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Diabetes mellitus is a chronic metabolic disorder affecting mil-
lions of people worldwide and causes serious complications
such as diabetic nephropathy. Curcumin, a natural polyphenol
derived from turmeric, has demonstrated antidiabetic, anti-
inflammatory, and antioxidant properties. However, the molec-
ular mechanisms underlying curcumin’s anti-diabetic effects
remain incompletely understood. This study employed network
pharmacology, molecular docking, and simulation techniques to
explore the potential targets, and key pathways of curcumin
in the treatment of diabetes. Using SwissTarget prediction and
Superpred databases, we predicted the molecular targets for
curcumin, while diabetes-associated genes were obtained from
DisGeNet. We identified 60 common targets for curcumin in dia-
betes. Protein-protein interaction (PPI) analysis revealed three
sub-networks and ten hub genes with AKT1, TNF-α, EGFR, and
STAT3 identified as key hub genes that could serve as poten-

tial biomarkers. Gene enrichment analysis indicated that these
genes primarily regulate insulin resistance and other metabolic
pathways. Quantum-polarized ligand docking (QPLD) showed
that curcumin establishes multiple hydrogen and hydrophobic
interactions with the essential amino acids of these hub tar-
gets. Molecular simulation results demonstrated stable dynamic
behavior, a compact structure, and variations in residue flex-
ibility. Binding free energy calculations using MM/GBSA and
MM/PBSA methods validate curcumin’s strong binding to the
potential targets. Total binding free energy using MM/GBSA
ranged from −21.35 to −30.94 kcal/mol while MM/PBSA calcula-
tions showed total binding free energy values between −19.80
and −26.66 kcal/mol. Altogether, this study provides valuable
insights into the molecular targets of curcumin in diabetes
and lays the foundation for future advancements in diabetes
treatment.

1. Introduction

Diabetes is a chronic metabolic disorder affecting millions glob-
ally and ranks as the seventh leading cause of death in the
United States.[1] The primary characteristic of diabetes is the

body’s inability to regulate blood glucose levels, either due
to insufficient insulin production or ineffective insulin action,
a hormone that facilitates glucose uptake by cells.[2] Common
symptoms of diabetes include increased thirst, frequent urina-
tion, hunger, fatigue, blurred vision, and slow wound healing.[3]
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According to the World Health Organization (WHO), the num-
ber of diabetes cases increased from 108 million in 1980 to 422
million in 2014.[4] The prevalence of diabetes has been rising
more rapidly in low- and middle-income countries compared to
high-income countries.[4] In 2019, an estimated 463 million adults
worldwide had diabetes, with projections indicating this number
could reach 700 million by 2045.[5] Diabetes was responsible for
4.2 million deaths and $374 billion in health expenditures in 2019.
The most prevalent form of diabetes is type 2 diabetes, which
accounts for 90–95% of all cases, and is largely associated with
modifiable risk factors such as obesity, physical inactivity, and
unhealthy diet.[6] Additionally, diabetes caused 460,000 kidney
disease deaths and contributed to around 20% of cardiovascular
deaths due to elevated blood glucose levels.[7]

The management of diabetes necessitates a comprehensive
strategy that encompasses lifestyle modifications, pharmacolog-
ical interventions, and regular monitoring of blood glucose and
other health parameters. The primary objectives of diabetes
treatment are to prevent both acute and chronic complica-
tions, enhance quality of life, and reduce mortality.[8] Lifestyle
interventions, including dietary counselling, physical activity,
weight management, and smoking cessation, are fundamen-
tal to diabetes care and can prevent or delay the onset of
type 2 diabetes in individuals at high risk.[9] Pharmacological
interventions include various classes of drugs that act on dif-
ferent targets to lower blood glucose levels, such as insulin,
metformin, sulfonylureas, glucagon-like peptide (GLP)-1 recep-
tor agonists, sodium-glucose cotransporter-2 (SGLT2) inhibitors,
and dipeptidyl peptidase-4 (DPP-4) inhibitors. The selection of
drug depends on the type and severity of diabetes, as well as
the patient’s characteristics, preferences, and comorbidities.[10]

Regular monitoring of blood glucose and other parameters,
such as blood pressure, lipid profile, kidney function, and eye
health, is essential to assess the treatment effectiveness, iden-
tify complications, and adjust therapy as needed.[11] Despite its
challenges, medication remains a vital treatment option in the
field of endocrinology and is likely to maintain its significance
for an extended period. Consequently, innovative therapeu-
tic approaches utilizing advanced techniques are essential for
discovering more effective alternative treatments.[12]

The conventional approach to drug discovery, which focuses
on a single drug, target and disease, faces challenges in safety,
efficacy, and sustainability. Network pharmacology, an emerging
paradigm, integrates network biology and polypharmacology to
address these limitations.[13] This approach leverages computa-
tional tools to map molecular interactions of drug candidates
within cellular network and assess their effects on both the inter-
actome and the diseasome.[14] Network pharmacology facilitates
the discovery of novel drug leads, targets, and indications, while
optimizing the safety and efficacy of existing drugs by exploit-
ing the complex relationships between natural products and the
human body.[15] This strategy offers a promising solution to drug
development challenges in the era of omics data and systems
biology.[13]

