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Abstract: Due to the non-renewable nature and pollution associated with fossil fuels, there is
widespread research into alternative energy sources. As a novel energy device, a proton exchange
membrane fuel cell (PEMFC) is considered a promising candidate for transportation due to its
advantages, including zero carbon emissions, low noise, and high energy density. However, the
commercialization of fuel cells faces a significant challenge related to aging and performance degra-
dation during operation. In order to comprehensively address the issue of fuel cell aging and
performance decline, this paper provides a detailed review of aging mechanisms and influencing
factors from the perspectives of both the PEMFC system and the stack. On this basis, this paper
offers targeted solutions to degradation issues stemming from various aging factors and presents
research on aging prediction methods to proactively mitigate aging-related problems. Furthermore,
to enhance prediction accuracy, this paper categorizes and analyzes the degradation index and
accuracy evaluation criteria commonly employed in the existing fuel cell aging research. The results
indicate that specific factors leading to aging-related failures are often addressed via targeted solving
methods, corresponding to specific degradation indexes. The significance of this study lies in the
following aspects: (1) investigating the aging factors in fuel cells and elucidating the multiple aging
mechanisms occurring within fuel cells; (2) proposing preventive measures, solutions, and aging
prediction methods tailored to address fuel cell aging issues comprehensively, thereby mitigating
potential harm; and (3) summarizing the degradation index and accuracy evaluation standards for
aging prediction, offering new perspectives for resolving fuel cell aging problems.

Keywords: fuel cell; aging prediction; degradation index; failure factors

1. Introduction

In order to mitigate environmental pollution, the development of new energy sources
has become a global priority [1]. Hydrogen, as a pollution-free green energy source, is
regarded as a crucial component of new energy [2]. As a novel energy device and the carrier
of hydrogen energy, fuel cells have undergone extensive research due to their advantages,
including zero carbon emissions and high energy density [3].

There are various types of fuel cells, where proton exchange membrane fuel cells
(PEMFCs) have advantages such as low operating temperature, low noise, and ease of inte-
gration [4]. In addition, proton exchange membrane fuel cells (PEMFCs) are characterized
by their exceptional efficiency, low emissions, rapid start-up capabilities, and compact,
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lightweight nature [5]. These qualities render them highly suitable for a wide range of
potential applications, including automotive, portable devices, and backup power sources,
among others [6].

The proton exchange membrane fuel cell (PEMFC) is an electrochemical device em-
ployed for the conversion of chemical energy into electrical energy. The fuel used in
PEMFC is hydrogen gas (H2), while the oxidant is oxygen gas (O2). These two gases un-
dergo reactions within the fuel cell. At the anode, hydrogen gas (H2) undergoes a process
of decomposition into protons (H+) and electrons (e−). At the cathode, oxygen gas (O2)
combines with protons and electrons to produce water (H2O). The chemical reactions of
the anode and cathode are as follows:

H2→2H+ + 2e− O2 + 4H+ + 4e−→2H2O

Electrons flow through an external circuit, traveling from the anode to the cathode,
thereby generating an electric current. This electric current can be harnessed to perform
work or provide power. PEMFC efficiently and cleanly converts hydrogen and oxygen gas
into electrical energy, thus achieving zero carbon emissions.

Figure 1 shows the components of PEMFC. As shown in Figure 1, the PEMFC stack
consists of an end plate, a current collector plate, and multiple individual single cells
together. Each individual cell is composed of seven major components: the proton exchange
membrane, catalyst layers on the anode and cathode, gas diffusion layers, and bipolar
plates [7]. During operation, PEMFCs require the collaborative functioning of auxiliary
system components such as an air compressor, hydrogen recirculation pump, DC/DC
converter, etc., to ensure the stable chemical reactions of hydrogen and air within the fuel
cell stack.

−

→ − −→
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Figure 1. Components of PEMFC.

However, the lifetime of PEMFC is a significant limiting factor for their large-scale
commercialization. There are multiple reasons that contribute to the limited lifetime of
PEMFC [8]. Due to the complexity and multi-component properties of both the PEMFC
stack and system, the challenges related to poor durability and aging failures in fuel cells
have multifaceted origins. The factors that cause PEMFC aging can be categorized into
two groups: common failures of auxiliary components within the PEMFC system [9] and
degradation factors affecting the seven components of the PEMFC stack [10].

Once the fuel cell occurs aging phenomena, a series of internal faults in the stack are
caused. For example, the catalyst activity is decreased, as well as the ion transport rates. As
a result, the energy conversion efficiency and power output of the fuel cell are degraded.
In such circumstances, the lifespan of PEMFC is markedly decreased. Moreover, the aging
of the fuel cell system precipitates unpredictable failures, imparting a deleterious impact
on system reliability and engendering hazards to critical applications like transportation
and standby power provision. Therefore, it is significant to proactively circumvent and
mitigate fuel cell aging with the goal of sustaining optimal fuel cell output performance
and averting potential safety perils stemming from abrupt system failures.
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In order to solve the fuel cell aging issue, the optimization of control strategies of each
subsystem can effectively deal with the corresponding aging problem. This optimization
allows the PEMFC stack to operate under optimal conditions. As a result, key components
such as the proton exchange membrane, catalyst layers, and gas diffusion layers can avoid
the aging mechanism occurring. Thus, the lifespan of the PEMFC is prolonged. On the
other hand, it is also necessary to regularly check hardware faults such as air compressor
surges, air filter blocks, and water pump failures. In addition, the regular maintenance
and parameter updating of the software is also important work. Only in this case can
the calibration parameters of the system adapt to the degradation curve of the PEMFC to
meet the load demand and set the most reasonable output power. Section 2.3 gives a brief
literature review of these solutions.

