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Abstract

The present study introduces a nature inspired improved liver cancer algorithm (ILCA)
for solving the non-convex engineering optimization issues. The traditional LCA (t-LCA)
inspires from the conduct of liver tumours and integrates biological ethics during the
optimization procedure. However, t-LCA facing stagnation issues and may trap into
local optima. To avoid such issues and provide the optimal solution, there are some
modifications are implemented into the internal structure of t-LCA based on Weibull
flight operator, mutation-based approach, quasi-opposite-based learning and gorilla troops
exploitation-based mechanisms to enhance the overall strength of the algorithm to obtain
the global solution. For validation of ILCA, the non-parametric and the statistical analysis
are performed using benchmark standard functions. Moreover, ILCA is applied to resolve
the stochastic renewable-based (wind turbines + PVs) optimal power flow problem using
a modified RER-based IEEE 57-bus. The objective of this work is to obtain the minimum
predicted power losses and enhance the predicted voltage stability. By incorporation of
renewable resources into the modified IEEE57-bus network can help the system to reduce
the power losses from 5.6622 to 3.8142 MW, while the voltage stability is enhanced from
0.1700 to 0.1164 p.u.

1 INTRODUCTION

The OPF is a non-convex and utmost considerable optimiza-
tion issue that received an extensive attraction of the utilities
and especially of the researchers due to its secure and economic
operation provided in electric power networks [1]. The problem
is further multifaceted due to more effective ways being added
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to fulfil the energy requirements in modern power systems.
These effective and feasible ways are possible via the incorpo-
ration of renewable resources. Though adding the uncertainties
to electric networks forecast subsequent from the large incor-
poration of these resources, with increased complexity and size
of the network have severely intricate the task of resolving the
OPF problem [2].
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The second major concern is the voltage stability that is
taken into account for planning system design and operation.
Consequently, new utilities organizations functioning the power
transmission corridors near to the voltage stability parameters
due to their profitable market point-of-view. Otherwise, this has
directed to violation and cause of voltage collapse with high-
cost penalties to both consumers and utilities. The impact of
renewable on voltage stability has been discussed in [3].

In recent years, the researcher has tended to utilize opti-
mization methods to resolve OPF problems since of their
efficient response and ability to deal with the non-linear large-
scale networks. These methods have wide-range categories that
are inspired based on human, physics, evolutionary and nature
swarm-based approaches [4]. In human-based, the algorithm
imitates human conduct like socializing, competition, learning
etc. Among these who fall under their category are teaching-
learning-based optimization [5], Jaya algorithm [6], imperialist
competition algorithm [7], skilled optimization algorithm [8]
and so on. The physics-based algorithms mimic the natural and
physical rules to obtain the solution. The improved gravitational
search algorithm [9] mimics the perception of Newton’s law in
development, the lightning search algorithm [10] mimics the
natural lightning marvels, the multi-verse algorithm [11] mimics
the perception of cosmology contains worm, white and black-
hole, and so on. The evolutionary-based algorithm mimics the
evolutionary perception, where the finest solution is attained by
offspring from parents’ mating. Among these few are reported
here like improved differential evolution [12], genetic algorithm
[13], ensembled successive history adaptive differential evolu-
tionary algorithm [14], adaptive guided differential evolution
algorithm [15] and so on. The swarms-based on the other hand,
that is inspired by the social response of the animals or groups
as popularized like particle swarm optimization [16, 17] and
chaotic particle swarm optimization [18, 19]. There are numer-
ous swarm-based algorithms have been reported in the literature
such as the grey-wolf optimizer [20], grasshopper optimization
algorithm [21], moth-flame optimizer [22], kill-herd algorithm
[23], pigeon-inspired optimization algorithm [24], gorilla troops
optimizer [25] and so on.

Several probabilistic techniques were used to resolve the
stochastic OPF problem large number of incorporation of WTs
and solar PV units in the power system. These probabilistic
methods can offer optimal solutions and adequate precision in
the presence of uncertainties [26, 27]. Different related tech-
niques such as cumulant, Monte-Carlo simulations (MCS) as
well as probabilistic collocation approaches are extensively uti-
lized to enumerate the influence of system uncertainties on the
different aspects of the system with voltage stability as an objec-
tive [28]. The authors in [29], implemented the Cornish Fisher
extension to tackle the uncertainty of PV, but the approach
was not good enough to provide an optimal estimation for
issues containing non-convex and complex structures return
functions. The authors in [30], proposed two-point estimation
(2PEM) technique based on the moments approach to deal
with PV uncertainties. Though, the solution was untrustwor-
thy due to generating estimates outside the parameters space
and not having sufficient statistics to tackle the problem. The

authors in [31], deal with the stochastic OPF problem, where
the Kernel density estimate approach was employed in approx-
imating the PDF of windspeed. However, it depends on the
initial position of bins, and they grow exponentially with dimen-
sions which make it unpractical. The authors in [32], proposed a
mean-variance-skewness model to resolve the stochastic OPF
framework with the incorporation of wind power based on
Latin hypercube sampling (LHS), but it suffered from loss of
statistical sampling points and difficulty to deal with the arbi-
trary sampling practically for computational sensitivity analysis.
The authors in [33], utilized MCS variants to reach the proba-
bility of the PDFs of generated power output by wind system.
The authors in [34], used a genetic algorithm and two-point
estimate techniques to resolve the OPF problem with the incor-
poration of wind and solar powers into the modified IEEE
30-bus network. The impact of uncertainties such as solar irra-
diance, wind speed and load variations were taken into the
account during solution to the problem. The authors in [35],
proposed the techno-economic analysis for the OPF prob-
lem coordinated with hybrid renewable resources like solar and
wind energy using IEEE 30-bus network. Using the appropri-
ate probability density methods such as Weibull and Lognormal
PDFs to model the system uncertainty. The authors in [36],
proposed a thermal exchange optimization algorithm based on
Newton’s law of cooling, to resolve the probabilistic OPF prob-
lem using both conventional and renewable energy sources via
an IEEE 30-bus network. The system uncertainties such as
solar PV and wind powers were taken into account using suit-
able PDFs for modelling. The authors in [37], used the ant
lion optimization algorithm to resolve the OPF problem con-
sidering wind energy resources and to handle the wind speed
uncertainty, the Weibull PDF approach was applied in the work.
The authors in [38], used Weibull distribution to simulate the
variation of wind speed and proposed the modified bacterial
foraging algorithm to resolve the probabilistic OPF problem
using an IEEE 30-bus network. The authors in [39], proposed
the enhanced version of the adaptive differential evolution
algorithm based on four modifications, crossover rate sorting
mechanism, re-randomizing parameters, dynamic population
reduction-based strategy and self-adaptive penalty constraints
handling approach. The proposed EJADE-SP was further used
to resolve the OPF problem with incorporation of solar, wind
and thermal generation-based modified IEEE 30-bus network.
The authors in [40], proposed an improved the version of skilled
optimization algorithm based on the opposite-based learning
(OBL) mechanism to resolve the stochastic OPF problem wind-
based modified IEEE 30 and 57-bus networks. The authors
in [41], proposed the whale optimization algorithm to resolve
the stochastic OPF problem using hybrid resources. The uncer-
tainty of solar and wind are modelled via lognormal and Weibull
distributions. The authors in [42], resolve the multi-objective
OPF problem using elitist non-dominated sorting genetic algo-
rithm (NGSA-II and NGSA-III) with incorporation of wind
energy into the Algerian 114 node-based network. The details
of the studies presented to the literature to resolve the stochas-
tic OPF problem compared to the current study are provided in
Table 1.
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2674 KHAN ET AL.

TABLE 1 The details of the studies presented to the literature for solving the OPF problem.