Curcumin, a natural compound derived from the rhizome of
the plant Curcuma longa (turmeric) has been used in traditional
medicine for centuries due to its anti-inflammatory, antioxidant,

anticancer, neuroprotective, and anti-diabetic properties.[15,16]

It can modulate multiple targets and pathways involved in
glucose metabolism, insulin signalling, inflammation, oxidative
stress, and apoptosis.[17] Additionally, curcumin can enhance
the effects of existing antidiabetic drugs, such as metformin,
sulfonylureas, and thiazolidinediones. However, curcumin has
limitations, including low bioavailability, poor solubility, and
rapid metabolism.[18,19] Therefore, it is essential to improve its
pharmacokinetic and pharmacodynamic properties and to iden-
tify optimal dosage and drug combinations.[18] Importantly, the
molecular targets of curcumin in diabetes are not yet fully
elucidated. Identifying these targets will enhance our under-
standing of the cellular pathways underlying curcumin’s anti-
diabetic actions and reveal novel molecular targets for diabetes
treatment.

Given curcumin’s anti-diabetic potential, the present study
employs network pharmacology combined with QPLD and
molecular simulation to discover novel targets for curcumin. Fur-
thermore, binding free energy is calculated for the top hub
genes-curcumin complexes. This research aims to guide the
selective inhibition of diabetes targets in clinical trials.

2. Material and Methods

2.1. Target Prediction for Curcumin

We utilized two databases to identify potential tar-
gets for curcumin: SwissTarget Prediction (http://www.
swisstargetprediction.ch/)[20] and Superpred (https://prediction.
charite.de/)[21] Additionally, we searched for “diabetes” in Dis-
GeNet to obtain diabetes-related proteins/genes. We then
compared the predicted targets with the diabetes-related genes
and selected the common ones for the PPI network construction.
Figure 1 illustrates the methodological workflow of our study.

2.2. Construction of the PPI Network

We employed the STRING database (https://string-db.org/cgi/
input?sessionId = btWeOUvPdvTt&input_page_active_form =
multiple_identifiers) to construct the PPI network for curcumin’s
potential targets against diabetes using the highest confidence
level (0.900) as the parameter.[22,23] We then imported the PPI
network into Cytoscape v3.8.2 to identify the subnetworks and
screen core targets. The Molecular Complex Detection (MCODE)
algorithm based plugin was used with specific parameters:
Degree Cutoff = 2, Node Score Cutoff = 0.2, and K-Core =
2. We subsequently selected the top 4 core targets based on
Cytohubba analysis.[24–26]

2.3. Structural Retrieval and QLPD

We obtained the crystallographic coordinates of the proteins
from the RCSB Protein Data Bank. For proteins lacking avail-
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Figure 1. Systematic workflow of the study. The first step involves retreiving and predicting targets for curcumin and diabetes. Then PPI was constructed
and small subnetworks along with the hub genes were identified. Finally, molecular docking of curcumin with the key hub genes and simulation was
performed.

able coordinates, we utilized AlphaFold 2.0 to model their
structures, as referenced in previous studies.[27,28] The protein
structures were then prepared using the Protein Preparation
Wizard in Schrodinger Maestro, applying default settings for pre-
processing. The refinement was conducted at a pH of 7.0 using
the OPLS 2.1 force field.[29] A restrained minimization was per-
formed until the root mean square deviation (RMSD) of the
heavy atoms converged to 0.30 Å. The ligand molecule, identi-
fied as CID 969 516, was downloaded from PubChem and sub-
sequently minimized using the MMFFx force field. The binding
site of the protein was detected using the Sitemap module. To
further investigate the ligand-protein interactions, we employed
advanced docking methods, including scoring functions, to esti-
mate binding energies and provide quantitative insights into
these interactions.[30] To evaluate curcumin’s activity against
selected targets, we utilized the QPLD approach. This method

integrates quantum mechanical and molecular mechanics prop-
erties to offer a more accurate assessment of small molecule
binding potential.[31] Compared to traditional docking meth-
ods, QPLD provides a more precise description of electronic
interactions between the ligand and protein by accounting
for polarization effects due to charge distribution. The QPLD
approach employs density functional theory (DFT) or semi-
empirical methods to quantify the properties of both the protein
and ligand. In our study, we applied QPLD with a ligand vdW
scaling factor of 0.8, an RMSD deviation threshold of less than
0.5, and allowed a maximum of 10 poses using Schrodinger Mae-
stro software. Jaguar was used for assigning QM charges, and
extra precision (XP) approaches were employed for re-docking,
with a maximum atomic displacement of 1.3 Å. The best pose
was visualized using PyMOL for detailed molecular interaction
analysis.[32]
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2.4. All-Atoms Simulation in Explicit Solvent

