
ð2Þ
LRT

j ;
d
ð3Þ
LRT

j ; LRTj


 �� �
is com-

puted and imported to the ESVR.

By these definitions, ESVR has a (p ? 1 ? 4 ? 4)-di-

mensional input vector Ij ¼ EWMAPj;

�

d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j ;
d
ð3Þ
MEWMA

j ;Mj;
d
ð1Þ
LRT

j ;
d
ð2Þ
LRT

j ;
d
ð3Þ
LRT

j ; LRTj�Þ. Many

investigations were conducted to reach the above four

groups which are the best input combinations for reaching

minimum ARL1. It is discussed more in the sensitivity

analysis by comparing with other ESVRs that have dif-

ferent input structures.

Also, there are some interesting results about the pro-

posed (p ? 9)-dimensional input vector (i.e., Ij) of ESVR

that were obtained based on simulations (these results are

not reported here to conserve space). First, to estimate W

defined after (3), it has been suggested to consider the

current profile information instead of the IC values as it

was proposed by a number of researchers (see, e.g.

Huwang et al. (2016)); whereas, the simulations study

revealed better results regarding the IC values; hence, we

computed W with IC model instead of current profiles. The

same can be said about the estimation of y0j in (14). The

second point is about the ratio of samples beyond the

control limits
d
ð3Þ
MEWMA

j ;
d
ð3Þ
LRT

j

� �
. The main reason of including

it in the proposed method is to improve the robustness of

ESVR to large simultaneous shifts. In other words, the

effect of MEWMA ratios
d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j

� �
, LRT ratio shifts

d
ð1Þ
LRT

j ;
d
ð2Þ
LRT

j

� �
, and beyond the control limit ratios

d
ð3Þ
MEWMA

j ;
d
ð3Þ
LRT

j

� �
are present in small, large single and large

simultaneous shifts, respectively. As a third point, one may

suggest to use WLRT statistics instead of LRT or

MEWMA because of its superiority in performance. This is

also possible in this paper and may improve the results;

but, WLRT needs more computational time because of its

full use of all available samples up to the current time point

j, especially for the detection of small shifts.

To conduct the simulations, a (p ? 9)-dimensional input

vector of ESVR (Ij) is computed in each generated profile

and imported to the ESVR. Then, Oj is compared with CV

and an OOC signal is triggered when CV\Oj (see Fig. 1).

To compute the ARL1 and SDRL1, this procedure iterates in

several Monte Carlo simulations and the signalling times

are stored as the run lengths (RL). For a better illustration,

the process of obtaining ARL1 and SDRL1 for a desired shift

with MaxIt iterations is illustrated in Pseudocode 1.
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3 Training of the proposed method

In the previous section, it has been assumed that the ESVR

has been trained. To train it, a G 9 (p ? 10) training

dataset similar to the one in Hosseinifard et al. (2011) is

generated. To this end, 0.5G IC profiles and 0.5G OOC

profiles (with some desired shifts) are generated and a

(p ? 9)-dimensional input vector is computed for each

generated profile. The target values for IC and OOC pro-

files are 0 and 1, respectively, or

T1 ¼ T2 ¼ ::: ¼ TG
2
¼ 0; T1þG

2
¼ T2þG

2
¼ ::: ¼ TG ¼ 1.

As mentioned previously, the dual problem in (11) is

solved using PSO algorithm and the optimum (minimum)

value of objective function is reached by assigning the

values of existing 2G variables

a ¼ aþ1 ; a
þ
2 ; :::; a

þ
G ; a

�
1 ; a

�
2 ; :::; a

�
G


 �� �
. But, as one of the

contributions of this paper, some scanty changes are added

to the objective function of (11). This model was intro-

duced by Zhang et al. (2016) in which an additional

coefficient is added to objective function of primal

problem.

Before the identification of the additional terms to

objective function, it is better to be aware of the challenge

on the relation between common accuracy criteria entailing

mean square error (MSE) and ARL when designing control

charts based on machine learning techniques. In a usual

ANN, SVM, SVR and other machine learning techniques,

the training process continues until reaching a desired

threshold; whereas in the case of classical Phase II, control

charts are evaluated in terms of the ARL and there is no
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direct relationship between the two approaches. This

challenge has been discussed in details by Yeganeh and

Shadman (2020) who suggested heuristic solution similar

to the design of experiment approach for ANN training

which is not the focus in this paper.

Since the 0 and 1 values have been assigned for the IC

and OOC profiles as the target values, respectively, and the

process condition is identified through the CV, it was

observed that the higher performance (i.e., lower ARL1 for

a desired ARL0) occurs when the difference between OOC

and IC estimated target values is at the maximum value. In

other words, in a common situation, the outputs of ANN or

SVR tend towards 0 and 1 in IC and OOC profiles and the

CV is obtained closer to 1 to reach a desired ARL0 (see

Hosseinifard et al. (2011)) while the higher the difference

between the outputs, the lower the ARL1 value. Thus, some

criteria are needed to depict the significance of the differ-

ence between IC and OOC ESVR outputs.

To this end, the output of each input in the dataset is

obtained using (12). Suppose that it is denoted by T̂g; g ¼
1; 2; :::;G which is equivalent to f(Bg) given in (12) where

g ¼ 1; 2; :::; G
2
are the predicted IC values and others are for

OOC profiles. Therefore, the dual problem can be revised

as follows:

min
aþg ;a�gð Þ

MSE þ DAVE þ DR

subject to

XG
g¼1

aþg � a�g

� �
¼ 0;

0� aþg �C 8g;

0� a�g �C 8g;

8>>>>>><
>>>>>>:

MSE ¼

PG
g¼1

Tg � T̂g
� �2

G
;

DAVE ¼

PG2
g¼1

T̂g
� �

G
2

�

PG
g¼1þG

2

T̂g
� �

G
2

;

DR ¼ range
g¼1;2;:::;G

2

T̂g
� �

� range
g¼1þG

2
;2þG

2
;:::;G

T̂g
� �

:

ð16Þ

The proposed objective function consists of three com-

ponents. The first one is the common MSE criteria which is

frequently utilized in machine learning applications but as

mentioned, it cannot lead to minimum ARL1; hence, the

two other components entailing the difference of averages

(DAVE) and the difference between the range (i.e., maxi-

mum–minimum) of outputs (DR) are appended to the

objective function. It is proved in simulation studies that

the proposed training approach converges to a solution

with minimum ARL1 values or equivalently, quicker OOC

detection ability. Based on our simulations, the effect of

these is that the IC and OOC outputs have the maximum

difference which will lead to minimum ARL1 while MSE

scales the outputs and hinders increasing the output values.

