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Abstract

In this paper we address the challenge of inferring
the road network of a city from crowd-sourced GPS
traces. While the problem has been addressed before,
our solution has the following unique characteristics:
(i) we formulate the road network inference problem as
a network alignment optimization problem where both
the nodes and edges of the network have to be inferred,
(ii) we propose both an offline (Kharita) and an online
(Kharita∗) algorithm which are intuitive and capture
the key aspects of the optimization formulation but are
scalable and accurate. The Kharita∗ in particular is,
to the best of our knowledge, the first known online
algorithm for map inference, (iii) we test our approach
on two real data sets and both our code and data sets
have been made available for research reproducibility.

1 Introduction

With the impending revolution of autonomous vehicles,
interest in creating highly accurate geographical maps
has come to the forefront. Large commercial efforts to
build accurate maps have been announced1. In the near
future, the most accurate maps may not be a public
good but a property of private stakeholders. An impor-
tant scientific (and societal) question is: can we algo-
rithmically construct accurate road network maps from
crowd-sourced GPS traces in a cost efficient manner ?
Such an approach is likely to complement the popular
collaborative efforts embodied in the Open Street Map
(OSM) community.
Challenges for Accurate Map Inference: There
are a number of technical challenges that a map con-
struction algorithm using crowdsourced data needs to
overcome including: (i) GPS sensors in smartphones,
while reliable in general, can have non-trivial GPS er-
rors. The errors are often acute in “urban canyons” with
dense buildings or other structures; (ii) There is a sub-
stantial disparity in data due to the opportunistic data
collection from smartphones. For example, while pop-
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Figure 1: Kharita process: All raw trajectories pass-
ing through a roundabout (left). Centroids of the clus-
ters and graph G = (V,EC) obtained from the raw tra-
jectories projected onto clusters (middle). Final Kharita
map obtained after sparsifying G (using a spanner).
Map inference can be conceptualized as a multiple net-
work alignment task.

ular highways might have large number of data points,
residential areas might only have handful of points; (iii)
There exist a wide variety of sampling rates in which
the GPS information is collected, often due to power
concerns; (iv) Existing algorithms tend to overfit on
the data sets on which they were tested. For example,
many existing algorithms make some implicit assump-
tions that are specific to the road structures common
to the United States and Europe. For instance, many
countries in Asia and Middle East have circular inter-
sections (roundabouts) that are notoriously hard for ex-
isting algorithms to capture. These challenges often
results in a substantial quality gap between the maps
produced by previous map construction algorithms and
those obtained from road surveys.

Figure 1 provides an illustration of the two major
steps - node inference through clustering and edge infer-
ence through graph spanners - of our offline algorithm.
While our approach is conceptually simple, it signif-
icantly outperforms the state-of-the-art by improving
the Biagioni TOPO score [5], the de-facto standard met-
ric for measuring map quality, by up to 20%.

The rest of the paper is structured as follows. In
Section 2 we formally define the map inference task.
In Section 3 we associate the map inference task with
the multiple network alignment problem. Section 4 in-
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troduces Kharita, our two-step offline algorithm while
Section 5 introduces the corresponding online variant
Kharita∗. Experimental details can be found in Sec-
tion 6. We discuss the related work in Section 7 and
conclude in Section 8 with a summary and directions
for future work.

2 Definitions and Problem Statement

Definition 1. A GPS point is a five-tuple
(lat, lon, t, s, a), where lat is the latitude, lon the
longitude, t the timestamp, s the speed and a the angle.

Definition 2. A trajectory tr is a chronologically or-
dered collection of GPS points. We represent a trajec-
tory tr as {x1, x2, . . . , x|tr|} where each xi is a GPS
point and |tr| is number of GPS measurements in tra-
jectory tr.

2.1 Problem Definition:
Given: A collection T of GPS trajectories.

Objective: Infer a geometric, directed G which
represents the underlying road network. Each node of
a graph represents a triplet (lat, long, angle) and each
directed edge represents a road segment.