The molecular simulations for all systems were prepared using
the “tLeap” module in AMBER21.[33,34] Each system was solvated
in an optimal point charge (OPC) solvent box, with ions added
to neutralize the charge. The ligand molecule was parameter-
ized using the GAFF2 force field, with initial topology and force
field modification (frcmod) files generated using antechamber
and parmchk2. Energy minimization was performed on each
system using steepest descent and conjugate gradient algo-
rithms until convergence, based on a defined maximum force
or energy change threshold. To achieve the desired simulation
temperature and equilibrate the system, a temperature coupling
algorithm (such as Langevin Dynamics or Berendsen thermostat)
was employed to gradually heat the system from a low tem-
perature. Long-range electrostatic interactions were computed
using the Particle Mesh Ewald (PME) method, while van der
Waals forces were determined using Lennard-Jones potential.[35]

The systems were equilibrated at the target temperature and
pressure through stages involving positional restraint, slow heat-
ing, and unrestrained equilibration. The SHAKE algorithm was
used to constrain covalent bond lengths and angles, and system
pressure was controlled using a barostat such as Berendsen or
Andersen.[36] Following equilibration, each system underwent a
300 ns production simulation using a molecular dynamics algo-
rithm such as NPT or NVT ensemble.[37] Simulation parameters,
including time step and cut-off distances, were set during this
step. The trajectory from the production run was analyzed using
CPPTRAJ or PTRAJ modules.[38] This analysis encompassed the
calculation of root mean square deviation (RMSD), root mean
square fluctuation (RMSF), radius of gyration (Rg), and hydrogen
bonding for each system.[39–41]

2.5. Binding free Energy Estimation Through MM/GBSA and
MM/PBSA Analysis

We employed both MM/GBSA and MM/PBSA approaches to
calculate binding free energies (BFE) for protein-ligand com-
plexes. These methods offer a balance between computational
efficiency and accuracy for assessing binding affinities. We cal-
culated the BFE for each complex (G(complex, solvated)) and the
unbound states of curcumin (G(curcumin, solvated)) and receptors
(G(receptors, solvated)). The following equation was used to calculate
each term in the total binding energy:

�Gbind = G(complex, solvated) − G(curcumin, solvated) − G(receptors, solvated)

(1)

where:

G = EMolecular Mechanics − Gsolvated − T S (2)

The binding energy components were:

�Gbind = �EMolecular Mechanics + �Gsolvated − �T S = �Gvaccum

+ �Gsolvated (3)

�EMolecular Mechanics = �Eint + �Eelectrostatic + �EvdW (4)

� Gsolvated = �GGeneralized born + �Gsurf ace area (5)

MM/GBSA uses the Generalized Born model for �Gsolvated,
while MM/PBSA employs the Poisson-Boltzmann equation.
Both methods calculate nonpolar solvation energy (�Gsurface
area) using a linear function of solvent-accessible surface area
(SASA):[42]

� Gsurf ace area = γ .SASA + b (6)

Conformational entropy was not calculated due to com-
putational limitations. �Einternal was zero in single trajectory
calculations.[43]

3. Results and Discussion

3.1. Target Retrieval and Protein Network Construction

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl-)-1,6-heptadiene-
3,5-dione), also known as diferuloylmethane, is a polyphenol
found in Curcuma species.[44] This compound has shown
promising therapeutic potential due to its anti-inflammatory,
anti-diabetic, anti-cancer, and antioxidant properties. Research
suggests that curcumin may have applications in treating various
conditions, including arthritis, cancer, and neurodegenerative
diseases, although further studies are necessary to establish
its clinical efficacy.[45] Given curcumin’s broad pharmacological
applications, we utilized it to identify novel therapeutic targets
in diabetes. Using SwissTarget, 100 targets were predicted, of
which 54 overlapped with the therapeutic targets listed in Dis-
GeNet. Additionally, Superpred predicted 9 targets for curcumin,
with 6 of these targets also appearing in the DisGeNet list. The
2D structure of curcumin is shown in Figure 2a, while Figure 2b
presents a Venn diagram depicting the overlap of predicted
targets. The 60 overlapping proteins were subsequently used to
construct a PPI network, as shown in Figure 2c.

