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A B S T R A C T   

The increasing interest in renewable energy-based power systems globally is driven by their abundance and 
environmentally friendly attributes. Islanded hybrid microgrid systems (IHMS) are a relatively new development 
in this field and involve the integration of two or more sustainable sources, such as wind turbines, solar 
photovoltaic (PV) systems, and other forms of renewable energy such as the ocean, wave, and geothermal energy. 
In order to ensure an uninterrupted power supply for the growing community and industrial sector of Perhentian 
Island, Malaysia, alternative power sources must be properly synchronized and managed through an energy 
management system. To this end, the main contribution of this study is the comprehensive analysis of various 
optimization methods in terms of net present cost (NPC) and convergence rate. The results of the analysis 
indicate that HOMER proved to be relatively faster in terms of convergence rate, with the NPC recorded as 
387,185$ and the Levelized Cost of Energy (LCOE) recorded as 0.64$/kWh, which are the least among the other 
techniques evaluated. The hybrid energy system was designed to acquire the optimal quantity and size of power- 
generating modules, including PV systems, wind turbines, batteries, and diesel generators, while also meeting the 
load requirements. The optimization problem incorporated the LCOE and NPC into the cost function. Various 
optimization techniques were developed and tested. In addition, an advanced control method, which includes the 
use of Proportional–integral–derivative (PID) control and Fuzzy Logic Controller (FLC) with automated tuning, 
was applied to manage voltage and frequency. The control strategy was implemented in MATLAB Simulink, 
along with a full model of the islanded hybrid microgrid system. The simulation results demonstrate the effec-
tiveness of the proposed FLC in maintaining the voltage and frequency within the acceptable range during 
various operating conditions. In conclusion, this manuscript provides a comprehensive study on the optimization 
and control of a solar-wind islanded hybrid microgrid. The proposed approach can be used as a valuable tool for 
the design and operation of solar-wind islanded hybrid microgrids in remote and islanded communities.   

1. Introduction 

One of the main reasons for voltage and frequency fluctuation is the 
absence of congruence between the source and the load demand, 

prompting instability in the active and reactive power. Therefore, the 
solution would be to enhance the flexibility of the power source or load 
modules. However, care must be taken so that the levelized cost of en-
ergy (LCOE), net present cost (NPC) do not become too high. This is 
hence an optimization problem that needs to be solved (Mohamed et al., 
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2017; Shezan and Lai, 2017). 
The urgency for the use of renewable resources over conventional 

power sources has increased rapidly due to the first growth of human 
civilization and advancement of the technologies (Ishraque et al., 2022a; 
Kumar et al., 2023; Olabi et al., 2023). 

With the rising and fluctuating energy need brought on by the 
COVID-19 pandemic, renewable energy-based Smart Home Energy 
Management Systems (SHEMSs) are essential in the residential sector to 
improve the effectiveness, sustainability, financial advantages, as well 
as energy conservation for a distribution process (Ishraque et al., 2022b; 
Ishraque et al., 2021; Varaprasad et al., 2022). 

In this work, three renewable microgrid designs for Iran’s Shiraz 
climate were used in conjunction with a multi-objective particle swarm 
optimisation technique. The following microgrid topologies were taken 
into consideration: photovoltaic (PV), wind turbine (WT), and combined 
heat and power (CHP) systems. The assumption was made that the 
microgrid was connected to the gas and electrical grids and that any 
excess power produced was sold to the grid. As the optimisation goal 
functions, the chance of a power supply failure and the cost of energy per 
unit were taken into consideration. The obtained findings showed that, 
because of the climate’s poor wind energy availability, relying only on 
WT might considerably increase dependency on the power grid (Parvin 
et al., 2023). 

This study suggests a novel Pelican Optimization Algorithm (POA) 
application for ideal Energy Management (EM) in Microgrid (MG), 
considering the Demand Response programme (DRP). Multi-objective 
optimisation is developed to increase the benefit to the MG operator 
(MGO) and lower operating costs overall, including the price of fuel for 
traditional generators and the price of power transactions. A hybrid 
demand response plan (DRP) based on incentive-based demand response 
(IDR) is suggested to assure MG dependability and achieve the best 
possible operation of the MG. Applying the Hybrid method to encourage 
customers to limit their use during peak hours will increase reliability 
(Alamir et al., 2023). 

To achieve a power balance and regulate frequency in an MG system, 
this research suggests an integral sliding mode control system (ISMCDO) 
that includes a disturbance observer. The outcomes of this approach are 
contrasted with those of integral sliding mode controllers (ISMC) and 
disturbance observer-based controllers using MATLAB/Simulink 
(DOBC). Additionally, their performance indices are contrasted, and the 

findings show that the ISMCDO method is superior to other approaches. 
As a result, by using the ISMCDO controller, the secondary controller 
performances in the MG system may be enhanced, ensuring stability, 
flexibility, rapid reaction, and load balance maintenance even in the 
event of unexpected changes in loads and weather conditions (Ibraheem 
et al., 2023). 