Note that, the obtained CV can be increased above 1 to

reach a specific ARL0.

The ideal values of MSE, DAVE and DR values are 0,

- 1 and - 1, respectively, when

T̂1 ¼ T̂2 ¼ ::: ¼ T̂G
2
¼ 0;T̂1þG

2
¼ T̂2þG

2
¼ ::: ¼ T̂G ¼ 1; thus,

the best value of the proposed objective function is -2. Note

that the first term of primary objective function in (11) (i.e.

0:5ða0HaÞ þ ~qa) may also be included in (16); however,

this is not recommended since it is a redundant term with

the same outcome in this condition and it only makes it

more complex.

Considering a training dataset with G elements, the

optimization problem in (16) with 2G variables should be

solved by PSO. To this end, initial solutions with size

npopPSO are randomly generated and updated with PSO

algorithm in a way that each member of the population is a

vector with size 2G. By changing the variables’ values

aþg ; a
�
g

� �
in (16) during the PSO implementation, the

output of each input T̂g; g ¼ 1; 2; :::;G
� �

is computed by

(12); in other words, function evaluation process (obtaining

objective function) is carried out by computation of T̂g for

g = 1, 2,…, G. The process terminates when the objective

function reaches its ideal value or BestSol (i.e., - 2) or the

iteration number exceeds maxItPSO. The framework of

ESVR training is illustrated in Pseudocode 2.
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After training the ESVR, the CV value is adjusted such

that the desired ARL0 is reached. It is done using the

algorithm provided in Pseudocode 1, on the condition that

there are no shifts in the profile generation. Note that

UCLMEWMA and UCLLRT are constant during the training.

4 Performance comparisons

Motivated by Qi et al. (2016) and Shang et al. (2018), three

different OOC situations entailing parametric model with

fixed explanatory variable, parametric model with nonfixed

explanatory variable and non-parametric model have been

simulated in this section to evaluate the performance of the

proposed approach (the competitors’ results are extracted

from the above mentioned references). The model param-

eters are provided in Table 1.

Based on the Qi et al. (2016), the IC model for the fixed

and random design points was assumed as:

b0 ¼ ½1 1�;

~X0 ¼
1 1 � � � 1

0:1 0:2 � � � 1

� �
;

n ¼ 10;p ¼ 2:

ð17Þ

The OOC profiles parameters (denoted as bOOC) were

generated such that

bOOC ¼ b0 þ D;

r1 ¼ 0:3518;r2 ¼ 0:5095;
ð18Þ

where D ¼ d1r1; d2r2ð Þ represents the magnitude of shifts

in terms of standard deviation. To generate training dataset,

Table 1 The preassigned model parameters

C e Kernel
function

SVR

parameters

1 0.15 Linear

npopPSO maxItPSO c1 c2

PSO parameters

100 300 1.5 2

MaxIt ARL0 Software

Simulation

parameters

10000 370 MATLAB

2018

G k

Training

parameters

2400 0.2
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in addition to 1200 IC profiles, three different conditions

with 400 OOC profiles with the magnitude of shifts

d1 = 0.2, d2 = 0.2 and d1 = d2 = 0.2 were generated when

G = 2400.

4.1 ARL1 values for the fixed design points
condition

Four competitors (namely: LRT, MEWMA, LRT-EWMA

and WLRT schemes) were compared with the proposed

ESVR method. After the training procedure, the CV was set

equal to 2.12 by simulation to reach ARL0 = 370 (i.e.,

implementation of Pseudocode 1’s procedure with no

shift). Table 2 reports the values of ARL1 and SDRL1 in

parentheses at different shift magnitudes. It is noteworthy

to mention that the boldfaced values denote the best per-

forming scheme.

The proposed ESVR scheme yielded lower values of

ARL1 and SDRL1 regardless of the size of the shifts which

gave an advantage to ESVR over other competitors. Tan-

gible reduction in the values of ARL1 and SDRL1 can be

seen for most of the shifts; for example, the ARL1 in the

first row were obtained as 30.1, 44.8, 153, 201 and 365 for

ESVR, WLRT, LRT-EWMA, LRT and MEWMA

schemes, respectively. Comparable performance in a wide

range of shifts indicated that the training procedure of the

ESVR would be very good as it made ESVR a robust

control chart over different types of shifts. In other words,

although only one shift magnitude has been taught to the

ESVR during the training, it detected other OOC shifts as

quick as possible.

As another finding, the MEWMA and LRT schemes

have weaker performances than the WLRT for most of the

shifts, which reveals that the combination of two or more

control charts (such as combination of EWMA and LRT

for construction of WLRT and LRT-EWMA) could

increase the performances of the resulting methods (Qi

et al. 2017). It is more evident that the WLRT performs

Table 2 Comparison of ARL1
(SDRL1) for the Poisson profiles

with fixed design points

Shift size Method

(d1, d2) LRT MEWMA LRT-EWMA WLRT ESVR

(0.2,0) 201.0 (199.0) 365.0 (366.0) 153.0 (151.0) 44.8 (39.6) 30.1 (38.0)

(0,0.2) 202.0 (209.0) 265.0 (255.0) 154.0 (152.0) 45.1 (39.5) 28.7 (35.2)

(0,0.25) 151.0 (152.0) 130.0 (123.0) 102.0 (99.7) 27.5 (22.4) 16.7 (19.5)

(0.31,0) 106.0 (107.0) 70.8 (61.6) 62.9 (58.5) 17.5 (13.2) 11.0 (12.3)

(0.2,0.2) 64.0 (65.7) 28.7 (21.2) 33.2 (29.3) 10.8 (7.1) 7.1 (6.2)