3.2. Identification of Sub-Networks and Hub Genes

In PPI networks, small subnetworks play a crucial role in under-
standing localized cellular processes and activities. Identifying
these subnetworks contributes to the discovery of specific pro-
tein clusters, which aids in identifying potential drug targets and
provides insights into disease mechanisms.[46,47] These findings
have potential applications in personalized medicine and tai-
lored treatments. Considering the importance of subnetworks in
disease management, we employed MCODE to detect the small
subnetworks in the large PPI network. Three small subnetworks
were identified. The first subnetwork comprised 20 targets, with
AKT1 and TNF-α as key nodes (Figure 3a). The second subnet-
work consisted of 9 targets, with EGFR, HSPA1N, and HSP90AB1
as primary nodes (Figure 3b). The third subnetwork contained 6
targets, with STAT3 as a major hub gene (Figure 3c).
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Figure 2. Curcumin predicted targets and the PPI network. Panel (a) shows the 2D structure of curcumin, panel (b) shows the Venn diagram for the
SwissTarget and Superpred with the DisGeNet list, and panel (c) shows the PPI network of the common targets constructed by using the STRING database.

Figure 3. Identification of small sub-networks in the whole PPI network. a) Subnetwork 1 with 20 targets, b) Subnetwork 2 with 9 proteins, and c)
Subnetwork 3 with 6 proteins.

Furthermore, we identified hub genes in the entire PPI net-
work that may serve as novel biomarkers for the treatment of
diabetes. Hub genes are pivotal regulators orchestrating diverse
cellular functions within biological networks. Their importance
lies in being fundamental elements that, when targeted, can
disrupt disease-associated processes. A comprehensive under-
standing of hub gene involvement is essential for advancement
of therapeutic strategies. The identification and manipulation
of hub genes, which are crucial molecular actors in patholog-
ical processes, represent promising avenues for the precision
medicine, facilitating the development of tailored pharmacother-
apies for various disorders.[48] Based on degree centrality, our
analysis predicted 10 targets as hub genes. TNF-α emerged as
the top biomarker with a degree score of 48, followed by AKT1
(43), EGFR (36), STAT3 (35), BCL2 (34), MMP9 (32), PTGS2 (31), APP
(26), GSK3B (23), and CALM3 (21). These hub genes are potential

targets for curcumin in diabetes treatment. Figure 4a displays
the identified hub genes in red, orange, and yellow based on
their degree score in the PPI network, while Figure 4b shows
the ranking of the hub genes. Our findings align with previ-
ous reports where these targets, particularly TNF-α, AKT1, STAT3,
and EGFR have been identified as important for the treatment of
diabetes.[49–52] This suggests that targeting these molecules with
curcumin could produce a positive pharmacological outcome
and alleviate the burden of diabetes.

3.3. Transcription factor identification in the gene regulatory
network

In this analysis, we identified the key transcription factors (TFs)
and protein kinases linked to differentially expressed genes

ChemistrySelect 2024, 9, e202402379 (5 of 12) © 2024 The Author(s). ChemistrySelect published by Wiley-VCH GmbH
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Figure 4. Identification and ranking of the hub genes in the PPI network based on the degree property. Panel (a) shows the hub genes (red, orange, and
yellow) in the whole PPI while panel (b) shows the degree scores for each hub gene in the PPI.

Figure 5. Prediction of TFs and specific kinases that regulate the constructed PPI using ChIP-seq experiments (ChEA) based on the hypergeometric p-value.
(a-b) shows the predicted top TFs that are interconnected to other nodes to regulate the PPI network while (c-d) shows the specific kinases that perform
the regulatory function. TFs, transcription factors.

based on their roles in regulatory network progression. The reg-
ulatory network was constructed by connecting TFs, kinases, and
their associated transient proteins, which are involved in forming
the regulatory complex. Initially, we used ChIP-seq experiments
(ChEA) to determine the integrated target genes for transcription
factors. This approach allowed us to predict the most significant
TFs, which were then mapped onto the PPI network. The pre-

dicted TFs and the PPI network are illustrated in Figure 5a,b.
The top TFs include RELA, RUNX1, KAT2A, NFE2L2, ETS1, GATA1,
SPI1, UBTF, EGR1, and NEFE based on the hypergeometric p-
value. Kinases that are likely the regulators of the expanded
PPI network were also identified and mapped on the PPI net-
work. Figure 5c,d, show the top predicted kinases and their
PPI network. Based on the hypergeometric p-value, MAPK14,

ChemistrySelect 2024, 9, e202402379 (6 of 12) © 2024 The Author(s). ChemistrySelect published by Wiley-VCH GmbH
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CK2ALPHA, CDK1, ERK2, ERK1, HIPK2, and MAPK3 were found to
be the topmost kinases in these differentially expressed genes.
Interestingly, these TFs are reported in experimental setups to
be associated with pathways upregulated in diabetes.[53] For
instance, RELA has been reported to govern a network of islet-
specific metabolic genes necessary for beta cell function.[54]

Moreover, specific kinases such as CDK1 are reported to be asso-
ciated with the metabolic pathways that are associated with
diabetes.[55,56] Hence, this shows the validity of our findings
related to the specific TFs and kinases that regulate this PPI
network.