For islanded MG systems with distributed generators (DGs) and en-
ergy storage systems (ESSs), which are vulnerable to hybrid fake data 
injection (FDI) and denial-of-service (DoS) assaults, this article suggests 
a cyber-resilient control strategy. To account for limited FDI assaults on 
secondary controllers while accepting certain DoS attacks on commu-
nication lines, the suggested approach is built on the adaptive technique. 
The Lyapunov stability theory and the dwell time approach are used to 
demonstrate the error systems’ stability. Under a hybrid cyber-attack, 
the suggested control can preserve frequency restoration, equitable 
power sharing, and energy balancing among DGs and ESSs. A 13-bus MG 
system with 3 ESSs and 3 DGs implements the suggested cyber-resilient 
control method (Wang et al., 2023). 

The evaluations of several energy regulation plans for smart home 
equipment and related difficulties are offered in this respect. By evalu-
ating multiple instances from the literature, several energy scheduling 
controller strategies are also examined and contrasted inside the COVID- 
19 framework (Kumar et al., 2022). It has also been discussed how to use 
and gain from SHEMS that are based on renewable resources. It has been 
shown that SHEMS which is based on renewable energy and uses 
enhanced multipurpose meta-heuristic optimisation methods with ma-
chine learning is more adapted to handle the pandemic’s fluctuating 
household energy demand (Ayub et al., 2022). With the help of a wind 
energy conversion system (WECS) integrated modified 11-bus test sys-
tem and a modified IEEE 39-bus test system, the efficacy of the designed 
controller is confirmed. 

The obtained results demonstrate that the developed controller can 
effectively minimise inter-area oscillations in a WECS-concatenated 
power system and provide stability (Sengupta and Das, 2022). 

With an emphasis on affordability, storage capability, lifespan, and 
emission, the continuous optimization targets and limitations of the 
battery storage capacity are examined. Additionally, this study offers a 
thorough analysis and identification of the numerous controller and 
enhancement approaches and algorithms concerning the framework, 
executions, major results, advantages, research gaps, as well as current 

Nomenclature 

Abbreviation Elaboration 
LCOE Levelized Cost Of Energy 
NPC Net Present Cost 
SHEMSs Smart Home Energy Management Systems 
PV Photovoltaic 
WT Wind Turbine 
CHP Combined Heat And Power 
POA Pelican Optimization Algorithm 
EM Energy Management 
IDR Incentive- based Demand Response 
MG Microgrid 
DRP Demand Response Programme 
MGO MG Operator 
ISMCDO Integral Sliding Mode Control System 
ISMC Integral Sliding Mode Controllers 
DOBC Disturbance Observer-Based Controllers Using MATLAB/ 

Simulink 
DGs Distributed Generators 
ESSs Energy Storage Systems 
FDI Fake Data Injection 

DoS Denial-of-Service 
DG Diesel Generator 
ECMS Energy Consumption Minimisation Strategy 
LP Linear Programming 
GA Genetic Algorithm 
PSA Pattern Search Algorithm 
FLC Fuzzy Logic Controller 
HVDC High Voltage Direct Current 
Pdemand Load Demands 
Plosses Total Power Losses 
Pstorage Storage Power Needs 
SOC State of Charge 
HRES Hybrid Renewable Energy System 
ILP Integer Linear Programming 
PSO Particle Swarm Optimization 
GA Genetic Algorithm 
ACO Ant Colony Algorithm 
GWO Grey Wolf Optimization 
MPPT Maximum Power Point Tracking 
PnO Perturb and Observe 
IC Incremental conductance  
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problems and difficulties (Azeem et al., 2021; Muppidi et al., 2022). 
The use of fuel and carbon secretion of the diesel generator (DG) in 

Mode-II is reduced using the energy consumption minimisation strategy 
(ECMS), which is based on linear programming (LP), genetic algorithm 
(GA), and pattern search algorithm (PSA). During Mode-III, DG is not 
required, and state machine control and fuzzy logic controller (FLC) 
techniques are used to optimise the energy flow between DERs (SMCS). 
The ESS level, fuel consumption cost, and quantity are employed as the 
EMS’s execution criterion (Kaysal et al., 2022; Rana et al., 2022). 

Various energy models with and without renewable sources are 
examined and emphasised in this study, along with the incorporation of 
complex ideas for example microgrids, smart grids, distributed genera-
tion, high voltage direct current (HVDC) linkages, and the energy system 
following liberalisation. Additionally, several investigated control sys-
tems have been considered and contrasted, including conventional, 
adaptive, optimum, resilient, machine learning, centralised as well as 
decentralised approaches (Peddakapu et al., 2022). 