Prognostic and health management (PHM) can predict aging failure and facilitate
informed decision making [11]. Figure 2 shows the whole process of PHM. As a crucial
component of PHM, prognostic enables the early prediction of fuel cell aging trends,
mitigating the risk of sudden failures. The prediction methods are primarily categorized
into model-based and data-driven approaches [12].
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Algorithm

Decision making

State adjustment

Observation
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ActionStep3
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management (PHM) 
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Figure 2. The whole process of prognostic and health management (PHM).

To quantitatively assess the extent of fuel cell degradation resulting from the afore-
mentioned factors, researchers have extensively explored degradation indexes (DIs) [13].
Serving as a metric for fuel cell health, an appropriate DI provides an accurate reflection of
the aging condition, enabling reliable aging prediction and mitigating sudden failure risks.
The DI of PEMFC can be categorized into three groups: measurement data-based DI, major
component-based DI, and hybrid characteristic-based DI.

Furthermore, in order to quantitatively analyze the accuracy of prediction methods, it
is important to establish appropriate accuracy evaluation criteria in addition to selecting
suitable DI [14].

This paper provides a comprehensive review and investigation of fuel cell aging,
addressing the following distinct sub-problems: aging factors and mechanisms, mitigation
strategies for various aging causes, and aging prediction research, along with aging index
and accuracy evaluation criteria for individual components. The main contributions of this
work are as follows:

(1) The aging factors and mechanisms of fuel cells are thoroughly presented, encom-
passing both system and stack levels. This comprehensive review exposes the underlying
causes of performance degradation in fuel cells. It enables the implementation of appropri-
ate measures by researchers to mitigate or prevent aging, ultimately enhancing the RUL,
thus reducing maintenance costs and maximizing performance potential.

(2) Targeted mitigation strategies and aging prediction methods based on different
aging factors and mechanisms are proposed. These strategies and methods represent the
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most advanced solutions and advanced prognostic techniques to effectively solve the aging
problem of fuel cells.

(3) An investigation into the correlation between the degradation index and various ag-
ing factors is conducted. This investigation forms the basis for the quantitative assessment
of fuel cell aging. The research defines the appropriate degradation index for the various
aging factors, providing guidance for the quantitative evaluation of aging predictions.

The rest of this paper is organized as follows. Section 2 provides a detailed description
of the aging factors in fuel cells. Section 3 comprehensively classifies the aging prediction
methods. In Section 4, the selection basis for the degradation index and accuracy evaluation
criteria are outlined for different prediction methods. Section 5 discusses the challenges
and future prospects of fuel cell aging prediction methods.

2. Aging Factors and Lifespan Prolongation Strategy for PEMFC

The variability of the aging failure factor arises due to the multi-component property
of both the PEMFC stack and system. The causes of fuel cell aging failure can be categorized
into two groups: the PEMFC system layer and the stack layer. In this section, the aging
factors of the fuel cell system and stack level are first introduced, followed by the solving
measures and lifespan prolongation strategy (LPS) for the PEMFC.

2.1. PEMFC System Level

Figure 3 shows the aging factors in the PEMFC system. It can be seen from Figure 3 that
the failure of auxiliary components encompasses malfunctions in various subsystems within
the fuel cell system: the air subsystem, hydrogen subsystem, hydrothermal management
subsystem, and electronic control subsystem.

Figure 3. Aging factors in PEMFC system.

2.1.1. Air Subsystem Failure

The primary role of the air subsystem is to ensure the provision of adequate and
purified air. Failure in critical components of the air subsystem can result in an excess of
impurities and inadequate air supply, ultimately leading to aging-related failures. Typical
failures and factors observed in the air subsystem are provided below.

Air filter clogging results in the contamination of the supplied gas, thereby causing the
pollution of the proton exchange membrane and accelerating the decay of the remaining
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useful life (RUL) of the fuel cell [15]. On the other hand, air compressor surge introduces
instability in the gas supply to the fuel cell, negatively impacting its output performance [16].
In addition, oxygen starvation is a frequently encountered malfunction, particularly in
poor air, which renders it vulnerable to oxygen starvation instances [17]. Oxygen starvation
gives rise to irregular current distribution [18]. Furthermore, this condition accelerates
catalyst loss and contributes to the aging failure of the fuel cell [19].

Numerous fault diagnosis strategies have been extensively investigated to address the
aforementioned common failures encountered in the air subsystem. To mitigate the harm
caused by air compressor surges, Han et al. [20] developed a high-speed calculation control
algorithm that ensures a sufficient air supply. Reference [21] devised a flow controller that
prevents oxygen starvation by accurately managing the oxygen excess ratio. Liu et al. [22]
developed a modified super-twisting sliding mode algorithm to estimate fault signals
within the air subsystem under variable load conditions, effectively mitigating the problem
of oxygen starvation within the air subsystem.

2.1.2. Hydrogen Subsystem Failure

The hydrogen subsystem determines the fuel supply of PEMFC. Within the hydrogen
subsystem, failures are frequently encountered, which cause insufficient hydrogen sup-
ply and hydrogen pollution. These conditions have significant ramifications, leading to
accelerated fuel cell aging.