3.4. Enrichment Analysis of the PPI Network

Enrichment analysis in PPI networks is vital for elucidating the
biological relevance of identified protein clusters. By assessing
functional annotations and pathway associations within these
clusters, enrichment analysis helps uncover the underlying bio-
logical processes. This not only enhances our understanding of
complex cellular mechanisms but also provides critical insights
for prioritizing potential therapeutic targets and guiding exper-
imental efforts in drug development, ultimately contributing
to more effective and targeted interventions against various
diseases.[57] We determined the role of each protein in the dia-
betes pathways and their biological and molecular function in
this disease. TNF-α and AKT1 were reported to be involved in
insulin signaling and resistance pathways. Moreover, the factors
and pathways affecting insulin-like growth factor 1 (IGF1)-AKT1
signaling were also significant in these selected genes. The other
proteins such as APP were observed to be associated with reg-
ulation of reactive oxygen species metabolic process biological
process. Our findings are validated by previous literature where
TNF-α and AKT1 have been reported to be essential in these
pathways. For instance, it has been reported that targeting TNF-
α is an effective strategy for the treatment of insulin resistance
and type 2 diabetes.[52] Table 1 summarizes the significant path-
ways, biological processes, and molecular functions of these
proteins in the whole PPI network.

3.5. Molecular Docking of the Key Hub Genes With Curcumin

To investigate the interaction pattern of curcumin with the key
hub genes, we used a molecular docking approach to deter-
mine the binding pattern with AKT1, TNF-α, STAT3, and EGFR.
Using the QPLD approach, the molecular interaction pattern was
determined. The interaction patterns of the curcumin with AKT1
and TNF-α are shown in Figure 6,b. It can be observed that
curcumin established several hydrogen bonds and other inter-
actions with AKT1. Among the hydrogen bonds Glu191, Thr195,
Thr211, and Glu228 residues are involved. The other interactions
involve Phe161, Val164, Ala177, Leu181, Met227 and Met281. This
shows a robust interaction of curcumin with AKT1 and con-
sequently produces desirable pharmacological properties. On
the other hand, the curcumin-bound TNF-α complex reported

two hydrogen bonding interactions and two hydrophobic inter-
actions including the residues Gly121, Tyr151, Tyr59, and Ala96.
The hypoglycemic effects of curcumin involve multiple mecha-
nisms, including the reduction of plasma-free fatty acids (FFAs)
and TNF-α levels.[58,59] This shows that our predicted targets are
well characterized in diabetes and that the effect of curcumin
strongly aligns with our findings.

Moreover, the interaction pattern of curcumin with STAT3 and
EGFR was also calculated to determine the binding potential and
further decipher the pharmacological properties of curcumin. As
depicted in Figure 7a,b, curcumin established several interac-
tions with STAT3 and EGFR. Several hydrogen bonds involving
Lys728, Lys745, Met793, and Asp855 from EGFR are involved in
interactions with curcumin while residues Leu718, Val726, Lys728,
Leu788, Met790, and Leu1001 are involved in interactions other
than hydrogen bonding. The interaction pattern of curcumin
with STAT3 also revealed several hydrogen bonds such as Ser611,
Glu612, Ser613, Gln635, Ser636 and Glu638. Moreover, Arg609,
Phe610, Val637, and Pro639 are involved in non-hydrogen bond-
ing interactions. Overall, these findings show that curcumin
robustly interacts with these targets and consequently produces
desirable pharmacological properties in diabetes.

3.6. Molecular Simulation-Based Dynamic Stability
Assessment

To quantify the structural stability during simulation we per-
formed root mean square deviation (RMSD) analysis of each
complex to determine the binding stability using the simulation
trajectories. As shown in Figure 8a, the curcumin-AKT1 complex
stabilized at 1.65 Å and maintained a similar level throughout the
simulation with a minor perturbation at 160 ns where a decrease
in the RMSD level was observed. The RMSD stabilized completely
after 160 ns with no further perturbation. The curcumin-TNF-α
complex shown in Figure 8b, was the most stable complex dur-
ing the simulation. An average RMSD was reported to be 2.0
Å with no significant structural perturbation. The RMSD contin-
ued to increase and stabilized at 2.0 Å and maintained the same
level until the end of the simulation. This shows the structural
stability of the curcumin when bound to TNF-α. Unlike these
two complexes, the EGFR-curcumin complex reported significant
deviations in the RMSD pattern and maintained a similar behav-
ior throughout the simulation. The RMSD level reached up to
4.0 Å and thus shows that this complex remained unstable dur-
ing the simulation. The RMSD graph for curcumin-EGFR is shown
in Figure 8c. The curcumin-STAT3 complex also demonstrated
a stable and uniform RMSD pattern until 100 ns and then an
abrupt increase was observed; however, the structure stabilized
and maintained a steady level of RMSD till the end of the sim-
ulation. An average RMSD for the curcumin-STAT3 complex was
calculated to be 1.8 Å. The RMSD graph for the curcumin-STAT3
complex is shown in Figure 8d. In sum, these results show that
the binding of curcumin to these targets is stable and there-
fore determines to maintain a better pharmacological potential
against these targets in diabetes.
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Table 1. Enrichment analysis of the PPI network. The WikiPathways, KEGG pathways, GO biological process and molecular functions are provided.