RERs

Reference Algorithm Wind PV

Uncertain load

demand Bus network

[5] Teaching-learning-based optimization ✗ ✗ ✗ 30-bus

[7] Imperialist competitive algorithm ✗ ✗ ✗ 57-bus

[9] Improved gravitational search algorithm ✗ ✗ ✗ 30, 57-bus

[10] Lightning search algorithm ✗ ✗ ✗ 30, 57-bus

[12] Composite differential evolution integrating effective
constrained handling techniques

✗ ✗ ✗ 30, 57 and 118-bus

[14] Ensembled successive history adaptive differential evolutionary
algorithm

✗ ✗ ✗ 30 and 118-bus

[20] Grey-wolf optimizer ✗ ✗ ✗ 57-bus

[22] Moth-flame optimizer ✗ ✗ ✗ 30 and 57-bus

[25] Chaotic-quasi-oppositional-phasor based multi populations
gorilla troop optimizer

✗ ✗ ✗ 30, 57-bus

[34] Genetic algorithm ✓ ✓ ✓ 30-bus

[35] Equilibrium optimizer ✓ ✓ ✗ 30-bus

[36] Thermal Exchange optimization ✓ ✓ ✗ 30-bus

[37] Antlion optimization ✓ ✗ ✗ 30-bus

[38] Modified bacterial foraging algorithm ✓ ✗ ✗ 30-bus

[39] Enhanced adaptive differential evolution with self-adaptive
penalty constraint handling

✓ ✓ ✗ 30-bus

[40] Improved skill optimization algorithm ✗ ✗ 30, 57-bus

[41] Whale optimization algorithm ✓ ✓ ✓ 30-bus

[42] Elitist non-dominated sorting genetic algorithm (NGSA-II and
NGSA-III)

✓ ✗ ✗ Algerian 114-bus

FIGURE 1 The proposed solution of the stochastic optimal power flow considering PV and wind power systems.

The main research gap is that solving the stochastic OPF
problem with incorporation of solar PVs and wind energy units
into the large-scale networks considering system uncertainties
are becoming even more intricate problem and a robust opti-
mization algorithm is required for solving this problem. The

framework of the proposed study is illustrated in Figure 1. In
the research, stochastic OPF problem is resolved while consid-
ering the uncertainties of the system such as time-varying load
demand, WTs and solar PVs to minimize the total predicted
power loss and enhance the total predicted voltage stability of
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KHAN ET AL. 2675

the large-scale IEEE 57-bus network. To avoid the stagnation
issues in t-LCA, the four novel modifications are implemented
in the research. The primary contributions of this research are
given as follows:

➢ Four novel improvements are implemented into the internal
structure of the traditional liver cancer algorithm (t-LCA)
based on Weibull flight operator, mutation-based approach,
quasi-opposite-based learning (QOBL) and gorilla troops
exploitation-based mechanisms to enhance the exploration
and exploitation strength of the algorithm.

➢ The proposed ILCA is further used to resolve the stochas-
tic OPF problem by incorporation of two solar PVs and
two wind energy units using a modified large-scale IEEE
57-bus network to obtain the least predicted power loss and
enhance the system stability.

➢ Modelling the system uncertainties such as solar irradiance,
wind speed and time-varying load demand via Lognor-
mal, Weibull and normal distribution functions, while for
creating the optimal set of uncertain scenarios the Monte-
Carlo simulation (MCS) and the scenario-based reduction
(SBR) techniques are used to accurately model the system
uncertainties.

➢ Statistical and non-parametric analysis is executed using 23
standard benchmark functions to validate the effectiveness
of the ILCA compared with the other traditional techniques
such as SCSO, LAPO, ZOA, WOA and t-LCA.

For the easiness of the readers, the paper is arranged in differ-
ent sections to understand well the follow of study. Sections 2
and 3 are the objective formulations for the stochastic OPF
framework and also provide detailed methods to deal with the
uncertainties in RERs. Section 4 is a methodology, where the
modifications are implemented into the t-LCA algorithm. Sec-
tion 5 presented the results and discussion of different cases
of stochastic OPF objectives, while Section 6 is the part of the
conclusion.

2 OBJECTIVE FUNCTIONS OF OPF

In OPF, the objective function is achieved by adjusting the
optimal values of power system variables to lessen the losses
and enhance the voltage stability while satisfying the system
constraints. The objective function of OPF is defined as follows:

lessen Ob j_Function (o, k) (1)

Subjected to,

bm (k, o) = 0 m = 1, 2, 3, … , i (2)

ln (k, o) ≤ 0 n = 1, 2, 3, … , j (3)

where bm and ln refer to the inequality and equality constraints,
while, k and o are represented as state and control variables here.

These variables are formulated as follows:

k = [PG1,VL1 …VLNPQ,QG1 …QGNPV, STL1 … STLNTL] (4)

o = [PG2 … PGNG,VG1 …VGNG,QC 1 …QCNC, T1 … TNT] (5)

where VL , STL, QG and PG1 are referred to the load-bus volt-
ages, apparent power at transmission lines (TL ), active power
produced by slack bus as well as reactive power produce by
generator. While, QC , T , PG2 and VG refer to shunt VAR
compensators, transformer tap settings, power produced from
generators and generator bus voltages.

2.1 Total predicted power loss minimization

The first objective is to resolve the stochastic OPF problem to
lessen the total predicted power loss, the related expression is
given as follows [43].

Ob jective_Function1 = Total_PPL =

Ngs∑
n=1

PPLn =

Ngs∑
n=1

𝜋r ,n × PLoss,n

(6)
where Total _PPL and PPLn are referred to the expected pre-
dicted power losses and at the nth scenario. PLoss and Ngs referred
to the power losses and the number of created scenarios, while,
𝜋r ,n is nth scenario probability.

Ploss =

NL∑
i=1

Gi j (V
2

i +V 2
j − 2ViVj cos𝛿i j ) (MW) (7)

where Vj and Vi are the voltage at bus j and i, while 𝛿i j are Gi j

the different of voltage angles and the TL conductance.

2.2 Enhancement of total predicted voltage
stability

The second objective is to resolve the stochastic OPF problem
to enhance the total predicted voltage stability index, the related
expression is given as follows [28].

Ob jective_Function2 = Total_PVSI =
Ngs∑
n=1

PVSIn =

Ns∑
n=1

𝜋r ,n × VSIn

(8)
where Total_PVSI and PVSln are referred to the expected pre-
dicted voltage stability index at the nth scenario. Ngs is referred
to the number of created scenarios, while, 𝜋r ,n is referred to the
nth scenario probability.

VSI = min (Lmax) = min
(
max

(
L j

))
∀ j = 1, 2, … ,NNQ

(9)

L j =

||||||1 −
NG∑
i=1

Fji

Vi

Vj

|||||| ∀ j = 1, 2, … ,NL (10)

Fji = −[Y1]−1 [Y2] (11)
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2676 KHAN ET AL.

where Y1 and Y1 are the bus admittance metrices, while L j is j th

line stability index.

2.3 Constraints of the system

2.3.1 Equality constraints

PGi − PDi = |Vi | NB∑
j=1

|||Vj
||| (Gi j cos𝛿i j + Bi j sin𝛿i j

)
(12)

QGi − QDi = |Vi | NB∑
j=1

|||Vj
||| (Gi j cos𝛿i j + Bi j sin𝛿i j

)
(13)

where Gi j and Bi j and are the conductance and suscep-
tance, while PGi , PDi and QGi ,QDi are the active and reactive
generation of power and demand.

2.3.2 Inequality constraints

The related constraints are given as follows:

Pmin
Gn

≤ PGn ≤ Pmax
Gn

n = 1, 2, … ,NG (14)

V min
Gn

≤ VGn ≤ V max
Gn

n = 1, 2, … ,NG (15)

Qmin
Gn

≤ QGn ≤ Qmax
Gn

n = 1, 2, … ,NG (16)

T min
n ≤ Tn ≤ T max

n n = 1, 2, … ,NT (17)

Qmin
Cn

≤ QCn ≤ Qmax
Cn

n = 1, 2, … ,NC (18)

V min
Ln ≤ VLn ≤ V max

Ln n = 1, 2, … ,NQ (19)

SLn ≤ S max
Ln

n = 1, 2, … ,NL (20)

where PG ,QG and VG are referring to the maximum and lower
limits of the active, voltage, reactive power generations. While,
PG ,QG and VL , Tn,Qc and SL are referring to the maximum
and lower limits of the capacitor banks, tap setting of trans-
formers, load-bus voltages and apparent power at TL . While,
NG , NT , NC , NL and NQ are the number of connected gen-
erators, transformers, capacitor banks, transmission lines and
load connected. If there is some violation in the system, can
be formulated as [44, 45]:

FOb j = Ob jectiveFunction1 + Ob jective_Function2

+ 𝛼1
(
PG1 − PLim

G1

)2
+ 𝛼2

NG∑
i=1

(
QGi − QLim

Gi

)2

+ 𝛼3

NQ∑
i=1

(
VLi −V Lim

Li

)2
+ 𝛼4

NL∑
i=1

(
STi − S Lim

Ti

)2
(21)

where 𝛼1, 𝛼2, 𝛼3 and 𝛼4 are the penalty weight factors for reac-
tive and active power generation and related values are chosen
to 100, 100, 100,000, and 100, respectively.