Inadequate control over crucial components results in decreased power, primarily
attributed to the occurrence of hydrogen starvation phenomena. This insufficiency in hydro-
gen supply accelerates carbon corrosion [23]. Consequently, the degradation of the carbon
carrier in the catalytic layer ensues, accompanied by the dislodging and agglomeration of
platinum particles. These combined effects lead to a reduction in the ECSA and irreversible
degradation of the PEMFC stack lifetime [24]. Furthermore, apart from the detrimental
effects of hydrogen starvation, hydrogen leakage poses a significant safety hazard, making
it prone to causing severe accidents.

In addition, reference [25] introduced a two-step method and a mitigation approach
to alleviate hydrogen starvation. In the context of fuel cell vehicles, Maeda et al. [26]
proposed a methodology for diagnosing hydrogen leakage by utilizing sound analysis to
identify the distinctive acoustic signatures associated with hydrogen leakage. Additionally,
reference [27] developed a real-time gas monitoring method in the surroundings as a
preventive measure against hydrogen leakage.

2.1.3. Hydrothermal Management Subsystem Failure

To ensure optimal performance of PEMFC, it is important to maintain the temperature
of the PEMFC within a specified range [28]. Excessive operating temperatures can result in
membrane drying, while excessively low temperatures can lead to increased activation loss
and ohmic loss, resulting in decreased output performance. Furthermore, both excessively
high and low temperatures can adversely affect the chemical reactions occurring within the
proton exchange membranes [29].

To accurately regulate the operating temperature of fuel cells, reference [30] developed
a dynamic model for the PEMFC hydrothermal management system. This approach estab-
lishes the relationship between temperature and polarization characteristics to simulate
dynamic loads. In terms of fault diagnosis, reference [31] presented an online computa-
tional component based on a neural network. Zhao et al. [32] developed a thermoelectric
control strategy for fuel cells. They also developed an experimental system for model
validation to mitigate temperature fluctuations, thereby enhancing the operational stability
of the fuel cells.
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2.1.4. Electronic Control Subsystem Failure

The electronic control subsystem plays a vital role in maintaining a stable voltage
output for fuel cells. A periodic calibration of the fuel cell is essential to avoid algorithm
failures in the controller and ensure its optimal functioning.

Excessive voltage in the PEMFC stack is a prevalent failure occurrence. The overvolt-
age in the stack circuit accelerates carbon corrosion and catalyst degradation, which can
result in the detachment and loss of platinum particles. This leads to a significant catalyst
loss and significantly reduces the PEMFC stack lifetime [33].

Guilbert et al. [34] introduced a fault-tolerant control approach to mitigate membrane
drying resulting from DC/DC converter failures. This method effectively prevents DC/DC
converter failures. Mohammadi et al. [35] devised a fault diagnosis technique for DC/DC
converters. Their approach integrates neural network (NN) modeling and numerical
simulations, encompassing comprehensive considerations of water flooding and membrane
drying conditions.

2.2. PEMFC Stack Level

The lifetime of a fuel cell is influenced not only by the malfunction of auxiliary
components within the system but also by the degradation of critical components in the
PEMFC stack. The failure occurs in the PEMFC stack, and the classification is shown
in Figure 4.

Aging factors in 

PEMFC stack

vMembrane contamination

vMembrane flooding

vMembrane drying

vMembrane dissolution

vCatalyst coarsening

vCatalyst dissolution

vCarbon corrosion

vBPP corrosion

vBPP deformation 

Membrane degradation Catalyst layer degradation

Gas diffusion layer degradation Bipolar plates degradation

vLoss of hydrophobicity

vMaterial dissolution

vErosion by gas flow

, inants 

Figure 4. PEMFC stack failure classification.

2.2.1. Membrane Failure

The proton exchange membrane is subject to failure in three primary forms: membrane
contamination, membrane flooding, membrane drying, and membrane dissolution.

Membrane contamination is one of the most severe faults in fuel cells. The primary
causes of this fault include impurities present in reactants (hydrogen source and air source)
as well as the degradation of fuel cell stack components such as the gas diffusion layer
(GDL) and catalyst layer. Even small amounts of contaminants can lead to irreversible
damage to the fuel cell stack, resulting in phenomena like catalyst poisoning and proton
exchange membrane degradation, significantly impacting the lifespan [36]. As shown in
Table 1, a detailed classification of membrane contamination is provided.

For the hydrogen source, common contaminants arise from residual carbon oxides,
CH4, and sulfides remaining from the hydrogen reformation process [37]. In the case
of the air source, nitrogen gas, nitrogen oxides, and sulfides are the primary sources of
contamination. Furthermore, when PEMFC systems operate in harsh environments, some
toxic gases such as carbon monoxide and methane can also severely pollute the proton
exchange membrane [38,39]. Beyond reactant sources, critical components degradation,
like metal bipolar plates, sealing rings, and gas diffusion layers, can release metal ions
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such as Fe3+ and Cu2+, inhibiting H+ reactions. Simultaneously, these metal ions can
promote the formation of metal oxides, accelerating membrane degradation and catalyst
degradation [40].

Table 1. Detailed classification of membrane contamination.

Contamination
Classification

Source
Contamination

Component
Factor Impact

Reaction gas

Hydrogen
Carbon oxides, CH4,

Sulfides

Residual contaminants
from catalytic steam

reforming of hydrogen PEM and electrode
degradation

Air
Nitrogen gas, Nitrogen

oxides, Sulfides, Toxic gas

Operation environment
and air quality

determine

Key
components

Membrane Na+ Membrane degradation Diluting reactant
concentrations

accelerates aging
BPP Fe3+, Cu2+ Wear and corrosion

Sealing gasket Si Wear and corrosion

The occurrence of membrane flooding is observed when the PEMFC operates at high
current densities. A large load current forces a large amount of hydrogen to react chemically,
thus producing more water. In this case, if the purging and drainage characteristics of the
stack are poor, membrane flooding is easy to occur. Liquid accumulation blocks the gas
flow channel, and the difficulty of a chemical reaction is increased. [41].