# Genes Category Description FDR Value Genes

3 WikiPathways Role of ceramides in the
development of insulin resistance

4.90E−05 RPS6KB1, TNF-α, AKT1

4 KEGG Pathways Insulin signaling pathway 9.64E−05 RPS6KB1, CALM3, RAF1, AKT1

3 KEGG Pathways Insulin resistance 9.00E−04 RPS6KB1, TNF-α, AKT1

2 WikiPathways Leptin-insulin signaling overlap 0.0019 JAK2, AKT1

3 WikiPathways Insulin signaling 0.0045 RPS6KB1, RAF1, AKT1

2 WikiPathways Factors and pathways affecting
insulin-like growth factor
(IGF1)-AKT1 signaling

0.0052 RPS6KB1, AKT1

15 GO Biological Process Regulation of nitrogen compound
metabolic process

7.60E−04 SERPINE1, RPS6KB1, KLRK1, NOX4, IFNA1, APP, CSF1R, CALM3,
MMP14, ADAM17, TLR9, JAK2, TNF-α, RAF1, AKT1

16 GO Biological Process Regulation of metabolic process 8.70E−04 SERPINE1, RPS6KB1, KLRK1, NOX4, IFNA1, APP, CSF1R, CALM3,
MMP3, MMP14, ADAM17, TLR9, JAK2, TNF-α, RAF1, AKT1

17 GO Biological Process Metabolic process 0.001 SERPINE1, RPS6KB1, KLRK1, NOX4, APP, CSF1R, CALM3, MMP3,
MMP14, ADAM17, BACE1, TLR9, JAK2, TNF-α, RAF1, AKT1, JAK1

12 GO Biological Process Protein metabolic process 0.0027 RPS6KB1, APP, CSF1R, MMP3, MMP14, ADAM17, BACE1, TLR9,
JAK2, RAF1, AKT1, JAK1

14 GO Biological Process Regulation of cellular metabolic
process

0.0037 RPS6KB1, KLRK1, NOX4, IFNA1, APP, CSF1R, CALM3, MMP3,
ADAM17, TLR9, JAK2, TNF-α, RAF1, AKT1

14 GO Biological Process Macromolecule metabolic process 0.0044 RPS6KB1, NOX4, APP, CSF1R, MMP3, MMP14, ADAM17, BACE1,
TLR9, JAK2, TNF-α, RAF1, AKT1, JAK1

13 GO Biological Process Organonitrogen compound
metabolic process

0.0048 RPS6KB1, NOX4, APP, CSF1R, MMP3, MMP14, ADAM17, BACE1,
TLR9, JAK2, RAF1, AKT1, JAK1

6 GO Biological Process Negative regulation of protein
metabolic process

0.0129 SERPINE1, APP, CALM3, TNF-α, RAF1, AKT1

3 GO Biological Process Regulation of reactive oxygen
species metabolic process

0.0137 APP, MMP3, TNF-α

3 GO Biological Process Positive regulation of small
molecule metabolic process

0.0145 APP, TNF-α, AKT1

14 GO Biological Process Nitrogen compound metabolic
process

0.016 RPS6KB1, KLRK1, NOX4, APP, CSF1R, MMP3, MMP14, ADAM17,
BACE1, TLR9, JAK2, RAF1, AKT1, JAK1

Figure 6. Molecular docking analysis of curcumin with AKT1 and TNF-α. Panel (a) shows the binding pattern of curcumin with AKT1 and the 2D interaction
patterns while panel (c) shows the binding pattern of curcumin with TNF-α and the 2D interaction pattern.
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Figure 7. Molecular docking analysis of curcumin with EGFR and STAT3. Panel (a) shows the binding pattern of curcumin with EGFR and the 2D interaction
patterns while panel (c) shows the binding pattern of curcumin with STAT3 and the 2D interaction pattern.

Figure 8. Dynamic stability analysis of the curcumin-bound complexes. Panel (a) shows the RMSD graph for curcumin-AKT1 complex, panel (b) shows the
RMSD graph for the curcumin-TNF-α complex, panel (c) shows the RMSD graph for the curcumin-EGFR while (d) shows the RMSD graph for the
curcumin-STAT3 complex.