3 MODELING OF SYSTEM
UNCERTAINTIES

In this work, solar and wind powers are measured as the source
of energy. It should be mentioned here that according to the
prior studies, the most commonly utilized approaches for mod-
elling uncertainty of load demands, solar irradiance, and wind
speed are normal (Gaussian), lognormal, and Weibull PDFs.
These methods rely on acquiring a vast amount of data and
comparing it to different sorts of PDFs. The best PDF is then
selected, which includes all probabilistic data [46]. The detail
discussion is given in below sub-sections.

3.1 Time-varying load demand modelling

The uncertain load demand fluctuate over the time, so to tackle
such behaviour, the normal PDF is utilized to model the time-
varying demand, the related formulation is as follows [47].

fld (Pld ) =
1

𝜎ld

√
2𝜋

exp

[
−

(Pl − 𝜇ld )2

2𝜎2
ld

]
(22)

where 𝜎ld and 𝜇ld are referring to the mean and standard values
selected to 90 and 10, while Pld is the loading used by normal
PDF.

3.2 Solar irradiation modelling

The solar radiation has a high degree of uncertainty that fluc-
tuates as a function based on several factors such as season,
month, and time of the day as well as environmental condi-
tions. The PDF of the solar irradiation is optimally modelled
by a lognormal PDF. The related formulation is as follows [48].

fsl (Gsl ) =
1

Gsl𝜎sl

√
2𝜋

exp

[
−

(ln (Gsl ) − 𝜇sl )
2

2𝜎2
sl

]
Gsl > 0

(23)
where 𝜎sl and 𝜇sl are referring to the mean and standard values
selected to 0.5 and 5.5. The solar PV power is produced by the
following expression.

PRP (GS ) =

⎧⎪⎨⎪⎩
PPR

(
G 2

s

Gssi×Xci

)
for 0 < GS ≤ Xci

PRP

(
GS

Gssi

)
for GS ≥ Xci

(24)
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KHAN ET AL. 2677

FIGURE 2 MCS and SBR-based approaches to model the load, the solar and the wind speed uncertainties at 1000 frequency.

where Xci and Gssi refer to the certain and standard solar irradi-
ance values selected around 150 and 1000 W/m2, respectively.
In this study, the optimal allocated of two PV units rated 50 MW
power capacity are connected on buses 16 and 26, respectively.

3.3 Modelling of wind speed

The Weibull PDF approach is utilized to handle the wind speed
(m/s) uncertainties, the expression is as follows [43].

fu (u) =

(
𝛽sp

𝛼sl

)(
u

𝛼sl

)(𝛽sp−1
)
exp

[
−

(
u

𝛼sl

)𝛽sp
]

0 ≤ u < ∞

(25)
where 𝛽sp and asl are referring to the scale and shape parameters
values selected to 10 and 2 [49]. The wind power is produced by
the following expression.

Pws (uws) =

⎧⎪⎨⎪⎩
0 for (u𝜔s ⟨u𝜔si &u𝜔s⟩ u𝜔so)

PRP

(
u𝜔s−u𝜔si

u𝜔sr−u𝜔si

)
for (u𝜔si ≤ u𝜔s ≤ u𝜔sr )

PRP for (uwsr < uws ≤ uwso)
(26)

where u𝜔sr, u𝜔so and u𝜔si are referred as the rated, cut-in and out
wind speed. In the study, the optimal allocation of two wind tur-
bine units rated 90 MW power capacity are connected on buses
45 and 36, respectively.

The MCS and SBR techniques are used to create the uncer-
tain scenarios, where the frequency is adjusted to 1000 and
illustrated in Figure 2.

TABLE 2 MCS and RBS-based to model the uncertain load demand, solar
irradiance and wind speed at 1000 frequency.

Number of

scenarios

Load

demand (%)

Wind speed

(m/sec)

Solar

irradiance

(W/m2) Probability

1 67.7366 12.5700 827.8942 0.0010

2 64.3277 6.0248 537.4406 0.0250

3 76.2579 8.6338 718.4929 0.0070

4 66.1736 5.5602 0.0000 0.5030

5 70.4822 5.4440 191.6005 0.2440

6 69.9016 3.0197 1490.6640 0.0010

7 70.1290 12.7045 292.6203 0.1130

8 65.6065 10.5367 614.7596 0.0140

9 67.7204 4.4658 361.9548 0.0900

10 69.2140 10.0340 969.4503 0.0020

The ten optimal scenarios are created for uncertain varying
demand, the wind speed and the solar irradiance as well as their
corresponding probabilities are tabulated in Table 2.

4 METHODOLOGY

In this section, a novel bio-inspired optimization traditional
method named liver cancer algorithm (t-LCA) is modi-
fied via four novel tactics such as Weibull flight operator,
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2678 KHAN ET AL.

mutation-based approach, gorilla troops exploitation-based
approach and combination of quasi with opposite-based learn-
ing (QOBL) techniques are imposed to enhance the strength of
t-LCA. The related formulation with descriptions of t-LCA and
proposed ILCA are provided in the following sub-sections.

4.1 Traditional liver cancer algorithm
(t-LCA)

This sub-section defines the traditional t-LCA with detailed for-
mulation. It inspires from the conduct of liver tumours and
integrates biological ethics during the optimization procedure
[50]. In t-LCA, the mimic spread and malignant growth of
tumours can cause of worst effects on body and to imitate
their behaviour, the algorithms contain several steps and related
formulations as:

4.1.1 Tumour size approximation

In this stage, the mathematical model is based on supposed to
have a tumour with hemi-ellipsoid shape and determine their
size to observe by length, height and width. The initial posi-
tion is calculated by using the random opposition-based learning
(ROBL) method, can be formulated as:

X0 j

i =
𝜋

6

(
Le j
)
⋅
(
Wi j

)
⋅
(
Hi j
)

−
(

lb + (ub − lb) − rd × X j

i

) (27)

where X0 j

i is a vector that opposite to X j

i , rd refers to random
values range 0 to 1, lb and ub are the lower and upper limits,
while Le, Hi and Wi are referring to the diameter of the tumour.
The rise in tumour size is formulated as:

X =
𝜋

6
⋅ f ⋅ (Le ⋅ Wi)3∕2 (28)

where f is equals to 1.

4.1.2 Tumour recurrence

In this stage, hepatocellular carcinoma has growth exponentially
due to developed of tumour in numerous locations in liver, so
the location of tumours is as follows:

Pi =
dV

dt
= r × X ∈ [1… T ] and i ∈ [1…N ] (29)

where T and N are referring to the number of maximum iter-
ations and populations, while P is the growth tumor location.
Here, Levy flight (LF ) is imposed to locate the feast of tumour
in liver.

v (D) = 0.01 ×
rand (1,D) × 𝜎

|rand (1,D) | 1

𝛽

(30)

=

⎛⎜⎜⎜⎝
Γ (1 + 𝛽) × sin

(
𝜋𝛽

2

)
Γ
(

1+𝛽

2

)
× 𝛽 × 2

(
𝛽−1

2

)⎞⎟⎟⎟⎠
1

𝛽

(31)

The t-LCA uses the tumour growth mechanism and select
the optimal part to access the situation in liver and determine
the next process, expressed as follows:

y = X + P (32)

Z = Y + S × LF (D) (33)

Xi
t+1 =

{
y if fit (y) < f it

(
Xi

t

)
z if fit

(
z
)
< f it

(
Xi

t

) (34)

where f it, S and D are referring to fitness function, random
vector [0 to 1] and dimension of problem.

