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a b s t r a c t

EVs are becoming more popular and widely used worldwide due to their environmentally friendliness
as part of the world efforts to decrease the effects of climate change. Moreover, more users are buying
EVs due to governmental incentives, development of charging technologies and cheaper maintenance
costs. Thus, the increased electrical loads on the distribution grid caused by the charging of EVs can
have negative impacts such as high voltage fluctuations, power losses and power overloads. Thus,
a power system management solution is required to protect the distribution grid from the harmful
effects of EVs charging through the regulation of the charging of EVs. In this paper, a deep RL-based
EVs charging management solution is presented, while considering fast charging, conventional charging
and V2G operation, in order to satisfy the requirements of the user and the utility. Deep RL is utilized
to model the EV chargers and the EV users. The EV chargers are considered the RL environment and
the EV users are considered the RL agent. Finally, the system was tested with a range of case studies
using real-life EVs charging data, which proved the effectiveness and reliability of the system to protect
the distribution grid and satisfy the EV user’s charging requirements.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the inception of EVs, they have been gaining immense
opularity over conventional petrol and diesel vehicles. EVs are
nown for their environmentally friendliness, decreased mainte-
ance costs, higher performance and cheaper charging compared
o refuelling. As a result, the EVs market share in the global
ar market has seen around 170% increase in 2021, as well as
he exponential increase in the yearly sales of EVs (Virta, 2021).
oreover, as a result of the environmentally friendliness of EVs,
ountries are starting to provide incentives for the users of EVs
o encourage others to buy EVs to decrease the effects of climate
hange. For instance, the UK has passed legislation to ban all new
iesel and petrol cars by 2030 (Harrabin, 2020).
Thus, undoubtedly, this has caused a change in the infras-

ructure of countries with a large increase in the number of EV
hargers. It is expected that the number of public EV chargers
ill reach 2.9 million by 2030 (Virta, 2021). In addition, with
he advancement of new technologies, fast chargers are gaining
opularity, as well as V2G operation. Between 2020 and 2024,
t is expected that the V2G market will experience growth of
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up to $5 billion (Virta, 2021). The increase of EVs penetration in
the distribution grid can have negative effects on the grid due to
the increased loads. As a result, it is vital that such heavy elec-
trical loads are properly regulated and controlled to protect the
distribution grid from undesirable consequences such as voltage
fluctuations, power losses and power overloads.

In this paper, a power system management solution consider-
ing EVs penetration is presented using deep RL. The penetration
of EVs is studied with fast and conventional charging, as well
as V2G, to model the EV chargers with the newest technologies.
RL is utilized to model the EV chargers and the EV users to
produce a system that can protect the distribution grid from the
unwanted consequences of EVs penetration. The RL environment
is modelled as the EV chargers and the RL agent is modelled as
the EV users. The objective of the system is to coordinate the
charging of EVs to protect the distribution grid by decreasing
voltage fluctuations, power losses and power overloads through
minimizing the charging cost for the user, while considering
battery degradation. Fig. 1 provides an overview of the presented
method.

The main contributions of the paper are twofold:

1. Introducing an RL-based solution for the management of
EVs charging considering fast and conventional charging, as
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Environment Constants

PC Conventional charging power
PF Fast charging power
∆ Action space
σ State space

Environment Variables

τ Time period in hours
C(t) Electricity cost at time t
alpha Attenuation factor
κ Discount factor

Agent Constants

Tc,max Maximum charging time
Q Maximum battery capacity
SoCf Final SoC

Agent Variables

SoC(t) State of charge at time t
B Battery degradation cost
Wi(t) Idle waiting cost at time t
Wc(t) Charging waiting cost at time t
ξ Charging mode
h Charging hour
m Charging minute
ω Total waiting time in hours

Acronyms

EV Electric Vehicle
RL Reinforcement Learning
V2G Vehicle-to-Grid
SoC State of Charge
MDP Markov Decision Process
DNN Deep Neural Network

well as V2G with the consideration of battery degradation,
to satisfy the requirement of the utility and the EV user.

2. Testing the RL model using case studies with real-life EVs
charging data, including the performance assessment un-
der the impact of electricity price uncertainty, to ensure
its effectiveness and reliability in managing the distribution
system.

In the upcoming sections, Section 2 will review the literature.
Next, Section 3 describes the RL model formulation. After that,
Section 4 will present the results and discussion. Finally, Section 5
and VI will conclude the paper and examine the future work,
respectively.

2. Related work

There have been lots of previous studies done in the domain
of EV charging solutions, which included the use of machine
learning, game theory, quadratic programming, etc. (Abid et al.,
2022). Tan and Wang (2017) and Liu et al. (2018) proposed the
use of game theory to control EVs charging. The use of support
vector machine, random forest, XGBoost, deep neural networks,
and recurrent neural networks for coordinating the charging of
495
EVs was studied by Shahriar et al. (2021) and Van Kriekinge
et al. (2021). Stojkovic (2019), Deilami et al. (2011), and Wei
et al. (2018) proposed the coordination of EVs charging based
on different optimization problems with different objective func-
tions. Malekshah et al. (2021) discussed the use of an energy
reserve operational scheduling method to prevent emergency
situations and blackouts using energy storage systems, such as
EVs, and shiftable loads.