3.7. Structural Compactness Analysis

Structural compactness assessment through Rg calculation is
among the key parameters that can be used to harness the phar-
macological potential of a molecule. As shown in Figure 9a, the
curcumin-AKT1 complex maintained a uniform Rg pattern with
a minor increase and decrease behavior between 60 and 80 ns;
however, subsequently, it stabilized and maintained a steady
level of 17.10 Å during the latter part of the simulation. Similarly,
the Rg pattern for the curcumin-TNF-α complex started from
20.0 Å and reached the maximum (20.40 Å) at 10 ns and then
decreased back. The Rg maintained a stable level throughout
the simulation. An average Rg for the curcumin-TNF-α complex
was calculated to be 20.10 Å and is presented in Figure 9b.
The curcumin-EGFR complex also reported a uniform pattern
of Rg with no variation during the simulation. The Rg though
increased at 120 ns it then decreased back and stabilized at an

average Rg value of 20.75 Å. The Rg graph for the curcumin-EGFR
is shown in Figure 9c. The Rg of the curcumin-STAT3 complex
started to increase gradually, and this pattern was observed
between 1–70 ns; however, the Rg values then decreased and
stabilized at 14.20 Å with no significant perturbation in the pat-
tern. The Rg graph for the curcumin-STAT3 is shown in Figure 9d.
Overall, the current findings demonstrate that minimal unbind-
ing events were observed and the Rg remained uniform for
all the complexes during most of the simulation time. These
observations further underscore the pharmacological potential
of curcumin in binding to AKT1, TNF-α, EGFR, and STAT3.

3.8. Residue’s Flexibility Analysis

In molecular dynamics simulations, the RMSF serves as a valu-
able metric for assessing the flexibility of various regions within

ChemistrySelect 2024, 9, e202402379 (9 of 12) © 2024 The Author(s). ChemistrySelect published by Wiley-VCH GmbH
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Figure 9. Structural compactness analysis of the curcumin-bound complexes. Panel (a) shows the Rg graph for curcumin-AKT1 complex, panel (b) shows
the Rg graph for the curcumin-TNF-α complex, panel (c) shows the Rg graph for the curcumin-EGFR while panel (d) shows the Rg graph for the
curcumin-STAT3 complex.

Figure 10. Residue’s flexibility analysis of the curcumin-bound complexes. Panel (a) shows the RMSF graph for the curcumin-AKT1 complex, panel (b) shows
the RMSF graph for the curcumin-TNF-α complex, panel (c) shows the RMSF graph for the curcumin-EGFR while panel (d) shows the RMSF graph for the
curcumin-STAT3 complex.

a molecule or across different molecules. This assessment can
pinpoint flexible regions that are potentially crucial for ligand
binding or protein-protein interactions (PPIs). Additionally, RMSF
is a critical parameter for validating molecular dynamics simu-
lations. By comparing experimental RMSF measurements with
simulated values, researchers can evaluate the accuracy of the
simulation and the force field employed. A strong correlation
between experimental and simulated RMSF values suggests that
the simulation effectively captures the biomolecule’s flexibility
and dynamics. In the case of curcumin-AKT1 complex, the region
between 20–90 demonstrated higher flexibility while the other
regions reported minimal fluctuations. The binding of curcumin
occurs at 100–150 residues and thus stabilizes the internal fluc-
tuation upon the binding. The RMSF graph for curcumin-AKT1
complex is provided in Figure 10a. We also evaluated the flexibil-
ity of the curcumin-TNF-α complex, which reported that regions
15–25, 75–85, and 97–112 had higher fluctuations than the rest of
the structure. The RMSF graph for curcumin-TNF-α complex is
given in Figure 10b. In the case of curcumin-EGFR, a higher fluc-
tuation was observed for the regions between 10–70 and 160–180
amino acids. While the curcumin-STAT3 reported mostly higher
fluctuations for most of the protein regions. The RMSF graphs
for the curcumin-EGFR and curcumin-STAT3 complexes are given
in Figure 10c,d. In certain regions, the increased flexibility or

dynamic motion, suggests that the binding of the ligand induces
structural changes or instability in those specific areas. On the
other hand, lower RMSF in certain regions suggests stabilization
or reduced flexibility due to the ligand binding.

3.9. Binding Free Energy Calculation

To validate the docking outcomes, one can employ the bind-
ing free energy calculation method, known for its accuracy,
speed, and computational efficiency. This widely utilized
approach has proven effective in assessing the binding
potential of diverse protein complexes implicated in var-
ious diseases. Hence, acknowledging the efficacy of this
method, we conducted binding free energy calculations
utilizing the MM/GBSA and MM/PBSA methods. As summa-
rized in Tables 2 and 3, the vdW values calculated using the
MM/GBSA method were −39.73 ± 0.23 kcal/mol for curcumin-
AKT complex, −23.98 ± 0.41 kcal/mol for the curcumin-TNF-α
complex, −30.58 ± 0.15 for the curcumin-EGFR complex,
and −39.15 ± 0.16 kcal/mol for the curcumin-STAT3 com-
plex. The electrostatic energy was also calculated for each
complex and showed values of −7.94 ± 0.28 for the Curcumin-
AKT complex, −1.49 ± 0.10 kcal/mol for the curcumin-TNF-α

ChemistrySelect 2024, 9, e202402379 (10 of 12) © 2024 The Author(s). ChemistrySelect published by Wiley-VCH GmbH
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Table 2. Binding free energy calculation using the MM/GBSA method. The results are expressed in kcal/mol.