Membrane drying is another degradation phenomenon observed in the PEMFC stack.
Membrane drying is easy to occur under high temperatures and small loads. Prolonged
operation in a dry state can result in the expansion of the drying area within the mem-
brane. Consequently, irreversible damage like membrane rupture occurs due to membrane
drying [42]. Membrane dissolution is mainly caused by chemical factors. The presence
of hydrogen peroxide during fuel cell operation and the subsequent breakdown of free
radicals are the principal contributors to membrane dissolution [43].

2.2.2. Catalyst Layer Failure

Catalyst coarsening refers to the enlargement of Pt particles, resulting in a decrease
in ECSA. This reduction in ECSA adversely affects the fuel cell output performance and
accelerates its aging failure [44]. Borup et al. [45] observed from cyclic measurement
experiments that the rate of catalyst coarsening exhibits a linear increase with temperature.

Catalyst dissolution, specifically the dissolution of platinum, has been identified as
a significant degradation mechanism [46,47]. Reference [48] discovered factors such as
potential cycling aggravate platinum dissolution. Reference [49] developed a model that
effectively describes Pt dissolution and mobility within the membrane electrode assembly,
aligning well with existing experimental data in the literature. Similarly, the literature
proposed a model describing the movement of Pt catalysts during dissolution, offering
valuable insights into the Pt dissolution process [50].

Carbon corrosion, as a crucial degradation mechanism, results in the depletion of the
carbon support material in the presence of a Pt catalyst, leading to the detachment and loss
of Pt particles [51]. Once carbon corrosion occurs, the gas transmission capacity will be
weakened [52]. Furthermore, it promotes the material hydrophilicity, thereby triggering
membrane flooding [53].

2.2.3. Gas Diffusion Layer Failure

Carbon corrosion can also manifest in the gas diffusion layer (GDL) alongside the
catalyst layer, as the GDL primarily comprises carbon fibers. These carbon fibers are prone
to structural deterioration due to corrosion [54]. In addition, insufficient shutdown purging
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leads to the formation of a hydrogen–air interface, thus accelerating the carbon corrosion
process [55]. Consequently, the initiation and cessation of fuel cell operation can expedite
the occurrence of carbon corrosion in the GDL.

GDL dissolution occurs when the fuel cell operates and the GDL comes into contact
with a complex mixture comprising water, hydrogen, and air [56]. As a result, the diverse
components present in the GDL interact, leading to the formation of hydroxides, oxides, and
other substances that contribute to the dissolution of carbon material within the GDL [57].

Gas flow erosion is a phenomenon that occurs when high-pressure hydrogen and air
are supplied to the fuel cell stack, resulting in the mechanical degradation of the GDL due
to the impact of elevated gas pressure. Wu et al. [58] find that the loss of hydrophobicity
significantly increases the gas transmission resistance at high current density, which is not
conducive to the full progress of chemical reactions. Moreover, their research demonstrates
that thermal or mechanical stress weakens the strength of the GDL and exacerbates material
loss caused by gas cycling.

2.2.4. Bipolar Plates Failure

Bipolar plate corrosion results in corrosive substances accumulating in the MEA,
triggering membrane aging failure. Moreover, the corrosion of BPP increases the ohmic
resistance of the PEMFC, resulting in an elevated level of ohmic polarization loss. Conse-
quently, the performance of the PEMFC stack is adversely affected by the corrosion of BPPs,
leading to a decrease in overall system performance.

BPP deformation can occur when high mechanical pressure seals are utilized, resulting
in the fracture and deformation of the BPP [59]. Furthermore, electrical characterizations
reveal that the process conditions, design of carbon fabric, and incorporation of nanofillers
exert a significant influence on the bulk conductivity of the BPP [60].

2.3. Lifespan Prolongation Strategy for PEMFC

2.3.1. Fault Handling Measures for System Level

In order to prevent PEMFC system failures and minimize the degradation of fuel
cell lifespan due to the reasons mentioned above, more and more lifespan prolongation
strategies have been proposed [61]. It is evident that regular hardware inspections and
maintenance are essential at the system level. On this basis of robust hardware foundation,
appropriate lifespan prolongation strategies and fault tolerance control (FTC) are imple-
mented to prevent severe damage to the fuel cell lifespan, such as membrane flooding,
membrane drying, electrode degradation, overvoltage, short circuits, and other detrimen-
tal phenomena.

To address the challenge of synchronously tracking and controlling the hydrogen
subsystem under complex operating conditions, Zhu et al. [62] designed a nonlinear
model predictive control method. This approach enhances the system’s dynamic response
speed while improving control system robustness as well as hydrogen utilization effi-
ciency. For the air subsystem, Yang et al. [63] introduced an approach employing a linear
parameter-varying observer and an air stoichiometry ratio estimator for fault diagnosis and
management in the air subsystem. However, for certain special fault signals in the supply
manifold, such as sinusoidal signals, it resulted in significant performance degradation,
with a maximum power deviation of up to 4 kW. Different from the observer–estimator
method, Wang et al. [64] devised an FTC method based on a dynamic triple-step approach.
This method effectively maintains air pressure within an appropriate range even in the
presence of air subsystem faults.