Recently, the utilization of RL has been extensively studied
by researchers for EVs charging, through different RL modelling
techniques and methods. Hu and Li (2022) studied the use of
offline RL to produce a computationally efficient energy manage-
ment system for the charging of EVs. However, the performance
of the system considering the uncertainty of EVs charging and the
availability of offline data was not investigated.

The creation of an EV charging scheduling scheme utilizing
Q-learning was examined by Dang et al. (2019). Time-of-use
electricity pricing was utilized to produce the Q-learning tables
for the reward function. However, due to the use of look-up
tables, continuous states, such as the SoC, cannot be used. Thus,
the model only considers the charging mode as the only state of
the agent. Therefore, the model does not fully represent the EV
charging problem and its stochastic nature.

Sadeghianpourhamami et al. (2020) studied the use of RL as
a model-free approach to coordinate EV charging. The RL model
controls a set of EVs and makes use of Q-iteration to find the
optimal charging policy. The model is seen to be only 8.5% more
expensive compared to the optimum solution. However, only a
single charging speed is considered, which means that the model
does not consider the possibility to use fast and conventional
charging, and V2G operation.

Similarly, Zhao and Lee (2022) studied an RL model using
dynamic pricing of charging cost, with the aim of maximizing
the quality of service for the user. RL is utilized to solve the
formulated dynamic pricing problem, which is defined as a finite
discrete horizon Markov decision process with a mixed state
space. The results show that the model successfully solves the
problem. However, the main drawbacks of the system is the as-
sumption that the arrival rates of EVs is known and the stochastic
nature of EVs charging is not considered, which are not realistic
for real-life EV chargers.

On the other hand, Ding et al. (2020) proposed an RL solution
to find an optimum EV charging strategy, with the objective of
maximizing the profits of the distribution grid operator. As a
result, the model benefits the voltage profile of the distribution
grid, increasing the power quality of the power system. However,
the model does not consider the needs of the EV user such as
decreased charging times and cheaper charging costs.

In addition, Dabbaghjamanesh et al. (2021) studied the use of
Q-learning for load forecasting of an EVs charging station. The
authors propose a method of predicting the expected EVs loads
in a charging station to mitigate any possible harmful effects on
the grid, such as increased power overloads and power losses.
It was seen that the model predicts the future loading well in
three charging scenarios, which are uncoordinated, coordinated,
and smart charging.

Moreover, Liang et al. (2021) utilized deep RL for scheduling
the charging of a fleet of mobility on demand EVs. The model
consider charge scheduling, vehicle re-balancing and order dis-
patching, which is modelled using a Markov decision process.
Deep RL and binary linear programming are applied to be able to
find a near optimal solution to the model. The RL model chooses
the action for the EV, which are taking an order, re-balancing to
a position or charging. The actions are taken based on the state
value at different locations, times, SoCs and electricity prices. The

model was simulated in Haikou City, which demonstrated the
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Fig. 1. EV charging station management solution overview.
iability of the model and increased the profits of the mobility
n demand service provider.
Yan et al. (2021) approached the management of EVs charging

sing deep RL considering dynamic user behaviours and electric-
ty price. The RL model aims to find the best sequence of charging
vents based on the charging cost and the EV user’s experience.
he EV user’s experience is modelled to be the preference on
harging times and locations. Thus, the model tries to balance
etween the price and the user’s experience.
Furthermore, Liu et al. (2015) proposed an RL model as an

nergy management system for an EV. The model considers the
tate variables to be the SoC and generator speed. The driving
chedule is utilized to calculate the transition probability and the
odel aims to increase fuel economy through the proper power
plit between the battery and the generator.
Another RL-based solution by Zhang et al. (2021) was built

pon planning the charging of EVs. The objective of the RL
odel was to minimize the charging time, which was successfully
chieved when tested with real-world data. In addition, the
odel considered the availability of two charging speeds, which
re slow and fast, but V2G operation was not modelled.
A recent study by Wei et al. (2022) examined the use of deep

L for the fast charging of lithium-ion batteries. A model-based
tate observer and a deep RL optimizer model was utilized for
he fast charging of lithium-ion batteries. The deep RL model
enalized the over-temperature and degradation of the battery.
o balance between the charging speed and the physical pa-
ameters of the battery, a novel environmental perceptive deep
eterministic policy gradient algorithm is utilized. The results
howed that the model is successful in providing a thermally
afe charging solution for the battery and the increase in the
ifetime of the battery. Nevertheless, the model did not undergo
ncertainty analysis. In addition, the model was not being built
or EVs, which means the utility requirements and V2G operation
ere not considered in the development of the model.
Furthermore, Shin et al. (2020) examined the utilization of a

ultiagent deep RL approach to manage EV chargers, while con-
idering solar photovoltaic systems. The objective of the RL model
as set to reduce the operation costs of the EV chargers. The
odel was designed to work with dynamically changing charging
ata and its use has shown that the operation of EV chargers
496
were improved, while considering a single charging speed and
V2G operation.