4.1.3 Spreading of tumour

In this final stage, it is intellectualized of tumour spreading into
the other part of organ, for such purpose to know the state,
two operators are introduced such as crossover and mutation.
In mutation process, mutation rate (𝜖) is used to update the loca-
tion of the populations where the two vectors z and y to update
old vector locations if random values are lower to 𝜖, which is
expressed as follows:

yMut =

{
X if r1 ≥ 𝜖

y else
(35)

zMut =

{
X if r2 ≥ 𝜖

z else
(36)

In which,

𝜖 =
t

T
; (37)

y =∣ X − X
j

i ∣ (38)

z = y − S (39)

where 𝑆 contains D essentials selected from 0 to 1 range. While,
in crossover, a novel vector is created by two entities, given as
follows:

XCross = 𝜏 × yMut +
(
1 − 𝜏′

)
× zMut , 𝜏 ≠ 𝜏′ (40)

where 𝜏 and 𝜏′ are the arbitrary vectors. The locations of the
novel tumours are updated conferring to the fitness functions,
given as follows:

X i
t+1 =

⎧⎪⎨⎪⎩
yMut if fit (yMut) < fit

(
Xi
)

zMut if fit
(
zMut

)
< fit

(
Xi
)

XCross if fit (wCross ) < fit
(
Xi
) (41)

 17521424, 2024, 14, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.13113 by Q

atar U
niversity, W

iley O
nline L

ibrary on [17/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KHAN ET AL. 2679

4.2 Modified lever cancer algorithm (ILCA)

In this sub-section, the novel modifications in t-LCA are pre-
sented which are based on four strategies such as Weibull
flight operator, mutation-based approach, quasi-opposite-based
learning (QOBL) and gorilla troops exploitation-based mech-
anisms. These novel modifications are applied to t-LCA to
increase its overall exploration and exploitation strength as well
as avoid of stagnations issue and reach to the global solution.

In the first step, the t-LCA is modified with Weibull flight
operator where the cumulative Weibull is composed based on
scale and shape factors, related expression is as follows:

f (x ) =

(
shape
scale

)
×
(

x

scale

)(v−1)

× e−(x∕scale)shape
for x ≥ 0

(42)
These scale and shape factors can be extracted from the

Weibull distribution with wide and short step movements,
where the wide step is expressed as follows:

Step = wblrnd (1, 1, [1,D]) × sign (rand (1,D) − 0.5) (43)

where, sign provides the values range [−1,1] and wblrnd refers to
the random number generated from Weibull distribution. While,
the short step is expressed as follows:

Step =

⎧⎪⎨⎪⎩
wblrnd (0.5, 1, [1,D]) × 0.5 × sign (rand (1,D) − 0.5)

×norm (xbst − xi ) , i f xbst ≠ xi

wblrnd (0.5, 1, [1,D]) × 0.1 × sign (rand (1,D) − 0.5) , else

(44)
The new generated populations’ position that is formulated

as:

xnew,i = xnew,i + Step (45)

In the second step, the mutation strategy is employed for gen-
tote a new mutant vector for each population for improving
the exploration process of the ILCA algorithm. Two frequently
mutation strategies are used, which can be applied as follows
[51, 52]:

i f rand > 0.5

xnew,i = xr1 + F (xr2 − xr3) (46)

else

xnew,i = xi + F (xbest − xi ) + F (xr1 − xr2) (47)

end

where, the r1, r2 and r3 are random integers created from set of
{1, 2,…, NP}.

In the third step, the gorilla troops exploitation tactic is
imposed to boost the exploitation strength of the t-LCA

algorithm. The location is updated based on the following
formulation.

Gxi (t + 1) = L × M ×
(
xi (t ) − xprey (t )

)
+ X (t ) (48)

M =

⎛⎜⎜⎝
||||||

1
N

N∑
i=1

Gxi (t )
||||||
g⎞⎟⎟⎠

1

8

(49)

g = 2L (50)

If the condition is condition is not satisfied, then update the
position settlement based as follows.

G xi = xprey (t ) −
(
xprey (t ) × Q − xi × Q

)
× A (51)

Q = 2 × r5 − 1 (52)

A = 𝛽 × E (53)

E =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(54)

where, E and 𝛽 are the random and predetermined values in
normal distribution, while r5 is the random value range 0 to 1.

In the fourth step, the quasi-opposite-based learning
(QOBL) approach, the quasi signifies the centre of the search
area (SA), while OBL is referred to the choice of a point in a
reflected mirror point [53, 54], the expression is as follows:

For i = 1 ∶ No. rabbits

For j = 1 ∶ D

xo
i, j = xmin

j + xmax
j − Xi, j

ci, j =
(

xmin
j + xmax

j

)
∕2

I f (xi, j < ci, j )

x
qo

i, j = ci, j +
(

xo
i, j − ci, j

)
× rand

el se

x
qo

i, j = ci, j +
(

ci, j − xo
i, j

)
× rand

end
end

end

(55)

The flow chart of stochastic OPF framework solved by
using ILCA via modified RERs-based modified IEEE 57-bus
is illustrated in Figure 3.

5 RESULTS AND DISCUSSION

In present article, single-objective OPF cases have been con-
sidered without and with installation of multiple solar PVs
and wind turbines using modified RERs-based IEEE 57-
bus standard. The execution of simulations for the entire
cases are performed on operating system PC core i9-13900H
CPU @2.60 GHz 32GB RAM on MATLAB software version
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2680 KHAN ET AL.

FIGURE 3 Flow chart of stochastic OPF framework solved by using improved liver cancer algorithm (ILCA) via modified RERs-based modified IEEE 57-bus.

R2023a. These objectives are investigated to access the imple-
mentation of the novel established method in accumulation
to the judgment for other methods. To accept the perfor-
mance and robustness of the proposed ILCA, the modified
RERs-based IEEE 57-bus standard are carefully studied in the
work. The simulations parameters such as number of popula-
tions, runs, iterations as well as other optimization settings for
well-known optimizers including ILCA are tabulated in Table 3.

It should be highlighted here that the parameters of the pro-
posed ILCA have been adjusted by 25 times running of this
algorithm. The importance of this act is having compromise
between best solution and run time. To validate the perfor-
mance of ILCA, the unimodal, the multi-modals and the fixed
dimensional 23 benchmark functions are added to the study.
Moreover, the Wilcoxon and the Friedman non-parametric tests
are applied to the algorithm to better observed the significance
difference between ILCA and other aforementioned techniques.
The detail about the statistical study analysis and OPF optimiza-
tion engineering study with RERs are provided in the following
sections.

5.1 Standard benchmark functions

In this section, the information related to the 23 unimodal, the
multi-modal and the fixed dimensional multi-modal functions
[59, 60] used to carry out the statistical and non-parametric anal-
ysis to verify the effectiveness of ILCA over to other traditional
optimization techniques. The detail of these functions is pro-
vided in the Appendix part, where these functions are divided
into three Tables Appendix Tables A1, A2 and A3, accord-
ing to their category such as unimodal, multi-modal and fixed
dimensional functions.

Statistical analysis: The simulations are carried out by using
the optimization parameters of the different algorithms pro-
vided in Table 3. To conduct a fair comparison, the parameters
such as iterations, population and number of runs are adjusted
the same. The statistical results of these functions are pro-
vided in Table 4, with best, average, worst, standard and time
(s). By careful analysis of Table 4, it is readily apparent that
an improved version of LCA, named “ILCA” provides an
exceptional presentation of almost in entire spectrum of the
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KHAN ET AL. 2681

TABLE 3 The selected parameters of the studied optimizers.

Algortihms

For optimal power flow

problem IEEE 57

For statistcal

analysis

SCSO [55] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

LAPO [56] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

WOA [20] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

ZOA [57] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

EEFO [58] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

LCA [50] tMAX = 100, Search Agent =
20,Runs = 25

tMAX =

200, Search Agent =
20,Runs = 25

Proposed ILCA tMAX = 100, Search Agent =
20,Runs = 25,
aa = 4, zz = 0.1, p =

0.03, beta = 3, w = 0.8

tMAX =

200, Search Agent =
20,Runs = 25,
aa = 4, zz = 0.1, p =

0.03, beta = 3, w = 0.8

benchmark functions. ILCA consistently secures a high rank
almost in all given functions that refer to the remarkable per-
formance attained by the ILCA over to the given traditional
techniques like SCSO, LAPO, ZOA, WOA and traditional LCA.

Wilcoxon rank-sum test: It is the non-parametric test that is
used to distinguish the significance difference among the algo-
rithms. The P-values refer to the complex distribution values
of the Wilcoxon analysis given in Table 5, among the pro-
posed ILCA and other optimization algorithms. By jugging
the outcomes given in Table 5, the proposed ILCA outper-
formed almost in entire functions, that is evident to prove
the effectiveness of the ILCA better than other traditional
techniques.