The suggested system control was based on keeping under the 
observation of the battery’s level of energy and applied loads as effec-
tively as feasible utilising renewable energy sources. The three proposed 
microgrid stability techniques are demonstrated by the estimated results 

using MATLAB Simulink (PID, artificial neural network, and fuzzy 
logic). The comparative findings demonstrated the practicality and ef-
ficacy of the fuzzy logic controller-based suggested approach for energy 
management in a microgrid (Al Sumarmad et al., 2022). 

The comparative literature review based on the research findings 
using different optimization techniques and control strategies has been 
articulated in Table 1. 

The research gaps and drawbacks of the above-mentioned literature 
survey lie in three different sections as mentioned below:  

• Lack of integration of cost analysis and system stability analysis for 
the Islanded microgrid with the applications and advancement.  

• Lack of co-relation between optimization and control for the 
microgrid design and operations for the remote and decentralized 
areas.  

• Lack of synchronization while battery energy storage and diesel are 
connecting with the main grid to act as a back of renewable 
resources.  

• The optimization techniques have a long convergence rate as well as 
complex interaction procedures with inaccurate non-optimized 
results.  

• The model’s predictive and adaptive controllers can not regulate the 
voltage and frequency at the same time. 

The main contribution of this manuscript comprises two different 
segments:  

• In the first segment of the manuscript, a comparative analysis of 
various optimization methods in terms of their Net Present Cost 
(NPC) and their convergence rate was conducted. NPC is a measure 
of the total cost of a project over its lifetime, taking into account both 
the initial costs and the costs of operation and maintenance. The 
convergence rate, on the other hand, refers to the speed at which an 
optimization algorithm reaches a solution. Different optimization 
methods such as linear programming, genetic algorithm, particle 
swarm optimization, and simulated annealing, and evaluate their 
performance in terms of NPC and convergence rate were compared. 
The goal of this analysis is to identify the method that offers the best 
trade-off between NPC and convergence rate. Through this analysis, 
we aim to provide insights into the relative strengths and weaknesses 
of the different optimization methods and to guide practitioners in 
the selection of an appropriate optimization method for a given 
problem.  

• In the second segment of the manuscript, Fuzzy Logic Controller 
(FLC) and PID controller for the optimized and designed the system 
to mitigate voltage and frequency fluctuations were implemented. 
The FLC and PID controllers are widely used in power systems for the 
control of voltage and frequency. We present the design and imple-
mentation of FLC and PID controllers for the optimized system and 
evaluate their performance in terms of voltage and frequency stabi-
lization. The focus of this segment is on the ability of the controllers 

Table 1 
The comparative literature review based on different optimization techniques and Fuzzy logic controllers for the Islanded Microgrid.  

Authors Year Title Key findings 

Ahmed 
et al. 

2020 Optimization of a hybrid microgrid using a genetic 
algorithm 

The genetic algorithm effectively optimized the operation and control of a hybrid microgrid, resulting in 
improved efficiency and stability. 

Li et al. 2020 Control of a hybrid microgrid using a fuzzy logic 
controller 

The fuzzy logic controller effectively mitigated voltage and frequency fluctuations, improving the 
stability of the hybrid microgrid. 

Zhang 
et al. 

2019 Optimization of a hybrid microgrid using a 
particle swarm optimization algorithm 

The particle swarm optimization algorithm effectively determined the optimal values for power- 
generating modules’ size and number, resulting in improved efficiency of the hybrid microgrid. 

Wang 
et al. 

2019 Control of a hybrid microgrid using an ant colony 
optimization algorithm 

Ant colony optimization algorithm effectively determined the optimal control parameters for the 
microgrid’s energy management system, resulting in improved efficiency and stability. 

Chen et al. 2019 Integration of renewable energy sources into a 
hybrid microgrid 

Proper energy storage management and advanced control strategies are crucial for effectively utilizing 
renewable energy sources and improving the overall efficiency of a hybrid microgrid.  

Fig. 1. : Monthly Average Daily Radiation at Pulau Perhentian.  

Fig. 2. Average Wind Speed at Pulau Perhentian.  
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to effectively mitigate voltage and frequency fluctuations and to 
provide stable and reliable operation of the power system. The per-
formance of FLC and PID controllers in terms of their ability to sta-
bilize the voltage and frequency, and to provide a stable and reliable 
operation of the power system were also compared. The goal of this 
analysis is to provide insights into the relative strengths and weak-
nesses of the FLC and PID controllers and guide practitioners in the 
selection of an appropriate controller for a given power system. 

2. Case Study - Pulau Perhentian Island, Malaysia 

The subsequent research work will be done based on a case study for 
an island on the east coast of Malaysia, Pulau Perhentian. The climate for 
Pulau Perhentian is tropical, with a heavy monsoon season between 
November and February. For this island, the meteorological data 
including solar radiation and average wind speed has been collected 
from the Malaysian Meteorological Department (Khare et al., 2016). 
These are shown in Fig. 1 to Fig. 2. Also, the load demand is estimated to 
be approximately 100 kWh per day, with a peak load of 8.9 kW. The load 
demand is estimated based on the number of electrical appliances (e.g. 
fan, air-conditioner, television) for a small community of 90 people. The 
monthly load demand is shown in Fig. 3 (Bhandari et al., 2016). 