Li et al. [65] proposed an active FTC approach. This method integrates meta-learning
with base learners to independently control hydrogen, air, and thermal management using
base learners. In addition, for the hydrothermal management system, a meta-learner is
adopted to identify different fault states, thereby achieving fault tolerance control under
various operating conditions. Thus, the fuel cell lifespan is prolonged effectively. In or-
der to solve the sensor failure in PEMFC systems, Oh et al. [66] compared feedforward
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and feedback-based FTC methods, thus avoiding real-time correction of sensor data. The
experimental results indicate that passive FTC can effectively enhance response speed,
while active FTC can significantly improve control precision. Both methods contribute to
enhancing system efficiency and preventing sensor failure issues. Similarly, to address
sensor faults in hydrothermal management, Yan et al. [67] demonstrated an active FTC
strategy based on sliding mode control; the temperature control precision is ensured within
±0.5 ◦C. In this way, the membrane drying phenomenon is avoided to some extent. Thus,
the lifespan is prolonged. As a result, an FTC strategy based on performance recovery
strategy and rapid fault diagnosis has been devised. This approach further investigates
three issues: membrane flooding, membrane drying, and air starvation. The method has
demonstrated effective performance recovery under all three fault conditions [68]. Further-
more, FTC strategies have also been employed to optimize the design of the hydrothermal
management, ensuring the fuel cell operates within a reasonable temperature range and
consequently prolonging the operational lifespan of fuel cell [69,70].

Furthermore, in addressing the potential overvoltage or short-circuit problems stem-
ming from the instability in the output of the DC/DC converter, Ahmed et al. [71] developed
a linear robust control method. The experimental results demonstrate that this approach
ensures real-time performance and robustness of the DC/DC converter under stochastic
conditions. Wang et al. [72] presented a coordination control strategy, and the fluctuation
of bus voltage is alleviated. In this way, the stable operation state of PEMFC is ensured, as
well as the lifespan.

2.3.2. Fault-Handling Measures for Stack Level

In addition to system-level fault-handling measures, improvements in the chemical
composition and materials of key components in PEMFC stacks also contribute to mitigating
the degradation of these components, thereby extending the overall lifespan of PEMFCs.

For proton exchange membranes, membrane contamination stands out as one of the
most severe and common issues. To address membrane contamination problems, attention
should be given to the purity of the reactant gases, preventing the presence of impurities
such as sulfides and carbon monoxide. Furthermore, critical components within the fuel
cell stack should be selected based on the ability to inhibit membrane contamination.

To investigate the physical mechanisms of membrane contamination in PEMFC,
Zamel et al. [73] developed a transient mechanistic model based on membrane contamina-
tion. The model results indicate that the addition of oxygen to CO can mitigate the harmful
effects of CO poisoning. In addition to mechanistic research at the physical level, studies
in the fields of chemistry and materials science provide solutions to mitigate the damage
caused by membrane contamination. Postole et al. [74] compared Pt adsorption properties
for three different gases: CO, NH3, and H2. The experimental results demonstrate that,
under identical conditions, Pt exhibits significantly stronger adsorption affinity for CO and
the weakest affinity for hydrogen gas. This further presents the inhibitory effects of poison-
ing on the internal chemical reactions within PEMFC. Jackson et al. [75] proposed online
and offline cleaning methods based on ozone (O3). By introducing O3 during the oxygen
purging process, it effectively alleviates the damage caused by membrane contamination
from CO and sulfide poisoning.

3. Aging Prediction Method

In order to address the issue of sudden aging failure in fuel cells from the afore-
mentioned problems, this section provides a detailed description of the aging prediction
methods for fuel cells. As shown in Figure 5, fuel cell aging prediction methods are clas-
sified into model-based and data-driven methods, and various approaches are further
categorized and reviewed.
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’

Figure 5. Fuel cell aging prediction methods classification.

3.1. Model-Based Method

This method is categorized into physical models and system state observer methods
and predicts fuel cell aging by constructing mathematical representations of the physical
and chemical processes [12].

3.1.1. Physical Model Method

This method is a modeling approach based on the internal mechanism of PEMFC.
It involves establishing complex equations that capture the intricate relationships be-
tween various factors and predicting aging phenomena from a mechanistic standpoint.
Robin et al. [76] developed a theoretical method to display the degradation of platinum
surfaces, investigating operational dynamics using numerical simulations. Ao et al. [77]
focused on microscopic particle-level phenomena to predict fuel cell performance. Refer-
ence [78] presented the ECSA model to provide the lifespan decrease trend. Hu et al. [79]
considered ECSA and resistance degradation mechanisms to simulate actual operation
mode and evaluate algorithm performance.

3.1.2. State Space Model Method

State space approach involves constructing a system state equation based on an empir-
ical formula of the key parameter for PEMFC. Parameter identification techniques are then
employed to update parameters of real-time running process. Zhang et al. [80] described
the mathematical relationship between degradation rate and current. The model’s aging
coefficient is identified through direct fitting. Similarly, reference [81] employed fitting
approach to acquire the degradation information and achieve fuel cell aging prediction
using an empirical model. However, the direct fitting method exhibits low accuracy because
of the dynamic nature of model parameters, which cannot be fully captured through direct
fitting alone.