(0.5,0) 33.9 (33.8) 14.1 (8.2) 16.3 (12.5) 6.9 (3.7) 4.6 (3.7)

(0.32,0.32) 16.1 (15.4) 8.3 (3.6) 8.5 (5.6) 4.8 (2.2) 2.9 (2.1)

(0,0.7) 10.6 (10.2) 6.9 (2.5) 6.2 (3.7) 4.0 (1.6) 2.5 (1.5)

(0.44,0.44) 5.3 (4.7) 4.8 (1.5) 3.9 (2.1) 3.0 (1.1) 1.8 (1.1)

(0.59,0.59) 2.0 (1.5) 3.2 (0.7) 2.1 (1.0) 2.1 (0.6) 1.2 (0.5)

(1,1) 1.0 (0.1) 2.0 (0.2) 1.0 (0.2) 1.1 (0.3) 1.0 (0.0)

Table 3 Comparison of ARL1
(SDRL1) for the Poisson profiles

with random design points

Shift size Method

(d1, d2) LRT MEWMA LRT-EWMA WLRT ESVR

(0,0) 368.0 (371.0) 319.0 (308.0) 368.0 (370.0) 369.0 (371.0) 378.9 (538.5)

(0.2,0) 213.0 (216.0) 460.0 (458.0) 164.0 (159.0) 51.0 (45.2) 33.8 (46.3)

(0,0.2) 208.0 (212.0) 312.0 (305.0) 162.0 (157.0) 49.8 (44.5) 38.2 (53.5)

(0,0.25) 157.0 (158.0) 161.0 (157.0) 111.0 (106.0) 31.2 (25.8) 19.4 (26.3)

(0.31,0) 114.0 (113.0) 91.0 (83.1) 70.8 (66.3) 19.9 (15.3) 12.2 (13.3)

(0.2,0.2) 71.0 (70.9) 34.8 (27.0) 38.2 (33.7) 12.1 (8.1) 6.5 (5.8)

(0.5,0) 38.6 (38.4) 16.4 (10.3) 18.8 (14.7) 7.8 (4.2) 5.0 (4.2)

(0.32,0.32) 18.7 (18.2) 9.2 (4.4) 9.8 (6.7) 5.3 (2.5) 3.1 (2.1)

(0,0.7) 12.2 (12.0) 7.3 (2.9) 7.1 (4.4) 4.4 (1.9) 2.6 (1.7)

(0.44,0.44) 6.1 (5.4) 5.2 (1.7) 4.3 (2.4) 3.3 (1.2) 1.8 (1.1)

(0.59,0.59) 2.3 (1.7) 3.5 (0.8) 2.3 (1.1) 2.3 (0.7) 1.2 (0.5)

(1,1) 1.0 (0.1) 2.0 (0.2) 1.0 (0.2) 1.2 (0.4) 1.0 (0.0)
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much better, especially for small and moderate shifts; for

instance, when (d1 = 0.2, d2 = 0) the ARL1 and SDRL1 of

the WLRT are 5 times less than that of the LRT. This idea

can be extended to the ESVR schemes to increase their

performances. Based on this fact, we can conclude that one

of the main reasons for the superior performance of ESVR

could be the combination of the LRT and MEWMA

statistics.

4.2 ARL1 values for the random design points
condition

Similar to Qi et al. (2016), random explanatory variables

with n = 9 were generated using the same IC model. To

this end, a random number from a discrete uniform dis-

tribution over the integers from 1 to 10 were selected and

afterwards deleted to construct a random design point with

n = 9. To make a more robust scheme, a new ESVR was

not trained in this case and only the data generation pro-

cedure was changed based on the random design points.

The results of this case are gathered in Table 3.

Since the same control limits from the previous sub-

section were used, the ARL0 is not exactly equal to 370 (the

results of IC situation are shown in the first row). The OOC

results revealed the superiority of the newly proposed

ESVR in case of random design points over other com-

petitors with similar properties as the one for fixed design

points. Regardless of the size of the shift, the ESVR per-

forms better followed by the WLRT chart in terms of the

ARL values. On the other hand, the performance in term of

SDRL was higher as compared to that of its competitors for

moderate and large shifts; while, the WLRT performed

better among all competing charts for small shifts. We can

refer, for instance, to the shift with magnitude (d1 = 0.2,

d1 = 0) in which the minimum SDRL1 i.e., 45.2 was related

to WLRT. The same conclusions can be drawn for smaller

shifts. Shang et al. (2011) and Song et al. (2021) hinted to

complexity of motioning profiles with random design

points. Comparing the results of Tables 2 and 3, it can be

seen that both ARL1 and SDRL1 are much larger for a

random design, which confirms Shang et al. (2011) and

Song et al. (2021)’ s findings.

4.3 ARL1 values for the non-parametric
condition

Non-parametric monitoring refers to the OOC conditions

where the type of OOC profile is not known and the IC

model can transform to any possible shape. Due to whole

changing in the profile relationship, the OOC situation is

usually denoted with some scenarios in non-parametric

conditions (Zou et al. 2008; Shang et al. 2018; Abbasi et al.

2022). Note that there is no research in non-parametric

Poisson profiles so all the values have been achieved by our

simulations. To simulate this situation, two different OOC

scenarios were investigated with the fixed design points

and the IC model of (17). Equations (19) and (20) represent

the OOC model in each scenario. Equation (19) presents

the OOC model of scenario I.