Similarly, Ye et al. (2022) and Mhaisen et al. (2020) researched
the scheduling of EV charging using RL, while considering a single
charging speed and V2G operation. The RL model provide a charg-
ing and discharging schedule for the user. However, the aim of
the RL model proposed by Mhaisen et al. (2020) is the reduction
of the charging costs of the user, while the aim of the RL model
proposed by Ye et al. (2022) is the maximization of the profit
of the charging station. The proposed RL method by Mhaisen
et al. (2020) significantly reduces the charging cost, compared to
heuristic and uncontrolled charging methods. Also, the proposed
RL method by Ye et al. (2022) has a higher performance compared
to the baseline model predictive control.

Additionally, Chu et al. (2022) examined the utilization of
federated RL models for the minimization of the charging cost.
Each user produces its own RL model, followed by the aggregation
of the user models to produce a global model for all users. Li
et al. (2022) studied the use of deep RL to minimize the charging
cost for the user, considering the uncertainty in electricity pricing.
Long short-term memory is utilized for the extraction of temporal
features from the electricity price signal. The models successfully
achieve their objectives and reduce the charging cost for the user.

The use of deep RL for the pricing of EVs charging by charging
station operators was researched by Qiu et al. (2020), considering
the discrete levels of charging and V2G operation. The model
focuses on the requirements of the EVs charging station operators
to increase their profits by adjusting the pricing of charging EVs.
However, the model was not tested with real-life scenarios and
EVs travelling data.

The advantage of RL over other methods such as quadratic
programming and game theory is the adaptive nature of the
RL method. Due to the stochastic nature of EVs charging, some
models might not perform well in some situations due to prede-
termined assumptions and charging strategies. As a result, unlike
other methods, RL can still perform well with the uncertainty
in parameters such as electricity price. Additionally, RL is based
on action and reward, which means that RL has an adaptable
nature that allows it to perform well in all situations if the RL
environment and RL agent are well defined. In addition, RL does
not require time consuming problem formulation in comparison
to optimization methods such as quadratic programming.
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Table 1
Comparison of RL models.
Reference Fast V2G User Utility Uncertainty

charging operation requirements requirements analysis
(Cost, Final (Load
SoC and Variance,
Time) Voltage

Fluctuations
and
Overloads)

Sadeghianpourhamami
et al. (2020) and Zhao
and Lee (2022)

x x ✓ x x

Ding et al. (2020) and
Dabbaghjamanesh et al.
(2021)

x x x ✓ x

Liang et al. (2021) x x ✓ ✓ x
Yan et al. (2021) and Liu
et al. (2015)

x x ✓ x ✓

Zhang et al. (2021) and
Wei et al. (2022)

✓ x ✓ x x

Shin et al. (2020) and Ye
et al. (2022)

x ✓ x ✓ x

Mhaisen et al. (2020)
and Chu et al. (2022)

x ✓ ✓ x x

Li et al. (2022) x ✓ ✓ x ✓
Qiu et al. (2020) ✓ ✓ x ✓ x
Proposed ✓ ✓ ✓ ✓ ✓
c
a
d

a

a
c
a
c
t
A
a
c

∆

The presented system in this paper manages the charging of
Vs to decrease power losses, power overloads and voltage fluc-
uations. Unlike previous RL models created in the past literature,
he presented system considers the utilization of conventional
nd fast charging, as well as V2G operation, and outputs the safest
harging sequence for the grid, while taking into consideration
he EV user’s requirements, in terms of charging time, final SoC
nd charging cost. The RL model aims to decrease the charging
ost for the user. Therefore, the system is able to satisfy the
equirements of both the user and the utility.

Table 1 provides a brief comparison between the proposed RL
odel with RL models in the previous literature. The utilization
f fast charging and V2G operation has become a requirement
ue to recent trends and the increase in the use of EVs. Thus,
his requires the performance assessment of the model under
he impact of uncertainty due to the highly uncertain nature of
Vs charging, which becomes more critical with the use of fast
harging and V2G operation. At the start of using deep RL for EVs
harging, fast charging and V2G operation were not considered in
he development of the RL models (Sadeghianpourhamami et al.,
020; Zhao and Lee, 2022; Ding et al., 2020; Dabbaghjamanesh
t al., 2021; Liang et al., 2021; Yan et al., 2021; Liu et al., 2015).
fter that, either fast charging or V2G operation were defined in
he RL models (Zhang et al., 2021; Wei et al., 2022; Shin et al.,
020; Ye et al., 2022; Mhaisen et al., 2020; Chu et al., 2022), with
he performance of some models being tested under uncertain
onditions (Li et al., 2022). Recently, models have been created
hat consider both fast charging and V2G operation (Qiu et al.,
020). Moreover, most models consider either the objectives of
he user, or the objectives of the utility, and only a few models
ave undergone a performance assessment under the impact of
ncertainties. In this paper, both fast charging and V2G operation
ere considered, as well as the requirements of the user and the
tility. In addition, the RL model was tested under the uncertain
onditions of electricity prices.