3 Optimization Formulation for Map Inference

We briefly digress to view the road map inference task as
a multiple network alignment problem (MNAP). In an
MNAP setting, we are given a set of observable graphs
(GPS traces) and the aim is to infer the underlying
latent graph (road network). The network alignment
problem was initally introduced in bioinformatics for
aligning protein networks and in computer vision for
image matching [15]. Much of the effort however was in
pairwise alignment but there has been a recent interest
in carrying out multiple network alignment [15]. We
can cast the MNAP problem in terms of a quadratic
extension of the facility location problem. The integer
program formulation is shown in Figure 2.

Here yj is binary variable which is set to one when
location j is set as a facility. This is equivalent to
creating the location j as the vertex of the map graph.
Similarly, xij is a binary variable indicating whether
client i (GPS location) is assigned to location j. The
traditional facility location problem generalizes the k-
median problem where the number of facilities (clusters)
opened are part of the objective. This corresponds to
our situation as the number of nodes of the underlying
graph are not known a priori but are part of the
objective.

However, it is the term
∑
i,j,k,`OikSj`xijxk` which

Standard	Facility	Loca/on	
Objec/ve:	
Kharita:	Node	Inference	

Term	to	infer	the	edges	of	the		
underlying	network:	
Kharita:	Edge	Inference	

Encourage	Sparsity:	
Kharita:	Spanner	

min
x,y,S

X

j

fjyj+
X

ij

dijxij � g
X

ijk

OikSjlxijxkl + �
X

jl

S2
jl

X

j

xij = 1 8i

xij  yj 8i, j

Figure 2: Relationship between the MNAP optimization
formulation and the Kharita algorithm.

highlights the complexity of the map inference problem.
This part of the objective is trying to encourage an edge
between two latent nodes in the underlying graph using
the following rule: if client i is assigned to location j
and client k to location l and if i and k are consecutive
points on a GPS trace (Oik = 1), then there should be
an edge between location j and l and Sjl will be set
to one. The regularizer term forces the matrix S to be
sparse.

Despite tremendous progress in integer program
solvers and even using heuristics (like Lagrangian
solvers), the MNAP problem can only be solved for rel-
atively small instance sizes [15]. Kharita resolves the
complexity by decoupling the node and edge creation
process.

4 Kharita: Offline Algorithm

We will now propose a two phased approach that first
seeks to infer the vertices of the underlying graph
through clustering and in the second step seeks to infer
the edges between the vertices through graph spanners.
A major advantage of this approach is that it can be
easily modified to design an online version that can
produce a routable map given one trajectory at a time.

4.1 Distance Metric A key novelty of our paper
is the extensive use of the angle information that is
widely available as part of GPS output. One can mea-
sure the distance between two (latitude, longitude) pairs
(L1, L2) using Vincenty distance formula which we de-
note by v(L1, L2) and it provides the distance in me-
ters. The distance between two angles can be computed
using the unit circle metric defined as d◦(α1, α2) =
min(|α1 − α2|, 360◦ − |α1 − α2|). For example, the dis-
tance between 350◦ and 10◦ is 20◦. In order to compute
the distance between two GPS points, we should con-
sider both the location and the heading (angle of move-
ment). Given two GPS points (L1, α1) and (L2, α2), we
combine the aforementioned metrics as
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(4.1)

dθ((L1, α1), (L2, α2)) =

√
v(L1, L2)2 + (θ

d◦(α1, α2)

180◦
)2,

We denote the heading penalty parameter through
θ. Intuitively, we want to penalize points that are
very close to each other based on location but have
diametrically opposite direction. This is often the case
for parallel roads where each lane corresponds to the
traffic in opposite directions.

Lemma 4.1. The distance measure dθ(., .) is a metric.

Proof. This follows directly from Cauchy-Schwarz
inequality and the fact that both v and d◦ are metrics.