To enhance the fitting accuracy, adaptive updates are applied and optimized for the
above methods. Reference [82] adopted extended Kalman filter (EKF) to prognostic time-
varying parameters, with high prognostic accuracy. In addition, adaptive Kalman filtering
was proposed to acquire the degradation phenomenon in reference [83]. However, the
real-time performance cannot be ensured. To address this issue, unscented Kalman filter
(UKF) was adopted to speed up the calculation [84]. Nevertheless, the accuracy decreased
compared with former. Ao et al. [85] proposed a frequency domain Kalman filter (FDKF) to
balance accuracy and real-time with different operation modes. Zhou et al. [86] presented a
particle filter (PF) method unlike EKF. This approach incorporates typical aging coefficient
and updating coefficient during the prediction stage to forecast the fuel cell stack voltage.
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The results demonstrate the method’s ability to effectively track the fuel cell aging process.
Additionally, various advanced algorithms, such as UPF [87], APF [88], RPF [89], etc., have
been implemented for prognostic approaches, exhibiting high performance.

3.2. Data-Driven Method

Data-driven approach constructs the input–output relationship using a large amount
of data. This method can make predictions without knowing the internal mechanism.
This method can be categorized into (1) machine learning methods, (2) signal processing
methods, and (3) statistical methods [12].

3.2.1. Machine Learning Method

Machine learning excels at capturing key characteristics and is commonly employed
in prediction tasks involving missing or complex models. Wang et al. [90] combined the
Monte Carlo dropout method and deep neural network to predict the fuel cell health
state. Based on wavelet transform, Chen et al. [91] developed an extreme learning machine
with genetic algorithm optimization. This method performed much better than ELM. In
addition, recurrent neural network (RNN) is often used in time series prediction in recent
years because it considers real-time and past inputs [92].

Long short-term memory (LSTM), an improved method of recurrent neural networks
(RNNs), is widely used in fuel cell aging prediction due to its ability to address the issues
of gradient disappearance and explosion. Liu et al. [93] applied LSTM to predict remaining
useful life (RUL), achieving higher accuracy compared to the backpropagation neural
network (BPNN). To optimize the LSTM network structure, Ma et al. [94] proposed a grid
long short-term memory (G-LSTM) method with superior prediction accuracy over single
LSTM in experimental datasets. Similarly, references [95–100] also conducted in-depth
research on the LSTM algorithm.

3.2.2. Signal Processing Method

Signal processing approach involves data splitting and filtering to remove noise and
irrelevant information [101]. It serves as a valuable tool in achieving accurate predictions
of fuel cell aging.

Reference [91] utilized GA to optimize the global parameters, taking into account
the impact of various key conditions for PEMFC degradation. On this basis, wavelet
transform with nonlinear autoregressive exogenous neural network is proposed. This
method incorporates previous value into the present state, enhancing its predictive capa-
bilities [102]. Discrete wavelet transform (DWT) with various prognostic algorithms is
commonly adopted in fuel cell health management [103]. Hua et al. [104] introduced a
method that combines DWT with echo state networks. The prediction accuracy of fusion
after decomposition is greatly improved. Furthermore, the authors further enhanced the
prediction accuracy by utilizing GA to optimize the key parameters of ESN [105].

3.2.3. Statistical Method

Statistical methods are established to research the uncertainty of entire series using
random statistical models. Typically, there are the auto-regressive moving average model
(ARMA), Gaussian process (GP), grey model (GM), and other prediction methods.

Detti et al. [106] applied the ARMA to research the degradation phenomenon. Al-
though the general trend can be captured, it is difficult to capture the volatility character-
istics. Zhou et al. [107] combined the time delay neural network to address the volatility
component, thus enhancing the robustness of prognostic approach. Different ARMA,
Zhu et al. [108] adopted GP to describe the degradation trend. Deng et al. [109] presented a
double mathematical model to address this degradation prognostic issue. In addition, as a
statistical method, the grey theory model is often applied to predict fuel cell aging [110,111].

The data-driven approach discards the construction of complex physical models.
Once sufficient training set data are given. However, to ensure computational speed,
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a trade-off between prediction accuracy and computation time is inevitably required.
Additionally, the selection of parameters for the “black box” is a primary condition for
prognostic performance. Thus, optimization and parameter sensitivity analysis are crucial
for determining appropriate model parameters. The summary of characteristics of aging
prediction methods is shown in Table 1.

4. Degradation Index and Accuracy Evaluation Criteria

An accurate assessment of the overall health status of PEMFC and its individual
components in real time can be achieved using an appropriate degradation index (DI). In
addition, the accuracy of the prediction results can be quantitatively analyzed by adopting
appropriate accuracy evaluation criteria. Figure 6 shows the degradation index and accu-
racy evaluation criteria. In this section, DI and accuracy evaluation criteria are summarized,
and the prediction methods adapted to various indexes are briefly analyzed.
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Figure 6. The degradation index and accuracy evaluation criteria.

The utilization of an appropriate DI is crucial for the development of an effective PHM
for PEMFC. Presently, the DI for PEMFC can be categorized into three types: measurement
data-based DI, component-based DI, and hybrid characteristic-based DI.

4.1. Degradation Index

The measurement data-based DI encompasses two main components: sensor data
DI and auxiliary device measurement DI. The sensor data-based DI primarily relies on
output voltage and power measurements, while the auxiliary device measurement-based
DI predominantly utilizes electrochemical impedance spectroscopy (EIS).

4.1.1. Measurement Data-Based DI

The output voltage of PEMFC can be readily obtained and is known to undergo
considerable degradation during fuel cell operation. Output voltage and output power
are commonly employed as degradation indexes based on measured data for PEMFC.
In fact, the IEEE PHM Data Challenge [112] employs the percentage decrease in output
power as a failure index. Various aging prediction studies have also utilized output
voltage or output power as degradation indices. Notably, the most frequently referenced
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datasets for aging analysis are the voltage measurements collected under static and dynamic
current conditions.