Convergence analysis: Figure 4, provides the rate of conver-
gence curves behaviour of ILCA and other competitors that is
obtained against each benchmark function to know the optimal
response to obtain the global solution. By observing the con-
vergence response, the proposed ILCA outperformed almost
entire functions with a fast convergence rate to achieve the
optimal solution. The results disclosed the robustness, effec-
tiveness and efficacy of the ILCA over to other state-of-the-art
techniques.

Friedman test: It is considered as the non-parametric test
used to analyse the mean act of the algorithm on individual
dataset, and then compare the mean sum of the other algo-
rithm datasets to identify the significance difference among
these algorithms in terms of getting an optimal mean response.
The Friedman test illustration is shown in Figure 5, where
the optimal values of the significance are attained by the pro-

posed ILCA, while the worst mean values are reported by
the traditional LCA. It is mentioned here that the proposed
modifications applied to the proposed ILCA improved the
overall performance of the traditional LCA and other optimiza-
tion techniques. By observing Figure 5, the traditional LCA is
provided the worst mean response in the test.

5.1.1 Solution to the OPF with RERs to obtain
the minimum power losses and improve stability

In this section, to resolve the OPF solution using RERs to
lessen the expected power loss and improve voltage stability
using RER-based modified IEEE 57-bus. The reactive and the
active power demands of the IEEE 57-bus are 336.4 MVAr
and 1250.8 MW, while their bus data as well as line data can be
found in [61]. The IEEE57-bus system contains 80 branches, 57
buses, 7 generators, 17 tap ratio and 3 shunt capacitors, respec-
tively. The two solar PV and two wind farms are connected
at bus 45, 36 and 16, 26, respectively. In the study, normal,
lognormal and Weibull PDFs are used to tackle the system
uncertainty like the load demand, the solar irradiance and the
wind speed. Moreover, the MCS and SBR techniques are also
implemented to create the 10 optimal scenarios for these uncer-
tainties, which are tabulated in Table 2. The discussion related
to OPF’s corresponding objectives is provided in detail in the
below sub-sections.

5.1.2 Lessen the total predicted power loss
(TPPL) without and with renewable resources

The first objective is to minimize the TPPL without and
with the installation of multiple solar PV and wind tur-
bines in the system. The convergence behaviour and the
boxplot response are illustrated in Figure 6a,b to attain the
objective function with SCSO, LAPO, WOA, ZOA, t-LCA
and ILCA without considering RERs. The lowest opti-
mal value is attained by the application of ILCA around
5.6622 MW, while t-LCA gives the worst response. The sec-
ond and third columns of Table 6, shown here that the
values of power losses and predicted power loss is attained
against the time-varying load for each scenario.

Similarly, Figure 6a,b shows the convergence and boxplot
responses for objective function with SCSO, LAPO, WOA,
ZOA, t-LCA and ILCA considering with optimal presence of
Solar PV and wind powers in the system. By jugging Tables 6
and 7, it is observed that the optimal response is attained by
ILCA to lessen the TPPL objective reported around 3.8142
MW, while the worst values of TPPL are reported by the t-LCA
algorithm. The overall saving in TPPL objective is reported
around 32.6375% by inclusion of RERs. The optimal response
of the two PVs and two connected windfarms are illustrated in
Figure 6g–j, while the system response related to power gener-
ation, tap positions, generator voltages, shunt power capacitors,
reactive generation limits as well as voltage magnitude responses
are illustrated in Figure 6c–f,k,l, respectively. By seeing the
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2682 KHAN ET AL.

TABLE 4 Statistical results using 23 benchmark functions.

Function Algorithm Avg Best Worst Std Time

F1 SCSO 3.75 × 10−39 1.49 × 10−48 9.11 × 10−38 1.82 × 10−38 5.362761

LAPO 1.38 × 10−6 7.11 × 10−9 7.59 × 10−6 1.8 × 10−6 0.712758

WOA 7.54 × 10−22 8.48 × 10−29 6.58 × 10−21 1.77 × 10−211 0.333143

ZOA 2.8 × 10−95 2 × 10−99 4.37 × 10−94 9.33 × 10−95 0.264218

LCA 1.12 × 10−63 2.7 × 10−194 2.79 × 10−62 5.59 × 10−63 4.214285

ILCA 1.81 × 10−64 7.3 × 10−99 4.53 × 10−63 9.07 × 10−64 4.331494

F2 SCSO 1.17 × 10−22 8.69 × 10−26 1.75 × 10−21 3.55 × 10−22 5.237495

LAPO 0.000111 2.3 × 10−5 0.000305 6.63 × 10−5 0.861541

WOA 2.54 × 10−18 1 × 10−22 2.68 × 10−17 5.77 × 10−18 0.373301

ZOA 9.37 × 10−51 2.05 × 10−54 1.76 × 10−49 3.49 × 10−50 0.314574

LCA 3.03 × 10−24 1.41 × 10−89 7.58 × 10−23 1.52 × 10−23 4.617885

ILCA 2.84 × 10−22 2.26 × 10−96 7.1 × 10−21 1.42 × 10−21 4.444975

F3 SCSO 5.42 × 10−34 6.86 × 10−44 1.32 × 10−32 2.63 × 10−33 5.89459

LAPO 0.036287 0.001814 0.176749 0.04125 2.309601

WOA 97,388.34 33,505.72 153,325.6 27,046.02 1.075584

ZOA 9.88 × 10−55 2.12 × 10−67 1.79 × 10−53 3.73 × 10−54 1.800924

LCA 1.01 × 10−64 1.8 × 10−166 2.22 × 10−63 4.46 × 10−64 11.06211

ILCA 9.03 × 10−62 2.1 × 10−87 2.26 × 10−60 4.52 × 10−61 10.65624

F4 SCSO 2.84 × 10−19 2.68 × 10−24 2.21 × 10−18 5.89 × 10−19 5.295813

LAPO 0.000625 0.000185 0.001512 0.000359 0.911114

WOA 57.7204 2.775497 92.1395 28.74049 0.343618

ZOA 7.25 × 10−44 7.3 × 10−49 6.19 × 10−43 1.65 × 10−43 0.316654

LCA 5.64 × 10−28 1.5 × 10−109 1.41 × 10−26 2.82 × 10−27 4.529686

ILCA 1.73 × 10−28 4 × 10−110 4.17 × 10−27 8.33 × 10−28 4.329944

F5 SCSO 28.28763 26.52781 28.88022 0.751302 5.486749

LAPO 27.46459 26.22006 28.75541 0.637181 1.093561

WOA 28.73687 28.50423 28.85614 0.114297 0.489207

ZOA 28.78693 28.53526 28.90902 0.114722 0.480531

LCA 3.27005 0.001115 26.98392 8.731117 5.02946

ILCA 0.052553 2.32 × 10−5 0.414365 0.10343 4.925109

F6 SCSO 2.796459 0.69041 3.677968 0.602058 5.210308

LAPO 0.588683 0.250568 1.034807 0.208479 0.900433

WOA 2.081498 0.849656 3.201628 0.601135 0.317473

ZOA 4.203855 2.788633 4.933175 0.549793 0.283967

LCA 0.000909 5.5 × 10−5 0.004686 0.00117 4.339922

ILCA 0.000598 6.66 × 10−6 0.003545 0.000772 4.465885

F7 SCSO 0.000801 2.75 × 10−5 0.002549 0.000731 5.684615

LAPO 0.002201 0.000294 0.006286 0.001579 1.739794

WOA 0.008376 0.000282 0.03416 0.007527 0.85584

ZOA 0.000336 1.58 × 10−5 0.000962 0.000255 1.205678

LCA 0.000163 2.54 × 10−6 0.000493 0.000132 8.209929

ILCA 5.38 × 10−5 8.43 × 10−6 0.000166 4.26 × 10−5 11.95616

(Continues)
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KHAN ET AL. 2683

TABLE 4 (Continued)