. RL model formulation

.1. MDP formulation

Due to the stochastic nature of EVs charging, EVs charging is
ormulated as a finite MDP with unknown transition probability.
497
As previously mentioned, in the RL model, the EV charger is
modelled as the RL environment, while the EV user is modelled
as the RL agent. Firstly, the RL environment receives either a final,
desired SoC, or a maximum charging time from the RL agent, as
well as the minimum SoC and battery capacity. Then, the starting
system states (st ) are extracted, which are the SoC, charging hour,
harging minute and charging mode. After that, the RL agent takes
n action (at ) and receives a reward (rt ). Next, the new updated
ata at time step t + 1 is acquired by the RL agent to update the

system state. The full details of the MDP, including the definitions
of the system states, actions, transition function, rewards and
action-value function, are shown below.

(1) States: The system state at time step t consists of the SoC
t time step t , the hour h at time step t when the RL agent is

taking the action, the minute m at time step t when the RL agent
is taking the action, and the charging mode ξ at time step t , as
shown in (1).

st = (SoC(t), h,m, ξ ) (1)

(2) Actions: The EV driver takes a specific action from the
ction space, which represents the charging action, including
onventional charging, fast charging, V2G operation and idling,
s seen in (2) and (3). When the RL agent chooses action 0, two
onsecutive time steps are utilized, which are idling at the first
ime step followed by one time step of conventional charging.
ction 0 is defined in this way to prohibit the RL agent from
lways choosing idling, which provides a positive reward that can
ause the EV to stay for hours without any charging action.

=

⎧⎪⎪⎨⎪⎪⎩
0 Idling
1 Conventional Charging
2 Fast Charging
3 V2GOperation

(2)

at = ξ ξ ∈ ∆ (3)

(3) Transition Function: The transition from the system state
at time step t to the system state at time step t+1 is influenced by
the action of the RL agent (at ), as seen in (4). The SoC of the next
state is the current SoC plus or minus (depending on charging or
V2G operation) the capacity charged based on the charging power
mode (P ), where x represents the charging mode. The hour and
x
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inute are updated based on the time period of each action and
he current hour and minute.

t+1 =

(
SoC(t) ±

τ · Px
Q

, ht+1,mt+1, ξ

)
(4)

Due to having no prior knowledge of the EVs charging sit-
uation, the transition probability cannot be described. Thus, a
deep RL method is utilized to implicitly find and calculate the
transition probabilities.

(4) Rewards: The reward for action at is calculated from the
perspective of the RL agent, as seen in (5) to (10). A range of
values were utilized for the different weighting values in order
to manually tune the values to obtain the required performance
from the model. It should be noted that RL models are sensitive
to such factors in reward functions, which means careful tuning
should be performed.

rt =

⎧⎪⎪⎨⎪⎪⎩
−κ(τ · PC · C(t) + τ · Wc(t) + τ · Wi(t)) ξ = 0
−τ · PC · C(t) − τ · Wc(t) ξ = 1
−τ · PF · C(t) − τ · Wc(t) ξ = 2
−τ · Wc(t) − B + α · τ · PC · C(t) ξ = 3

(5)

κ =

⎧⎨⎩
1.0 1 − d · ω > 1
p 1 − d · ω < p
1 − d · ω others

(6)

α = SoCb(t) (7)

B = τ · PC · max(N (µ1, z21 ), L) (8)

Wi(t) = N (µ2, z22 ) (9)

Wc(t) = F · Wi(t) (10)

The discount factor κ is added to provide a set discount per
hour with a set minimum and maximum discounts of 0% and
p%, respectively, for idling in the charging station. Every hour
corresponds to a set increase of d% in the discount. The discount
is added in order to provide a reward for the user for leaving
their EV in idle mode, which increases the chances of the user
following the set charging scheme. In the proposed RL model, the
maximum discount (p) was set to 50% and the discount per hour
(d) was set to 0.5%. The use of higher values causes the model
to overuse the idling mode to increase the discount, which is not
suitable for real-life scenarios, where the time of charging should
be controlled. On the contrary, the use of lower values causes the
model to rarely utilize the idle mode, which is not preferred for
the utility as the EV is constantly charging.

Similarly, the attenuation factor α is added to decrease the
positive reward from V2G operation as the SoC approaches the
minimum SoC. As a result, the value of b should be lower than 1
and greater than 0 to ensure that the positive reward of discharg-
ing is significantly decreased as the SoC approaches the minimum
SoC. In the presented model, a value of b was set to 0.5, which
provided suitable results for all case studies.

The battery degradation model seen in (8) was developed to
penalize the RL agent for using V2G operation. This was done to
avoid the RL agent from fully discharging and gaining the positive
reward, which means the EV will never charge since charging has
a negative reward only. In this model, the mean of the normal
distribution was set to 0.1 and the standard deviation was set
to 0.05. The maximum limit (L) for the battery degradation cost
was set to 0.05. The values of µ1, z1 and L were chosen to be
in proportion with the positive reward of V2G operation. The
negative reward from battery degradation should not be too high
as to discourage the RL agent from choosing V2G operation, and
498
it should not be too low as to encourage the RL agent to always
choose V2G operation.