4.2 Node Inference Recall that our objective is to
infer a directed graph from GPS trajectories. The first
step is thus to infer the nodes of the graph which is
carried out using a form of clustering. We cluster the
GPS data points in (T ) while ignoring the trajectory
information. The cluster centers obtained will form
the nodes V of the inferred road network G and are
then connected using the trajectory information. In
this paper, we use k-Means algorithm for clustering
that has been shown to work well in prior work even
without usage of the angle information [1, 11]. However,
we have designed a new centroid initialization strategy
customized for our problem.
Initialization: We start with an empty centroid list
and go through the GPS points sequentially. A GPS
point is added to the centroid list if there are no other
centroid within a specified radius using the distance
function dθ(·). This process ensures that every point
is within a fixed distance to some centroid point. Our
initialization approach results in the centroids being
uniformly spread throughout the space of the map by
making sure there are no two initial centroids within the
specified distance of each other. It also determines the
density of the clusters. For example using a small value,
say 3m, can result in inferring each lane in a highway as
an independent road segment, while choosing large value
may result into merging points from close (parallel)
streets into the same cluster.
k-Means Clustering: After the initial cluster cen-
troids are selected, we run the standard k-Means al-
gorithm (where k is the number of centroids selected).
In the assignment step, a GPS point is assigned to the
closest centroid using the distance metric dθ defined in
Section 4.1. In the update step, the cluster centroid is
updated using standard mean along the lat/lon coordi-
nates and the mean of circular quantities for the heading
coordinate. Formally, the centroid for a cluster of points

Si is:
mi = (lat, lon, α)

where:

lat =
1

|Si|
∑

x∈Si

x.lat. lon =
1

|Si|
∑

x∈Si

x.lon

and

α = atan2(
1

|Si|
∑

x∈Si

sinx.α,
1

|Si|
∑

x∈Si

cosx.α).

It is well known that α is a maximum likelihood
estimator of the Von-Mises distribution (the spherical
Gaussian) [13].

4.3 Edge Inference The output of the clustering
stage is a set of cluster centroids V = {v1, v2, . . . , vk}
where each centroid is a triple of 〈lat, lon, a〉. We now
construct a cluster connectivity graph GC = (V,EC)
that integrates the clustering information and trajectory
information. To create the edges we use the set of
trajectories TD as follows: Consider a trajectory tr =
{x1, x2, . . . , x|tr|}. We transform the tr from a sequence
of GPS points into a sequence of cluster centroids trv =
{vi,1, vi,2, . . . , vi,|tr|} where vi,j is the closest centroid to
point xi ∈ tr. For each pair of consecutive centroids
(vi,j , vi,j+1) ∈ trc, we add an edge between them if they
are distinct, i.e., vi,j 6= vi,j+1.

4.4 Graph Sparsification through Spanners
The inferred graph G = (V,EC) from the previous
section has potentially several redundant edges which
makes G unusable for routing. Redundancy occurs
when two nodes (centroids), va and vb are directly con-
nected by an edge even though they are far apart and
there is path between va and vb through other nodes.
The cause of redundancy is due to the differential sam-
pling rates of GPS trajectories and, more importantly,
due to the fact that two points on a curved road that are
physically close to each other may not be so in the com-
bined metric dθ which takes angular information into
account.

Our objective is to construct a sparsified graph
that retains the same connectivity information but also
connects clusters that are near each other maintaining
the road shapes. Consider a trajectory based edge
(vi, vj) ∈ EC . This implies that vj is reachable from
vi through the underlying road network. However,
due to the sampling rate, they might not necessarily
be adjacent to each other. Hence, we would like to
identify a smooth path between vi and vj that connects
them through clusters that are near each other. Let
us now formalize this problem. Given candidate graph
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G = (V,EC), our objective is to obtain a sparsified
graph H = (V,E) where:

• E ⊆ EC . i.e. H is a subgraph of G

• ∀e = (vi, vj) ∈ EC , dH(vi, vj) ≤ α × dG(vi, vj).
This constraint ensures that the sparsification pre-
serves approximate distance between each pair of
vertices in G. In other words, for any pair of ver-
tices (vi, vj) ∈ V , their distance dH(vi, vj) in H
is at most α times their distance dG(vi, vj) in G.
Setting larger values of α generates sparser graphs.
Throughout the paper we use α =

√
2 ≈ 1.41 which

removes the cross edges in orthogonal streets.