In addition to output voltage and output power, the characteristics of polarization
curves and EIS can also serve as DI to assess the health status of fuel cells, provided
that adequate experimental devices are available. Bezmalinovic et al. [113] established a
correlation between polarization curves and the occurrence of aging failure phenomena in
fuel cells. This highlights the potential of polarization curves and EIS as alternative DIs for
evaluating the condition of fuel cells.

Wang et al. [114] utilized polarization curves and EIS to determine the aging condition
of fuel cells. They extracted polarization curves and EIS data under various operating
conditions and employed the marginal distance method to evaluate the aging state based on
the geometric properties of EIS. Similarly, Li et al. [115] proposed an approach to estimate
the aging state of PEMFCs by utilizing characteristic metrics related to aging extracted
from polarization curves and EIS. Additionally, Vianna et al. [116] assessed and predicted
the aging state of PEMFCs using real and imaginary impedance components at different
frequencies as DI. These studies demonstrate the potential of polarization curves and EIS
in quantifying and predicting the aging status of fuel cells.

The deterioration of pivotal components within the PEMFC plays a pivotal role in
hastening the onset of aging failure. Therefore, it becomes imperative to establish distinct
degradation indices for each component, as it serves to enable a direct and comprehensive
depiction and analysis of the aging state of individual components. By delineating these
degradation indices, researchers can effectively characterize and evaluate the deteriorative
condition of each component, thus enhancing the understanding and management of
PEMFC aging phenomena.

4.1.2. Stack Component-Based DI

The degradation assessment of proton exchange membranes often relies on a set
of commonly employed degradation indices, namely PEM thickness, fluoride release
rate (FRR), and ECSA. To address the estimation of PEM aging, Karpenko et al. [117]
proposed an empirical model that captures the progressive decay of PEM thickness and
electrical conductivity throughout the aging process. This model takes into account various
operational parameters, including temperature, relative humidity, hydrogen pressure,
and initial PEM thickness, which collectively influence the extent of PEM degradation.
Within the scope of this study, PEM thickness and oxygen permeability are adopted as DI,
effectively characterizing the degree of PEM aging. By incorporating these parameters,
researchers can gain valuable insights into the aging progression of PEMs and further
enhance their understanding of PEMFC performance and durability.

Inaba et al. [118] extensively examined the mechanisms underlying the aging of
PEM and performed durability tests to analyze the evolution of hydrogen permeability
and fluoride release rate (FRR) throughout the aging process. Likewise, Liu et al. [119]
conducted long-term aging tests on PEM fuel cells under cyclic current load conditions,
utilizing hydrogen permeation rate and FRR as DI for the PEM. On this basis, Xu et al. [120]
further investigated the influence of relative humidity on the performance and aging
characteristics of PEMFC stacks. These studies collectively contribute to a comprehensive
understanding of the aging mechanisms and performance degradation of PEM, facilitating
the development of effective strategies for prolonging the durability and reliability of
PEMFC systems.

Burlatsky et al. [121] considered the mechanical properties of membranes and the
magnitude of relative humidity cycling as additional indicators to predict the lifetime of
PEM. Their study emphasized the importance of incorporating mechanical factors and
environmental cycling in assessing PEM durability. Furthermore, Macauley et al. [122]
developed an empirical model to estimate the lifetime of PEMs, specifically in the context
of fuel cell vehicles, taking into account various factors, such as operating conditions,
temperature, and humidity. These research efforts contribute to a more comprehensive
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understanding of PEM lifetime prediction and aid in the development of strategies to
enhance the longevity of PEM-based fuel cell systems.

4.1.3. Hybrid Characteristic-Based DI

To investigate the aging characteristics of fuel cells, researchers have integrated aging
data with aging parameters using empirical modeling to assess the aging state of PEMFC
through a hybrid degradation index. Mao et al. [123] developed parameters derived from
the voltage decay semi-mechanical model parameter (SMMP) as a degradation index to cap-
ture the aging trend of PEMFC. These parameters include exchange current density, internal
current density, mass transfer loss, and membrane resistance parameters. Zhou et al. [86]
utilized the ohmic resistance coefficient, gas diffusion coefficient, and exchange current
density coefficient from the voltage decay semi-mechanical model to characterize the aging
state of the PEM, electrode, and GDL in PEMFC, respectively. Chen et al. [87] developed a
hybrid degradation index that incorporates internal resistance, output voltage, and power
to characterize the aging of PEMFC under static load conditions. Kim et al. [124] pro-
posed an equivalent circuit model parameter (ECMP) to fit EIS measurements of PEMFC
at various aging stages. The ECM utilizes four resistance parameters to characterize the
aging phenomenon in PEMFC. By integrating aging data with specific degradation indices,
these studies enable a comprehensive understanding of the aging behavior of PEMFC
and contribute to the development of accurate aging prediction models. The summary of
characteristics of aging prediction methods is shown in Table 2.

Table 2. Summary of characteristics of aging prediction methods.

Approach Category Subclass References Degradation Index Characteristic

Model-based methods
Physical model [76–79]

PEM thickness, ECSA, FRR,
and other component

properties.

Theoretical description of
the actual physical

degradation phenomena;
modeling process is

complex.

State space model
method

[80–89]
Output voltage, output

power, SMMP, and ECMP.
Simple and easy
implementation.

Data-driven methods

Machine learning
method

[90–100]
Mainly output voltage,
output power, and EIS.

Sensitive to the data
quality and quantity.

Signal processing
method

[91,101–105]
Mainly output voltage,
output power, and EIS.