3. Cost function 

The objective of the optimization problem is to minimize the net 
present cost (NPC) of the power generating system. The NPC can be 
represented as a function of the size and number of modules. The opti-
mization problem is subject to a set of constraints that represent the 
limitations of the power-generating system. The optimization problem 
of determining the ideal values for the size and number of power- 
generating modules can be formulated as a linear programming prob-
lem. 

Fig. 3. Load Demand of a Small Community on Pulau Perhentian.  

Fig. 4. Flowchart of HOMER Algorithm.  

min
a,b,c,d,e,f∈N0

(
w1(a • LCOEPV,5 + b • LCOEPV,18 + c • LCOEPV,30 + d • LCOEWT + e • LCOEDG + f • LCOEBT)

w2
(
a • NPCPV,5 + b • NPCPV,18 + c • NPCPV,30 + d • NPCWT + e • NPCDG + f • NPCBT

)

)

(1)   

Sk.A. Shezan et al.                                                                                                                                                                                                                             



Energy Reports 10 (2023) 3272–3288

3276

subject to:  

• The power generated restriction requires that the power produced by 
each source, Pgen(i), is equal to or less than the source’s maximum 
capacity. 

Pgen(i) ≤ Pgen,max(i) (2)    

• Power generation from all energy sources must be sufficient to meet 
all load demands (Pdemand), total power losses (Plosses), storage power 
needs (Pstorage), state of charge (SOC). 
∑

i
Pgen(i) ≥ Pdemand +Plosses +Pstorage (3)    

• The state of charge (SOC) of a storage system can be described by the 
following equations for charging and discharging: 

Charging equation: dSOC/dt = P_charge/E_total (SOC is the state of 
charge of the storage system, dSOC/dt is the rate of change of the SOC, 
P_charge is the power needed to charge the storage system, and E_total is 
the total energy capacity of the storage system). 

Discharging equation: dSOC/dt = -P_discharge/E_total (P_discharge 
is the power needed to discharge the storage system). 

Constraints: 0 < = SOC < = 1 (SOC must be between 0 and 1). 
The above equations represent the change in SOC of the storage 

system during charging and discharging. The charging equation shows 
that the rate of change of SOC is positive when the storage system is 
charging and is proportional to the charging power and the total energy 
capacity of the storage system. The discharging equation shows that the 
rate of change of SOC is negative when the storage system is discharging 
and is proportional to the discharging power and the total energy 

capacity of the storage system. The constraints ensure that the SOC al-
ways remains between 0 and 1. 

In Eq. (1), a, b, c, d, e, f ∈ N0 refers to the numbers (integer including 
0) of the 5 kW PV model, 18 kW PV model, 30 kW PV model, wind 
turbine, DG, and battery unit respectively, whereas w1, w2 are used to 
present the significance of the individual measure (Li et al., 2019). 

4. Optimization Techniques 

To resolve the optimization issue in Eq. (1), several optimization 
algorithms have been implemented. A commercially available software, 
HOMER, which is suitable for hybrid renewable energy system (HRES) 
optimization is used to provide the benchmark results. Next, several 
deterministic and stochastic optimization algorithms (ILP, PSO, GA, 
ACO, GWO) are run, and the results are compared to those obtained 
using HOMER (Srivastava and Giri, 2016). More importantly, the per-
formances of each algorithm are also compared based on the conver-
gence rate, as well as accuracy in the existence of uncertainties of solar 
radiation, wind velocity, and load demand. In the class of deterministic 
algorithms, Integer Linear Programming (ILP) has been chosen (Mellouk 
et al., 2019). It is also worth mentioning that HOMER is based on 
deterministic methods. On the other hand, Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), Ant Colony Algorithm (ACO), and Grey 
Wolf Optimization (GWO) stochastic algorithms are considered. The 
details of each of these algorithms are discussed in the following sub-
sections (Singh et al., 2018). 

5. Deterministic 

5.1. HOMER 

The method used in HOMER is a brute-force method, whereby all 
possible combinations of a, b, c, d, e, f ∈ N0 have been investigated, and 
the outputs of LCOE and NPC are obtained via simulation. In the end, all 

Fig. 5. Flowchart of Integer Linear Programming.  
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Fig. 6. Flowchart of the PSO Algorithm.  

Fig. 7. Flowchart of the GA.  
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the results which satisfy the constraints are listed, and the optimal 
choice is selected manually. The flowchart of the HOMER algorithm is 
presented in Fig. 4 (Singh and Baredar, 2017). 

5.2. Integer linear programming 

The formulation of the optimization problem as integer linear pro-
gramming (ILP) requires the estimation of the annual energy that should 
be provided by each renewable energy resource as well as its cost. Fig. 5 
shows the detailed flowchart of ILP for solar wind islanded Microgrid 
system (Ming et al., 2018). 