Likewise, the idle waiting time was also chosen to be a normal
distribution with a mean of 0.05 and a standard deviation of
0.0075. The values of µ2 and z2 were set to be in proportion with
other rewards as well. However, the negative reward of waiting
is lower compared to other costs, such as charging, since it is
only added to encourage the RL agent to try and finish charging
in the shortest time possible, in addition to charging with the
lowest cost. In addition, the charging waiting time is considered
to be a factor of the idle waiting time, since the RL agent will be
benefiting during that time. In the presented model, the factor
(F ) was set to 0.5. It should be noted that if the value of k is too
high, it can cause the overall waiting cost to increase significantly,
which harms the performance of the RL model.

The definition of C(t) is based on time-of-use pricing and is
shown in Fig. 2 (Carlson, 2015). It should be noted that since the
reward function is linear and dependent on the electricity cost,
the issues of partial observability with electric vehicles charging
is avoided. Moreover, the problem of dimensionality might arise
with bigger networks, which increases the computational time for
training the RL model. However, the use of deep neural networks
helps in mitigating the curse of dimensionality, through function
approximations. Characteristics from models, value functions, or
policies are extracted to create a generalized representation of the
entire function using deep neural networks.

(5) Action-Value Function: The influence of the RL agent taking
an action a with a system state s following the policy Ψ is found
from the expected discounted cumulative reward at time step
t , as seen in (11) (Sutton and Barto, 2020). QΨ (s, a) represents
the action-value function and γ represents the discount factor
that expresses the balance between the short-term and long-term
rewards.

QΨ (s, a) = EΨ

[ K∑
k=0

γ krt+k|st = s, at = a
]

(11)

The purpose of the RL model is to calculate the optimal policy
Ψ ∗ from all the possible policies that maximizes the reward,
which is the minimization of the cost in this model, as seen in
(12). Q ∗(s, a) denotes the optimal action-value function.

Q ∗(s, a) = max
Ψ

QΨ (s, a) (12)

3.2. Deep RL approach

In order to find the optimal policy for the charging of EVs
without having any knowledge of the uncertainties in the system,
a deep RL approach is proposed. Deep RL is utilized as it is able to
iteratively find the optimal policy through recursively updating
the value of the action-value function, based on the Bellman
equation, as seen in (13), where β denotes the learning rate. This
process is called Q-learning (Sutton and Barto, 2020).

Qnew(s, a) = Qold(s, a) + β

(
r + γ max

a′
Q (s′, a′) − Qold(s, a)

)
(13)

As the Bellman equation converges to the value of the optimal
action-value function, the optimal policy can be denoted by a
greedy strategy, as seen in (14) (Sutton and Barto, 2020).

a∗ = argmax
a

Q ∗(s, a) (14)

The conventional Q-learning method consists of the use of
look-up tables to approximate the action-value function. Never-
theless, in the EVs charging problem, the states are continuous,
meaning that look-up tables will be extremely large and very
impractical to deal with. Thus, a DNN is utilized to be able to
approximate the action-value function.
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Fig. 2. Electricity cost function (Carlson, 2015).
As previously mentioned, deep RL allows for the state space
o be in the infinite continuous space, instead of the conventional
inite discrete space. The data produced from the interactivity of
he agent with the environment is stored in the replay buffer. This
s given to the main network, as well as the target network. After
hat, the policy is updated through the gradient descent method,
hich minimizes the loss function and updates the main network
arameters. Finally, the parameters of the target network are
pdated based on the parameters of the main network after a
ertain interval of time (Pan et al., 2019).
Therefore, in the RL model, the first step is the extraction of the

eatures of the EV from the RL agent by the RL environment. After
hat, the state of the RL agent is fed into the DNN. The action with
he highest action-value function is chosen as the next action.
ext, the action is taken, the RL agent receives the reward for
he chosen action and the state of the user is updated. Finally,
he process is repeated until either the final SoC or the maximum
harging time is reached.
The training of the DNN is done based on Algorithm 1 using

ython and a 2016 15-inch MacBook Pro. The 2016 15-inch Mac-
ook Pro has a 2.7 GHz quad-core Intel Core i7, with 8 MB shared
3 cache, and a 16 GB of 2133 MHz LPDDR3 onboard memory.
or N number of episodes, the state is initialized to the starting

state. After that, based on the ϵ - greedy strategy, an action is
hosen. Next, the action is done, and the reward and the new
tate are observed. Then, the values of the action-value function
re updated based on the Bellman equation. Finally, the new state
s set as the current state. This process is repeated until either the
inal SoC or the maximum charging time is reached. Finally, the
xploration rate ϵ and the learning rate are decayed.
Consecutive states are extremely interlinked and actions have

a significant effect on the following states in RL. Thus, running
the algorithm using consecutive states eventually results in the
divergence of training, which occurs when impractical increased
values are given for the state–action pairs, decreasing the quality

of the greedy control policy (Mnih et al., 2015).
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Algorithm 1 DNN Training for RL Model
Input: State Space σ , Action Space ∆, Reward Function r , Number
of Episodes N
Output: Estimation of Optimal Action-Value Function
1: for episodes=1:N do
2: initialize state s = SoC(t), h,m, ξ