This problem can be abstracted as a well studied
combinatorial problem of graph spanners [18]. Given a
graph G = (V,EC), a subgraph H = (V,E) is called
a α-spanner of G, if for every u, v ∈ V , the distance
from u to v in G is at most α times longer than the
corresponding distance in G. There has been extensive
prior work on developing efficient algorithms for span-
ner construction. For the purpose of our paper, we use
a simple greedy spanner algorithm depicted in Algo-
rithm 1. A naive implementation has a time complexity
of O(n3 log n) while it can be improved to O(n2 log2 n)
using advanced data structures [18]. However, we em-
pirically observe that by not recomputing the paths we
can obtain a sub-quadratic runtime complexity while
retaining full connectivity.

Algorithm 1 Greedy Spanner Algorithm

1: Input: G = (V,EC), α
2: E ← ∅ , H = (V,E)
3: for each edge (vi, vj) ∈ EC in the order of decreas-

ing weight do
4: if dG(vi, vj) > αdH(vi, vj) then
5: E ← E ∪ (vi, vj)
6: return H

The pseudocode for Kharita is depicted in Algo-
rithm 2.

Algorithm 2 Two-Phase Kharita Algorithm

1: Input: A collection T of trajectories, α
2: Output: A directed planar graph G = (V,E).
3: Phase 1:
4: GD ← DistinctPoints(TD)
5: Let S ← SelectSeeds(GD)
6: V ← k-Means(|S|, GD)
7: Phase 2:
8: Let EC ← EdgeAssignment(V, TD)
9: G(V,E′)← Spanner(V,EC , α)

5 Kharita∗: Online Algorithm

In this section, we present Kharita∗, an online algo-
rithm that can update the map as new trajectories ar-
rive. In this algorithm, the two phases of the offline
algorithm - node and edge inference (including sparsifi-
cation) - are combined into one phase. This enables us
to process trajectories that arrive in streaming fashion.

Streaming Setting: We consider the following
streaming setting: our algorithm is provided a pair of
GPS data points, xi, xi+1, that are taken consecutively.
Our algorithm is generic enough to handle various GPS
streaming models that have been previously studied. As
an example, it generalizes the streaming model where
the algorithm is provided one trajectory at a time.
Given a trajectory tr, we can convert it to our streaming
model by considering consecutive pair of points.
Challenges: Recall that our offline algorithm has two
phases: (i) node and (ii) edge inference (including
sparsification). Both of them required access to the
entire data. The node inference phase consists of seed
selection and running the k-Means algorithm. The
graph sparsification required that the edges are provided
in decreasing order of weight. However, in the streaming
setting, we have to process each pair of GPS points
immediately and it is not feasible to conduct expensive
operations. Our solution combines online adaptation
of k-Means clustering algorithm and online spanner
algorithm.
Online Algorithm for k-Means and Spanners:
We begin by providing a brief intuition behind the
online k-Means algorithm [14]. In this problem, data
points arrive one at a time and the objective is to
provide a clustering that is competitive with the offline
variant of k-Means that has access to all the data
points. The algorithm assigns the first k points as
cluster centroids. When a new data point arrives, it
is assigned to the nearest centroid if the distance is less
than some threshold fi. If not, the data point becomes
a new cluster on its own. As the number of clusters
becomes larger, the threshold is periodically doubled
thereby reducing the likelihood that a new cluster is
created for new points. The online version of spanner
algorithm is adapted from [17]. Given an α-spanner
graph G and a new edge e = (u, v), we add the edge to
G if α× w(e) is less than the distance dG(u, v).
Online Map Construction Algorithm – Kharita∗:
We begin with an empty graph G = (V,E). When a
pair of GPS points (xi, xi+1) arrives, we first densify
them by creating an (artificial) set of equidistant points
P = {p1, . . . , pl} where p1 = xi and pl = xi+1 and each
consecutive pair of points differ by a fixed densification
threshold of sr meters. Each point pi is assigned to the
closest node (cluster) v∗ ∈ V if it is within a radius
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<tr_1: x1> <tr_1: x2>
Trajectory tr_1