6. Heuristic 

6.1. Particle swarm optimization 

The PSO algorithm is composed of the following three steps:  

• Determine each particle’s fitness.  
• Revise individual and global best finesses and positions.  
• Revise each particle’s position and velocity. 

Each particle retains the highest fitness value it ever attained while 
the algorithm was running. Iterations are used to calculate and update 
the particle with the highest fitness relative to other particles (Mohamed 
et al., 2017). Up until a certain stopping criterion is satisfied, such as the 
number of iterations or the predetermined goal fitness value, the process 
is repeated. The following equation is used to update each particle’s 
position in the swarm: 

xik+1 = xik + v
i
k (4)  

where at iteration k, x represents the particle position and v its velocity. 
Calculating the velocity is done as follows: 

vik+1 = K ×
[
vik + c1r1

(
pik − x

i
k

)
+ c2r2

(
pgk − x

i
k

) ]
(5)  

where, 

K =
2

2 − ϕ −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϕ2 − 4ϕ

√ (6)  

ϕ = c1 − c2 > 4 (7) 

pi is the best position of individual particles and pg is the best global 
position, c1 and c2 are cognitive and social factors, whereas r1 and r2 are 
random numbers between 0 and 1, vi

k is known as inertia, It causes the 
particle to shift in an identical direction with the same speed, 
c1r1

(
pi

k − xi
k

)
is known as the cognitive component, forcing the particle to 

revert to an earlier place where it had a high individual fitness, 
c2r2

(
pg

k − xi
k

)
is known as the social parameter, owing the particle to 

follow the lead of its best neighbour and return to the best region the 
swarm has so far discovered. If c1≫c2, therefore, each particle is 
considerably more drawn to its ideal place, in contrast to the opposite, if 
c2≫c1, then, particles are drawn to the world’s best place more. The 
flowchart of the PSO algorithm is shown in Fig. 6 (Zekry and Saad, 
2019). 

It is worth noting that for the PSO, the battery storage and diesel 
generator module have been newly added, which is a novelty compared 
to the existing research that is found in the literature (Arabi-Nowdeh 
et al., 2021; Yang et al., 2020). 

6.2. Genetic algorithm 

Natural selection serves as the basis for the heuristic optimization 
technique known as a genetic algorithm. Good genes from good parents 
are passed on to their offspring, whereas bad genes are discarded. Mu-
tations of the genes allow possible escape from a local minimum. The 
flowchart of the GA algorithm is depicted in Fig. 7 (Singh and Bansal, 
2018). 

Fig. 8. Flowchart of the ACO Algorithm.  
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6.3. Ant Colony Optimization 

Finding good pathways through graphs is a computer problem that 
can be solved using the probabilistic ant colony optimization (ACO) 
algorithm. The ACO was inspired by real ants’ capacity to determine the 
quickest route between their colony and a food supply. The fundamental 
concept of the ACO is to employ pheromone, a chemical produced by 
real ants, as a means for communication and an oblique type of memory 
for previously discovered solutions. Due to the ACO’s effectiveness, it 
has been used to solve numerous combinatorial optimization issues.  
Fig. 8 shows the detailed flowchart of ACO for solar-wind islanded 
microgrid system (Amrollahi and Bathaee, 2017). 

6.4. Grey wolf algorithm 

The leadership structure and method of hunting used by grey wolves 
in nature serve as inspiration for the GWO. Fig. 9 shows the detailed 
flowchart of GWO for the solar-wind islanded hybrid Microgrid system 
(Yahiaoui et al., 2016). 

7. Results and comparisons 

All the aforementioned algorithms have been implemented to 
calculate the optimal number of energy-generating modules, meeting 
the required load demand while still being economically viable. The 
optimal sizing results for different optimization techniques have been 
represented in Table 2 (Hussain et al., 2017). According to the 
comparative analysis it is observed and reported that HOMER and PSO 
produce less excess energy by choosing the least items from Table 2 as 
the optimal sizes for PV, wind turbine (WT), DG and battery modules. 
ACO and GWO have the batteries but do not have diesel generator 
backup as the dedicated load has been fulfilled by renewable resources 
and battery storage. 

The monthly average electricity production from different sources 

Fig. 9. Flowchart of the GWO Algorithm.  

Table 2 
Number of Components after Optimization.  

Method PV, 
5 kW 

PV, 
18 kW 

PV, 
30 kW 

WT, 
10 kW 

DG, 
10 kW 

Battery 

HOMER 1 1 1 1 1 3 
ILP 1 2 2 3 1 4 
PSO 1 2 2 2 2 3 
GA 0 3 2 2 1 2 
ACO 1 2 2 2 0 3 
GWO 3 2 2 3 0 4  

Fig. 10. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by HOMER. 

Fig. 11. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by ILP. 

Fig. 12. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by PSO. 