3: while T < Tc,max or SoC(t) < SoCf do
4: with probability 1 − ϵ, set at as argmaxa Q ∗(s, a)

or otherwise set at randomly
5: Take action at and observe reward rt and new state

st+1
6: Update Q (s, a) using Bellman equation
7: s = st+1
8: end while
9: Decay exploration rate ϵ and learning rate α

10: end for

Moreover, Fig. 3 illustrates the flowchart for the EV charging
algorithm. As the EV arrives, the EV user chooses to set a desired
final SoC or a maximum time for charging. After that, charging
actions are chosen until either the final SoC or the maximum time
for charging is reached.

4. Case studies

A range of different case studies have been conducted in order
to test and prove the effectiveness and reliability of the presented
RL model to manage the charging of EVs. In each case study, the
details of the charging situation are presented, alongside with
the results of the RL model. In addition, the load demand and
voltage fluctuations for the high charging price case studies are
presented as the load demand is highest during such times, to
prove and validate the effectiveness of the RL model in achieving
the objectives of the utility. These are based on the load data
of multiple residential households and using the IEEE 33-bus
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Fig. 3. Flowchart for EV charging algorithm.
istribution system model, which has a transformer rating of
.5 kW.
Table 2 provides the list of all the values of the RL model

arameters. The case studies done at high prices assume charging
tarts at 1500 h, while case studies done at low prices assume
harging starts at 0000 h.
Fig. 4 provides a tree diagram for the illustration of the differ-

nt case study scenarios, as well as the algorithm of the system.
fter the arrival of the EV, the RL model receives whether the
ser wants a set SoC level, or wants a specific time for charging.
500
Table 2
Values of RL model parameters.
Parameter Value

Minimum SoC 20%
Battery Capacity 22 kWh
Time Period 15 min
Conventional Charging Power 7 kW
Fast Charging Power 22 kW
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Fig. 5. Actions for full charge starting at high prices with low initial SoC.
hen, the RL model initiates the charging of the EV. Case study 1
nd 5 were tested with amplitude and time uncertainty for the
lectricity price, since those case studies can be considered to be
ighly sensitive to the electricity price due to the low starting
oC. As a result, the uncertainty analysis was done on those case
tudies to test the robustness of the system.

.1. Case study 1: Low SoC at high prices

The first case study involves an EV wanting to fully charge
ith an initial SoC of 30%, and the RL agent started to charge at
time where electricity prices are high. The full charge of the
attery can be set based on the type of battery to maximize its
ife span. In this paper, linear charging is assumed up to 100%.
owever, this can be reduced based on the type of battery for
racticality. Fig. 5 displays the charging actions taken by the RL
gent, as well as the electricity price. The SoC of the EV after each
harging action is placed above the bar. As seen in the figure, the
501
RL agent makes use of the mid-price range to idle and charge
conventionally at the start. After that, as the electricity price
peaks, the RL agent starts to utilize V2G operation to make use of
the high electricity prices. Next, when the electricity price starts
to settle back down, the RL agent begins conventional charging
once more and starts fast charging when electricity price is at its
lowest point. However, some actions do not follow the general
trend such as the V2G operation action at minute 45 and the
idling action at minute 570. These actions can be attributed to the
RL agent trying to increase its reward through discharging during
mid-range electricity prices, as well as making use of the set dis-
count from idling during low prices. It is noteworthy to mention
that such actions do not significantly affect the performance of
the RL model as the overall general trend is still the same.

Fig. 6 shows the results of the same case study with the
electricity prices advanced by three hours and with an amplitude
uncertainty of ± 20%. As seen in the figure, despite the advance-
ment of the electricity prices by three hours and 20% amplitude
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Fig. 6. Actions for full charge starting at high prices with low initial SoC (with a 3 h advance and 20% amplitude uncertainty).
uncertainty, the RL model is still able to achieve the goal of fully
charging the EV. Additionally, the charging sequence generated by
the RL model is able to adapt to the uncertainty in the electricity
prices. It is seen that a similar charging pattern is seen even in
the presence of an electricity price uncertainty, and the electricity
price peak happening at an earlier time. In addition, during the
time with low electricity prices, fast charging is always utilized,
which decreased the charging time for the user, as the minimum
of the electricity price happened at an earlier time.

Moreover, Fig. 7 illustrates the load demand curves for the
first case study. The green curve is the original load demand
with no EVs penetration, and the red curve is the load demand
with uncontrolled fast charging only. The orange curve is the
controlled EVs charging using the RL model. As seen from the
graph, the RL model successfully flattens the load curve through
peak shaving and valley filling. This leads to have a stable power
distribution system and avoids the overload of the transformer.
To add to that, the maximum voltage fluctuation for the three
situations are 0.12, 0.17 and 0.09, respectively. Thus, the power
losses are reduced since the voltage profile of the distribution
system is within the required levels.