Densify tr_1

Densify tr_2

Merge tr_2 
with tr_1

Trajectory tr_2

<tr_1: x1> <tr_1: x2>

<tr_1: x1> <tr_1: x2>

<tr_2: x1> <tr_2: x2>

<tr_2: x1> <tr_2: x2>

Figure 3: Example of streaming densification and merg-
ing of trajectories. The first trajectory tr1 is densified
and all its points are considered as new clusters, whereas
the densification of the second trajectory tr2 results in
the assignment of some of its points to the clusters gen-
erated for tr1

distance cr and the difference in angle is less than some
heading angle tolerance ha. If not, we create a new
node and assign pi to it. Next, the algorithm checks
whether an edge should be created from node v∗prev
(which correspond to the node to which the point pti−1
was assigned) and nodes v∗. This edge is created if
and only if the angle difference between v∗prev and v∗ as

well as that between v∗prev and the vector
−−−−−−−→
(pti, pti+1) are

both lower or equal to ha. In addition, we also ensure
that the graph remains an α-spanner. Given the online
and streaming nature of Kharita∗, we had to give up
on the angular distance dθ(., .) and replace it with a
hard angle based threshold filtering to better control
for angle differences. Figure 3 shows how the online
algorithm proceeds step by step. Algorithm 3 provides
the pseudocode for Kharita∗.

6 Evaluation

We have carried out a comprehensive set of experiments
to evaluate both Kharita and Kharita∗ against a
number of representative algorithms. We begin by
introducing the datasets and evaluation metrics used.
Next, we report how Kharita and Kharita∗ perform on
the basis of these metrics relative to other approaches.
Finally, we assess the robustness of our solution to
different parameter settings.

6.1 Data and methodology As we discussed ear-
lier, our map inference process uses data generated by
a fleet of vehicles with GPS-enabled devices. In this
paper we utilize two datasets from Doha (Qatar) and
UIC (Chicago) with basic statistics reported in Table 1.
The Doha dataset includes speed and heading informa-
tion while the UIC dataset only has the location. For

Algorithm 3 Kharita∗ for online map inference

1: Input: Trajectory tr = {x1, x2, . . . x|tr|}, Road
graph G = (V,E), that can be empty

2: Parameters: clustering radius (cr, in meters),
sampling rate (sr, in meters), heading angle toler-
ance (ha, in degrees)

3: for each consecutive pair of points e(xi, xi+1) ∈ tr
do

4: trD ← Densification((xi, xi+1), sr)
5: for each point pi ∈ trD do
6: v∗ = argmin(d(pi, vi)|vi ∈ V )
7: if v∗ is within the distance tolerance cr and

angle tolerance ha then
8: Assign pi to cluster v∗

9: else
10: Create a new node v∗ for pt
11: V ← V ∪ {v∗}
12: if dG(v∗prev, v

∗) > α× d(edge(v∗prev, v
∗)) then

13: E ← E ∪ {(v∗prev, v∗)}
14: v∗prev ← v∗

15: return G

UIC we infer heading and speed information from two
consecutive points.

Doha dataset covers a rectangle (in lat, lon coordi-
nates) of 6km×8km in an urban region in the city of
Doha with a mixture of highways, high and medium
volume roads, capillary streets, and roundabouts. The
UIC dataset covers an area of approximately 2km×3km
in downtown Chicago and is generated by a fleet of Uni-
versity buses with relatively regular routes.

Kharita has two main parameters. In the Doha
dataset we set seed−radius = 20m to cover 3-lane
roads with minimal noise, while in UIC dataset we
set seed−radius = 80m as we observe much higher
noise levels, which go as high as 60m for a single road
segment. In both cases we use θ = 2 · seed−radius to
ensure that two datapoints from the same street going
into opposite directions are not assigned to the same
cluster. We also experimented with other choice of
parameters and observe low sensitivity of final maps
to the parameter choice. However, a more detailed
examination of parameter space is left for future work.