Function Algorithm Avg Best Worst Std Time

F8 SCSO −6350.7 −7832.52 −4208.73 889.8639 5.411373

LAPO −4538.93 −5532.15 −3977.03 382.5685 1.126829

WOA −9443.19 −12,547.8 −5640.35 1959.311 0.405531

ZOA −5914.65 −7641.65 −4328.37 888.9944 0.636076

LCA −12,569.3 −12,569.5 −12,568.4 0.253219 5.318722

ILCA −12,569.4 −12,569.5 −12,568.8 0.167117 7.526737

F9 SCSO 0.000801 2.75 × 10−5 0.002549 0.000731 5.684615

LAPO 0.002201 0.000294 0.006286 0.001579 1.739794

WOA 0.008376 0.000282 0.03416 0.007527 0.85584

ZOA 0.000336 1.58 × 10−5 0.000962 0.000255 1.205678

LCA 0.000163 2.54 × 10−6 0.000493 0.000132 8.209929

ILCA 5.38 × 10−5 8.43 × 10−6 0.000166 4.26 × 10−5 11.95616

F10 SCSO 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0.000000 5.248004

LAPO 0.000173 3.61 × 10−5 0.000848 0.000167 1.074041

WOA 2.58 × 10−12 1.11 × 10−14 5.03 × 10−11 9.99 × 10−12 0.407543

ZOA 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0.000000 0.323531

LCA 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0.000000 4.857664

ILCA 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16 0.000000 6.74378

F11 SCSO 0.000000 0.000000 0.000000 0.000000 5.442914

LAPO 0.006235 9.62 × 10−9 0.029424 0.010484 1.069217

WOA 0.029945 0.000000 0.748637 0.149727 0.439495

ZOA 0.000000 0.000000 0.000000 0.000000 0.50097

LCA 0.000000 0.000000 0.000000 0.000000 5.317117

ILCA 0.000000 0.000000 0.000000 0.000000 7.619709

F12 SCSO 0.198393 0.102341 0.384451 0.080399 6.396742

LAPO 0.022057 0.002716 0.123561 0.029787 3.193417

WOA 0.203099 0.019562 0.640062 0.150997 1.519036

ZOA 0.362243 0.17068 0.523579 0.09407 2.704363

LCA 4.89 × 10−6 1.27 × 10−9 2.23 × 10−5 5.73 × 10−6 15.24467

ILCA 4.81 × 10−7 1.75 × 10−8 5.78 × 10−6 1.19 × 10−6 22.11645

F13 SCSO 2.650575 1.863412 2.98205 0.248656 8.18298

LAPO 0.697029 0.059408 1.494674 0.388102 3.895734

WOA 1.410424 0.551904 2.69086 0.494915 6.335172

ZOA 2.389686 2.000544 2.820626 0.234187 15.06508

LCA 5.6 × 10−5 3.56 × 10−6 0.000328 7.77 × 10−5 39.20766

ILCA 0.000443 5.79 × 10−8 0.01099 0.002197 22.81679

F14 SCSO 7.641451 0.998004 12.67051 4.45993 3.135565

LAPO 1.089449 0.998004 2.21484 0.307033 7.981795

WOA 5.07525 0.998004 12.67051 4.073605 2.823629

ZOA 3.089698 0.998004 10.76318 2.370862 9.540415

LCA 1.037765 0.998004 1.992031 0.198805 21.92266

ILCA 0.998004 0.998004 0.998004 1.83 × 10−16 31.25136

(Continues)
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2684 KHAN ET AL.

TABLE 4 (Continued)

Function Algorithm Avg Best Worst Std Time

F15 SCSO 0.000593 0.000308 0.001765 0.000348 0.934057

LAPO 0.000801 0.000307 0.006543 0.001247 0.417972

WOA 0.001363 0.000334 0.009708 0.001867 0.163771

ZOA 0.001263 0.000308 0.020363 0.003986 0.24436

LCA 0.000307 0.000307 0.000307 3.91 × 10−12 3.690855

ILCA 0.000307 0.000307 0.000307 6.09 × 10−11 5.075643

F16 SCSO −1.03163 −1.03163 −1.03163 1.85 × 10−8 0.59655

LAPO −1.03163 −1.03163 −1.03163 4.41 × 10−7 0.433229

WOA −1.03163 −1.03163 −1.03163 3.1 × 10−7 0.191886

ZOA −1.03134 −1.03163 −1.02437 0.001452 0.262712

LCA −1.03163 −1.03163 −1.03163 4.75 × 10−16 3.473824

ILCA −1.03163 −1.03163 −1.03163 5.17 × 10−16 4.934049

F17 SCSO 0.397888 0.397887 0.397889 4.65 × 10−7 0.523313

LAPO 0.397887 0.397887 0.397887 0.000000 0.335502

WOA 0.39846 0.397888 0.40364 0.001154 0.146462

ZOA 0.397887 0.397887 0.397888 1.99 × 10−7 0.169445

LCA 0.397887 0.397887 0.397887 0.000000 3.219576

ILCA 0.397887 0.397887 0.397887 0.000000 4.352201

F18 SCSO 3.000151 3.00000 3.000534 0.000155 0.563165

LAPO 3.00000 3.00000 3.00000 1.81 × 10−15 0.258281

WOA 4.196549 3.000001 32.86415 5.972418 0.126201

ZOA 3.00007 3.00000 3.000521 0.000138 0.166133

LCA 3.00000 3.00000 3.00000 4.09 × 10−15 3.083114

ILCA 3.00000 3.00000 3.00000 2 × 10−15 4.376594

F19 SCSO −3.86191 −3.86278 −3.85531 0.001603 0.850475

LAPO −3.86278 −3.86278 −3.86278 2.1 × 10−15 0.49923

WOA −3.8359 −3.86278 −3.62214 0.052291 0.253793

ZOA −3.86009 −3.86278 −3.8502 0.003164 0.344881

LCA −3.86278 −3.86278 −3.86278 1.92 × 10−15 3.962314

ILCA −3.86278 −3.86278 −3.86278 2.06 × 10−15 5.551118

F20 SCSO −3.2126 −3.32199 −2.84041 0.124688 1.329923

LAPO −3.24536 −3.322 −3.0895 0.079643 0.615407

WOA −3.13538 −3.31356 −1.83865 0.293751 0.23464

ZOA −3.28426 −3.32199 −3.1343 0.065215 0.329644

LCA −3.30773 −3.322 −3.2031 0.039432 4.072954

ILCA −3.31724 −3.322 −3.2031 0.023779 5.902864

F21 SCSO −5.34829 −10.1525 −0.88098 2.484105 1.039753

LAPO −6.31957 −10.1532 −2.68286 2.818465 0.516818

WOA −6.88527 −10.0764 −2.53858 2.463857 0.260089

ZOA −8.82571 −10.1532 −2.67749 2.44738 0.369946

LCA −10.1532 −10.1532 −10.1532 1.31 × 10−12 4.28884

ILCA −10.1532 −10.1532 −10.1532 3.59 × 10−15 6.195228

(Continues)
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KHAN ET AL. 2685

TABLE 4 (Continued)

Function Algorithm Avg Best Worst Std Time

F22 SCSO −4.92737 −10.4024 −0.90989 2.480293 1.021636

LAPO −8.92267 −10.4029 −3.89118 2.351258 0.69179

WOA −5.48894 −10.3978 −2.7192 2.582384 0.278735

ZOA −8.91298 −10.4029 −5.0869 2.43478 0.443476

LCA −10.4029 −10.4029 −10.4029 3.36 × 10−14 4.680771

ILCA −10.4029 −10.4029 −10.4029 3.92 × 10−15 6.532743

F23 SCSO −6.14918 −10.5357 −0.94449 3.044711 1.127312

LAPO −9.09397 −10.5364 −3.81771 2.518509 0.863238

WOA −5.7548 −10.4635 −1.66702 2.980254 0.32262

ZOA −9.61868 −10.5364 −3.83541 2.156249 0.509249

LCA −10.5364 −10.5364 −10.5364 6.4 × 10−15 5.058781

ILCA −10.5364 −10.5364 −10.5364 2.24 × 10−15 6.99391

TABLE 5 Wilcoxon ranking sum test applied to 23 benchmarks among ILCA and other optimization techniques.