Yj ¼ Poisson lj

� �
;

j ¼ 1;2;::::;

log lj

� �
¼ ~Xbjþd3cos 2p ~X0

pure

� �
;

ð19Þ

where ~X0
pure is the indicator of the explanatory variables

without intercept term or

~X0
pure ¼ 0:1 0:2 � � � 1ð Þ

Table 4 Comparison of ARL1 (SDRL1) for the non-parametric Poisson

profiles in scenario I

Shift size Method

d3 LRT MEWMA ESVR

0.10 324.9 (322.2) 135.3 (122.4) 141.4 (191.9)

0.20 138.0 (127.7) 43.9 (25.7) 33.4 (43.0)

0.30 72.6 (69.3) 23.0 (11.0) 10.1 (10.1)

0.40 34.8 (29.4) 15.8 (6.5) 6.2 (5.7)

0.50 20.5 (18.5) 11.3 (3.9) 4.0 (3.2)

0.60 9.0 (9.4) 8.4 (2.1) 2.5 (1.8)

0.70 7.1 (7.7) 7.3 (1.6) 2.1 (1.3)

0.80 3.4 (3.1) 6.1 (1.3) 1.6 (0.9)

0.90 2.4 (2.2) 5.2 (0.9) 1.4 (0.7)

1.00 1.6 (1.1) 4.5 (0.7) 1.1 (0.5)

Table 5 Comparison of ARL1 (SDRL1) for the non-parametric Poisson

profiles in scenario II

Shift size Method

d3 LRT MEWMA ESVR

0.10 313.2 (342.5) 339.8 (307.9) 156.6 (228.4)

0.20 228.9 (222.4) 98.5 (78.2) 51.0 (68.8)

0.30 131.2 (133.9) 41.5 (24.1) 19.3 (29.9)

0.40 73.5 (73.1) 22.9 (9.8) 9.4 (8.9)

0.50 45.2 (42.5) 15.7 (5.4) 6.1 (5.4)

0.60 23.3 (22.0) 12.0 (4.0) 4.0 (3.7)

0.70 12.6 (11.3) 9.5 (2.2) 2.7 (2.2)

0.80 7.7 (7.7) 7.7 (1.8) 2.3 (1.4)

0.90 4.4 (3.8) 6.7 (1.3) 1.8 (1.1)

1.00 3.0 (2.5) 5.8 (1.0) 1.4 (0.8)
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. The results of ARL1 (SDRL1) for this scenario are dis-

played in Table 4.

Equation (20) provides the OOC model of scenario II.

The results of ARL1 (SDRL1) for this scenario are displayed

in Table 5.

Yj ¼ Poisson lj

� �
;

j ¼ 1;2;::::;

log lj

� �
¼ ~Xbjþ

d3
~X0
pure

;

~X0
pure ¼ 0:1 0:2 � � � 1ð Þ:

ð20Þ

Comparing two scenarios, sooner OOC detection was

raised in the first scenario for nearly all control charts; for

example, the ARL1 (SDRL1) for LRT scheme were 138.0

(127.7) and 228.9 (222.4), respectively, in each scenario. It

indicates that the cyclic patterns based on the Eq. (19) can

be detected easier in comparison with OOC term in

Eq. (20). The ESVR scheme turned out to be the best a-

mong all other competing schemes. In general, compared

with the LRT and MEWMA schemes, the ESVR

scheme has both robustness and sensitivity to the complete

changes in the profile type for different shifts; whereas, the

MEWMA has lower SDRL1 for small shifts of scenario I.

That said, its performance was not as comparable as in the

second scenario, which is an indicator of lack of robustness

in terms the size of the shift. One of the main reasons for

this phenomenon is that most of the existing statistical

control charts have been extended based on some funda-

mental assumptions about the properties of the process

(Montgomery 2019; Gupta et al. 2006). While the process

condition completely follows these assumptions, the sta-

tistical control charts can perform well but it deteriorates

its detection ability in other situations such as non-para-

metric models, complex relation forms and so forth. In

these conditions, several researches have stated that

machine learning techniques could be superior than sta-

tistical methods and had more robustness (Yeganah et al.

2022a; b; Pacella and Semeraro 2011; Mohammadzadeh

et al. 2021; Chen et al. 2020). As it was expected that

ESVR scheme, as a machine learning technique, would

outperform the statistical approaches due to its nature, the

lowest values of ARL1 and SDRL1 have belonged to it.

5 Sensitivity analysis

This section provides six different sensitivity analyses.

First, the effect of the proposed input structure and training

algorithm against other machine learning techniques are

evaluated. Secondly, the detection ability with other

desired ARL0 is reported. Thirdly, a sensitivity analysis for

different n values is performed. In the fourth part, the

detection ability is increased with some run-rules. The

effect of PSO in training of ESVR is investigated in the

fifth part and finally, the best performance of the proposed

input structure is depicted on the last subsection. All the

simulations have the same setups as in Sect. 5.1.

5.1 ARL1 comparisons under different machine
learning techniques

To show the capability of the proposed input layer and

training method, four different scenarios were designed

with ANN and usual SVRs. In the first state, a common

ANN with back-propagation algorithm called ANN-BP1

was trained similar with Hosseinifard et al. (2011) i.e. the

inputs were estimation of coefficients. Then, the proposed

input layer structure was also trained in a similar way with

ESVR (i.e., assigning 11 neurons in input layer) called

ANN-BP2. Both techniques have been trained with ‘feed-

forwardnet’ function in MATLAB 2018 and have two

Table 6 Comparison of ARL1
(SDRL1) for different machine

learning schemes in fixed design

points

Shift size Method

(d1, d2) ANN-BP1 ANN-BP2 SVR1 SVR2 ESVR

(0.2,0.0) 44.2 (27.7) 28.6 (34.0) 24.1 (13.9) 33.7 (29.8) 30.1 (38.0)

(0.0,0.2) 36.2 (21.9) 24.0 (26.6) 22.6 (15.4) 32.4 (29.8) 28.7 (35.2)

(0.0,0.25) 25.2 (12.7) 18.0 (18.1) 16.5 (8.1) 26.6 (27.7) 16.7 (19.5)

(0.31,0.0) 21.2 (9.5) 14.2 (16.2) 14.0 (6.7) 18.1 (20.2) 11.0 (12.3)

(0.2,0.2) 14.4 (5.3) 8.4 (8.2) 9.3 (3.7) 14.1 (14.4) 7.1 (6.2)

(0.5,0.0) 10.7 (3.0) 6.0 (6.2) 8.0 (3.0) 9.1 (11.8) 4.6 (3.7)

(0.32,0.32) 7.7 (2.0) 5.2 (8.2) 5.6 (1.7) 5.0 (4.8) 2.9 (2.1)

(0.0,0.70) 6.6 (1.5) 5.0 (10.3) 4.8 (1.4) 4.5 (4.5) 2.5 (1.5)

(0.44,0.44) 5.4 (1.2) 7.7 (31.7) 3.9 (1.0) 2.4 (2.1) 1.8 (1.1)

(0.59,0.59) 4.0 (0.7) – 2.8 (0.6) 1.5 (1.1) 1.2 (0.5)

(1.0,1.0) 2.4 (0.5) – 1.7 (0.5) 1.0 (0.0) 1.0 (0.0)
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hidden layers. Moreover, two SVRs called SVR1 and

SVR2 have been trained with similar inputs with ANN-

BP1 and ANN-BP2 with ‘fitrsvm’ function. By these

adjustments, ANN-BP1 and SVR1 assessed the proposed

input structure while the performance of training method

was evaluated under ANN-BP2 and SVR2. The results of

these setups are displayed in Table 6.