6.2 Geometric and Topological Metrics Evalu-
ating the quality of an automatically generated map is
a challenging question. The de-facto standard for mea-
suring the quality of the map is the holes and marbles
method introduced by Biagioni and Eriksson [5].

GEO method evaluates how well the given map
geometrically matches a ground truth map. Throughout
the paper we use the OpenStreetMap (OSM) snapshot
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Table 1: Characteristics of Datasets

Dataset # Days # GPS points # Vehicles Covered roads (km)

Doha 30 5.5M 432 300

UIC 29 200K 13 60

of the same region as the ground truth map2. GEO
method samples points every five meters from both
maps and puts a marble in each sampled point of the
inferred map and puts a hole in each sampled point of
the ground truth map. We say that marble (hole) is
matched if there is a hole (marble) within a matching
threshold, mt. We vary mt in the range of 5m − 30m
and evaluate precision, recall and fscore where precision
and recall are defined as :

precision =
#matched-marbles

#all-marbles
, recall =

#matched-holes

#all-holes

TOPO method evaluates the topological (connec-
tivity) characteristics of the map. Namely from a ran-
domly sampled marble (hole) we first find all the mar-
bles (holes) which could be reached from the starting
point within a radius; throughout the paper we set the
radius = 2000m. For the neighborhoods of each sam-
pled starting point we calculate fscore as above and re-
port the mean fscore over a sample of 200 randomly
selected starting points. Note, that starting marble and
starting hole belong to two different maps and are never
match exactly; hence we enforce them to be within 1m
distance and belong to the roads with the same direction
(within a small angle difference).

6.3 Comparison with state-of-the-art In this sec-
tion we compare Kharita with a representative set of
state of the art (SOTA) map-inference algorithms that
covers all the major approaches for map inference. We
choose Edelkamp [10] for k-means based techniques,
Cao [6] for trace merging based techniques, Biagioni [5]
for KDE based techniques, and a recent work Chen [8]
which is the closest to our work in that it uses data with
similar features to ours (e.g., angle, speed.). For Cao,
Biagioni and Edelkamp we use the source code devel-
oped and provided by the authors, while for Chen we
use our implementation of the algorithm as the original
implementation was not made available to us.

An important characteristics of some of the existing
solutions is poor scalability. Namely it takes 3,558 and

2As far as we can tell several intersections are not accurately
represented by the OSM in our region of interest due to construc-

tion works, but this has relatively small impact on the matching
scores.

6,621 seconds to run Cao/Edelkamp on a single day
worth of data (≈ 200K data points), with only one
iteration of Cao’s clarification step. Hence we report
the comparison of the different algorithms using one day
worth of data from Doha. Furthermore, trying to scale
these algorithms to one week of data has resulted in
“out of memory” problems in the machines we used for
the evaluation.

6.3.1 GEO Comparison In Figure 4 we report the
GEO fscore for the four map inference solutions, mea-
sured against the underlying OSM map in the rectan-
gles of interest for both Doha and UIC datasets. The
GEO fscore is determined by the amount of the data and
their coverage of the underlying road network, but also
depends on the edge-creation process. Namely some
algorithms (such as Cao and Biagioni) are more conser-
vative in the way they infer a road segment and hence
have lower fscore; Other algorithms require a small num-
ber of trajectories to infer a particular road segment
and consequently have larger fscore. Note that differ-
ence in fscore among those (Chen, Edelkamp, Kharita,
Kharita∗) is relatively small which is a result of the
fact that geometrically each one of them closely covers
the street segments which have at least one trajectory
passing by. However, GEO method is oblivious to the
connectivity structure of the road network captured by
TOPO method.

6.3.2 TOPO Comparison The true test of the map
quality is the TOPO method. It measures how accu-
rately intersection are inferred with the corresponding
connectivity among different road segments. In Figure
4 we report the TOPO fscore for the same six maps and
both datasets. We observe that Kharita and Kharita∗

manage to achieve largest fscore among the examined
algorithms. This improvement comes from correctly in-
ferring the connections (at the intersections) between
the road segments; a task at which most of the previ-
ous methods fail, especially when oblivious of incoming
trajectory information.