Function SCSO versus ILCA LAPO versus ILCA WOA versus ILCA ZOA versus ILCA LCA versus ILCA ILCA versus ILCA

F1 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 8.41940 × 10−2 1.42000 × 10−9 1.42000 × 10−9

F2 1.31000 × 10−8 1.42000 × 10−9 1.42000 × 10−9 7.85899 × 10−1 1.31000 × 10−8 2.57000 × 10−8

F3 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.46000 × 10−8 1.42000 × 10−9 1.42000 × 10−9

F4 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 3.97150 × 10−2 1.42000 × 10−9 1.42000 × 10−9

F5 1.80000 × 10−9 4.13000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.80000 × 10−9 1.42000 × 10−9

F6 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9

F7 3.02000 × 10−5 3.67000 × 10−9 2.57000 × 10−9 8.80900 × 10−3 3.02000 × 10−5 6.15000 × 10−7

F8 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9

F9 3.02000 × 10−5 3.67000 × 10−9 2.57000 × 10−9 8.80900 × 10−3 3.02000 × 10−5 6.15000 × 10−7

F10 n/a 9.73000 × 10−11 9.73000 × 10−11 n/a n/a n/a

F11 n/a 9.73000 × 10−11 5.13100 × 10−3 n/a n/a n/a

F12 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9

F13 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9

F14 1.17000 × 10−9 1.57000 × 10−8 2.14000 × 10−9 8.28000 × 10−9 1.17000 × 10−9 9.89000 × 10−10

F15 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9 1.42000 × 10−9

F16 1.87000 × 10−10 6.95000 × 10−8 1.87000 × 10−10 4.06000 × 10−9 1.87000 × 10−10 4.60000 × 10−10

F17 9.73000 × 10−11 n/a 9.73000 × 10−11 3.65000 × 10−10 9.73000 × 10−11 9.73000 × 10−11

F18 1.39000 × 10−9 2.13800 × 10−3 1.39000 × 10−9 1.77000 × 10−9 1.39000 × 10−9 1.35000 × 10−9

F19 7.10000 × 10−10 1.57680 × 10−2 7.10000 × 10−10 7.10000 × 10−10 7.10000 × 10−10 7.73000 × 10−10

F20 8.44000 × 10−8 4.87085 × 10−1 8.44000 × 10−8 7.43000 × 10−7 8.44000 × 10−8 2.18000 × 10−9

F21 9.13000 × 10−10 1.92000 × 10−5 9.13000 × 10−10 9.13000 × 10−10 9.13000 × 10−10 4.72000 × 10−10

F22 1.13000 × 10−9 4.30624 × 10−1 1.13000 × 10−9 1.13000 × 10−9 1.13000 × 10−9 3.89000 × 10−10

F23 1.20000 × 10−9 2.88516 × 10−1 1.20000 × 10−9 1.20000 × 10−9 1.20000 × 10−9 1.07000 × 10−9

overall response, it is mentioned here that there is no violation in
the system and all the bounds are within the permissible limits.

In detailed view of Table 7, ten uncertain scenarios have been
predicted to find the TPPL objective functions as discussed.
The second and the third column of Table 7 are about the power
loss and the predicted power losses against the uncertain sce-

narios. The lowest TPPL loss is achieved in scenario number
1, where the maximum power contribution of solar PVs and
wind energy are added to the system. While, the worst TPPL is
recorded at the scenario number 4, where the zero contribution
from the solar PV and minor contribution of power from the
windfarms.
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2686 KHAN ET AL.

FIGURE 4 Convergence behaviour of improved liver
cancer algorithm (ILCA) and other competitors’ techniques
via standard functions.

5.1.3 Enhance the total predicted voltage
stability (TPVSI) without and with renewable
resources

The second objective is to enhance the TPVSI without and with
installation of solar PV and wind powers into the system. The

convergence behaviour and boxplot response are illustrated in
Figure 7a,b to attain the objective function with SCSO, LAPO,
WOA, ZOA, t-LCA and ILCA without considering RERs. The
lowest optimal value of TPVSI is attained by the application of
ILCA around 0.1700 p.u., while t-LCA gives the worst response.
The fourth and fifth columns of Table 8, show here that the
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KHAN ET AL. 2687

FIGURE 5 The Friedman mean test response compared with improved liver cancer algorithm (ILCA) and other competitors’ techniques.

TABLE 6 The simulation results for objective of total predicted power
loss (TPPL) without RESs.

Scenario PL (MW) TPPL (MW) VSI (p.u) TPVSI (p.u)

1 8.83091 0.00883 0.17232 0.00017

2 5.11611 0.12790 0.17002 0.00425

3 8.70078 0.06091 0.21086 0.00148

4 4.75704 2.39279 0.16571 0.08335

5 5.27398 1.28685 0.18139 0.04426

6 10.92638 0.01093 0.17298 0.00017

7 7.07471 0.79944 0.17964 0.02030

8 5.00231 0.07003 0.17414 0.00244

9 9.88407 0.88957 0.18320 0.01649

10 7.48258 0.01497 0.18427 0.00037

TPPL (MW) 5.6622 MW TPVSI (p.u) 0.1733 p.u.

TABLE 7 The simulation results for objective of total predicted power
loss (TPPL) with RESs.

Number of

Scenario PL (MW) TPPL (MW) VSI (p.u) TPVSI (p.u)

1 4.67644 0.004676 0.065819 0.000065

2 3.227364 0.080684 0.108929 0.002723

3 4.226982 0.029589 0.109987 0.000770

4 3.652258 1.837086 0.15018 0.075541

5 3.832939 0.935237 0.154515 0.037702

6 7.361063 0.007361 0.122753 0.000123

7 4.292699 0.485075 0.070918 0.008014

8 3.880605 0.054328 0.079328 0.001111

9 4.107266 0.369654 0.142448 0.012820

10 5.250287 0.010501 0.076964 0.000154

TPPL (MW) 3.8142 MW TPVSI (p.u) 0.1390 p.u.

TABLE 8 The simulation results for objective of total predicted voltage
stability index (TPVSI) without RESs.

Scenario PL (MW) TPPL (MW) VSI (p.u) TPVSI (p.u)

1 13.491943 0.013492 0.171024 0.000171

2 9.923575 0.248089 0.169917 0.004248

3 8.499357 0.059496 0.184236 0.001290

4 10.376887 5.219574 0.167419 0.084212

5 13.490480 3.291677 0.171148 0.041760

6 5.692337 0.005692 0.182081 0.000182

7 12.223178 1.381219 0.179152 0.020244

8 13.004331 0.182061 0.172219 0.002411

9 7.430727 0.668765 0.167984 0.015119

10 12.208459 0.024417 0.167193 0.000334

TPPL (MW) 11.0945 MW TPVSI (p.u.) 0.1700 p.u.

values of voltage stability and predicted voltage stability is
attained against the time-varying load for each scenario.

Similarly, Figure 7a,b shows the convergence and boxplot
responses for objective function with SCSO, LAPO, WOA,
ZOA, t-LCA and ILCA considering with optimal presence of
Solar PV and wind powers into the system. By jugging Tables 8
and 9, it is observed that the optimal response is attained by
ILCA to lessen the TPVSI objective reported around 0.1164
p.u., while the worst values of TPVSI is reported by t-LCA
algorithm. The overall saving in TPVSI objective is reported
around 31.5294% by inclusion of RERs. The optimal response
of the two PVs and two connected windfarms are illustrated in
Figure 7g–j, while the system response related to power gener-
ation, tap positions, generator voltages, shunt power capacitors,
reactive generation limits as well as voltage magnitude responses
are illustrated in Figure 7c–f,k,l, respectively. By seeing overall
response, it is mentioned here that entire system constraints are
within their limits without getting any violations.
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2688 KHAN ET AL.

FIGURE 6 Lessen the total predicted power loss (TPPL) inclusion of wind and PV resources.

In detail view of Table 9, 10 uncertain scenarios have been
predicted to find the TPSVI objective functions as discussed.
The fourth and the fifth column of Table 9 is about the voltage
stability and the predicted power losses against the uncertain
scenarios. The lowest TPSVI is achieved at scenario number 1,

where the maximum contribution of solar PV and wind energy
are added into the system. While, the worst TPSVI is recorded
at the scenario number 4, where the zero contribution from
the solar energy as well as minor contribution recorded by the
windfarms in the system.
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KHAN ET AL. 2689

FIGURE 7 The response of system to enhance total predicted voltage stability index (TPSVI) with wind and PV resources.

6 CONCLUSION

This paper resolved a stochastic optimal power flow frame-
work considering modified RERs-based IEEE 57-bus stan-
dard using an improved liver cancer algorithm (ILCA). The

proposed ILCA algorithm was successfully applied to the
modified RERs-based IEEE 57-bus network to lessen the
entire predicted loss and enhance the voltage stability. In
the proposed ILCA, the four novel modifications were
applied based on the Weibull flight operator, mutation-based
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2690 KHAN ET AL.

TABLE 9 The simulation results for objective of total predicted voltage
stability index (TPVSI) with RESs.