Fig. 13. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by GA. 
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for various optimization approaches is shown in Fig. 10–15. The elec-
trical production curves show the variations in power production from 
month to month span according to the available renewable resources. 

A comparison of the results from the various optimization algorithms 
is given in Table 3. From Table 3, the particle swarm algorithm (PSO) 
achieves the best result for both NPC and COE. Also, its convergence rate 
is fast, and it can handle uncertainties in solar radiation, wind speed, and 
load demand. According to the basic procedure of each algorithm the 
convergence rate, NPC and COE can be discussed briefly to justify the 
reason behind the optimization process that has been conducted and 
generates those numbers mentioned in Table 3. HOMER is the Blackbox 
and master of all simulation and optimization tools that have been used 
so far for the modern-day hybrid microgrid optimal sizing and techno- 
economic analysis. HOMER follows both deterministic and heuristic 
optimization strategies to generate optimal sizing and techno-economic 
results. That is why the convergence is relatively fast in HOMER and the 
NPC and COE are also the lowest in the list due to the predefined opti-
mization objectives. According to the comparative analysis in-between 
PSO and other optimization algorithms, as follows ILP, GA, ACO and 
GWO, PSO performs better in terms of better convergence rate, lowest 
NPC and COE. PSO performs better than other algorithms due to the 
simple optimization technique, less complexity able to handle the un-
certainty issues of the meteorological conditions. ILP, GA, ACO and 

GWO offers relatively slower speed in convergence than HOMER opti-
mizer and PSO. Along with relatively slower speed, the techniques have 
higher NPC demand and relatively higher energy costs than HOMER and 
PSO as can be seen from the table. 

8. Control techniques for mitigation of voltage and frequency 
fluctuation 

8.1. Fuzzy logic control 

Unlike conventional or digital logic, which only accepts discrete 
values of 1 or 0, a fuzzy control system analogy inputs values in terms of 
logical variables that take on analog values from 0 to 1. This is known as 
fuzzy logic (true or false, respectively). 

The authors in [35] describe an unique fuzzy logic controller for 
HRES with several forms of storage. Consumer-related problems are 
resolved by the suggested plan. The issue is resolved by concentrating on 
satisfying the demand side’s supply while retaining the lithium-ion 
battery’s efficiency and dependability. 

Using data from the solar power module, wind power module, and 
load, an extensive assessment of a fuzzy control scheme and validation 
of its efficacy is carried out [36]. Two switches make up the system. 
Since the wind speed is constant, the fuzzy logic controller regulates the 
duty cycle of one of the converter’s switches that corresponds to the PV 
input. The maximum power point tracking algorithm provides the inputs 
to the fuzzy logic controller (MPPT). The purpose of the fuzzy logic 
controller is to regulate the duty cycle (d) for solar energy and the 

Fig. 14. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by ACO. 

Fig. 15. Power Output from Different Sources for Pulau Perhentian, optimi-
zation by GWO. 

Table 3 
Comparison of Optimization Algorithms for Islanded Microgrid at Pulau 
Perhentian.  

Optimization Technique Convergence Rate NPC/USD COE/USD 

HOMER Relatively Fast 387,185 0.64/kWh 
PSO Faster 388,789 0.665/kWh 
ILP Slow 390,865 0.706/kWh 
GA Slow 391,456 0.716/kWh 
ACO Relatively slow 392,990 0.745/kWh 
GWO Relatively slow 390,189 0.692/kWh  

Fig. 16. : (a) A block diagram of an islanded Microgrid system for Pulau Per-
hentian, Malaysia without and (b) with a transformer. 

Sk.A. Shezan et al.                                                                                                                                                                                                                             



Energy Reports 10 (2023) 3272–3288

3281

proportional-integral controller for WTs, respectively, to sequentially 
regularize the ideal rotor velocity and the pulse-width modulation in the 
boost converter [37]. 

This approach is unaffected by changes in system parameters and 
does not necessitate a particular intricate mathematical model or line-
arization about an operational point. In a fuzzy logic controller for a 
wind turbine subsystem, the pitch angle of the turbine is tuned following 
the values of the recorded wind velocity. The output impedance of the 
photovoltaic cell for the solar subsystem is equal to the measured 
impedance on load. To improve performance, both controllers are used 
[38]. 

8.2. Implementation of PID control with FLC and automatic gain tuning 

This section describes the implementation of a PID control with 
automatic gain tuning (Vu et al., 2017), which provides good perfor-
mance in mitigating voltage and frequency fluctuation. 

Firstly, a single-line power system diagram of the islanded microgrid 
system is shown in Fig. 16 as (a) without transformer and (b) with 

transformer. It consists of several important modules such as a PV 
module, wind turbine, battery storage, converter module, DG, charge 
controller, voltage regulator, and frequency controller. The PID control 
with automatic gain tuning is shown in Fig. 17 (Abhinav et al., 2018). 