As it can be seen, the ESVR outperformed ANN-BP1,

ANNBP2 and SVR2 for most of the shifts; whereas, for

small single positive shifts, it had weaker performance than

SVR1. Although the ESVR had lower ARL1 values than

SVR1 for most of the shifts, the simple training of SVR1

might violate the efficiency of ESVR. By more concen-

tration in ARL1 of different shifts including negative shift

and simultaneous positive and negative shifts (the results

were not shown), it was revealed that SVR1 came across

with the bias effect which means the inability of detecting

some shifts (this is also shown for ANN-BP2 in the last two

rows of Table 6). As pointed out by Huwang et al. (2014),

machine learning techniques suffers from bias effect which

means that for such control charts, the OOC signals are not

triggered for some shifts; thus, some remedial actions

should be considered. However, this bias and poor detec-

tion ability did not exist in the case of ESVR scheme.

5.2 ARL1 comparisons under an ARL0 value
of 200

In Fig. 2, the simulation adjustments were carried out to

have ARL0 = 200 under the fixed design point and the

ARL1 and SDRL1 are reported in Panels (a) and (b),

respectively. Figures 2a, b illustrate that the ESVR

scheme remains superior in the new condition, which

reveals the apparent complete robustness of ESVR

scheme in terms of the type I error and/or ARL0 (Abbas

Fig. 2 The results of a ARL1 and b SDRL1 values for MEWMA, LRT

and ESVR methods when ARL0 = 200

Fig. 3 The results of a ARL1 and b SDRL1 values for different n when
ARL0 = 200
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et al. 2016). The comparative analysis in Fig. 2 remains

valid for other different values of ARL0 but they are not

reported for the sake of brevity. Note that the results were

obtained using the previous ESVR training where the CV

was decreased to reach the desired ARL0 value of 200.

5.3 ARL1 Comparisons under different n values

To study the effect of different sample sizes with ARL0-
= 200, we also set n = 5, 15 and 20 with the step 0.1; for

example, ~X0
pure = (0.1 0.2 … 1.5) when n = 15. Fig-

ures 3a, b illustrate some comparisons for different values

of n in terms of ARL1 and SDRL1, respectively. The results

conducted without a new training were predictable in

SDRL1 while the ARL1 values had outstanding pattern for

some of the moderate shifts because it was expected that

the greater the value of n, the lower the ARL1 for a specific

shift. Another strange pattern occurred in the third and

fourth shift when n = 5 (blue line). In this state, the larger

shifts had larger ARL1 and SDRL1. It may be because of

small sample sizes and biased estimated parameters. It was

mentioned by Montgomery (2019), Haq (2020) and Abbasi

et al. (2022) that detection of OOC condition in process

with variable sample size provides some challenges such as

variance inflation and it is necessary to employ some

adaptive schemes for statistical control charts to reduce this

effect. The results indicated that ESVR can perform better

as an adaptive scheme in case of variable sample size.

Conceptually speaking, the value of n is known in Phase II

so control charts are extended with permanent n values and

it is more practical to use ESVR in this situation with

specific training for each n. However, this is not the focus

of this paper, due to brevity and will be reported in the

future studies.

5.4 Increasing the detection ability with run-
rules

To improve the sensitivity of control charts, many tech-

niques (or methods) including runs-rules, adaptive methods

variable sampling designs and mixed procedures have been

recommended in the area of profile monitoring (Haq 2020;

Mohammadzadeh et al. 2021). For instance, adding runs-

rules to the basic control chart can increase its ability to

quickly detect shifts of different magnitudes. Employing of

variable sampling interval (VSI) technique in which it is

allowed to take samples with shorter intervals in case

existing potential for a shift in IC model, while samples are

taken with longer interval in the routine situations, has

been utilised in the area of profile monitoring. Also, some

other adaptive methods including modified successive

sampling, ranked based and set approaches have been

considered in profile monitoring (Maleki et al. 2018;

Woodall 2007) but as a more profitable technique, run-

rules was extended by Yeganeh et al. (2021), Yeganeh and

Shadman (2020) and Yeganeh and Shadman (2021) in

which they were used in form of a rule matrix. To construct

a rule matrix, the IC region is divided into several regions

by a heuristic approach. After defining these, then the

number of regions and the ratio of points in them are

reconciled with prespecified values (i.e., thresholds) and an

OOC signal is obtained when they locate beyond these

thresholds.

To investigate its effect in combination of ESVR, in this

paper, the proposed ESVR method supplemented with rule

matrix (denoted as ESVR-RULE). For this aim, the ratio of

ESVR statistic (Oj) in the run-rule regions was computed

and compared with the limits of rule matrix. The details of

rule matrix were not given for the sake of brevity. For

comparison purposes, the combination of rule matrix and

MEWMA scheme (denoted with MEWMA-RULE) was
Fig. 4 The results of a ARL1 and b SDRL1 values for combination of

ESVR and MEWMA with run-rules
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also provided. Figures 4a, b illustrate the results of ESVR,

ESVR-RULE, MEWMA and MEWMA-RULE.

From Fig. 4, it is observed that run-rules could improve

the performance of both MEWMA and ESVR in terms of

ARL1 and SDRL1 under small and moderate shifts except

for the IC condition. The SDRL0 of the MEWMA-RULE

and ESVR-RULE were tangibly greater than MEWMA and

ESVR, respectively; however, this may cause some prob-

lems in increasing the number false alarms in specific

conditions. The second finding of this simulation study was

that the run-rules could not be effective for large shifts.