Suitable for non-stationary
time series.

Statistical method [106–111]
Mainly output voltage,
output power, and EIS.

Good generalization
capability; Stationary

series.

It can be seen from Table 2 that the prediction method based on a physical model, PEM
thickness, ECSA, and FRR is usually used as degradation index. The output voltage and
empirical model parameters are usually used as the degradation index. For data-driven
methods, output voltage, output power, and electrochemical impedance spectrum are
mainly adopted as degradation index.

4.2. Accuracy Evaluation Criteria

To assess the prediction performance, four commonly used standards are employed,
namely root mean square error (RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), and coefficient of determination (R2) [125].

RMSE measures the average difference between predicted and actual values, provid-
ing an overall assessment of prediction accuracy. MAE calculates the average absolute
difference between predicted and actual values, indicating the magnitude of prediction
errors. MAPE represents the average percentage difference between predicted and actual
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values, allowing for the evaluation of relative prediction errors. R2 quantifies the propor-
tion of the variance in the observed data that can be explained by the prediction model,
indicating the goodness of fit. The calculation process of these accuracy evaluation criteria
is as follows:

RMSE =

√

1
N ∑

N

k=1(yk − ŷk)
2 (1)

MAE =
1
N ∑

N

k=1|yk − ŷk| (2)

MAPE =
1
N ∑

N

k=1
|y(k)− ŷ(k)|

|y(k)|
(3)

R2 = 1 −
∑

N
k=1(yk − ŷk)

2

∑
N
k=1(yk − yk)

2 (4)

RUL = Tend − Tnow (5)

where yk is the voltage value, and ŷk is the prognostic value. N is the amount of data. Tend

is the operating time at the end of the life, and Tnow is the time that the fuel cell has been
in operation.

By utilizing these evaluation criteria, researchers can comprehensively assess the
prediction performance of different models and determine their effectiveness in capturing
the desired outcomes. It should be noted that for short-term aging prediction, such as
predictions within 10 h, the prediction errors are typically set at the minute level, requiring
higher accuracy. This necessitates the use of accuracy evaluation criteria with higher
resolution. Therefore, evaluation criteria, such as RMSE, MAPE, MAE, and R2, which
offer high-resolution precision assessment, are commonly applied in short-term prognostic
scenarios. Conversely, for long-term aging conditions, the prediction errors are typically set
at the hour level. Therefore, RUL is commonly adopted as the accuracy evaluation criterion
for long-term aging prediction.

5. Challenges and Future Prospects

Although great efforts have been made in developing aging prognostic techniques,
there are several major challenges and corresponding future work in this field:

The standardization of PHM mechanisms: Due to the complexity and variability of fuel
cell systems, establishing accurate predictive models and health management strategies
remains challenging. Furthermore, a deeper understanding of aging mechanisms and
failure modes is needed to enhance the accuracy of prediction and diagnosis. Additionally,
the lack of standardized evaluation methods and metrics also limits the development of fuel
cell predictive and health management technologies. Therefore, further efforts are required
to address these issues and improve the reliability and performance of fuel cell systems.

Whole-lifecycle establishment: The whole-lifecycle establishment entails the com-
prehensive monitoring and assessment of fuel cell systems during the stages of design,
manufacturing, operation, and maintenance. The real-time monitoring and evaluation of
system performance, combined with advanced fault diagnosis and prediction techniques,
facilitate the early detection of issues and the implementation of maintenance measures.
Regular inspection and maintenance are also crucial for maintaining the health of fuel
cell systems. A whole-lifecycle approach will provide a more accurate system condition
assessment, enhance system reliability and performance, and support the development of
effective maintenance strategies.

Research on the health management strategy: There is little research on health man-
agement strategy. On the basis of prediction, an advanced health management strategy is
also very important. By incorporating advanced sensing technologies and data analysis
methods, the real-time monitoring of fuel cell systems can be achieved, enabling timely
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fault detection and maintenance decision making. In addition, the integration of cloud
computing and internet of things technologies allows for the centralized monitoring and
management of large-scale fuel cell systems, thereby enhancing the remaining useful life of
the fuel cells.

6. Conclusions

In order to address the aging failure issues caused by multiple fault factors in fuel
cells, this paper comprehensively reviews and investigates the aging problem of fuel cells,
including the aging factors and mechanisms, various measures to counteract aging causes,
aging prediction research, degradation index of various components, and accuracy evalu-
ation criteria for aging prediction. On this basis, the relationship between various aging
prediction methods, degradation index, and accuracy evaluation criteria is established.
Based on an extensive literature review, it is evident that aging failure issues caused by
specific factors are often addressed with targeted approaches corresponding to specific
degradation indexes. This review results indicate that physical model prediction methods
typically employ degradation indexes such as PEM thickness, ECSA, and FRR. State-space
model prediction methods typically utilize degradation indexes such as output voltage,
SMMP, and ECMP. Data-driven methods generally adopt degradation indexes such as
output voltage, power, and electrochemical impedance spectra. To further analyze the
accuracy of aging prediction methods, short-term aging prediction usually adopts accuracy
evaluation criteria such as RMSE and MAPE, while long-term aging prediction typically
uses Remaining Useful Life (RUL) as an accuracy evaluation criterion. Finally, the chal-
lenges and future directions in aging prediction are proposed to guide the prolongation of
fuel cell lifespans.

In future work, it will be interested in continuing to study the multi-objective lifespan
prolongation strategy and aging prediction method based on multi-aging index fusion, it is
of great significance for improving the service life and commercialization of fuel cells.
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