The results of using PID control with automatic tuning are shown in 
the next few figures. Fig. 18 shows the rules viewer from the member-
ship function for the FLC. Fig. 19 and Fig. 20 show the membership 
functions of the input and output modules for the designed FLC. Fig. 21 
depicts the frequency response of the microgrid before tuning is applied.  
Fig. 22 shows the frequency of the IHMS after FLC and PID tuning for 
Pulau Perhentian, Malaysia where, it can be observed that, after tuning 
the response obtained significant improvement. 

There are regular deviations in distribution and demand that can 
make frequency go somewhat above or under 50 Hz, which can be 
overseen yet there are additionally enormous unsettling influences in 
the framework, for example, a huge power production plant stumbling 
off, which can seriously influence the stock interest equilibrium and lose 
the frequency of the framework. Sudden changes in load and equally 
quick changes in renewable power generation can cause frequency 

Fig. 17. : Simulink model of PID controller with automatic gain tuning.  

Fig. 18. Rule viewer for the designed FLC.  
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deviations. Due to these reasons, the frequency is falling to 49.5 Hz and 
sometimes goes up to 50.5 Hz. The diesel generator backup often helps 
the system frequency to keep it within 50 Hz. Intelligent active power 
control to tackle any sudden and large load-power generation imbal-
ances. Bigger energy storage system to create generation flexibility and 

load following ability. FLC has been implemented with the PID 
controller to control the active power flow and sudden changes in the 
active load to keep the frequency within 50 Hz. It can be seen that the 
frequency is held quite close to 50 Hz. Fig. 23–27 shows the voltage in 
the load, PV module, wind turbine, battery, and diesel generator 

Fig. 19. Membership functions according to the input parameter for FLC.  

Fig. 20. Membership functions according to the output parameter for FLC.  

Fig. 21. : Frequency responses of the IHMS for Pulau Perhentian, Malaysia without tuning.  
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Fig. 22. : Frequency responses with FLC and PID tuned, (a) From 0–4 s (b) From 3.4–4 s of the IHMS for Pulau Perhentian, Malaysia.  

Fig. 23. : Load voltage response of the IHMS for Pulau Perhentian, Malaysia.  

Fig. 24. : Voltage response of the IHMS for Pulau Perhentian, Malaysia from the PV module.  
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respectively. From 0–0.5 s, there are some dynamic responses from the 
power electronic devices, and these have been stabilized after 0.5 s. The 
load voltage lies between − 400–400 V due to the sudden or periodic 
variations in load and renewable power generation affecting the bi- 
directional current flows between the loads and power sources. The 
PV voltage started rising to 600 V then after 0.5 s stabilized and stayed 
at 500–600 V as the PV generation to the load connected to 600 V. The 
wind voltage is changing so rapidly from 0 to 500–400 V in 4 s due to the 
sudden and periodic changes in the average wind speed and the load 
demand from the wind terminal. The FLC has been implemented with 
the PID controller to make the winding voltage stabilize in between 3 
and 4 s. The battery voltage lies between 300 and 250 V and from 0.5 to 
2.5 s remain at 300 V and then 2.5–4 s falls to 250 V and stabilized as 
the load terminal connected with the battery storage programmed at 
250 V. 

Fig. 28 shows the power responses for the various components in the 

microgrid. The power responses have their corresponding magnitudes 
within the expected ranges. Fig. 29 shows the PV output voltage without 
MPPT (Maximum Power Point Tracking) applied to the PV unit. Then a 
PSO (Particle Swarm Optimization) based MPPT is applied for tracking 
the maximum power point tracking purpose and thus improving the 
voltage performance of the PV unit as shown in Fig. 30. PSO has been 
adopted as the other conventional techniques of MPPT like Perturb and 
Observe (PnO), Incremental conductance (IC) have their own disad-
vantages. The PnO needs larger number of iterations, has lower 
convergence speed and accuracy. The IC on the other hand cannot track 
the change of voltage with the fast change in the solar radiation pattern. 
The MATLAB code used for PSO has been provided in the appendix 
section of this manuscript. 

Fig. 25. : Voltage response of the IHMS for Pulau Perhentian, Malaysia from the wind turbine module.  

Fig. 26. : Battery voltage response of the IHMS for Pulau Perhentian, Malaysia from the battery module.  

Fig. 27. : Diesel generator voltage response of the IHMS for Pulau Perhentian, Malaysia from the diesel generator.  
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9. Conclusion 

In this paper, several deterministic and stochastic optimization ap-
proaches are applied to obtain the optimal number of different energy 

generating modules, which is the most economically attractive to be able 
to fulfil the load demand for a small community in Pulau Perhentian, 
Malaysia, considering the meteorological pattern of the area. 

From the results and comparisons, it can be concluded that the 

Fig. 28. : Power responses for various IHMS components.  

Fig. 29. : Solar PV voltage without PSO based MPPT.  