This finding is rational as run-rules usually improve

detection ability of small shifts (Montgomery 2019). As the

last finding, the ESVR-RULE performed better than the

MEWMA-RULE which revealed a superior detection

ability of the proposed method.

5.5 Effect of EA in training of ESVR

As mentioned in the previous section, the optimization

problem in (16) is solved with PSO in ESVR. To show the

superiority of PSO over other common EAs, three other

well-known EA entailing GA, DE and SA was also

employed. For this aim, all the designing steps between this

method were similar and only they were utilised in solving

of Eq. (16). Figure 5 depicts the ARL1 and SDRL1 values

for our proposed method or ESVR (PSO), DE, GA and SA.

It is obvious that ESVR (PSO) had the best detection

ability in all the shifts in terms of ARL1 while it was also

the best approach in small and moderate shifts in terms of

SDRL1. But GA had a very small superiority over ESVR

(PSO) in large shifts in term of SDRL1. Hence, these and

some other similar simulations justified choosing of PSO in

our proposed method. However, as stated in the literature

(Adnan et al. 2021a; Ikram et al. 2022a; Kadkhodazadeh

Fig. 5 The results of a ARL1 and b SDRL1 values for different EA in

training of ESVR

Fig. 6 The results of a ARL1 and b SDRL1 values for different input
combinations
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and Farzin 2022), some EAs such as EMPA, GBO, MFO,

WCA and GWO may be highly sensitive to the initial

parameters and adjustments. Hence, reaching superior

performance over PSO may occur with these approaches

under some sensitivity analysis. This idea can be investi-

gated in the future by interested researchers.

5.6 Effect of input features

To show the best performance of our proposed input

structure Ij ¼ EWMAPj
d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j ;
d
ð3Þ
MEWMA

j ;Mj;
d
ð1Þ
LRT

j ;


�

d
ð2Þ
LRT

j ;
d
ð3Þ
LRT

j ; LRTj�Þ, some other input combinations were

defined as follows:

• ESVR1: Ij ¼ ½EWMAPj�.

• ESVR2: Ij ¼ EWMAPj;
d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j ;
d
ð3Þ
MEWMA

j ;Mj


 �
.

• ESVR3: Ij ¼ EWMAPj;
d
ð1Þ
LRT

j ;
d
ð2Þ
LRT

j ;
d
ð3Þ
LRT

j ; LRTj


 �
.

• ESVR4: Ij ¼
d
ð1Þ
MEWMA

j ;
d
ð2Þ
MEWMA

j ;
d
ð3Þ
MEWMA

j ;Mj


 �
.

• ESVR5: Ij ¼ d
ð1Þ
LRT

j ;
d
ð2Þ
LRT

j ;
d
ð3Þ
LRT

j ; LRTj


 �
.

The training procedure for each of the above input

combinations was the same as ESVR and the difference

was only related to the input size. Consequently, the

dimension of inputs in the train data was p ? 1, p ? 5,

p ? 5, 4 and 4 for ESVR1, ESVR2, ESVR3, ESVR4 and

ESVR5 respectively. Figure 6 depicts the performance of

ESVR approach regarding to each predefined input

combination.

The superiority of ESVR over other input combinations

are obvious from Fig. 6. By reduction of each part of input

features, we can notice some decreases in the performance

of ESVR scheme in term of ARL1 and SDRL1. The ability

to identify OOC situations are more apparent for large

shifts such as d1 = d2 = 0.59 of which ESVR1 was nearly

five (ten) times less quick than ESVR in term of ARL1
(SDRL1). As another finding, it could be inferenced that

combination control chart statistics and EWMA form of

estimated parameters had a strong effect in detection ability

due to superiority of ESVR2 and ESVR3 over ESVR1,

ESVR4 and ESVR5. It means that the LRT and MEWMA

statistics were not solely able to increase detection ability

and they required some characteristics of the process to

reduce ARL1 and SDRL1. The weak performance of ESVR1

utilized only EWMA form of estimated parameters has also

confirmed this argument.

6 Diagnosis aid

In some real cases, the practitioner is interested to identify

the parameters that have shifted after an OOC signal has

been detected; however, this approach called profile diag-

nosis has gotten scant attention in the literature of profile

monitoring. For example, some statistics have been pro-

posed by Zou et al. (2007), Zou et al. (2008) and Huwang

et al. (2016) for the diagnosis of the shift causes in linear,

non-parametric and logistic profiles, respectively. Yeganeh

and Shadman (2020) introduced a different approach using

ANN with signalling rules as a tool for profile diagnosis.

However, to the best of the authors’ knowledge, there is no

research work on diagnosis for Poisson profiles. In this

paper, a novel structure based on a set of SVRs is proposed

for diagnosis actions in Poisson profiles.

6.1 Requirements for profile diagnosis actions

There are two key points in the profile diagnosis simula-

tions. Firstly, since profile diagnosis is usually imple-

mented after the change point estimation. This is not part of

this paper as we have assumed that all the shifts are con-

sidered from the onset of the process. Then, the IC esti-

mated profiles need to be removed or ignored (see, for

example, Fig. 9 in Yeganeh and Shadman (2020)) so that

the machine learning procedure is based only on OOC

samples to identify the parameters that have changed.

Secondly, for a fair judgement, it is assumed that the

control chart has the same signalling method. For example,

similar diagnosis techniques can yield different results

because of different signalling methods; see for example,

Zou et al. (2007) and Huwang et al. (2014). In this paper,

the diagnosis actions are implemented after triggering a

signal by ESVR control chart.