4.2. Case study 2: Low SoC at low prices

Similarly, the second case study has the same conditions as the
first case study, however, the RL agent started to charge at a time
where electricity prices are low. Fig. 8 shows the charging actions
taken by the RL agent, alongside with the electricity price. The SoC
of the EV after each charging action is placed above the bar. The
figure shows that the RL agent starts with conventional charging
and as the electricity price drops continues charging with fast
charging. In addition, the RL agent also occasionally chooses to
idle in order to make use of the set discount on the charging cost.
Finally, at the time where the electricity price starts to increase,
the RL agent utilizes the increased prices to discharge for a little
while.

As a result, it is seen that the RL model successfully learns
useful charging strategies in these situations (case studies 1 and
2), where time is not a constraint and the user would like to fully
502
charge his EV. The RL model is able to minimize the charging
cost and learn the electricity price pattern and provide a suitable
charging scheme for the EV.

4.3. Case study 3: 2 h with high SoC at high prices

Next, the third case study involves an RL agent with a maxi-
mum charging time of 2 h, with an initial SoC of 90% and the time
of charging is a time with high electricity prices. Fig. 9 portrays
the charging actions taken by the RL agent and the electricity
price. The SoC of the EV after each charging action is placed above
the bar. As seen from the figure, during the charging time, the
electricity price is constant at 7.5 cents/kW. As a result of the high
SoC and high prices, the RL model chooses mainly to discharge.
This can be considered as a suitable strategy as the user would
want to make money from the high SoC of the battery.

In addition, Fig. 10 displays the different load demand curves
for the third case study. The controlled charging of the EVs using
the RL model provides an improved, flattened load curve. Peak
shaving is achieved through V2G operation, while valley filling is
achieved through controlled conventional and fast charging. As
seen from the orange curve, power overload only occurs for a
short time, which is a high improvement compared to the load
curve without EVs penetration. The maximum voltage fluctuation
for the three situations are 0.1, 0.14 and 0.08, respectively.

4.4. Case study 4: 2 h with high SoC at low prices

The fourth case study involves an RL agent with a maximum
charging time of 2 h, with an initial SoC of 90% and the time of
charging is a time with low electricity prices. Fig. 11 conveys the
charging actions chosen by the RL agent, as well as the electricity
price. The SoC of the EV after each charging action is placed above
the bar. The figure shows that the RL agent chooses to be idle
for most of the time and fast charges at the end when the price
drops further. Due to the low prices, the RL model chooses to
fully charge the EV despite the high initial SoC. Nevertheless, the
model starts with idling in order to make use of the set discount
and further decrease the charging cost.
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Fig. 7. Load demand for case study 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Actions for full charge starting at low prices with low initial SoC.
Thus, it is seen that the RL model finds suitable charging
chemes for such situations that time is a constraint and the
tarting SoC is high (case studies 3 and 4). The model can predict
503
whether it is suitable to charge or discharge the high SoC of the
battery, in terms of the electricity price and the possible reward
from each option.
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Fig. 9. Actions for 2 h starting at high prices with high initial SoC.
Fig. 10. Load demand for case study 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
.5. Case study 5: 2 h with low SoC at high prices

After that, the fifth case study has the same conditions as the
hird case study, however, the initial SoC is set as 30%. Fig. 12
isplays the charging actions chosen by the RL agent, alongside
504
with the electricity price. The SoC of the EV after each charging
action is placed above the bar. As seen in the figure, the RL agent
chooses to conventionally charge and discharges for a single time
period. This can be attributed to the low SoC. Despite the high
electricity prices, the RL model realizes that it cannot use V2G
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Fig. 11. Actions for 2 h starting at low prices with high initial SoC.
Fig. 12. Actions for 2 h starting at high prices with low initial SoC.
operation as the SoC is very low. Further, the RL model chooses
to use conventional charging, instead of fast charging, in order to
minimize charging cost.
505
Fig. 13 shows the results of the same case study with the
electricity prices advanced by three hours and with an ampli-
tude uncertainty of ± 20%. Once again, due to the low SoC,
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Fig. 13. Actions for 2 h starting at high prices with low initial SoC (with a 3 h advance and 20% amplitude uncertainty).
onventional and fast charging actions are utilized to quickly
harge the EV to avoid reaching the minimum SoC. Thus, it is
een that in spite of introducing an advancement of 3 h in the
lectricity price and 20% amplitude uncertainty, the RL model is
till able to find a suitable charging sequence.
Additionally, Fig. 14 presents the load demand curves for the

ifth case study. Similar to case study 3, the load curve for the
ontrolled EVs charging has been flattened and avoids significant
ower overloads. It can be deduced that the RL model successfully
mproves the operation of the power system and achieves the ob-
ectives of the utility. Moreover, the maximum voltage fluctuation
or the three situations are 0.1, 0.14 and 0.07, respectively.