Kharita achieves TOPO fscore (with matching
radius of 30m) of 0.91 on the UIC dataset and 0.8
on the Doha dataset which improves state-of-the-art
by 20% and 10%, respectively. In general, TOPO
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Figure 4: GEO and TOPO f-scores for different map-
inference solutions. On the more important TOPO
scores both Kharita and Kharita∗ produce significantly
more accurate results.

fscore are greater on the UIC dataset compared to
Doha. This is the result of the fact that data is
generated by buses following (mostly) regular routes,
hence the network structure is fairly regular with many
trajectories covering most inferred road-segments. In
contrast, Doha dataset is much more diverse both
in terms of routes and intersection types, and hence
more difficult to infer accurately. Another important
observation is that despite the fact that Kharita∗

is presented with a very limited future information
regarding the incoming trajectories, due to the online
streaming constraints, it was able to achieve higher
fscore (up to 0.75) than all other algorithms except
Kharita which acts offline. Finally, note that some
solutions perform well on one dataset and not so well
on the other suggesting they are data-dependent, while
Kharita effectively handles both datasets.

6.3.3 Visual Comparison Figure 5 shows the out-
put of the six mapping algorithms on the same round-
about in Doha . Note that each map has its own way of
creating edges which determines the final quality of the
map. Both Kharita and Kharita∗ faithfully map the
underlying road geometry and connectivity, with very
few redundant edges. A visual inspection of the round-
about generated by Biagioni algorithm explains its poor
GEO fscore performance as it misses too many road seg-
ments. Likewise, the fact that Chen’s algorithm gener-
ates many extra undesirable edges increases its GEO
fscore. However, because the edges are not correctly
connected, its TOPO fscore performance is poor. It is
important to notice that for navigation purposes, the
most important aspect of the map to be captured is the
connectivity, which translates in the case of complex in-
tersections and roundabouts to being able to correctly
infer all in/out links and turns.

6.3.4 Time performance of SOTA algorithms
We next explore the time performance of the different
solutions. Table 2 reports the execution time of the
six algorithms to process 1 days of data from Doha
and one month of data from UIC. Note that the two
datasets are very similar in terms of number of GPS
points (≈ 200K.) However, the rate at which points are
generated is different, which is reflected on the times
achieved. Doha data being denser, requires generally
more time to process compared to the sparse UIC data.

As previously reported in [5][8], Edelkamp, Biogioni
and Cao are expensive in terms of execution time.
For Edelkamp, the algorithm runs 10 iterations in the
case of Doha data and 19 iterations in the case of
UIC data before it converges. The time we report in
Table 2 as well as the fscore reported previously are
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Figure 5: The six maps at prominent TV roundabout in Doha.

all the results of these iterations. Cao needs almost
one hour in the case of Doha to make one iteration
of its clarification step. Thus, it was unrealistic to
aim for a larger number of iterations. Due to its
myriad steps, Biagioni algorithm required 01h20min
to digest one day of Doha data. Unsurprisingly, our
two solutions Kharita and Kharita∗ outperformed all
existing algorithms. Note that Kharita runs in less time
than its online counterpart Kharita∗ due to the use of
the efficient “bash” ball-search in the KD-tree index to
find nearest neighbors, that is not possible in the online
setting as the data comes one point at a time.

Table 2: Comparative results for time performance

Algorithm Doha (1 day) UIC (1 month)

Edelkamp 6,621sec 1,254sec

Cao 3,558sec 1,637sec

Biagioni 4,719sec 1,280sec

Chen 1,078sec 381sec

Kharita 167sec 73sec

Kharita∗ 217sec 64sec

6.4 Kharita at scale In previous paragraphs we
compared Kharita against other map inference solu-
tions. In this section we will examine how the quality
of the maps changes when more data is available and
look into computational scalability of our algorithms.