6.2 The proposed SVR structure in profile
diagnosis

Following Yeganeh and Shadman (2020) model, SVR is

used in this paper for profile diagnosis actions. Yeganeh

and Shadman (2020) used the EWMA statistics with esti-

mated parameters as the inputs of ANN. Due to consider-

ation of previous samples information, the EWMA statistic

considers the change point effect automatically. Thus, after

an OOC signal, the EWMAPj

EWMAPj ¼ b01j; b
0
2j; :::; b

0
pj; y

0
j

h i� �
of the last sample (i.e.,

the jth sample in this case is equal to signalling sample; but

hereafter its index is omitted) is considered as the input

vector of profile diagnosis. But there is a fundamental

difference between ANN and SVR. It is possible to assign

different neurons for each parameter in the output layer of
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ANN while SVR could only generate one output. This is

the major challenge that arises when conducting profile

diagnosis with SVR as a classification problem. To over-

come this problem, we used an approach denoted by SVRS

(SVR Set) in a way that one SVR called SVRD (SVR

Diagnosis) is trained for each possible change and the

existence of each shift is identified by SVRD. In this

approach, there are in total p SVRDs in diagnosis process.

In other words, SVRS consist of p SVRDs, i.e., SVRD1,

SVRD2, …, SVRDp. For example, if we have two

parameters in the IC profile, two SVRDs identify the

shifted parameters such that the first and second SVRDs

are indicators of the shifts in the first and second parame-

ters, respectively. Naturally, the identifications of a shift by

both parameters indicate a simultaneous shift.

Also, a limit, called CVD (Cutting Value Diagnosis) is

assigned for each SVRD to identify the change in the

parameters. To conduct diagnosis actions after an OOC

signal by ESVR control chart, the 1þ p vector EWMAp is

computed using the last (i.e., current) sample and then it is

considered as the input of each SVRD. In other words,

SVRD1, SVRD2, … and SVRDp have the same input. The

outputs of SVRDs are compared with their CVD to identify

the shifted parameters.

Considering the IC model given in (17) with p = 2,

SVRS includes SVRD1 and SVRD2 with CVD1 and CVD2

such that the shift in the first and second parameters are

identified, respectively. To better illustrate the above

diagnosis, Fig. 7 depicts the diagnosis procedure of SVRS

after an OOC signal in the jth profile is detected, using the

IC model defined in (17) when p = 2.

To train each SVRD in SVRS, some OOC profiles are

generated until an OOC signal is obtained by ESVR. Then,

the EWMAp is considered as the inputs of the training

dataset. The targets are defined such that the target value of

the shift in the pth parameter is 1 and the other values are 0

in SVRDp. Other training aspects and assigned limits are

the same as the ones in Yeganeh and Shadman (2020).

Hence, the details are not reported here for brevity.

6.3 The accuracy of the proposed SVRS structure
in profile diagnosis

Due to the lack of research for profile diagnosis in Poisson

profiles, four other competitors entailing three machine

learning techniques and one statistic method are provided

in this paper. First, we use multiclass SVM (the details and

concept are ignored here to save space) with ‘fitcecoc’

function in MATLAB called MSVM. For a better com-

parison, ANN training with back-propagation and entropy-

based training algorithm (‘feedforward’ and ‘patternnet’

functions in MATLAB) denoted by ANN-BP and Pat-

ternnet are also carried out for profile diagnoses. In addi-

tion to these methods, the Wald statistic proposed in

Huwang et al. (2016) is also computed as the last com-

petitor (denoted as Wald Test). The OOC profiles are

generated from (17) with p ¼ 2. The simulation procedure

for obtaining accuracies in profile diagnoses with SVRS

when there is shift in the intercept is described by Pseu-

docode 3.

Fig. 7 The profile diagnosis

procedure of SVRS approach

after an OOC signal by ESVR

when p = 2
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Note that Pseudocode 3 changes to the situations that

OOC shifts have been occurred in slope and simultaneous

by replacing the following codes with the last if.

• If (output of SVRD1\CVD1 & output of SVRD2-

[CVD2) % Shift in slope

• If (output of SVRD1[CVD1 & output of SVRD2-

[CVD2) % Shift in intercept and slope

The results of diagnosis accuracy are reported in Table 7

for Poisson profiles based on 10,000 iterations (MaxIt),

where the boldfaced values denote the best performing

scheme at that particular shift size. For example, the

accuracy of SVRS in the first shift is 0.52 which means that

‘‘Corrected’’ value in Pseudocode 3 is 5200. From Table 7,

it can be seen that SVRS and Patternnet are preferred over

others in terms of the average of accuracies while ANN-BP

is the best method in terms of the standard deviation of

accuracies. MSVM and Wald Test have biased perfor-

mances; that is, for some shifts, they are not able to detect

any shifts while they have good accuracies for others shifts.

7 Illustrative example

A real-life application of Poisson profiles in the airline

industry is provided here from Chatterjee and Hadi (2013)

and Alevizakos et al. (2019b). The aim of this example is to

check the relationship between the number of injury inci-

dents and the proportion of total flights over time. Natu-

rally, it is expected that the probability of accidents will

increase with an increase in the proportion of total flights.

To this end, the accidents and injuries of nine major

USA airlines were studied in these references. If all the

airlines have equally safe performance in a specific period,

the injury incidents can be explained by the IC model

considering the number of flights of each airline as a per-

centage of the total number of the airlines as an explana-

tory variable and the injury incidents as a response

variable. Following Eq. (2), the IC Poisson model is

established by the relationship between the explanatory and

response variables:

Table 7 Profile diagnosis accuracy

Shift size Method

(d1, d2) ANN-BP Patternnet MSVM Wald Test SVRS

(0.2,0) 0.465 0.482 0.130 0.521 0.520

(0,0.2) 0.435 0.318 0.000 0.643 0.640

(0,0.25) 0.431 0.353 0.000 0.683 0.500

(0.31,0) 0.447 0.490 0.190 0.546 0.550

(0.2,0.2) 0.396 0.476 0.710 0.070 0.330

(0.5,0) 0.406 0.525 0.280 0.584 0.480

(0.32,0.32) 0.490 0.553 0.780 0.090 0.360

(0,0.7) 0.507 0.309 0.000 0.738 0.560

(0.44,0.44) 0.516 0.631 0.740 0.109 0.500

(0.59,0.59) 0.556 0.719 0.760 0.119 0.530

(1,1) 0.484 0.666 0.990 0.238 0.570

Average 0.467 0.502 0.416 0.394 0.504

Std 0.049 0.137 0.380 0.268 0.090
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To reach the ARL0 equal to 200, the values of

UCLMEWMA, UCLLRT and CV are obtained as 1.303, 10.53

and 6.61, respectively. As a common approach in Phase II

applications, the intercept changes to 0.965, as an artificial

shift, to reach an OOC signal. Table 8 gathers the details of

11 OOC generated profiles. It provides the details of esti-

mated parameters (first part), normalized parameters (sec-

ond part), EWMA statistic of the normalized parameters

(third part), MEWMA and LRT statistics (fourth part) and

the ratio of samples (fifth part), respectively. Note that the

input vector of ESVR in this example is defined with length

11 (p ? 9); for example, the input in the first sample

(j = 1) is [0.31 - 2.17 0.2 1 0 0 0.23 0 1 0 6.98].