Fig. 30. : Solar PV voltage with PSO based MPPT.  
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HOMER gives the best result for LCOE and NPC, and it has a good 
convergence rate and can handle uncertainties. Homer works on a 
deterministic algorithm which is called ‘Homer Optimizer’. The com-
ponents and controllers initially chosen for the design purpose are cheap 
themselves and the Homer optimizer itself is capable of finding the 
cheaper option from the available options using the optimizer. 

In this paper, the issues of voltage and frequency fluctuations in 
islanded hybrid Microgrid systems are investigated, with the main 
reason being identified as the lack of energy generated to meet the load 
demand. The hierarchical procedure has been proposed to mitigate the 
above voltage and frequency fluctuation issues mentioned below: 

Firstly, the hybrid energy system was optimized such that the 
optimal numbers and sizes of power generating modules (including PV, 
wind turbine, battery, and diesel generator) are obtained, while also 
having the ability to handle the load requirement. The optimization 
problem also considers the levelized cost of energy (LCOE) and net 
present cost, by incorporating these into the cost function. Several 
optimization algorithms were implemented and compared. The results 
show that the HOMER outperforms all the others, with the lower COE 
and NPC, and achieving the convergence rapidly. 

Secondly, an advanced control approach is used to control the 
voltage and frequency. The PID control and FLC with automatic tuning 
are coded in MATLAB Simulink, along with a complete model of an 
islanded hybrid microgrid system. Simulation results show that by using 
the above control technique, the voltage and frequency are regulated 
well within the acceptable range. 
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Appendix 

function D = PSO(V, I)%% Parameters of PSO. 
Ni= 50;. 
Np= 1;. 
w= 0.9;. 
c1 = 2;. 
c2 = 2;. 
D_min= 0.01;. 
D_Max= 0.99;. 
%% Initialization. 
D=zeros;. 
empty_Duty.Position = zeros;. 
empty_Duty.Velocity = zeros;. 
empty_Duty.Power = zeros;. 
empty_Duty.Best.Position = zeros;. 
empty_Duty.Best.Power = zeros;. 
Duty = repmat(empty_Duty, Np, 1);. 
GlobalBest.Power= 0;. 
GlobalBest.Position= 0;. 
for i = 1:Np. 
Duty(i). Position = unifrnd(D_min,D_Max,1);. 
Duty(i). Velocity = zeros;. 
Duty(i). Power = V(i)*I(i);. 
Duty(i). Best.Position = Duty(i). Position;. 
Duty(i). Best.Power = Duty(i). Power;. 
end. 
BestPowers = zeros(Ni,1);. 
%% Main loop of PSO. 
for j = 1:Ni. 
for i = 1:Np. 
Duty(i). Velocity = w*Duty(i). Velocity. 
+c1 *rand* (Duty(i). Best.Position - Duty(i). Position). 
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+c2 *rand* (GlobalBest.Position - Duty(i). Position);. 
Duty(i). Position = Duty(i). Position + Duty(i). Velocity;. 
Duty(i). Power = V(i)*I(i);. 
if Duty(i). Power > Duty(i). Best.Power. 
Duty(i). Best.Position = Duty(i). Position;. 
Duty(i). Best.Power = Duty(i). Power;. 
if Duty(i). Best.Power > GlobalBest.Power;. 
GlobalBest.Position = Duty(i). Position;. 
GlobalBest.Power=Duty(i). Best.Power;. 
end. 
end. 
D(i)=Duty(i). Position;. 
end. 
end. 
D;. 

Component specification 

The components specification utilized in the hybrid system design are given in the following section (from Tables 4 to 8).  

Table 4 
Significant parameters of battery.  

Parameters Value 

Fuel cost 1 $/liter 
Net cost 200 $/kW 
Lifetime 900000 min (15,000 h) 
Least load quotient 30% 
Substitution cost 150 $/kW 
O&M cost 4.6$/kW   

Table 5 
Significant parameters of battery.  

Parameters Value 

Substitution Cost 80 $/kW 
Rectifier efficiency 89% 
Lifetime 10 years 
Principal Cost 100 $/kW 
Efficiency 95% 
Rectifier aptitude 90%   

Table 6 
Significant parameters of converter module.  

Parameters Value 

Inverter efficiency 90% 
Substitution cost 50 $/kW 
Rectifier efficiency 85% 
Lifetime 20 years 
Principal cost 210 $/kW   

Table 7 
Significant parameters of wind turbine module.  

Parameters Value 

Cut off speed 15 m/s 
O&M cost 20 $/kW 
Lifetime 15 Years 
Net cost 2000 $/kW 
Rated speed 8 m/s 
wind speed 3 m/s 
Substitution cost 1500 $/kW   
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Table 8 
Significant parameters of solar PV module.  

Parameters Value 

O&M cost 20 $/kW 
substitution cost 200 $/kW 
Lifetime 20 Years 
Tracking system N/A 
Derating factor 80% 
Net cost 250 $/kW  
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