Parameters Curcumin-AKT1 Curcumin- TNF-α Curcumin-EGFR Curcumin-STAT3

VDWAALS −39.73 ± 0.23 −23.98 ± 0.41 −30.58 ± 0.15 −39.15 ± 0.16

EEL −7.94 ± 0.28 −1.49 ± 0.10 −9.04 ± 0.16 −14.51 ± 0.22

EGB 21.29 ± 0.27 6.91 ± 0.14 19.48 ± 0.18 27.45 ± 0.23

ESURF −4.55 ± 0.01 −2.80 ± 0.03 −3.28 ± 0.01 −4.33 ± 0.01

DELTA G gas −47.68 ± 0.33 −25.47 ± 0.47 −37.63 ± 0.25 −53.66 ± 0.31

DELTA G solv 16.73 ± 0.26 4.11 ± 0.11 16.19 ± 0.18 23.11 ± 0.23

DELTA TOTAL −30.94 ± 0.21 −21.35 ± 0.38 −23.43 ± 0.13 −30.54 ± 0.19

Table 3. Binding free energy calculation using the MM/PBSA methods. The results are expressed in kcal/mol.

Parameters Curcumin-AKT1 Curcumin- TNF-α Curcumin-EGFR Curcumin-STAT3

VDWAALS −39.73 ± 0.23 −23.98 ± 0.41 −28.58 ± 0.15 −39.15 ± 0.16

EEL −7.94 ± 0.28 −1.49 ± 0.10 −9.04 ± 0.16 −14.51 ± 0.22

EPB 24.25 ± 0.34 7.84 ± 0.19 17.92 ± 0.20 32.41 ± 0.26

ENPOLAR −3.23 ± 0.01 −2.18 ± 0.02 −2.72 ± 0.01 −3.01 ± 0.00

DELTA G gas −47.68 ± 0.33 −25.47 ± 0.47 −37.63 ± 0.25 −53.66 ± 0.31

DELTA G solv 21.01 ± 0.34 5.66 ± 0.17 15.19 ± 0.19 29.39 ± 0.25

DELTA TOTAL −26.66 ± 0.24 −19.80 ± 0.32 −22.43 ± 0.14 −24.27 ± 0.22

complex, −9.04 ± 0.16 for the curcumin-EGFR complex, and
−14.51 ± 0.22 kcal/mol for the curcumin-STAT3 complex.
The total binding free energy for each of these complexes
was also calculated using to MM/GBSA and showed values
of −30.94 ± 0.21 kcal/mol for the curcumin-AKT1 complex,
−21.35 ± 0.38 kcal/mol for the curcumin-TNF-α complex,
−23.43 ± 0.13 kcal/mol for the curcumin-EGFR complex, and
−30.54 ± 0.19 kcal/mol for the curcumin-STAT3 complex. This
shows a more robust binding of curcumin to these receptors
in diabetes and consequently produces better pharmacological
properties.

On the other hand, the total binding free energy for each
complex calculated using the MM/PBSA method showed values
of −26.66 ± 0.24 kcal/mol for the curcumin-AKT1 complex,
−19.80 ± 0.32 kcal/mol for the curcumin-TNF-α complex,
−22.43 ± 0.14 kcal/mol for the curcumin-EGFR complex, and
−24.27 ± 0.22 kcal/mol for the curcumin-STAT3 complex. The
MM/PBSA results are summarized in Table 3. Analysis of the
data reveals that each system experiences an increase in free
energy in the gas phase but not in the solvent state. These
results imply that the thermodynamic preference for curcumin
binding is primarily dictated by enthalpic factors, with favorable
interactions dominating in the gas phase. Conversely, the bind-
ing is unfavorable in terms of entropy, attributed to the adverse
effects of solvation.

4. Conclusions

The current study employs network pharmacology and molecu-
lar simulation-based approaches to identify potential targets for
curcumin in diabetes. Among the identified hits, only four tar-

gets, i.e., AKT1, TNF-α, EGFR, and STAT3 were reported as the key
hub genes that could act as key biomarkers. Using the QPLD
approach, we revealed robust interactions and key pathways
that are regulated by these genes. Moreover, molecular simu-
lation results demonstrated stable dynamic behavior, compact
structure, and differences in the residue’s flexibility. The binding
free energy results further re-evaluated the docking complexes
and reported that each system experiences an increase in free
energy in the gas phase but not in the solvent. These results
imply that the thermodynamic preference for curcumin binding
is primarily dictated by enthalpic factors, with favorable inter-
actions dominating in the gas phase. Conversely, the binding is
unfavorable in terms of entropy, attributed to the adverse effects
of solvation. Altogether, the findings of our study provide valu-
able insight into the molecular targets of curcumin in diabetes
and establish a foundation for future progress in diabetes treat-
ment by underscoring the importance of these hub genes in the
pathogenesis of diabetes.
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