The outputs of ESVR for the above inputs are depicted

in Fig. 8. The MEWMA and LRT statistics are also added

to this figure to visualised their trends as compared to the

ESVR. It can be observed from Fig. 8 that ESVR triggered

an OOC signal at the 11th sample while LRT and

MEWMA procedures were not able to detect this shift.

To identify the shifted parameter, EWMAP = [0.1

- 0.59 1.15] is incorporated into the SVRD1 and SVRD2

and the outputs are 1.16 and - 0.27, respectively. This is

an indication of shifts in the first parameter because CVD1

and CVD2 are 0.39 and 0.42 (i.e., 1.16[ 0.39 and

- 0.27\ 0.42).

Table 8 The OOC profiles characteristics of the illustrative example

j ½b
_

j
yj� ½b0j y0j� EWMApj Mj LRTj The ratio of samples

1 1.67 3.53 8.00 1.53 - 10.86 1.00 0.31 - 2.17 0.20 0.23 6.98 1 0 0 0.23 0 1 0 6.98

2 1.03 8.31 7.89 0.08 - 0.45 0.88 0.26 - 1.83 0.34 0.22 0.75 1 0 0 0.22 0.50 0.50 0 0.75

3 0.54 12.13 8.44 - 1.08 7.86 1.50 - 0.01 0.11 0.57 0.20 5.33 1 0 0 0.20 0.33 0.67 0 5.33

4 0.92 8.33 7.11 0.05 - 0.38 0.00 0.00 0.01 0.45 0.13 0.01 1 0 0 0.13 0.50 0.50 0 0.01

5 0.26 12.28 6.56 - 1.17 8.26 - 0.62 - 0.23 1.66 0.24 0.14 3.10 1 0 0 0.14 0.60 0.40 0 3.10

6 0.53 11.04 7.11 - 0.78 5.53 0.00 - 0.34 2.44 0.19 0.28 1.35 1 0 0 0.28 0.67 0.33 0 1.35

7 1.20 8.28 9.33 0.11 - 0.56 2.50 - 0.25 1.84 0.65 0.40 5.70 1 0 0 0.40 0.57 0.43 0 5.70

8 1.21 7.56 8.56 0.32 - 2.11 1.63 - 0.14 1.05 0.85 0.53 2.71 1 0 0 0.53 0.63 0.38 0 2.71

9 1.31 6.55 8.22 0.62 - 4.30 1.25 0.02 - 0.02 0.93 0.60 2.45 1 0 0 0.60 0.67 0.33 0 2.45

10 1.07 7.09 7.00 0.43 - 3.07 - 0.12 0.10 - 0.63 0.72 0.37 0.44 1 0 0 0.37 0.70 0.30 0 0.44

11 1.22 8.35 9.67 0.10 - 0.41 2.88 0.10 - 0.59 1.15 0.94 7.43 0.91 0.09 0 0.94 0.64 0.36 0 7.43

Fig. 8 The statistics of the ESVR, MEWMA and LRT control charts

for 11 OOC generated profiles in the illustrative example

b0 ¼ 0:8945 8:5018½ �;

~X0 ¼
1 1 1 1 1 1 1 1 1

0.0503 0.054 0.0629 0.075 0.095 0.1292 0.1382 0.1920 0.2078

� �
;

n ¼ 9; p ¼ 2:

ð21Þ
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From this example, it is observed that the Oj exceeds its

control limit sooner than MEWMA and LRT schemes and

the results under the existing case study are in accordance

with the simulation results. This excursion suggests that the

proposed ESVR has excellent abilities in practical appli-

cations of Phase II SPC problems in comparison to other

competitors. Also, these findings act as evidence that the

proposed diagnosis approach encompass a significant

impact on the detection of shifted parameters. Therefore,

the ESVR control chart is found to be more efficient in

Poisson profile monitoring.

8 Conclusions

A novel use of SVR as a control chart is extended to

monitor Poisson profiles in Phase II. This method, equip-

ped with new input features and evolutionary training

procedure based on the PSO algorithm, is able to quickly

detect the OOC situations due to the advantage of an

evolutionary training framework either in parametric or

non-parametric monitoring where the OOC model can be

unknown. To design a more efficient method for identifi-

cation of small and moderate shifts, the proposed scheme is

incorporated with additional run-rules. Finally, a diagnostic

procedure is used with SVR structures and ANN. Both the

SVR and ANN approaches showed a better detection

ability. The contributions of this study include: firstly,

implementation of SVR as a control chart in monitoring

Poison profiles. Secondly, utilizing a novel input feature

corresponding to the ratio of MEWMA and LRT statistics.

Lastly, the training of the SVR using evolutionary PSO

algorithm.

That said, owing to the requirements in evolutionary

computations for training of ESVR, the proposed approach

requires more computations than the statistical approaches

such as MEWMA and LRT. Note though, this challenge

commonly occurs in the machine learning applications but

due to rapid extension of artificial intelligence related

technology from the software and hardware aspects, the

importance of this challenge has decreased in recent years.

For future research purpose, the investigation of other

evolutionary algorithms with different IC profile types and

sample sizes would be preferable. Moreover, the proposed

method can conveniently and effectively tackle the prob-

lem of other non-parametric profile monitoring; for

example, applying the proposed approach with linear IC

model can be a good idea for future research.
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