Number of

scenario PL (MW) TPPL (MW) VSI (p.u) TPVSI (p.u)

1 17.635291 0.017635 0.098769 0.000099

2 27.032889 0.675822 0.093802 0.002345

3 7.642022 0.053494 0.087133 0.000610

4 13.249578 6.664538 0.124529 0.062638

5 7.151824 1.745045 0.123442 0.030120

6 8.385536 0.008386 0.131582 0.000132

7 9.075609 1.025544 0.078700 0.008893

8 22.034528 0.308483 0.069505 0.000973

9 6.260091 0.563408 0.116576 0.010492

10 30.342511 0.060685 0.071775 0.000144

TPPL (MW) 11.1230 MW TPVSI (p.u.) 0.1164 p.u.

approach, quasi-opposite-based-learning (QOBL) and gorilla
troops exploitation-based mechanisms to enhance the explo-
ration and exploitation strengths of the traditional t-LCA. The
statistical and non-parametric tests (Wilcoxon rank-sum and
Friedman mean rank tests) were conducted on standard 23
benchmark functions, and the results verified the effectiveness
of ILCA observed very competitive and has a rapid conver-
gence response to reach the optimal solution almost in entire
benchmark functions over to other traditional techniques like
SCSO, LAPO, ZOA, WOA and t-LCA. The probability dis-
tribution function of produced power by RERs-based system
was determined via Monte-Carlo simulation and reduction-
based approaches. Moreover, using the system response with
RERs-based modifications can save the entire predicted power
loss to 32.6375%, while saving the entire predicted voltage
stability index to 31.5294%, respectively. Future work can be
extended by the incorporation of electric vehicles and storage
systems in the network. Based on the obtained results, ILCA is
a more effective and stable optimization algorithm that can be
utilized to address a variety of optimization issues and is appli-
cable in the renewable sector. Where, it may be employed to
determine the best placement and ratings for renewable energy
resources, as well as the distribution, transmission, microgrid,
and nano-grid electrical systems.

NOMENCLATURE

bm , ln Inequality and equality constraints
k, o State and control variables
QC Shunt VAR compensator

T Transformer tap settings
PG2 Active power from generator
VG Generator bus voltage
L j Line stability index of jth line.

Ngs Number of created scenarios
Total_PPL Expected predicted power losses

Total_PVSI Total predicted voltage stability
PPLn Expected predicted power losses at nth sce-

nario
PVSln Expected voltage stability at nth scenario

NG Number of generators
NC Number of capacitor banks
Pld Loading used by normal PDF
Xci Certain solar irradiance
PRP Rated value for PV

u𝜔sr, u𝜔so, u𝜔si Rated, cut-out and cut-in wind speed
TL Transmission line

PLoss Power losses
𝜋r ,n nth scenario probability

Vj and Vi Voltage at bus j and i
𝛿i j Voltage angle
Gi j Conductance of transmission lines

Y1 and Y2 Bus admittance metrices
Gi j ,Bi j Conductance, susceptance of transmission line

PG1 Slack bus
PGi , PDi Power generation and power demand

QGi ,QDi Reactive power generation and demand
𝛼1, 𝛼2, 𝛼3, 𝛼4 Penalty factors coefficients

NT Number of transformers
NL Number of loads connected

𝜎ld, 𝜇ld Mean and standard values for loading
𝜎sl, 𝜇sl Mean and the standard deviation

Gssi Standard solar irradiance values
𝛽sp, asl Scale and shape parameters of Weibull PDF

Pwrp Rated power of a wind turbine
VSI Voltage stability index
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APPENDICES

TABLE A1 Benchmark unimodal functions.

Formulation of function Range limit Funcmin

f1 (k) =
∑n

j=1 k2
j

[−100, 100] 0

f2 (k) =
∑n

j=1 |k j | + n∏
j=1
|k j | [−10, 10] 0

f3 (k) =
∑n

j=1 (
∑ j

i−1 ki )
2

[−100, 100] 0

f4 (k) = max j |k j |, 1 ≤ j ≤ n [−100, 100] 0

f5 (k) =
∑n−1

j=1[100(k j+1 − k2
j
)
2
+ (k j − 1)2] [−30, 30] 0

f6 (k) =
∑n−1

j=1 ([k j + 0.5])2 [−100, 100] 0

f7 (k) =
∑n

j=1 jk4
j + random(0, 1) [−1.28, 1.28] 0

 17521424, 2024, 14, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.13113 by Q

atar U
niversity, W

iley O
nline L

ibrary on [17/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1049/rpg2.13113


KHAN ET AL. 2693

TABLE A2 Benchmark multi-modal functions.

Formulation of function Range limit Funcmin

f8 (k) =
∑n

j=1 −k j sin (
√|k j |) [−500, 500] −418.9829 × 5

f9 (k) =
∑n

j=1[k2
j
− 10 cos (2𝜋k j + 10)] [−5.12, 5.12] 0

f10 (k) = −20exp

(
−0.2

√
1

n

∑n

j=1 k2
j

)
− exp

(
1

n

∑n

j=1 cos (2𝜋k j ) + 20 + e
)

[−32, 32] 0

f11 (k) =
1

4000

∑n

j=1 k2
j
−

n∏
j=1

cos

(
k j√

j

)
+ 1 [−600, 600] 0

f12 (k) =
𝜋

n
{10 sin(𝜋z1 ) +

∑n−1
j=1 (z j − 1)2[1 + 10sin2(𝜋z j+1 )] + (zn − 1)2} +

∑n

j=1 u(k j , 10, 100, 4) [−50, 50] 0

z j = 1 +
k j+1

4

u(k j , v, s, h) =

⎧⎪⎨⎪⎩
x(k j − v)h

k j > v

0 − v < k j < v

x(−k j − v)h
k j < −v

f13 (k) =
0.1{sin2(3𝜋k1 ) +

∑n

j=1 (k j − 1)2[1 + sin2(3𝜋k j + 1)] + (kn − 1)2[1 + sin2(2𝜋k j )]} +
∑n

j=1 u(k j , 5, 100, 4)
[−50, 50]

f14 (k) = −
∑n

j=1 sin(k j ).

(
sin

(
j .k2

j

𝜋

)2h
)
, h = 10 (0, 𝜋) −4.687

f15 (k) =

[
e
−
∑n

j=1 (
k j

𝛽
)
2h

− 2e
−
∑n

j=1 k2
j

]
−

n∏
j=1

cos2 k j , h = 5 [−20, 20] −1

f16 (k) =
{[∑n

j=1 sin2 (k j )
]
− exp

(
−
∑n

j=1 k2
j

)}
.exp

[
−
∑n

j=1 sin2√|k j |] [−10, 10] −1

TABLE A3 Benchmark fixed-dimensional multi-modal functions.

Formulation of function Dim Range limit Funcmin

f14 (k) =
1

500
+
∑25

i=1
1

i+
∑2

j=1 (k j−a ji )6
2 [−65, 65] 1

f15 (k) =
∑11

j=1

[
b j −

k j (b2
j
+b j k2 )

b2
j
+b j k3+k4

]2

4 [−5, 5] 0.00030

f16 (k) = 4k2
1 − 2.1k4

1 +
1

3
k6

1 + k1k2 − 4k2
2 + 4k4

2 2 [−5, 5] −1.0316

f17 (k) =
(

k2 −
5.1

4𝜋2
k2

1 +
5

𝜋
k1 − 6

)2
+ 10

(
1 −

1

8𝜋

)
cos k1 + 10 2 [−5, 5] 0.398

f18 (k) =
[
1 + (k1 + k2 + 1)2 (19 − 14k1 + 3k2

1 − 14k2 + 6k1k2 + 3k2
2

]
∗
[
30 + (2k1 − 3k2 )2 (18 − 32k1 + 12k2

1 − 48k2 + 36k1k2 + 27k2
2

] 2 [−2, 2] 3

f19 (k) = −
∑4

j=1 c j exp (−
∑3

i=1 a ji (ki − p ji )
2 ) 3 [1, 3] 3.86-

f20 (k) = −
∑4

j=1 c j exp (−
∑6

i=1 a ji (ki − p ji )
2 ) 6 [0, 1] −3.32

f21 (k) = −
∑5

j=1 [(k − a j )(k − a j )
T + c j ]

−1
) 4 [0, 10] −10.1532

f22 (k) = −
∑7

j=1 [(k − a j )(k − a j )
T + c j ]

−1
) 4 [0, 10] −10.4028

f23 (k) = −
∑10

j=1 [(k − a j )(k − a j )
T + c j ]

−1
) 4 [0, 10] −10.5363
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