.6. Case study 6: 2 h with low SoC at low prices

Finally, the last case study has the same conditions as the
ourth case study, however, the initial SoC is set as 30%. Fig. 15
ortrays the charging actions chosen by the RL agent and the
lectricity price. The SoC of the EV after each charging action is
laced above the bar. As seen in the figure, the RL agent chooses a
ingle conventional charging action, a single idle action and then
ontinues with fast charging. The fast charging starts when the
lectricity price slightly drops, in order to quickly charge the EV
nd to exploit the low electricity prices. The use of the idle action
t the start can be attributed to the RL model trying to further
ecrease the charging cost through the set discount.
Therefore, for the situations where time is a constraint, as

ell as the SoC of the EV nearly reaching a critical level, the
L model is able to effectively choose proper charging actions
o decrease the charging cost for the user. When the electricity
rice is high, conventional charging is used and V2G operation
s avoided. On the contrary, when the electricity price is low,
ast charging is utilized to quickly charge the EV using decreased
lectricity prices.
In addition, the effect of the RL model on the power system

arameters is similar to other more computationally intensive
506
optimization techniques such as quadratic programming, as seen
in Zhang et al. (2012). Also, the RL model also surpasses other
optimization techniques, as seen in Sortomme et al. (2011), where
quadratic programming was not able to successfully flatten the
load curve, and machine learning algorithms, as shown in López
et al. (2019). It is also noteworthy to mention that such tech-
niques suffer greatly from the introduction of the uncertain be-
haviour of EVs charging, as seen in Zhang et al. (2012), where
the flattening of the load curve is affected based on the EVs pen-
etration level. Moreover, the performance of such optimization
techniques might also suffer with the addition of V2G operation,
due to the increased uncertainty in that case.

Thus, it can be deduced that the RL model successfully man-
ages the charging of EVs, and the results yielded by the pre-
sented model is close to other studies, such as Mhaisen et al.
(2020) and Qiu et al. (2020), in terms of the success of achieving
its objective with similar efficiency. Nevertheless, as previously
mentioned, unlike previous studies, the presented model takes
into consideration both the user and utility requirements. In
addition, both fast charging and V2G operation are defined in
the RL model to allow the model to be up-to-date with the most
recent technologies in EVs charging. Moreover, since the RL model
is based on the reward function, which depends mainly on the
electricity price, the size of the electrical distribution grid does
not affect the performance of the RL model. Thus, the RL model
can be successfully scaled to bigger networks. The drawback of
scaling such a method would be the increased computational
time for training the RL model. However, this can be mitigated
by sharing the computational load over multiple parallel nodes.

5. Conclusion

In conclusion, this paper investigated the utilization of an
adaptive RL method to manage and coordinate the charging of
EVs, while taking into consideration the use of conventional

charging, fast charging and V2G operation, to help protect the
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Fig. 14. Load demand for case study 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Actions for 2 h starting at low prices with low initial SoC.
distribution system and satisfy the charging requirements of the
EV user. Moreover, the RL model was tested with real-life charg-
ing data, and the uncertainty analysis showed that the model can
work in the changing environment of EV charging, in terms of
its robustness to time and magnitude uncertainty in electricity
prices. The use of the RL model is highly adaptable with the
environment and has the ability to constantly learn new charging
strategies based on the status of the real-life electricity cost data.
507
Thus, the model provides a coordinated charging method that is
flexible in its usage and not localized to certain areas or to specific
power systems.

In the RL model, the RL environment was modelled as the EV
charger and the RL agents was modelled as the EV user. The pos-
sible actions that the RL agent can take are idling, conventional
charging, fast charging and V2G operation. The reward function
mainly consisted of the charging cost for the user, as well as some
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lements that contribute to achieving the utility’s requirements.
hus, the objective of the RL model was to minimize the charging
ost of the user.
Additionally, the RL model was tested using a range of differ-

nt charging scenarios to investigate its effectiveness and reliabil-
ty in managing the charging of EVs. It was seen that the model is
ble to successfully find charging strategies that obliges with the
ser’s requirements, as well as protecting the distribution grid,
ven in the presence of uncertainties in the electricity price. Such
ctions include using V2G operation and idling at peak cost times,
hile charging during low electricity cost times.
At high charging prices, the RL model prefers V2G operation,

ith some idling to benefit from the set discount. However, when
maximum charging time is set with a low starting SoC, the
odel prefers to use conventional charging to avoid reaching the
inimum SoC, and charge the EV at a decreased cost. Further-
ore, when a maximum charging time is set with a high starting
oC, the model starts to discharge in order for the user to gain
oney. At low charging prices, the RL model starts fast charging,
ith some idling actions during specific case studies to benefit

rom the set discount. Nevertheless, when a maximum charging
ime is set with a low starting SoC, the model prefers to use fast
harging to charge quickly and benefit from the low electricity
rices.

. Future work

Future work can encompass the testing of the RL model with
ther electricity pricing strategies to evaluate its performance
hen time-of-use pricing is not utilized. Also, the effect of a range
f different load specific characteristics can be studied, including
he quality factor of the load, the rating of the load, and the
esistance and inductance of the load. Finally, the RL model can
lso be refined to fully take into consideration all of the utility’s
equirements to analyse such a model in real-life scenarios.
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