We run both Kharita and Kharita∗ on slices of
1 day, 7 days, and 30 days of Doha data. We report
for each slice the amount of GPS points processed, the
execution time, and both GEO and TOPO fscores. We
empirically observed that the execution times scale in
a near linear fashion with the size of the input dataset
making the proposed algorithms highly scalable.

In terms of fscore, with more data GEO fscore
improves for both Kharita and Kharita∗ as simply
more data implies better coverage of the map. More
interestingly, we observe that Kharita TOPO fscore
also improves implying Kharita’s ability to improve the
topological accuracy when additional data is available.
Oddly, Kharita∗ TOPO performance suffers with more

data due to the creation of spurious edges. Since
Kharita∗ is online in nature, it is designed to work
over short time windows and scalability is not a major
concern of Kharita∗.

Table 3: Kharita at scale

→ # days 1 7 30

Data

# GPS points 195,283 1,295,360 5,570,806

# Trajectories 2,834 22,907 77,314

Time performance (seconds)

Kharita 167 1,543 8,190

Kharita∗ 217 1,798 5,512

GEO F1 scores - 30m matching radius

Kharita 0.63 0.72 0.8

Kharita∗ 0.63 0.73 0.8

TOPO F1 scores - 30m matching radius

Kharita 0.8 0.85 0.86

Kharita∗ 0.76 0.74 0.73

7 Related Work

Due to the widespread availability of smartphones and
the advent of autonomous cars, the problem of map con-
struction from opportunistically collected GPS traces
have been extensively studied by various communities
including data mining, geo spatial computing, trans-
portation and computational geometry [10, 9, 6, 4, 5,
8, 3, 22]. In this section, we provide a representative
summary while additional details can be found in sur-
veys such as [5, 2, 12].

Most prior work on map construction can be di-
vided into three categories [5]. K-Means based algo-
rithms perform clustering over the GPS points (typi-
cally, latitude and longitude, but sometimes also the
direction). Once the clustering converges, the centroids
are linked to get a routable map. Representative al-
gorithms include [10, 1, 11]. Kernel density estimation
(KDE) based algorithms such as [7, 9, 21] transform the
input GPS points into a density discretized image that is
then used to construct maps through image processing
algorithms such as centerline detection. Finally, trace
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merging based approaches such as [6, 3] start with an
empty map and incrementally insert traces into it based
on distance and direction. Kharita is a hybrid algo-
rithm that combines k-Means clustering followed by tra-
jectory processing similar to trace merging. [4] proposed
a hybrid pipeline based on KDE approach along with
adaptive thresholds, geometry and topology refinement.
Most recently, a number of novel methods have been
proposed which borrow some techniques from the exist-
ing literature and also develop new intelligent methods
to infer the road network from the GPS data [16, 24].
[8] proposed a supervised learning framework that can
leverage prior knowledge on real-world road networks.
There has been a series of papers that can infer addi-
tional road metadata such as intersections, number of
lanes, speed limit, road type etc [11, 19].

Algorithms for spanners have been developed for
general graphs [20], geometric graphs [18] and in stream-
ing settings [17]. The distance approximating function-
ality of spanners has been used for robotics motion plan-
ning [23], telecommunication network design, serving
as distance oracle for proximity problems [18, 20] etc.
However, our work is the first to introduce graph span-
ners in the context of map inference.

8 Conclusion

In this paper, we proposed two efficient algorithms
Kharita and Kharita∗ for constructing maps from GPS
information. We also provide a unique viewpoint of as-
sociating the map inference problem as a multiple net-
work alignment problem. Kharita is a two-phase al-
gorithm that clusters GPS points followed by a sparse
graph construction using spanners. Kharita∗ is an on-
line algorithm that can create and update the map
when the GPS data points arrive in a streaming fash-
ion. While our approach is conceptually simple it signif-
icantly outperforms the state-of-the-art due to efficient
exploitation of angle and speed information and elegant
handling of geographic information (via clustering) and
topological structure (via graph spanner).
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